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Main Topic: Loop polynomials
A family of polynomials Qσ(x1, . . . , xn) indexed by σ=circular
permutation of [1, n]

Q1 = x1

Q12 = x1(1− x2)

Q123 = x1(1− 2x2)(1− x3) = Q132

Q1234 = x1(1− 2x3 − 3x2 + 5x2x3)(1− x4)
= Q1243 = Q1432 = Q1342

Q1324 = x1(1− x3 − 4x2 + 5x2x3)(1− x4) = Q1423

-Encode the asymptotic fluctuations of the Quantum Symmetric
Simple Exclusion Process.
-Goal of the talk: Give a combinatorial formula for Qσ; explain
that they are free cumulants
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Algebraic characterization of the loop polynomials

1. Qσ is of degree 1 in each of the variables xi .

2. Q1(x1) = x1 and Q12(x1, x2) = x1(1− x2).

3. For n ≥ 2 they satisfy the boundary conditions:

Qσ = x1Pσ(x2, . . . , xn−1)(1− xn)

4. Continuity condition for i = 1, 2, . . . , n − 1 (si = (i i + 1)):

Qσ|xi=xi+1 = Qsiσsi |xi=xi+1

5. Exchange relation:

[xi ](Qσ + Qsiσsi )|xi=xi+1 − [xi+1](Qσ + Qsiσsi )|xi=xi+1 =

2([xi ]Qσ−(x−))([xi+1]Qσ+(x+))

( siσ = σ+σ−, σ+ moves i + 1 and σ− moves i .)
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Exclusion Process

The exclusion process describes particles hopping on an interval
{1, 2, . . . ,N} and satisfying the exclusion principle: at most one
particle per site

α

β

γ

δ

p 1−p

1 2 3 NN−1. . .

Particles can jump to neighbouring sites if empty and may exit or
enter the interval from the boundary points 1 and N with rates
α, β, γ, δ.
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In the large time limit a current is established and the
configuration of particles converges to a stationary measure µ
which is a probability measure on the set of configurations

Ω = {0, 1}N

The exclusion process is a paradigm of non-equilibrium statistical
mechanics. It is simple enough to be solvable yet sufficiently
complex to exhibit non-trivial behaviour. It has been the object of
numerous studies in physics, probability and combinatorics
literature.
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Quantum Symmetric Simple Exclusion Process

Fermionic particles on {1, 2, . . . ,N} are subject to a Hamiltonian

Ht =
N∑
j=1

c†j+1cjW
j
t + c†j cj+1W̄

j
t

W j
t , j = 1, . . .N − 1 = independent complex Brownian motions

c†i , ci=fermionic creation and annihilation operators, satisfying

cic
†
j + c†j ci = δij

acting on
V = (C2)⊗N

V is the quantum version of Ω = {0, 1}N .
A state of the form ei1 ⊗ . . .⊗ eiN corresponds to a classical
configuration (e0 =empty, e1=occupied).
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Quantum Symmetric Simple Exclusion Process

The distribution of the quantum particles is determined by a
density matrix ρt a positive hermitian operator on V with
Tr(ρt) = 1.

It satisfies the evolution equation:

dρt = −i [dHt , ρt ]−
1

2
[dHt , [dHt , ρt ]] + Lbdry (ρt)dt

Lbdry is a boundary term describing what happens at the boundary
sites 1,N.
ρt is a random matrix, if the initial configuration is diagonal on the
classical states the expected value ρ̄t satisfies the same evolution
as the classical SSEP.
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Asymptotics and loop polynomials

As t →∞ one has ρt → ρ in distribution
ρ is the stationary state (a random 2N × 2N matrix)

The two-point functions Gij = Tr(ρcic
†
j ) form a random matrix

G = (Gij)1≤i ,j≤N

The random variable Gij encodes the correlations between sites i
and j .

The fluctuations of G are measured by their cumulants (connected
correlation functions in physics)

E [Gi1j1Gi2j2 . . .Gip jp ]c = Cp(Gi1j1 ,Gi2j2 , . . . ,Gip jp)

These are the quantities of interest.
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Asymptotics of the cumulants

As N →∞ the leading cumulants scale as N−p+1.

