Combinatorics of the Quantum Symmetric Simple Exclusion Process, associahedra and free cumulants

Algebra, Geomerty and Physics Seminar Humboldt University Berlin / MPIM Bonn /Zoom 17 may 2022

> Philippe Biane CNRS, IGM Université Gustave-Eiffel

> > ▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A family of polynomials $Q_{\sigma}(x_1, \ldots, x_n)$ indexed by σ =circular permutation of [1, n]

A family of polynomials $Q_{\sigma}(x_1, \ldots, x_n)$ indexed by σ =circular permutation of [1, n]

$$Q_{1} = x_{1}$$

$$Q_{12} = x_{1}(1 - x_{2})$$

$$Q_{123} = x_{1}(1 - 2x_{2})(1 - x_{3}) = Q_{132}$$

$$Q_{1234} = x_{1}(1 - 2x_{3} - 3x_{2} + 5x_{2}x_{3})(1 - x_{4})$$

$$= Q_{1243} = Q_{1432} = Q_{1342}$$

$$Q_{1324} = x_{1}(1 - x_{3} - 4x_{2} + 5x_{2}x_{3})(1 - x_{4}) = Q_{1423}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A family of polynomials $Q_{\sigma}(x_1, \ldots, x_n)$ indexed by σ =circular permutation of [1, n]

$$Q_{1} = x_{1}$$

$$Q_{12} = x_{1}(1 - x_{2})$$

$$Q_{123} = x_{1}(1 - 2x_{2})(1 - x_{3}) = Q_{132}$$

$$Q_{1234} = x_{1}(1 - 2x_{3} - 3x_{2} + 5x_{2}x_{3})(1 - x_{4})$$

$$= Q_{1243} = Q_{1432} = Q_{1342}$$

$$Q_{1324} = x_{1}(1 - x_{3} - 4x_{2} + 5x_{2}x_{3})(1 - x_{4}) = Q_{1423}$$

-Encode the asymptotic fluctuations of the *Quantum Symmetric* Simple Exclusion Process.

A family of polynomials $Q_{\sigma}(x_1, \ldots, x_n)$ indexed by σ =circular permutation of [1, n]

$$Q_{1} = x_{1}$$

$$Q_{12} = x_{1}(1 - x_{2})$$

$$Q_{123} = x_{1}(1 - 2x_{2})(1 - x_{3}) = Q_{132}$$

$$Q_{1234} = x_{1}(1 - 2x_{3} - 3x_{2} + 5x_{2}x_{3})(1 - x_{4})$$

$$= Q_{1243} = Q_{1432} = Q_{1342}$$

$$Q_{1324} = x_{1}(1 - x_{3} - 4x_{2} + 5x_{2}x_{3})(1 - x_{4}) = Q_{1423}$$

-Encode the asymptotic fluctuations of the *Quantum Symmetric* Simple Exclusion Process.

-Goal of the talk: Give a combinatorial formula for Q_{σ} ; explain that they are *free cumulants*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1. Q_{σ} is of degree 1 in each of the variables x_i .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. Q_{σ} is of degree 1 in each of the variables x_i .
- 2. $Q_1(x_1) = x_1$ and $Q_{12}(x_1, x_2) = x_1(1 x_2)$.

- 1. Q_{σ} is of degree 1 in each of the variables x_i .
- 2. $Q_1(x_1) = x_1$ and $Q_{12}(x_1, x_2) = x_1(1 x_2)$.
- 3. For $n \ge 2$ they satisfy the boundary conditions:

$$Q_{\sigma} = x_1 P_{\sigma}(x_2, \ldots, x_{n-1})(1-x_n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. Q_{σ} is of degree 1 in each of the variables x_i .
- 2. $Q_1(x_1) = x_1$ and $Q_{12}(x_1, x_2) = x_1(1 x_2)$.
- 3. For $n \ge 2$ they satisfy the boundary conditions:

