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Preamble

Conventions:

k will always refer to a perfect field

Our model for ∞-categories will mostly be Kan-enriched categories
(just because it gives us a strict horizontal composition and a nicely
concrete model for K-theory)

VarS will be finite type separated schemes over S .

In this talk I will:

Offer motivation for following work (Zakharevich et. al, Gillet-Soulé,
Bondarko)

Discuss several types of (∞-)categories from which K-theory can be
extracted (Waldhausen, Campbell, Blumberg-Gepner-Tabuada)

Describe abstract six functors formalisms/motivic categories (Khan,
Drew-Gallauer, Cisinski-Déglise, Hoyois)

Show how to extract maps of K-theory spectra from motivic
categories (L.)

Show that this applies to the Gillet-Soulé motivic measure (L.)
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K-Theory of Varieties
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The Grothendieck Ring of Varieties

Let S be an arbitrary scheme

The Grothendieck ring of S-varieties K0(VarS) is the abelian group
on isomorphism classes of varieties obtained by imposing the relation

[X ] = [Z ] + [X \ Z ]

for any closed subvariety Z ⊆ X .

The ring structure arises naturally from [X ][Y ] = [X ×S Y ] for all X
and Y .

If S = Spec(k) for k satisfying resolution of singularities and weak
factorization, then K0(Vark) has an alternative presentation in terms
of smooth projective varieties:

[∅] = 0
[X ]− [Z ] = [BlZ (X )]− [E ] for any Z ⊆ X a closed subvariety and E
the exceptional divisor of the blowup
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Motivic measures

Given k as in the previous slide, and any Weil Cohomology theory H•

with coefficients in K of characteristic 0, the assignment
X 7→

∑
i [H

i (X )] ∈ K0(K ) of the corresponding Euler characteristic
factors through K0(Vark)

In other words, we have a ring homomorphism

K0(Vark)→ K0(K )

induced by the Euler characteristic.

over a general base, we call any ring homomorphism

K0(VarS)→ R

a motivic measure

Motivic measures are useful for probing the structure of the
Grothendieck ring of varieties and of varieties more generally.
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Motivation for the K-Theory Spectrum of Varieties

There is a spectral upgrade K (VarS) of the Grothendieck ring of
varieties (originally due to I. Zakharevich, with equivalent models by
J. Campbell and provisionally considered by T. Ekedahl)

This was used by I. Zakharevich to demonstrate that the kernel of
multiplication by L := [A1] in K0(Vark) (for a ”convenient” k) is
given by classes of the form [X ]− [Y ] where X and Y are such that
[X ×A1] = [Y ×A1], but [X ] ̸= [Y ] and X ×A1 and Y ×A1 are not
piecewise equivalent.

This shows that the K-theory spectrum of varieties is useful, but it is
also quite a mysterious object

One might ask in particular if it carries any higher homotopical data
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Additional Properties

The inclusion FinSet ↪→ Vark induces a map
K (FinSet) ≃ S→ K (Vark), the cofiber of which is denoted K̃ (Vark).

If k is realizable as a subfield of C, then the resulting cofiber sequence
gives us infinitely many nonzero homotopy groups

If k is finite, the assignment X → X (k) yields a splitting

K (Vark) ≃ S ∨ K̃ (Vark)

In this case, we can begin asking subtler questions about K̃ (Vark)

It is shown by Campbell, Wolfson, and Zakharevich that by lifting the
Hasse-Weil zeta function to a map of K-theory spectra (a derived
motivic measure)

K (Vark)→ K (AutQl),

one can prove that K̃ (Vark) contains higher homotopical data (with
some further restrictions on the characteristic of k)
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The Gillet-Soulé Motivic Measure
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The Gillet-Soulé Motivic Measure

The original purpose of this work was to lift the Gillet-Soulé motivic
measure

Note that one has a natural functor

h : SmProjk → Chow(k ,Q)

given by h(X ) = (X ,∆X , 0) for any smooth projective variety over k .