E [Gi1j1Gi2j2 . . .Gip jp ]c = Cp(Gi1j1 ,Gi2j2 , . . . ,Gip jp)

Only the ones for which j1, . . . , jp is a cyclic permutation of
i1, . . . , ip have a nonzero limit.
If i1/N, i2/N, . . . , ip/N → u1, u2, . . . , up ∈ [0, 1] as N →∞, then

E [Gi1ipGip ip−1 . . .Gi2i1 ]c =
1

Np−1 gp(u1, . . . , up) + O(
1

Np
)

for some functions gp.

The gp are piecewise polynomial functions, polynomial in each
sector corresponding to an ordering of the ui .
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Loop polynomials (Bernard and Jin, 2021)

Define Qσ(x1, . . . , xp) for 0 ≤ x1 ≤ x2 ≤ . . . ≤ xp ≤ 1, indexed by
circular permutations σ of 1, . . . , p by

E [Gi1iσp−1(1)
Giσp−1(1)iσp−2(1)

. . .Giσ(1)i1 ]c =
1

Np−1Qσ(x1, . . . , xp)+O(
1

Np
).

where ik/N → xk as N →∞

The Qσ are the loop polynomials. They give the values of the
functions gp in each sector.
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Algebraic characterization of the loop polynomials

1. Qσ is of degree 1 in each of the variables xi .

2. Q1(x1) = x1 and Q12(x1, x2) = x1(1− x2).

3. For n ≥ 2 they satisfy the boundary conditions:

Qσ = x1Pσ(x2, . . . , xn−1)(1− xn)

4. Continuity condition for i = 1, 2, . . . , n − 1 (si = (i i + 1)):

Qσ|xi=xi+1 = Qsiσsi |xi=xi+1

5. Exchange relation:

[xi ](Qσ + Qsiσsi )|xi=xi+1 − [xi+1](Qσ + Qsiσsi )|xi=xi+1 =

2([xi ]Qσ−(x−))([xi+1]Qσ+(x+))

( siσ = σ+σ−, σ+, moves i + 1 and σ−, moves i .)
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How to use the defining relations

Qσ = A + xiB + xi+1C + xixi+1D,

Qsiσsi = A′ + xiB
′ + xi+1C

′ + xixi+1D
′,

where A,B,C ,D,A′,B ′,C ′,D ′ do not depend on xi , xi+1.

By the continuity condition

A = A′, D = D ′, B + C = B ′ + C ′.

Let siσ = σ−σ+ and

∆ := ([xi ]Qσ−(x−))([xi+1]Qσ+(x+)).

By the exchange condition

B − C ′ = B ′ − C = ∆.
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One can obtain Qσ for all n-cycles if one knows Qσ for one of the
cycles. Bernard and Jin prove that the conditions above completely
determine the loop polynomials.

Examples: n = 5

Q12345 = x1(1−4x2−3x3−2x4+9x2x3+7x2x4+5x3x4−14x2x3x4)(1−x5)
Q13245 = x1(1−6x2−x3−2x4+9x2x3+10x2x4+2x3x4−14x2x3x4)(1−x5)
Q12435 = x1(1−4x2−4x3−x4+12x2x3+4x2x4+5x3x4−14x2x3x4)(1−x5)
Q14235 = x1(1−6x2−2x3−x4+12x2x3+7x2x4+2x3x4−14x2x3x4)(1−x5)

and

Q12345=Q13452=Q14523=Q15234=Q15432=Q12543=Q12354=Q14325

Q13245=Q13254=Q15423=Q14523

Q12435=Q14352=Q15342=Q12534

Q14235=Q13524=Q15234=Q13542=Q14253=Q13425=Q15243=Q14352

The goal is to give an explicit combinatorial formula for the Qσ.
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cycles. Bernard and Jin prove that the conditions above completely
determine the loop polynomials.

Examples: n = 5
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Non-crossing partitions
Set partitions of {1, 2, . . . , n} without crossing:
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8

π = {1, 3, 4} ∪ {2} ∪ {5, 6},∪{7} ∪ {8}

|NC (n)| = Catn =
1

n + 1

(
2n

n
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Kreweras complement
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π = {1, 3, 4} ∪ {2} ∪ {5, 6},∪{7} ∪ {8}

K (π) = {1, 5, 7, 8} ∪ {2, 3} ∪ {4} ∪ {6}



Free cumulants (R. Speicher)
A=unital algebra, ϕ : A→ C such that ϕ(1) = 1.