$$Q_{\sigma} = x_1 P_{\sigma}(x_2, \ldots, x_{n-1})(1-x_n)$$

4. Continuity condition for i = 1, 2, ..., n - 1 ($s_i = (i i + 1)$):

$$Q_{\sigma}|_{x_i=x_{i+1}}=Q_{s_i\sigma s_i}|_{x_i=x_{i+1}}$$

- 1. Q_{σ} is of degree 1 in each of the variables x_i .
- 2. $Q_1(x_1) = x_1$ and $Q_{12}(x_1, x_2) = x_1(1 x_2)$.
- 3. For $n \ge 2$ they satisfy the boundary conditions:

$$Q_{\sigma} = x_1 P_{\sigma}(x_2, \ldots, x_{n-1})(1-x_n)$$

4. Continuity condition for i = 1, 2, ..., n - 1 ($s_i = (i i + 1)$):

$$Q_{\sigma}|_{x_i=x_{i+1}}=Q_{s_i\sigma s_i}|_{x_i=x_{i+1}}$$

5. Exchange relation:

$$[x_i](Q_{\sigma} + Q_{s_i\sigma s_i})|_{x_i = x_{i+1}} - [x_{i+1}](Q_{\sigma} + Q_{s_i\sigma s_i})|_{x_i = x_{i+1}} =$$

$$2([x_i]Q_{\sigma^-}(x^-))([x_{i+1}]Q_{\sigma^+}(x^+))$$

$$s_i\sigma = \sigma^+\sigma^-, \ \sigma^+ \ \text{moves} \ i+1 \ \text{and} \ \sigma^- \ \text{moves} \ i.)$$

Exclusion Process

The *exclusion process* describes particles hopping on an interval $\{1, 2, ..., N\}$ and satisfying the *exclusion principle*: at most one particle per site

Exclusion Process

The *exclusion process* describes particles hopping on an interval $\{1, 2, ..., N\}$ and satisfying the *exclusion principle*: at most one particle per site

Particles can jump to neighbouring sites if empty and may exit or enter the interval from the boundary points 1 and N with rates $\alpha, \beta, \gamma, \delta$.

In the large time limit a current is established and the configuration of particles converges to a *stationary measure* μ which is a probability measure on the set of configurations

 $\Omega = \{0,1\}^N$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In the large time limit a current is established and the configuration of particles converges to a *stationary measure* μ which is a probability measure on the set of configurations

 $\Omega = \{0,1\}^N$

The exclusion process is a paradigm of non-equilibrium statistical mechanics. It is simple enough to be solvable yet sufficiently complex to exhibit non-trivial behaviour. It has been the object of numerous studies in physics, probability and combinatorics literature.

Fermionic particles on $\{1, 2, \dots, N\}$ are subject to a Hamiltonian

$$H_t = \sum_{j=1}^N c^\dagger_{j+1} c_j W^j_t + c^\dagger_j c_{j+1} ar W^j_t$$

Fermionic particles on $\{1, 2, \dots, N\}$ are subject to a Hamiltonian

$$H_t = \sum_{j=1}^N c_{j+1}^\dagger c_j W_t^j + c_j^\dagger c_{j+1} ar W_t^j$$

 $W_t^j, j = 1, \dots N - 1 =$ independent complex Brownian motions

Fermionic particles on $\{1, 2, \dots, N\}$ are subject to a Hamiltonian

$$H_t = \sum_{j=1}^N c_{j+1}^\dagger c_j W_t^j + c_j^\dagger c_{j+1} ar W_t^j$$

 $W_t^j, j = 1, \dots N - 1$ = independent complex Brownian motions c_i^{\dagger}, c_i =fermionic creation and annihilation operators, satisfying

$$c_i c_j^\dagger + c_j^\dagger c_i = \delta_{ij}$$

acting on

$$V = (C^2)^{\otimes N}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fermionic particles on $\{1, 2, \dots, N\}$ are subject to a Hamiltonian

$$H_t = \sum_{j=1}^N c_{j+1}^\dagger c_j W_t^j + c_j^\dagger c_{j+1} ar W_t^j$$

 $W_t^j, j = 1, ..., N - 1$ = independent complex Brownian motions c_i^{\dagger}, c_i =fermionic creation and annihilation operators, satisfying

$$c_i c_j^\dagger + c_j^\dagger c_i = \delta_{ij}$$

acting on

$$V = (C^2)^{\otimes N}$$

(日)((1))

V is the quantum version of $\Omega = \{0, 1\}^N$. A state of the form $e_{i_1} \otimes \ldots \otimes e_{i_N}$ corresponds to a classical configuration (e_0 =empty, e_1 =occupied).