Supposing again that k satisfies resolution of singularities and weak
factorization, one can show that for any closed subvariety Z ⊆ X , one
has that

[h(X )]− [h(Z )] = [h(BlZ (X ))]− [h(E )]

Consequently, one can define the Gillet-Soulé motivic measure

χgs : K0(Vark)→ K0(Chow(k ,Q))

via χgs([X ]) = [h(X )], where K0(C) for an additive category is
generated via isomorphism classes under direct sums, and the product
is tensor.
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The Motivic Weight Complex of Gillet-Soulé

Given any pseudoabelian category A, there is an isomorphism
K0(Hot

♭A) ∼= K0(A) via [c•] 7→
∑

i [c
i ]

For any X ∈ Vark , one can prove the existence up to isomorphism of
its weight complex W (X ) ∈ Hot♭Chow(k,Q)

W (X ) satisfies [W (X )] = [h(X )] for X ∈ SmProjk
The assignement X 7→W (X ) is functorial in the following sense:

W defines a contravariant functor

W ∗ : (Varclosedk )op → Hot♭Chow(k,Q)

(from varieties with closed immersions) where W ∗(f ) is denoted f ∗

W defines a covariant functor

W∗ : Varopenk → Hot♭Chow(k ,Q)

(from varieties with open immersions) where W∗(f ) is denoted f∗
W (X ×k Y ) ∼= W (X )⊗W (Y )

Given a closed/open decomposition Z
i
↪→ X

j← U, one has the

distinguished triangle W (U)
j∗→W (X )

i∗→W (Z )→W (U)[1]
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The Weight Functor of Bondarko

If k satisfies the same conditions as before and we replace
Chow(k ,Q) with its homological version (the opposite category), one
can define a motivic weight complex functor

tQ : DMgm(k,Q)→ Hot♭Chow(k ,Q)

tQ descends to an isomorphism
K0(DMgm(k,Q)) ∼= K0(Hot

♭Chow(k,Q))

Under this isomorphism, one has that [Mc(X )] 7→ [W (X )]

consequently, our attempts to lift the Gillet-Soulé motivic measure
can focus on lifting the assignment X 7→ Mc(X ) to the level of
K-theory spectra
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(∞-)Categorical and K-Theoretic Preliminaries
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Some Motivations for K-Theory I

K-theory is an invariant that informs you about the structure of
certain categories

The most classical setting (general) for algebraic K-theory is that of
exact categories, which are

additive
are equipped with a well-behaved notion of exact sequence

The K-groups of an exact category A are defined as the homotopy
groups of an infinite loop space known as K (A)
In particular, we have ProjR for a commutative ring R (finitely
generated projective modules), and define K (R) := K (ProjR)

One has that K0(R) is the abelian group on isomorphism classes of
projective R-modules modulo the relations [B] = [A] + [C ] whenever

0→ A→ B → C → 0

is exact
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Some Motivations for K-Theory II

While K0(R) for a ring R can be used to study the structure of
projective modules, higher K theory can be used to understand the
structure of automorphisms

K1(R) may be presented by classes [f : P → P] for finitely generated
projective P, as there exists a unique map of groups Aut(P)→ K1(R)

K2(R) may generally be thought of as probing the structure of pairs
of commuting automorphisms

From there, the situation gets much more mysterious

Even just looking at the K-theory of rings and other exact categories,
the structure of the K-groups is related to many deep conjectures

Whenever we extend K-theory to a new setting or probe the structure
of existing K-theory, we end up gaining a lot of insights into other
areas of math
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Motivation for Waldhausen Categories

There are many situations where you have a category which is ”like
an exact category,” but is not additive

For example, FinSet∗, with ”exact sequences” being cofiber
sequences of the form

X Y

∗ Z
⌜

defined by pushing out along a monomorphism

This structure is analogous in exact categories, where a sequence is
exact if and only if it may be fit into a pushout square

A B

∗ C
⌜
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Motivation for Waldhausen Categories II

The commonality between the previous examples is the existence of
pushouts/cofiber sequences along a special class of morphisms

To define K-theory of these ”nonlinear exact categories” (Waldhausen
categories), we need a different technique from the one used in the
exact world.

This is Waldhausen’s S•-construction (not described here)

This can be iterated to obtain a spectrum

For an exact category A, Waldhausen’s K-theory K (A) is equivalent
to Quillen’s K-theory

In our nonlinear example from before, we get

K (FinSet∗) ≃ S

by the Barratt-Priddy-Quillen theorem (this result is sometimes
quoted as K (F1) ≃ S).
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Waldhausen Categories

Waldhausen categories are at this point the ”standard” categorical
setting for K-theory

They consist of a category C with two distinguished classes of
morphisms: cofibrations cof (elements of which are denoted ↪→) and

weak equivalences W (elements of which are denoted
∼→) which are

required to satisfy the following axioms:

All isomorphisms are cofibrations
C has a zero object, and 0→ X is a cofibration
Cofibrations are stable under pushout
All isomorphisms are weak equivalences
Weak equivalences are closed under composition and hence form a
subcategory

Z X Y

Z ′ X ′ Y ′

∼ ∼ ∼ commutative implies that the induced map

Y ∪X Z
∼→ Y ′ ∪X ′ Z ′ is an equivalence
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Motivation for SW-Categories

Not every category we wish to obtain K-theory from is Waldhausen

For example, VarS does not admit a Waldhausen structure

We want a framework for which the basic structures are not cofiber
sequences, but rather subtraction sequences (abstract scissors
congruences)

SW-categories are like Waldhausen categories, but are centered
around subtraction, as opposed to cofiber sequences

This allows us to extract K-theory from many categories for which the
natural notion is subtraction as opposed to cofiber sequences, such as
VarS
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SW-Categories

SW-categories were axiomatized to categorify ”cutting and pasting”
The basic data consists of:

An essentially small category C
A wide subcategory cof(C) whose morphisms are called cofibrations
and denoted ↪→
A wide subcategory comp(C) whose morphisms are called

complements and denoted
◦→

A wide subcategory containing all isomorphisms wC whose morphisms
are called weak equivalences and denoted

∼→
A class of diagrams sub(C) of the form Z ↪→ X

◦← U
The axioms that this data is mandated to satisfy are quite complex,
and we only give the most important ones here

Cofibrations and complements are stable under pullback
X ↪→ X

∐
Y

◦← Y
Every cofibration extends uniquely to a subtraction sequence up to
unique isomorphism. The same is true for all complements
Subtraction is stable under pullback
The pushout of subtraction sequences along cofibrations are
subtraction sequences
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Examples of SW-Categories

The category VarS of varieties over S is an SW-category with

Cofibrations closed immersions
Complements open immersions
Weak equivalences isomorphisms
Subtraction sequences open/closed decompositions

This was, in many ways, THE motivating example

The category SchS of schemes over S is an SW-category with

Cofibrations closed immersions
Complements open immersions
Weak equivalences isomorphisms
Subtraction sequences open/closed decompositions

Furthermore, VarS → SchS is an ”exact functor of SW-categories”

The category FinSet of finite sets is also an SW-category
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Motivation for Stable ∞-categories

Triangulated categories are central to algebraic geometry in the form
of derived categories (of schemes, rings, etc.)

They have many drawbacks

For example, mapping cones are not functorial, and their notion of
K-theory is often poorly behaved

Stable ∞-categories provide a nice alternative, as many constructions
which are not functorial for triangulated categories become functorial
for stable ∞-categories

Stable ∞-categories have a nice notion of K-theory that is in many
ways the most general notion for ”linear” categories
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Stable ∞-categories

A composition A→ B → C in an ∞-category is called a (co)fiber
sequence if the diagram

X Y

∗ Z

is commutative and homotopy (co)cartesian

An ∞-category A is stable if
A has a (homotopy) zero object
Every morphism has a kernel and cokernel (may be extended to a fiber
and cofiber sequence)
Every fiber sequence is a cofiber sequence and vice versa

stable categories admit all (homotopy) pushouts and pullbacks, and
these squares coincide

If A is stable, then Ho(A) is a triangulated category
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K-Theory of Kan-Enriched Categories

Let A be a finitely homotopy cocomplete, homotopy pointed
∞-category
Define P(A) to be pointed simplicial presheaves on A with the
projective model structure, and let Pex(A) be the left Bousfeld
localization to the model category of pointed simplicial presheaves
which preserve homotopy colimits
We then obtain a Waldhausen categoryM(A) ⊂ Pex(A) as the
cofibrant objects which are weakly equivalent to representable
presheaves
This assignment is functorial in weakly exact functors F : A → B (via
restriction of left Kan extension)
We define the K-theory K (A) of A to be the Waldhausen K-theory

K (A) := K (M(A))
We obtain a K-theory functor from the model category of pointed,
finitely homotopy cocomplete ∞-categories to spectra, which sends
weak equivalences to weak equivalences
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Weakly W-Exact Maps

Given a SW-category C and a pointed, finitely homotopy cocomplete
∞-category A, a weakly W-exact functor F := (F!,F

!,Fw ) : C → A is a
triple such that

F! is a functor F! : cof(C)→ A. We abbreviate F!(i) to i!
F ! is a functor F ! : comp(C)op → A. We abbreviate F !(j) to j !

