From rational points to homotopy fixed points

HU/MPIM Online Research Seminar Algebra, Geometry & Physics March 23, 2021

> Gereon Quick NTNU

Rational points

nice algebraic variety over Q

 $X = \{x^4 - 17z^4 = 2(y^2 + 4z^2)^2\}$

solutions over \mathbb{Q} ?

solutions over $\overline{\mathbb{Q}}$

 $X(\mathbb{Q})$ = rational points ? $X(\mathbb{Q})$ = geometric points

fixed points

action by absolute Galois group $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$

 $X(\mathbb{Q}) = X(\bar{\mathbb{Q}})^{\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})} \subset X(\bar{\mathbb{Q}})$

A fundamental exact sequence: k a number field, \bar{k} a separable closure X smooth geometrically connected variety over k

 $\bar{x} \in X(\bar{k})$ a geometric point

geometry

arithmetic

 $1 \to \pi_1^{et}(\bar{X}, \bar{x}) \to \pi_1^{et}(X, \bar{x}) \to \operatorname{Gal}(\bar{k}, k) \to 1$

 $\bar{X} = X \times_k \bar{k}$

absolute Galois group $\cong \pi_1^{et}(\bar{k}, \bar{x})$

étale fundamental group

Sections: y: Spec $k \to X$ a rational point

apply $\pi_1^{et}(-, y)$

choose étale "path" p: y~x

 $\begin{array}{c|c} \pi_1^{et}(X,y) \leftarrow \\ & \mathbf{p}_* \end{array}$ $\sim S_v$

$1 \to \pi_1^{et}(\bar{X}, \bar{x}) \to \pi_1^{et}(X, \bar{x}) \to \operatorname{Gal}(\bar{k}, k) \to 1$

yields a section after composition with p

unique up to conjugation by $\pi_1^{et}(\bar{X}, \bar{X})$

The Section Conjecture:

 $\begin{array}{rcl} X(k) & \longrightarrow & S(X/k) & = \text{ set of } \pi_1^{et}(\bar{X}, \bar{x}) - \text{conjugacy} \\ y & \longmapsto & [s_y] & \text{ classes of sections} \\ & & & [s_v] \end{array}$

$1 \to \pi_1^{et}(\bar{X}, \bar{x}) \to \pi_1^{et}(X, \bar{x}) \to \operatorname{Gal}(\bar{k}, k) \to 1$

Grothendieck: This map is a bijection if X is a geom. connected projective smooth curve of genus ≥ 2 .

Injectivity 🗸

Surjectivity ?

Anabelian geometry

A motivating reformulation:

 $X(k) \longrightarrow S(X/k)$

outer homs compatible with projection to $Gal(\bar{k}/k)$

homotopy category

number theory

 $\cong \operatorname{Hom}_{\operatorname{out}}(\operatorname{Gal}(\overline{k}/k), \pi_1^{et}(X, \overline{x}))$ morphisms in the

group theory

homotopy theory

over $BGal(\bar{k}/k)$ $\cong [BGal(\bar{k}/k), B\pi_1^{et}(X, \bar{x})]_{BGal(\bar{k}/k)}$

X is a $K(\pi,1)$ -space

 $\cong \pi_0((X_{\hat{e}t})^{h\operatorname{Gal}(\bar{k}/k)})$

homotopy fixed point space of the étale topological type under the action of $Gal(\bar{k}/k)$

Rational points and homotopy fixed points:

Goal: construct this map!

$$X(k) \longrightarrow \pi_0((X_{\hat{e}t})^{h\operatorname{Gal}(\bar{k}/k)})$$

Gal(k/k)-homotopy fixed points of the étale topological type

This map exists in general!

"homotopical approximation" to X(k)

Rational points and homotopy fixed points:

Goal: construct this map!

$$X(k) \longrightarrow \pi_0((X_{\hat{e}t})^{h\operatorname{Gal}(\bar{k}/k)})$$

"homotopical approximation" to X(k)

Gal(k/k)-homotopy fixed points of étale topological type

might lead to

obstructions

• existence ?

A brief detour:

with an action of a group G

topological space Y

fixed points

 $Y^G \subset Y$

Problem: not homotopy invariant

 $X \simeq Y$ does not imply $X^G \simeq Y^G$

A brief detour: $X \simeq Y$ does not imply $X^G \simeq Y^G$ Example: $G = \mathbb{Z}$ the integers, $Y = \mathbb{R}$ the real line. $n: x \mapsto x + n$ $-1 \ 0 \ 1 \ 2 \ \dots \ n$ R • $Y \simeq \{pt\}$ contractible • $\{\mathsf{pt}\}^G \neq \emptyset$ • $Y^G = \emptyset$ action is free

Homotopy fixed points: space of G-equiv. maps Y = Map(pt, Y) and $Y^G = Map_G(pt, Y)$ Problem: point not a "well-behaved" G-space