The distribution of the quantum particles is determined by a *density matrix* ρ_t a positive hermitian operator on V with $Tr(\rho_t) = 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The distribution of the quantum particles is determined by a *density matrix* ρ_t a positive hermitian operator on V with $Tr(\rho_t) = 1$. It satisfies the evolution equation:

 $d\rho_t = -i[dH_t, \rho_t] - \frac{1}{2}[dH_t, [dH_t, \rho_t]] + \mathcal{L}_{bdry}(\rho_t)dt$

 \mathcal{L}_{bdry} is a boundary term describing what happens at the boundary sites 1, N.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The distribution of the quantum particles is determined by a *density matrix* ρ_t a positive hermitian operator on V with $Tr(\rho_t) = 1$.

It satisfies the evolution equation:

$$d
ho_t = -i[dH_t,
ho_t] - rac{1}{2}[dH_t, [dH_t,
ho_t]] + \mathcal{L}_{bdry}(
ho_t)dt$$

 \mathcal{L}_{bdry} is a boundary term describing what happens at the boundary sites 1, N.

 ρ_t is a random matrix, if the initial configuration is diagonal on the classical states the expected value $\bar{\rho}_t$ satisfies the same evolution as the classical SSEP.

Asymptotics and loop polynomials

As $t \to \infty$ one has $\rho_t \to \rho$ in distribution ρ is the *stationary state* (a random $2^N \times 2^N$ matrix)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Asymptotics and loop polynomials

As $t \to \infty$ one has $\rho_t \to \rho$ in distribution ρ is the *stationary state* (a random $2^N \times 2^N$ matrix)

The two-point functions $G_{ij} = Tr(\rho c_i c_i^{\dagger})$ form a random matrix

$$\mathsf{G} = (G_{ij})_{1 \leq i,j \leq N}$$

The random variable G_{ij} encodes the correlations between sites *i* and *j*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Asymptotics and loop polynomials

As $t \to \infty$ one has $\rho_t \to \rho$ in distribution ρ is the *stationary state* (a random $2^N \times 2^N$ matrix)

The two-point functions $G_{ij} = Tr(\rho c_i c_i^{\dagger})$ form a random matrix

$$\mathsf{G} = (G_{ij})_{1 \leq i,j \leq N}$$

The random variable G_{ij} encodes the correlations between sites *i* and *j*.

The fluctuations of G are measured by their cumulants (connected correlation functions in physics)

$$E[G_{i_1j_1}G_{i_2j_2}\ldots G_{i_pj_p}]^c = C_p(G_{i_1j_1}, G_{i_2j_2}, \ldots, G_{i_pj_p})$$

These are the quantities of interest.

As $N \to \infty$ the leading cumulants scale as N^{-p+1} .

As $N \to \infty$ the leading cumulants scale as N^{-p+1} .

$$E[G_{i_1j_1}G_{i_2j_2}\ldots G_{i_pj_p}]^{c} = C_{p}(G_{i_1j_1}, G_{i_2j_2}, \ldots, G_{i_pj_p})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

As $N \to \infty$ the leading cumulants scale as N^{-p+1} .

$$E[G_{i_1j_1}G_{i_2j_2}\ldots G_{i_pj_p}]^{c} = C_{p}(G_{i_1j_1}, G_{i_2j_2}, \ldots, G_{i_pj_p})$$

Only the ones for which j_1, \ldots, j_p is a cyclic permutation of i_1, \ldots, i_p have a nonzero limit. If $i_1/N, i_2/N, \ldots, i_p/N \to u_1, u_2, \ldots, u_p \in [0, 1]$ as $N \to \infty$, then $E[G_{i_1i_p}G_{i_pi_{p-1}} \ldots G_{i_2i_1}]^c = \frac{1}{N^{p-1}}g_p(u_1, \ldots, u_p) + O(\frac{1}{N^p})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for some functions g_p .