Fw is a functor Fw : wC → ι(A). We abbreviate Fw (f ) to fw
For all objects X ∈ C, one has F!(X ) = F !(X ) = Fw (X ) =: F (X )

X Z

Y W

i◦

j

i ′◦
j ′

cartesian ⇒
F (X ) F (Z )

F (Y ) F (W )

j!

i !

j ′!

i ′! commutes

Z
i
↪→ X

j←
◦
U ∈ sub(C)⇒

F (Z ) F (X )

0 F (U)

i!

j ! weakly cocartesian
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Weakly W-Exact Functors II

For all commutative squares

X Z

Y W

g∼

f

g ′∼

f ′

⇒
F (X ) F (Z )

F (Y ) F (W )

gw

f!

g ′
w

f ′!

commutes in A. One gets an analogous diagram if one replaces
cofibrations with complements

This definition is central because it induces a map on K-theory

K (F ) : K (C)→ K (A)

which will be used to define our lift of the Gillet-Soulé motivic measure
later.
This definition is directly analogous to that of Campbell with image a
Waldhausen category.
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Six Functors Formalisms
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Extra Conditions on ∞-Categorical Presheaves on Schemes

Let S be a nice subcategory of schemes (we will not define this) in which
all elements are Noetherian (such as schemes of finite-type or varieties
over a Noetherian base)

Given a presheaf D∗ of ∞-categories on S, we set D(S) := D∗(S) for
all S ∈ S and set f ∗ : D(Y )→ D(X ) for all morphisms f : X → Y

If D takes values in presentable ∞-categories and colimit-preserving
functors, we say that it is a presheaf of presentable ∞-categories

Then each f ∗ admits a right adjoint f∗ : D(X )→ D(Y )

If D∗ factors throught symmetric monoidal ∞-categories for which
the tensor product commutes with colimits, we say that it is a
presheaf of presentable symmetric monoidal ∞-categories

Over D(S) for any S , we denote the tensor product by ⊗ and the unit
by 1S

We have an internal Hom by definition

From now on, we omit the ∗ and simply use the notation D := D∗
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(∗,#,⊗)-Formalisms

A premotivic ∞-category or (∗,#,⊗)-formalism S is a presheaf of
symmetric monoidal presentable ∞-categories D such that:

For every smooth f : T → S in S, f ∗ admits a left-adjoint
f# : D(T )→ D(S)
f# is a morphism of D(S)-modules

Given

T ′ S ′

T S

q

g

⌟
p

f

cartesian with p and q smooth, then there is an equivalence

Ex∗# : q#g
∗ ∼→ f ∗p#

Given any finite family Sα in S, the induced functor

D(⨿αSα)→ ΠαD(Sα)

is an equivalence.
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Voevodsky Criteria and Motivic ∞-Categories

A premotivic ∞-category on S satisfies the Voevodsky conditions if:

For S ∈ S and p : E → S a vector bundle, the unit map

id→ p∗p
∗

is an equivalence
For every closed/open decomposition

Z
i
↪→ X

j
←↩ U

in S, i∗ is fully faithful with essential image spanned by objects in
ker j∗ (this will imply that i!i

! → id→ j∗j
∗ is a cofiber sequence)

For S ∈ S and E a locally free sheaf on S with associated vector
bundle p : E → S , the Thom twist endofunctor

F 7→ F⟨E⟩ := p#s∗(F).

is an equivalence

Any such premotivic ∞-category D is called a motivic ∞-category. By the
properties above D(S) is stable for all S ∈ S.
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The Exceptional Functors

Consider a motivic ∞-category D. For f : X → Y of finite type, there
exists an adjunction

(f! ⊣ f !) : D(X ) ⇄ D(Y )

and a natural transformation αf : f! → f∗ such that:

If f is an open immersion, then f! ≃ f# and f ! ≃ f ∗

αf is an equivalence if f is a proper morphism

X ′ Y ′

X Y

q

g

⌟
p

f

cartesian implies that

Ex∗! : v
∗f! → g!u

∗ and Ex!∗ : u∗g
! → f !v∗ are equivalences

The functor f! is a morphism of D(Y )-modules. Furthermore, the
canonical morphisms

F ⊗ f!(G)→ f!(f
∗(F)⊗G), Hom(f ∗(F), f !(F ′))→ f !(Hom(F ,F ′)),

f∗(Hom(F , f !(G)))→ Hom(f!(F),G)
are equivalences
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Various Forms of Base Change

If D is a motivic category over (S,A) and

X ′ Y ′

X Y

q

g

⌟
p

f

is cartesian, then:

Proper base change: If f is proper, then Ex∗∗ : p
∗f∗

∼→ g∗q
∗ is an

equivalence

Smooth-proper base change: If f is proper and p and q are smooth,
then Ex#∗ : p#g∗

∼→ f∗q# is an equivalence

Finite type-smooth base change: If f is finite type and p and q are
smooth, then Ex∗! : q∗f !