Solution: replace pt by a cofibrant resolution EG

canonical G-bundle EG

a contractible space with a free G-action

classifying space

BG = EG/G

Homotopy fixed points: space of G-equiv. maps Y = Map(pt, Y) and $Y^G = Map_G(pt, Y)$ EG = contractible space with a free G-action Define homotopy fixed points as $Y^{hG} = \operatorname{Map}_{G}(EG, Y)$ Example above: $Y^{hG} \simeq \{ pt \}$

Fixed and homotopy fixed points:

Homotopy fixed points are homotopy invariant:

 $X \simeq Y$ implies $X^{hG} \simeq Y^{hG} \checkmark$

canonical map $EG \rightarrow pt$ $Y^G = Map_G(pt, Y) \rightarrow Map_G(EG, Y) = Y^{hG}$

In general not a homotopy equivalence!

Sullivan's question: X an alg. variety over \mathbb{R}

how to recover the homotopy type ?

from

 $X(\mathbb{C})$

 $X(\mathbb{R})$

of

 C_2 acts by complex conjugation

 $X(\mathbb{R}) = X(\mathbb{C})^{C_2}$

But: The homotopy type of $X(\mathbb{R})$ may not be determined by the one of $X(\mathbb{C})$ by taking fixed points.

Sullivan's question:

Example: $X = \mathbb{P}^1$ the projective line *p* odd prime

• $X(\mathbb{C}) \cong S^2$ • $\pi_n(X(\mathbb{C})_p^{hC_2}) = \pi_n(X(\mathbb{C})_p)^{C_2}$

p-completion of $X(\mathbb{C})$

• however $X(\mathbb{R}) \simeq S^1$ and

• $\pi_1(X(\mathbb{C})_p^{hC_2}) = \{1\} \neq \pi_1(X(\mathbb{R})_p)$

Sullivan conjecture:

p a prime, G a finite p-group, nice space Y G-action

e.g. finite complex or $B\pi$, π finite group

Theorem (Miller, Lannes, Carlsson):

$$Y_p^G \to Y_p^{hG}$$
 is an equivalence

p-completion of Y

Example: X a variety over \mathbb{R}

equivalence

 $X(\mathbb{R})_2 \simeq X(\mathbb{C})_2^{C_2} \to X(\mathbb{C})_2^{hC_2}$

Etale homotopy in a nutshell (after Artin-Mazur, Friedlander, Sullivan,...):

X an algebraic variety over a field k local diffeomorphism

 $U \to X$ be an etale cover

think of as an "open" cover

if char k = 0: why not take $k \hookrightarrow \mathbb{C}$ and $X_{\mathbb{C}}$? Serre: not intrinsic!

Cech nerve $N_X(U) = U_{\bullet}$

this is the simplicial scheme

 $U \stackrel{\leftarrow}{\leq} U \times_X U \stackrel{\leftarrow}{\leq} U \times_X U \times_X U \dots$

 U_n is the n+1-fold fiber product of U over X

The idea:

connected components

simplicial set $\pi_0(U_{\bullet})$

Observation: variety X over a field

 $\lim_{\to} H^s_{sing}(\pi_0(U_{\bullet}), F) \cong H^s_{et}(X, F)$ $\bigcup_{U \to U} etale \text{ cohomology}$

A candidate for an etale homotopy type:

"system of all spaces $\pi_0(U_{\bullet})$'s"

Friedlander's rigidification:

connected

A rigid cover is a disjoint union of pointed, étale, separated morphisms

 $\alpha_x: (U_x, u_x) \to (X, x)$ one for each x in $X(\overline{k})$ geometric geometrically point over \boldsymbol{X}

• Rigid covers form a filtered category RC(X).

crucial technical feature

Friedlander's rigidification:

The "rigid etale type of X'' is the pro-simplicial set

simplicial sets

functor from a filtered category to...

 $X_{et}: \operatorname{RC}(X) \to \mathrm{sS}, \quad U \mapsto \pi_0(U_{\bullet}).$

set of connected components

Cech nerve

Intrinsic topological invariant of X

Friedlander's rigidification:

Example: $X = \operatorname{Spec} k$

• rigid étale covers of k = finite Galois ext. $k \leq L$ in \overline{k}

• $N_X(L/k)_n \cong \int_{n+1 \text{ copies}} \text{Gal}(L/k)$

finite Galois

 $k_{et} = (\text{Spec } k)_{et} \cong \{B\text{Gal}(L/k)\}_{k \le L < \bar{k}}$

Friedlander's rigidification: $X_{et}: \operatorname{RC}(X) \to \operatorname{sS} \qquad U \mapsto \pi_0(U_{\bullet})$

• X defined over \mathbb{C} : $(X_{et})^{\hat{}} \simeq X(\mathbb{C})^{\hat{}}$

Friedlander

and Cox

weak equivalence of pro-spaces after profinite completion

• X defined over \mathbb{R} : the story is more involved...