The free cumulants are κn=n-linear form on A, n = 1, 2, . . . ,
defined implicitly by

ϕ(a1a2 . . . an) =
∑

π∈NC(n)

κπ(a1, a2, . . . , an)

where κπ(a1, . . . , an) =
∏

p part of π

κ|p|(ai1 , ai2 , . . . , ai|p|)

One has

κn(a1, a2, . . . , an) =
∑

π∈NC(n)

µ(π)ϕπ(a1, . . . , an)

where µ is the Möbius function of NC (n):

µ(π) =
∏

p part of K(π)

(−1)|p|−1Cat|p|−1
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Examples:

ϕ(a1) = κ1(a1) {1}

ϕ(a1a2) = κ2(a1, a2) {1, 2}
+κ1(a1)κ1(a2) {1} ∪ {2}

hence

κ1(a) = ϕ(a)
κ2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2)



ϕ(a1a2a3) = κ3(a1, a2, a3) {1, 2, 3}
+κ1(a1)κ2(a2, a3) {1} ∪ {2, 3}
+κ2(a1, a3)κ1(a2) {1, 3} ∪ {2}
+κ2(a1, a2)κ1(a3) {1, 2} ∪ {3}

+κ1(a1)κ1(a2)κ1(a3) {1} ∪ {2} ∪ {2}

κ3(a1, a2, a3) = ϕ(a1a2a3)− ϕ(a1a2)ϕ(a3)− ϕ(a1a3)ϕ(a2)
−ϕ(a1)ϕ(a2a3) + 2ϕ(a1)ϕ(a2)ϕ(a3)



Schröder trees

Plane, rooted trees such that each internal vertex has at least two
descendants.

Schröder trees with 4 leaves
Counted, in terms of the number of leaves, by the small Schröder
numbers sn = 1, 1, 3, 11, 45, . . . for n = 1, 2, 3, . . . (A001003 in

OEIS) with generating series 1+x−
√
1−6x+x2

4x .
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Associahedra

A dissection of a polygon is a collection of non-crossing diagonals

3 4

5

8 7

61

2

The dissections of a polygon form a simplicial complex, the
associahedron which can be realized as a polytope.



Schröder trees and associahedra

There is a natural bijection between Schröder trees and dissections
of polygons.
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Prime Schröder trees

A Schröder tree is prime if the righmost edge of its root is a leaf.
Counted by the large Schröder numbers Sn = 2sn−1.

For each Schröder tree t, with n− 1 leaves, we can build two prime
Schröder trees t1 and t2, with n leaves

t

t

t1 t2
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Corners

corner=angle between pair of consecutive edges.
A Schröder tree with n leaves has exactly n − 1 corners, numbered
from left to right.

1

2

3

4 5 6

7

8

9

10

11

A Schröder tree determines a non-crossing partition of its corners:

π(t) = {1, 3}, {2}, {4, 5, 6, 11}, {7}, {8, 10}, {9}
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A Schröder tree determines a non-crossing partition of its corners:

π(t) = {1, 3}, {2}, {4, 5, 6, 11}, {7}, {8, 10}, {9}



Prime Schröder trees and Möbius function on NC (n)
(Josuat-Vergès, Menous, Novelli, Thibon, 2017)

In a prime Schröder tree remove, for each internal vertex, the
internal edges pointing out of this vertex, except the leftmost and
rightmost ones.

5 6

1

2 3

4

7 8 9 10

12

11

→ forest of binary trees
→ non-crossing partition of the leaves = K (π(t)) (remove
rightmost leaf). ∏

p part of K(π)

Cat|p|−1 = |µ(π)|

is the number of prime Schröder trees with π(t) = π.
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In a prime Schröder tree remove, for each internal vertex, the
internal edges pointing out of this vertex, except the leftmost and
rightmost ones.

5 6

1

2 3

4

7 8 9 10

12

11

→ forest of binary trees

→ non-crossing partition of the leaves = K (π(t)) (remove
rightmost leaf). ∏

p part of K(π)

Cat|p|−1 = |µ(π)|

is the number of prime Schröder trees with π(t) = π.
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A formula for the loop polynomials

t= prime Schröder tree t, with n + 1 leaves, k ∈ [1, n] and σ
circular permutation.
Label the corners of t, by the numbers σ(k), σ2(k), . . . , σn−1(k), k .