∼→ g !p∗ is an equivalence

Finite type-proper base change: If f is finite type and p is proper,
then Ex!∗ : f!q∗

∼→ p∗g! is an equivalence
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Constructible Objects and Generation

An object in D(S) is constructible if it lies in the thick subcategory
generated by f#f

∗(1S)⟨−n⟩ ≃ f!f
!(1S)⟨−n⟩ with f : X → S smooth

of finite presentation and n ∈ Z≥0

D is compactly generated if

For every S ∈ S, the ∞-category D(S) is compactly generated
For every morphism f : T → S in S, the inverse image functor
f ∗ : D(S)→ D(T ) is a compact functor (preserves compact objects)

D is constructibly generated if it is compactly generated and every
constructible object is compact. In this case, compactness coincides
with constructibility

Constructibility is preserved by:

(−)⊗F with constructible F
f ∗ for any f : X → Y
f# for f : X → Y finitely presented smooth
(−)⟨E⟩ for any vector bundle E
f! for any f : X → Y finite type
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Examples of Motivic ∞-categories

The stable motivic homotopy category SH is a motivic ∞-category,
where SH(S) is defined in steps:

H(S) is itself the (Bousfeld) localization of presheaves on SmS valued
in spaces by Nisnevich descent and A1-homotopy invariance
SH(S) is the stabilization of H•(S), pointed objects in H(S), under
the operation of suspension relative to the Thom sphere
TS := A1

S/(A1S − S)

The rational motivic stable homotopy category SHQ is a motivic
∞-category defined as SHQ(S) = SH(S)⊗D(Q) ≃ DA1(S ,Q),
where the latter is the ∞-category of complexes of Tate spectra over
rational sheaves on S satisfying Nisnevich descent and A1-homotopy
invariance and stabilized relative to tate twist as before

The derived stable ∞-category Dét(−,Z/lZ) of étale sheaves is a
motivic ∞-category

The derived stable ∞-category D(−,Ql) of l-adic sheaves is a
motivic ∞-category
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From Six Functors to Derived Motivic Measures
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Outline

We notice that in the triangulated category of cdh-motives
f∗f

!(1S) ∼= Mc(X )

Inspired by this, we want to show that for any D motivic with certain
niceness properties, (f : X → S) 7→ f∗f

!(1S) defines a weakly
W-exact functor

We note that for any D motivic there is a weakly W-exact functor
VarS → End(D(S)) defined by (f : X → S) 7→ f∗f

! (this is the
purpose of our ”Essential Lemmas” below)

We then determine some niceness conditions on D that ensure that
evaluation at 1S defines a weakly W-exact functor VarS → Dcons(S)

The above conditions are needed to avoid swindles

This then allows us to obtain a map on K-theory
K (VarS)→ K (Dcons(S))
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Essential Lemmas

W Z X

S

i

g
f

j

h
commutes⇒

g∗g
! f∗f

!

h∗h
!

commutes

In other words, the assignment (f : X → S) 7→ f∗f
! is covariantly

functorial on closed immersions

U V Y

S

k
◦
u s

l
◦

t
commutes⇒

t∗t
! s∗s

!

u∗u
!

commutes

In other words, the assignment (s : V → S) 7→ s∗s
! is contravariantly

functorial on open immersions
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Essential Lemmas II

X Y

S

Z W

i

j

◦fX

i ′
fY

j ′

◦

fZ

fW

cartesian⇒
fX ∗f

!
X fY ∗f

!
Y

fZ ∗f
!
Z fW ∗f

!
W

ϵ!i

η∗j

ϵ!
i′

η∗
j′

commutes

Z X U

S

i

g
f

◦
j

h
a closed/open decomposition implies that

g∗g
! → f∗f

! → h∗h
! is a cofiber sequence

X Y

S

Z W

i

j
∼fX

i ′
fY

j ′

∼

fZ

fW

cartesian⇒
fX ∗f

!
X fY ∗f

!
Y

fZ ∗f
!
Z fW ∗f

!
W

ϵ!i

ϵ!
j′

ϵ!
i′

ϵ!j

commutes

if i and i ′ are open immersions, the corresponding diagram commutes
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An Example Proof Sketch: Localization

Start with

Z X U

S

i

g
f

◦
j

h
a closed/open decomposition

Note that since Z
i
↪→ X

j←
◦
U, one has the cofiber sequence

i!i
! → id→ j∗j

∗

Since i is proper, i! ≃ i∗

Since j is étale, j∗ ≃ j !