As $N \to \infty$ the leading cumulants scale as N^{-p+1} .

$$E[G_{i_1j_1}G_{i_2j_2}\ldots G_{i_pj_p}]^{c} = C_{p}(G_{i_1j_1}, G_{i_2j_2}, \ldots, G_{i_pj_p})$$

Only the ones for which j_1, \ldots, j_p is a cyclic permutation of i_1, \ldots, i_p have a nonzero limit. If $i_1/N, i_2/N, \ldots, i_p/N \to u_1, u_2, \ldots, u_p \in [0, 1]$ as $N \to \infty$, then $E[G_{i_1i_p}G_{i_pi_{p-1}} \ldots G_{i_2i_1}]^c = \frac{1}{N^{p-1}}g_p(u_1, \ldots, u_p) + O(\frac{1}{N^p})$

for some functions g_p .

The g_p are piecewise polynomial functions, polynomial in each sector corresponding to an ordering of the u_i .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Loop polynomials (Bernard and Jin, 2021)

Define $Q_{\sigma}(x_1, \ldots, x_p)$ for $0 \le x_1 \le x_2 \le \ldots \le x_p \le 1$, indexed by circular permutations σ of $1, \ldots, p$ by

$$E[G_{i_{1}i_{\sigma^{p-1}(1)}}G_{i_{\sigma^{p-1}(1)}i_{\sigma^{p-2}(1)}}\dots G_{i_{\sigma(1)}i_{1}}]^{c} = \frac{1}{N^{p-1}}Q_{\sigma}(x_{1},\dots,x_{p}) + O(\frac{1}{N^{p}}).$$

where $i_{k}/N \to x_{k}$ as $N \to \infty$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Loop polynomials (Bernard and Jin, 2021)

Define $Q_{\sigma}(x_1, \ldots, x_p)$ for $0 \le x_1 \le x_2 \le \ldots \le x_p \le 1$, indexed by circular permutations σ of $1, \ldots, p$ by

$$E[G_{i_1i_{\sigma^{p-1}(1)}}G_{i_{\sigma^{p-1}(1)}i_{\sigma^{p-2}(1)}}\dots G_{i_{\sigma(1)}i_1}]^c = \frac{1}{N^{p-1}}Q_{\sigma}(x_1,\dots,x_p) + O(\frac{1}{N^p}).$$

where $i_k/N \to x_k$ as $N \to \infty$

The Q_{σ} are the loop polynomials. They give the values of the functions g_{ρ} in each sector.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1. Q_{σ} is of degree 1 in each of the variables x_i .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. Q_{σ} is of degree 1 in each of the variables x_i .
- 2. $Q_1(x_1) = x_1$ and $Q_{12}(x_1, x_2) = x_1(1 x_2)$.

- 1. Q_{σ} is of degree 1 in each of the variables x_i .
- 2. $Q_1(x_1) = x_1$ and $Q_{12}(x_1, x_2) = x_1(1 x_2)$.
- 3. For $n \ge 2$ they satisfy the boundary conditions:

$$Q_{\sigma} = x_1 P_{\sigma}(x_2, \ldots, x_{n-1})(1-x_n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. Q_{σ} is of degree 1 in each of the variables x_i .
- 2. $Q_1(x_1) = x_1$ and $Q_{12}(x_1, x_2) = x_1(1 x_2)$.
- 3. For $n \ge 2$ they satisfy the boundary conditions:

$$Q_{\sigma} = x_1 P_{\sigma}(x_2, \ldots, x_{n-1})(1-x_n)$$

4. Continuity condition for i = 1, 2, ..., n - 1 ($s_i = (i i + 1)$):

$$Q_{\sigma}|_{x_i=x_{i+1}}=Q_{s_i\sigma s_i}|_{x_i=x_{i+1}}$$

- 1. Q_{σ} is of degree 1 in each of the variables x_i .
- 2. $Q_1(x_1) = x_1$ and $Q_{12}(x_1, x_2) = x_1(1 x_2)$.
- 3. For $n \ge 2$ they satisfy the boundary conditions:

$$Q_{\sigma} = x_1 P_{\sigma}(x_2, \ldots, x_{n-1})(1-x_n)$$

4. Continuity condition for i = 1, 2, ..., n - 1 ($s_i = (i i + 1)$):

$$Q_{\sigma}|_{x_i=x_{i+1}}=Q_{s_i\sigma s_i}|_{x_i=x_{i+1}}$$

5. Exchange relation:

$$[x_i](Q_{\sigma} + Q_{s_i\sigma s_i})|_{x_i = x_{i+1}} - [x_{i+1}](Q_{\sigma} + Q_{s_i\sigma s_i})|_{x_i = x_{i+1}} =$$

$$2([x_i]Q_{\sigma^-}(x^-))([x_{i+1}]Q_{\sigma^+}(x^+))$$

$$s_i\sigma = \sigma^+\sigma^-, \ \sigma^+, \ \text{moves} \ i+1 \ \text{and} \ \sigma^-, \ \text{moves} \ i.)_{\sigma^+ \in \mathbb{R}^+} \in \mathbb{R}^+ = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

How to use the defining relations

$$Q_{\sigma} = A + x_i B + x_{i+1} C + x_i x_{i+1} D,$$
$$Q_{s_i \sigma s_i} = A' + x_i B' + x_{i+1} C' + x_i x_{i+1} D',$$

where A, B, C, D, A', B', C', D' do not depend on x_i, x_{i+1} .

How to use the defining relations

$$Q_{\sigma} = A + x_i B + x_{i+1} C + x_i x_{i+1} D,$$

 $Q_{s_i \sigma s_i} = A' + x_i B' + x_{i+1} C' + x_i x_{i+1} D',$

where A, B, C, D, A', B', C', D' do not depend on x_i, x_{i+1} . By the continuity condition

$$A = A', \quad D = D', \quad B + C = B' + C'.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

How to use the defining relations

$$Q_{\sigma} = A + x_i B + x_{i+1} C + x_i x_{i+1} D,$$
$$Q_{s_i \sigma s_i} = A' + x_i B' + x_{i+1} C' + x_i x_{i+1} D',$$

where A, B, C, D, A', B', C', D' do not depend on x_i, x_{i+1} . By the continuity condition

$$A = A', \quad D = D', \quad B + C = B' + C'.$$

Let $s_i \sigma = \sigma^- \sigma^+$ and

$$\Delta := ([x_i]Q_{\sigma^-}(x^-))([x_{i+1}]Q_{\sigma^+}(x^+)).$$

By the exchange condition

$$B-C'=B'-C=\Delta.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One can obtain Q_{σ} for all *n*-cycles if one knows Q_{σ} for one of the cycles. Bernard and Jin prove that the conditions above completely determine the loop polynomials.

One can obtain Q_{σ} for all *n*-cycles if one knows Q_{σ} for one of the cycles. Bernard and Jin prove that the conditions above completely determine the loop polynomials.

Examples: n = 5

and

$$\begin{aligned} & Q_{12345} = Q_{13452} = Q_{14523} = Q_{15234} = Q_{15432} = Q_{12543} = Q_{12354} = Q_{14325} \\ & Q_{13245} = Q_{13254} = Q_{15423} = Q_{14523} \\ & Q_{12435} = Q_{14352} = Q_{15342} = Q_{12534} \\ & Q_{14235} = Q_{13524} = Q_{15234} = Q_{13524} = Q_{13524} = Q_{13524} = Q_{13524} = Q_{15234} = Q_{14253} = Q_{15243} = Q_{14253} = Q_{15243} = Q_{14552} \\ \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

One can obtain Q_{σ} for all *n*-cycles if one knows Q_{σ} for one of the cycles. Bernard and Jin prove that the conditions above completely determine the loop polynomials.