• $(\bar{X}_{et})^{\hat{}} \simeq X(\mathbb{C})^{\hat{}}$ • $(X_{et})^{\hat{}} \simeq X(\mathbb{C})_{Gal(\mathbb{C}/\mathbb{R})}^{\hat{}}$

Borel construction

Profinite spaces of Lannes and Morel:

profinite group

Example: $B\pi$ = classifying space of π $B\pi_n = \pi \times \cdots \times \pi$ is a profinite set Profinite spaces with a continuous action: G a profinite group $\hat{S}_G = \text{category of simplicial profinite sets}$ with a levelwise continuous G-action "profinite G-spaces"

profinite group with a continuous G-action

Example: $B\pi$ = classifying space of π

 $B\pi_n = \pi \times \cdots \times \pi$ is a profinite set with a continuous *G*-action

Quillen-adjunction:

Theorem (Q.):

Both categories have fibrantly generated model structures.

Continuous homotopy fixed points: Y in $s\hat{S}_G$

continuous homotopy fixed points

 $Y^{hG} := \operatorname{Map}_{\hat{S}_G}(EG, R_GY)$

mapping space

fibrant replacement in \hat{sS}_G

Continuous descent spectral sequence:

 $Y \text{ in } s\hat{S}_G \qquad Y^{hG} := \operatorname{Map}_{s\hat{S}_G}(EG, R_GY)$

We have a descent spectral sequence:

 $E_{2}^{s,t} = H_{\text{cont}}^{s}(G, \pi_{t}(Y)) \Rightarrow \pi_{t-s}(Y^{hG}).$

applications in continuous group cohomology

chromatic homotopy theory, Lubin-Tate spectra...

Profinite completion:

There are profinite completion functors

 $sS \rightarrow s\hat{S}$ levelwise profinite completion of sets pro $-sS \rightarrow pro - s\hat{S} \rightarrow s\hat{S}$ take fibrant reploid objectwise

take fibrant replacements objectwise and then (homotopy) limits

Profinite etale type:

profinite completion functor

 $\begin{array}{c} \text{complete} & \text{holim} \\ \text{pro} - sS \longrightarrow \text{pro} - s\hat{S} \longrightarrow s\hat{S} \end{array}$

For X/k and $G := \operatorname{Gal}(k/k)$:

apply etale type and complete+holim

 $X_{\hat{e}t}$ is an object in $s\hat{S}_{BG}$, and $\bar{X}_{\hat{e}t}$ is an object in $s\hat{S}_{G}$.

Continuous Galois homotopy fixed points: X/k and $G = Gal(\overline{k}/k)$ as before

We get continuous Galois homotopy fixed points:

$$(\bar{X}_{\hat{e}t})^{hG} = \operatorname{Map}_{\hat{sS}_{BG}}(BG, R_{G}\bar{X}_{\hat{e}t} \times_{G} EG).$$

fibrant
replacement in \hat{sS}

G

Theorem (Q., D. A. Cox for $k = \mathbb{R}$, 1979):

The canonical map $X_{\hat{e}t} \times_G EG \to X_{\hat{e}t}$ is a weak equivalence in $s\hat{S}_{BG}$.

Back to rational points:

X = geom. connected smooth projective variety over a number field k

 $X(k) = \text{Hom}_k(k, X)$ = set of rational points.

Functoriality of all constructions

homotopy category of $\hat{sS}_{k_{\hat{e}t}}$

 $X(k) \to \operatorname{Hom}_{\hat{\mathscr{H}}_{k_{\hat{e}t}}}(k_{\hat{e}t}, X_{\hat{e}t})$

(Spec $k \to X$) $\mapsto (k_{\hat{e}t} \to X_{\hat{e}t})$

From rational to homotopy fixed points:

 $X(k) \longrightarrow \operatorname{Hom}_{\hat{\mathscr{H}}_{k_{\hat{e}t}}}(k_{\hat{e}t}, X_{\hat{e}t})$

$G = \operatorname{Gal}(\bar{k}/k)$

```
\cong \operatorname{Hom}_{\hat{\mathscr{H}}_{BG}}(BG, X_{\hat{e}t})
```

fibrant replacement of

 $\cong \pi_0 \operatorname{Map}_{\hat{S}_{BG}}(BG, X_{\hat{e}t})$

 $\cong \pi_0(X_{\hat{e}t}^{hG})$

Obstructions to rational points:

 $X(k) \to \pi_0(X_{\hat{e}t}^{hG})$

different construction of $\pi_0(X^{hG}_{\hat{\rho}t})$

 Obstruction for existence of rational points (e.g. Pal, Harpaz-Schlank, Corwin-Schlank,...)

• For X and k as in the Section Conjecture, we know

 $\bar{X}_{\hat{e}t} \simeq B\pi_1^{et}(\bar{X}, \bar{X})$

in this case

" $K(\pi,1)$ -space"

anabelian geometry

 $X_{\hat{\rho}t}^{hG} \simeq (B\pi_1^{et}(\bar{X},\bar{X}))^{hG}$

Thank you!