Consequently, i∗i
! → id→ j∗j

! is a cofiber sequence

Precomposing with f !, we obtain a cofiber sequence
i∗i

!f ! → f ! → j∗j
!f !

Since any fiber sequence is a cofiber sequence and vice-versa,
composing with f∗ yields a cofiber sequence f∗i∗i

!f ! → f∗f
! → f∗j∗j

!f !

This yields the cofiber sequence g∗g
! → f∗f

! → h∗h
!
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An Example Proof Sketch: Base Change

Start with

X Y

S

Z W

i

j

◦fX

i ′
fY

j ′

◦

fZ

fW

a cartesian square of S-varieties

This implies that
X Y

Z W

i

j

◦
i ′

j ′

◦

is cartesian

The heart of this proof lies in showing from here that

j ′∗i!i
!j ′∗ ≃ i ′! j∗j

∗i ′! i ′! i
′!

j ′∗j
′∗ id

ϵ!i ϵ!
i′

η∗j

η∗
j′

commutes

From here, precomposing with f !W and postcomposing with fW ∗ yields
our desired commutative square
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An Example Proof Sketch: Base Change II

Given an adjunction of cospans of ∞-categories

C A B

F D E

r

g

p

f

qu ⊣
i

s ⊣
h

t ⊣

Induces an adjunction HomD(h, i) HomA(f , g)

⊣
Applying this to

D(X ) D(Z ) 1

D(Y ) D(W ) 1

j∗

i!≃i∗

j ′∗

j ′∗F

j∗ ⊣
i ′!≃i ′∗

j ′∗ ⊣
j ′∗j

′∗F

for any F ∈ D(W )

yields an adjunction HomD(W )(i
′
! , j

′
∗j

′∗F) HomD(Z)(i!, j
′∗F)⊣
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An Example Proof Sketch: Base Change III

Thus, HomD(Z)(i!, j
′∗F)→ HomD(W )(i

′
! , j

′
∗j

′∗F) is a right adjoint,
and preserves terminal objects

The terminal objects of these comma categories are the components
of the counits (ϵ!i )j ′∗F : i!i

!j ′∗F → j ′∗F and
(ϵ!i ′)j ′∗j ′∗F : i ′! i

′!j ′∗j
′∗F → j ′∗j

′∗F (via the universal property of counits)

This lets us prove that

i ′! i
′!j ′∗j

′∗ j ′∗i!i
!j ′∗

j ′∗j
′∗

ϵ!
i′

∼

ϵ!i

commutes

Commutativity of

i ′! i
′!

i ′! j∗j
∗i ′! j ′∗j

′∗i ′! i
′!

η∗j η∗
j′

∼

follows dually
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An Example Proof Sketch: Base Change IV

Finally, the commutative triangles on the previous slide reduce the
proof to the commutativity of the cube

i ′! i
′! ◦ id i ′! i

′! ◦ j ′∗j ′∗

id ◦ id id ◦ j ′∗j ′∗

id ◦ i ′! i ′! j ′∗j
′∗ ◦ i ′! i ′!

id ◦ id j ′∗j
′∗ ◦ id
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The Central Theorem

Suppose that the constructibly-generated motivic ∞-category D is such
that each of the six functors preserve constructible objects over Notherian
quasi-excellent schemes of finite dimension

Defining Mc
D(S)(X ) := f∗f

!(1S) for any S-variety f : X → S and
taking S to be Noetherian quasi-excellent of finite dimension, one has
by the above central lemmas that

Mc
D(S) : VarS → Dcons(S)

is a weakly W-exact functor.