Examples: n = 5

and

$$\begin{aligned} & Q_{12345} = Q_{13452} = Q_{14523} = Q_{15234} = Q_{15432} = Q_{12543} = Q_{12354} = Q_{14325} \\ & Q_{13245} = Q_{13254} = Q_{15423} = Q_{14523} \\ & Q_{12435} = Q_{14352} = Q_{15342} = Q_{12534} \\ & Q_{14235} = Q_{13524} = Q_{15234} = Q_{13542} = Q_{14253} = Q_{13425} = Q_{15243} = Q_{14352} \end{aligned}$$

The goal is to give an explicit combinatorial formula for the Q_{σ} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Non-crossing partitions

Set partitions of $\{1, 2, ..., n\}$ without crossing:

 $\pi = \{1, 3, 4\} \cup \{2\} \cup \{5, 6\}, \cup \{7\} \cup \{8\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Non-crossing partitions

Set partitions of $\{1, 2, ..., n\}$ without crossing:

 $\pi = \{1, 3, 4\} \cup \{2\} \cup \{5, 6\}, \cup \{7\} \cup \{8\}$

$$|NC(n)| = \operatorname{Cat}_{n} = \frac{1}{n+1} \binom{2n}{n}$$

$\mathcal{K}(\pi) = \{1, 5, 7, 8\} \cup \{2, 3\} \cup \{4\} \cup \{6\}$

Kreweras complement

Free cumulants (R. Speicher)

A=unital algebra, $\varphi : A \rightarrow C$ such that $\varphi(1) = 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Free cumulants (R. Speicher)

A=unital algebra, $\varphi : A \rightarrow C$ such that $\varphi(1) = 1$.

The *free cumulants* are $\kappa_n = n$ -linear form on *A*, n = 1, 2, ..., defined implicitly by

$$\varphi(a_1a_2\ldots a_n) = \sum_{\pi\in NC(n)}\kappa_{\pi}(a_1,a_2,\ldots,a_n)$$

where
$$\kappa_{\pi}(a_1,\ldots,a_n) = \prod_{p \text{ part of } \pi} \kappa_{|p|}(a_{i_1},a_{i_2},\ldots,a_{i_{|p|}})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Free cumulants (R. Speicher)

A=unital algebra, $\varphi : A \rightarrow C$ such that $\varphi(1) = 1$.

The *free cumulants* are $\kappa_n = n$ -linear form on *A*, n = 1, 2, ..., defined implicitly by

$$\varphi(a_1a_2\ldots a_n) = \sum_{\pi\in NC(n)}\kappa_{\pi}(a_1,a_2,\ldots,a_n)$$

where
$$\kappa_{\pi}(a_1,\ldots,a_n) = \prod_{p \text{ part of } \pi} \kappa_{|p|}(a_{i_1},a_{i_2},\ldots,a_{i_{|p|}})$$

One has

$$\kappa_n(a_1, a_2, \ldots, a_n) = \sum_{\pi \in NC(n)} \mu(\pi) \varphi_{\pi}(a_1, \ldots, a_n)$$

where μ is the Möbius function of NC(n):

$$\mu(\pi) = \prod_{p \text{ part of } K(\pi)} (-1)^{|p|-1} \mathsf{Cat}_{|p|-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples:

$$arphi(a_1) = \kappa_1(a_1) ~\{1\}$$
 $arphi(a_1a_2) = egin{array}{c} \kappa_2(a_1,a_2) & \{1,2\} \ +\kappa_1(a_1)\kappa_1(a_2) & \{1\} \cup \{2\} \end{array}$

hence

$$egin{array}{rll} \kappa_1(a)&=&arphi(a)\ \kappa_2(a_1,a_2)&=&arphi(a_1a_2)-arphi(a_1)arphi(a_2) \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$arphi(a_1a_2a_3)= egin{array}{cccc} \kappa_3(a_1,a_2,a_3) & \{1,2,3\}\ +\kappa_1(a_1)\kappa_2(a_2,a_3) & \{1\}\cup\{2,3\}\ +\kappa_2(a_1,a_3)\kappa_1(a_2) & \{1,3\}\cup\{2\}\ +\kappa_2(a_1,a_2)\kappa_1(a_3) & \{1,2\}\cup\{3\}\ +\kappa_1(a_1)\kappa_1(a_2)\kappa_1(a_3) & \{1\}\cup\{2\}\cup\{2\} \end{array}$$

$$\begin{array}{lll} \kappa_3(a_1,a_2,a_3) &=& \varphi(a_1a_2a_3) - \varphi(a_1a_2)\varphi(a_3) - \varphi(a_1a_3)\varphi(a_2) \\ && -\varphi(a_1)\varphi(a_2a_3) + 2\varphi(a_1)\varphi(a_2)\varphi(a_3) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Schröder trees

Plane, rooted trees such that each internal vertex has at least two descendants.