σ = 2, 4, 8, 5, 9, 1, 6, 11, 10, 3, 7, k = 7

2
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8

5 9 1

6

11

10

3

7

For each internal vertex i(v)=the smallest label of corners of v .

x t,k,σ =
∏
v

(−xi(v)) (here x t,7,σ=(−1)6x2x4x1x6x3x10)
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Theorem: for each k ∈ [1, n] one has

Qσ(x1, . . . , xn) = −
∑

t∈pSn+1

x t,k,σ



Proof of the main formula

Qσ(x1, . . . , xn) = −
∑

t∈pSn+1

x t,k,σ

First check that it does not depend on k : for this rewrite Qσ as a
sum over NC (n): x t,k,σ depends only on π(t) and σ.

Then check the boundary condition (x1 and (1− xn) are factors of
Qσ)

Then check the continuity and the exchange conditions (uses
simple properties of Schröder trees).
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Proof of the exchange condition by cutting a prime
Schröder tree into two prime Schröder trees

[xi ](Qσ + Qsiσsi )|xi=xi+1 − [xi+1](Qσ + Qsiσsi )|xi=xi+1 =

2([xi ]Qσ−(x−))([xi+1]Qσ+(x+))

ba c

i i+1

t

ba c

i+1 i

t+ t−
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The loop polynomials as free cumulants

On [0, 1] ⊂ R with Lebesgue measure let for x ∈ [0, 1]

Πx = 1[0,x]

The Πx for a commutative family of random variables.

ΠxΠy = Πmin(x ,y)

Theorem

Qσ(x1, . . . , xn) = κn(Πx1 ,Πxσ(1) ,Πxσ2(1)
,Πxσn−1(1)

)

Proof: use the connection between Schröder trees, NC (n) and the
Möbius function.
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Summary

From the QSSEP we constructed a random correlation matrix

Gij = Tr(ρcic
†
j )

The cumulants of the entries of G give the loop polynomials as
N →∞ (ik/N → xk)

E [Gi1iσp−1(1)
Giσp−1(1)iσp−2(1)

. . .Giσ(1)i1 ]c =
1

Np−1Qσ(x1, . . . , xp)+O(
1

Np
).

The loop polynomials are free cumulants:

Πx = 1[0,x]; x ∈ [0, 1]

Qσ(x1, . . . , xn) = κn(Πx1 ,Πxσ(1) ,Πxσ2(1)
,Πxσn−1(1)

)



Summary

From the QSSEP we constructed a random correlation matrix

Gij = Tr(ρcic
†
j )

The cumulants of the entries of G give the loop polynomials as
N →∞ (ik/N → xk)

E [Gi1iσp−1(1)
Giσp−1(1)iσp−2(1)

. . .Giσ(1)i1 ]c =
1

Np−1Qσ(x1, . . . , xp)+O(
1

Np
).

The loop polynomials are free cumulants:

Πx = 1[0,x]; x ∈ [0, 1]

Qσ(x1, . . . , xn) = κn(Πx1 ,Πxσ(1) ,Πxσ2(1)
,Πxσn−1(1)

)



Summary

From the QSSEP we constructed a random correlation matrix

Gij = Tr(ρcic
†
j )

The cumulants of the entries of G give the loop polynomials as
N →∞ (ik/N → xk)

E [Gi1iσp−1(1)
Giσp−1(1)iσp−2(1)

. . .Giσ(1)i1 ]c =
1

Np−1Qσ(x1, . . . , xp)+O(
1

Np
).

The loop polynomials are free cumulants:

Πx = 1[0,x]; x ∈ [0, 1]

Qσ(x1, . . . , xn) = κn(Πx1 ,Πxσ(1) ,Πxσ2(1)
,Πxσn−1(1)

)



Summary

From the QSSEP we constructed a random correlation matrix

Gij = Tr(ρcic
†
j )

The cumulants of the entries of G give the loop polynomials as
N →∞ (ik/N → xk)

E [Gi1iσp−1(1)
Giσp−1(1)iσp−2(1)

. . .Giσ(1)i1 ]c =
1

Np−1Qσ(x1, . . . , xp)+O(
1

Np
).

The loop polynomials are free cumulants:

Πx = 1[0,x]; x ∈ [0, 1]

Qσ(x1, . . . , xn) = κn(Πx1 ,Πxσ(1) ,Πxσ2(1)
,Πxσn−1(1)

)



THANK YOU