This result is proven by evaluating each of the commuting diagrams
in the essential lemmas at the tensor unit 1S and noting that these
correspond to Mc

D(S) being weakly W-exact

This, in turn, yields a map on K-theory

K (Mc
D(S)) : K (VarS)→ K (Dcons(S))
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Interpretations of Mc
D(k)(X ) in Different Contexts

For k ⊆ C, D = Dtop((−)(C),Q), and X ∈ Vark ,

Mc
D(k)(X ) ≃ HBM

∗ (X (C),Q) = H∗
c (X (C),Q)∨,

which categorifies the compactly-supported Euler characteristic

For k = Fq, D = Dét(−,Ql), and X ∈ Vark ,

Mc
D(k)(X ) ≃ Gal(k/k) ⟳ HBM

∗ (X ×k k ,Ql),

which categorifies the l-adic Hasse-Weil zeta function (upon
remembering only Frobenius action, not full action)

For k perfect, D = DMB (defined next section), and X ∈ Vark ,

Mc
D(k)(X ) ≃ Mc(X ),

which categorifies the Gillet-Soulé motivic measure
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A Derived Lift of the Gillet-Soulé Motivic Measure
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Beilinson Motives

Given any S ∈ S, one can define a representative of algebraic
K-theory KGLS so that for all f : X → Y , one has f ∗KGLY ≃ KGLX

Over the rationalization SHQ(S), one has that KGLS ,Q decomposes
as the sum

KGLS ,Q ≃
⊕
i∈Z

KGL
(i)
S

compatibly with base change

We define the Beilinson motivic cohomology to be HB,S := KGL
(0)
S for

all S

The category of Beilinson Motives is defined to be
DMB(S) := ModHB,S

DMB defines a motivic ∞-category
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Properties of Beilinson Motives

In addition to admitting a six functors formalism, the motivic ∞-category
of Beilinson motives DMB satisfies several other good properties. In
particular:

Finiteness: over quasi-excellent schemes, the six functors preserve
constructibility

Absolute Purity: for any smooth f : X → S of Noetherian schemes,
one obtains an equivalence

1X ⟨rank(TX/S)⟩ ≃ f !(1S) in DMB(X )

Duality: for f : X → S separated of finite type and S quasi-excellent
and regular, one has f !(1S) is a dualizing object in DMB(X )

Finally, via the weakly W-exact functor
Mc

S := Mc
DMB(S)

: VarS → DMc
B(S), we obtain our desired derived

motivic measure

K (Mc
S) : K (VarS)→ K (DMc

B(S))
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Showing that our Map of Spectra Lifts the Gillet-Soulé
Motivic Measure

We specialize to the case S = Speck

In the derived category of cdh-motives with rational coefficients
DMcdh(k ,Q), we have for f : X → Speck that

f∗f
!(1k) ≃ Mc(X )

Furthermore, one has a string of equivalences

DMB(k)
∼→ DM(k,Q)

∼→ DMcdh(k ,Q)

such that the composition commutes with six functors

Therefore, f∗f
!(1k) must map to the compactly supported motive

Mc(X ) of X , given that each map is fully faithful, and the two
coincide in the image.

The above equivalence descends to compact objects

DMc
B(k)

∼→ DMgm(k,Q)
∼→ DMc

cdh(k ,Q)
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Showing that our Map of Spectra Lifts the Gillet-Soulé
Motivic Measure II

Note that for any stable ∞-category A, K0(A) ≃ K0(Ho(A)), where
the latter is the Grothendieck group of a triangulated category.

If k satisfies resolution of singularities and weak factorization, on
triangulated categories, one has for any f : X → Speck that

f∗f
!(1k) 7→ Mc(X ) 7→W (X )

under DMc
B(k)

∼→ DMgm(k,Q)
tQ→ Hot♭Chow(k ,Q)

Consequently, we can factorize Gillet-Soulé as

χgs : K0(Vark) K0(DMB(k)) K0(DMB(k))

K0(DMgm(k ,Q)) K0(Hot
♭Chow(k ,Q)) K0(Chow(k ,Q))

K0(Mc
k ) ∼=

∼=tQ
∼=

∼=

Thus, K (Mc
S) : K (VarS)→ K (DMB(S)) lifts the Gillet-Soulé motivic

measure when S = Speck
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If Time Permits: An Alternative Approach to Lifting the
Gillet-Soulé Motivic Measure

Let R be a commutative ring

From the work of Beilinson and Vologodsky, there exists a natural
pretriangulated DG upgrade DMgm(k ,R) of Voevodsky’s category of
geometric motives (i.e. DMgm(k ,R) is an algebraic triangulated
category)