Schröder trees

Plane, rooted trees such that each internal vertex has at least two descendants.

Schröder trees with 4 leaves

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Schröder trees

Plane, rooted trees such that each internal vertex has at least two descendants.

Schröder trees with 4 leaves Counted, in terms of the number of leaves, by the small Schröder numbers $s_n = 1, 1, 3, 11, 45, ...$ for n = 1, 2, 3, ... (A001003 in OEIS) with generating series $\frac{1+x-\sqrt{1-6x+x^2}}{4x}$.

Associahedra

A dissection of a polygon is a collection of non-crossing diagonals

The dissections of a polygon form a simplicial complex, the *associahedron* which can be realized as a polytope.

Schröder trees and associahedra

There is a natural bijection between Schröder trees and dissections of polygons.

Prime Schröder trees

A Schröder tree is *prime* if the righmost edge of its root is a leaf. Counted by the large Schröder numbers $S_n = 2s_{n-1}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Prime Schröder trees

A Schröder tree is *prime* if the righmost edge of its root is a leaf. Counted by the large Schröder numbers $S_n = 2s_{n-1}$.

For each Schröder tree t, with n-1 leaves, we can build two prime Schröder trees t_1 and t_2 , with n leaves

Corners

corner=angle between pair of consecutive edges. A Schröder tree with n leaves has exactly n-1 corners, numbered from left to right.

A D > A P > A D > A D >

ж

Corners

corner=angle between pair of consecutive edges. A Schröder tree with n leaves has exactly n - 1 corners, numbered from left to right.

A Schröder tree determines a non-crossing partition of its corners:

 $\pi(t) = \{1,3\}, \{2\}, \{4,5,6,11\}, \{7\}, \{8,10\}, \{9\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Prime Schröder trees and Möbius function on NC(n)(Josuat-Vergès, Menous, Novelli, Thibon, 2017)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 \rightarrow forest of binary trees

 \rightarrow forest of binary trees

ightarrow non-crossing partition of the leaves = $\mathcal{K}(\pi(t))$ (remove rightmost leaf).

 \rightarrow forest of binary trees

ightarrow non-crossing partition of the leaves = $\mathcal{K}(\pi(t))$ (remove rightmost leaf).

$$\prod_{p ext{ part of } \mathcal{K}(\pi)} \mathsf{Cat}_{|p|-1} = |\mu(\pi)|$$

is the number of prime Schröder trees with $\pi(t) = \pi$.

A formula for the loop polynomials

A formula for the loop polynomials

t= prime Schröder tree t, with n+1 leaves, $k \in [1, n]$ and σ circular permutation.

Label the corners of t, by the numbers $\sigma(k), \sigma^2(k), \ldots, \sigma^{n-1}(k), k$.

 $\sigma = 2, 4, 8, 5, 9, 1, 6, 11, 10, 3, 7, \qquad k = 7$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A formula for the loop polynomials

t= prime Schröder tree t, with n+1 leaves, $k \in [1, n]$ and σ circular permutation.

Label the corners of t, by the numbers $\sigma(k), \sigma^2(k), \ldots, \sigma^{n-1}(k), k$.