From the work of Schwede, any algebraic triangulated category
Ho(A) (where A is our pretriangulated DG model) is naturally a
topological triangulated category (one that arises from a stable
cofibration category)

In other words, there is a Waldhausen category attached to A known
as the cycle category Z(A) of A such that Ho(Z(A)) ∼= Ho(A)
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If Time Permits: An Alternative Approach to Lifting the
Gillet-Soulé Motivic Measure II

In particular, Z(A) is defined so that

Ob(Z(A)) = Ob(A)
HomZ(A)(X ,Y ) := Ker(HomA(X ,Y )0

d→ HomA(X ,Y )1) for all
X ,Y ∈ Z(A)
f : X → Y in Z(A) is a weak equivalence if its image in Ho(A) is an
isomorphism
f : X → Y in Z(A) is a cofibration if for every Z ∈ A, the induced
map HomA(f ,Z ) : HomA(Y ,Z )→ HomA(X ,Z ) is surjective

In particular, our derived motivic measure will come from a weakly
W-exact map Mc : Vark → Z(DMgm(k ,R))

Recall that for any k-variety, one has the assignment X 7→ Rc
tr [X ],

where Rc
tr [X ] is the presheaf with transfers such that for every

Y ∈ Vark , R
c
tr [X ](Y ) is the free R-module generated by cycles in

X × Y whose projection to Y is quasi-finite and dominant (as
opposed to finite)
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If Time Permits: An Alternative Approach to Lifting the
Gillet-Soulé Motivic Measure III

By work of Suslin and Voevodsky, the assignment X 7→ Rc
tr [X ] is

covariant in closed immersions and contravariant in open immersions

Letting Mc(X ) be the image of Rc
tr [X ] (i.e., 0→ Rc

tr [X ]→ 0) in
DMgm(k ,R), we note that the above functorialities allow us to define
our weakly W-exact map Mc : Vark → Z(DMgm(k ,R))

Commutativity of the appropriate diagrams is due originally to
Suslin-Voevodsky and Beilinson-Vologodsky

Given the weakly W-exact functor above, we get a map on K-theory
K (Mc) : K (Vark)→ K (Z(DMgm(k,R))) which specializes to the a
lift of the Gillet-Soulé motivic measure when R = Q and k satisfies
resolution of singularities
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If Time Permits: Hypothetical K-Theory of the Abelian
Category of Motives

Suppose that one has a motivic t-structure µ on the triangulated
category DMgm(k ,Q) of geometric mixed motives. Namely, µ
satisfies:

the cohomology functor is conservative, or f in DMgm(k,Q) is an
isomorphism if and only if µHa(f ) is an isomorphism for all a
⊗ is t-exact
all realization functors are t-exact

Shown by Sasha Beilinson that µ is bounded (if it exists)

Can lift µ to a t-structure on DMc
B(k) via DMgm(k,Q) ≃ DMc

B(k)

Barwick’s Theorem of the Heart: If A is a stable ∞-category
equipped with a bounded t-structure τ , then K (A) ≃ K (A♡), where
the latter term is the K-theory of an exact ∞-category

A♡ is is equivalent to the nerve of an abelian category, and K (A♡) is
its classical abelian K-theory

K (DMc
B(k)) models the K-theory of the hypothetical abelian

category of mixed motives
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Conclusion
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Further Directions

Upgrade the adjunctions used to demonstrate our lift of Gillet-Soulé
to the ∞-categorical level (already done over perfect base field)

Apply the results of this enquiry to other classical motivic measures,
especially those arising from sheaf theory

Using the extension by Khan of the six functors formalism to (derived)
algebraic stacks, analyze the equivalent setup for equivariant motives

Demonstrate equivalence of the derived l-adic zeta function resulting
from this work with that of Campbell-Wolfson-Zakharevich

Extend the recently obtained structure results of
Braunling-Groechenig to (slightly) more general base

Generalize the results of L.-Manin-Marcolli using the six functors
formalism as our categorical framework of choice (instead of Nori
motives)
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Thank You!

Joshua Lieber (MPIM) Geometry and Physics Seminar 14 December, 2021 57 / 65



References

Joshua Lieber (MPIM) Geometry and Physics Seminar 14 December, 2021 58 / 65



References

J. Ayoub (2007)

Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le
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https://doi.org/10.5802/jep.153

Joshua Lieber (MPIM) Geometry and Physics Seminar 14 December, 2021 61 / 65



References IV

H. Gillet and C. Soulé (1996)
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