For each internal vertex i(v)=the smallest label of corners of v.

$$x^{t,k,\sigma} = \prod_{v} (-x_{i(v)})$$
 (here $x^{t,7,\sigma} = (-1)^6 x_2 x_4 x_1 x_6 x_3 x_{10})$

Theorem: for each $k \in [1, n]$ one has

$$Q_{\sigma}(x_1,\ldots,x_n) = -\sum_{t\in \rho S_{n+1}} x^{t,k,\sigma}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof of the main formula

$$Q_{\sigma}(x_1,\ldots,x_n) = -\sum_{t\in\rho S_{n+1}} x^{t,k,\sigma}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Proof of the main formula

$$Q_{\sigma}(x_1,\ldots,x_n) = -\sum_{t\in \rho S_{n+1}} x^{t,k,\sigma}$$

First check that it does not depend on k: for this rewrite Q_{σ} as a sum over NC(n): $x^{t,k,\sigma}$ depends only on $\pi(t)$ and σ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof of the main formula

$$Q_{\sigma}(x_1,\ldots,x_n) = -\sum_{t\in
ho S_{n+1}} x^{t,k,\sigma}$$

First check that it does not depend on k: for this rewrite Q_{σ} as a sum over NC(n): $x^{t,k,\sigma}$ depends only on $\pi(t)$ and σ .

Then check the boundary condition $(x_1 \text{ and } (1 - x_n) \text{ are factors of } Q_{\sigma})$

Proof of the main formula

$$Q_{\sigma}(x_1,\ldots,x_n) = -\sum_{t\in \rho S_{n+1}} x^{t,k,\sigma}$$

First check that it does not depend on k: for this rewrite Q_{σ} as a sum over NC(n): $x^{t,k,\sigma}$ depends only on $\pi(t)$ and σ .

Then check the boundary condition $(x_1 \text{ and } (1 - x_n) \text{ are factors of } Q_{\sigma})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then check the continuity and the exchange conditions (uses simple properties of Schröder trees).

Proof of the exchange condition by cutting a prime Schröder tree into two prime Schröder trees

$$[x_i](Q_{\sigma} + Q_{s_i \sigma s_i})|_{x_i = x_{i+1}} - [x_{i+1}](Q_{\sigma} + Q_{s_i \sigma s_i})|_{x_i = x_{i+1}} =$$

 $2([x_i]Q_{\sigma^-}(x^-))([x_{i+1}]Q_{\sigma^+}(x^+))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof of the exchange condition by cutting a prime Schröder tree into two prime Schröder trees

$$[x_i](Q_{\sigma} + Q_{s_i \sigma s_i})|_{x_i = x_{i+1}} - [x_{i+1}](Q_{\sigma} + Q_{s_i \sigma s_i})|_{x_i = x_{i+1}} =$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Proof of the exchange condition by cutting a prime Schröder tree into two prime Schröder trees

$$[x_i](Q_{\sigma} + Q_{s_i \sigma s_i})|_{x_i = x_{i+1}} - [x_{i+1}](Q_{\sigma} + Q_{s_i \sigma s_i})|_{x_i = x_{i+1}} =$$

The loop polynomials as free cumulants

On $[0,1] \subset \mathsf{R}$ with Lebesgue measure let for $x \in [0,1]$

$$\Pi_x = \mathbf{1}_{[0,x]}$$

The Π_x for a commutative family of random variables.

 $\Pi_x \Pi_y = \Pi_{\min(x,y)}$

The loop polynomials as free cumulants

On $[0,1] \subset \mathsf{R}$ with Lebesgue measure let for $x \in [0,1]$

$$\Pi_x = \mathbb{1}_{[0,x]}$$

The Π_x for a commutative family of random variables.

 $\Pi_x \Pi_y = \Pi_{\min(x,y)}$

Theorem

$$Q_{\sigma}(x_{1},...,x_{n}) = \kappa_{n}(\Pi_{x_{1}},\Pi_{x_{\sigma(1)}},\Pi_{x_{\sigma^{2}(1)}},\Pi_{x_{\sigma^{n-1}(1)}})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The loop polynomials as free cumulants

On $[0,1] \subset \mathsf{R}$ with Lebesgue measure let for $x \in [0,1]$

$$\Pi_x = \mathbb{1}_{[0,x]}$$

The Π_x for a commutative family of random variables.

 $\Pi_x \Pi_y = \Pi_{\min(x,y)}$

Theorem

$$Q_{\sigma}(x_{1},...,x_{n}) = \kappa_{n}(\Pi_{x_{1}},\Pi_{x_{\sigma(1)}},\Pi_{x_{\sigma^{2}(1)}},\Pi_{x_{\sigma^{n-1}(1)}})$$

Proof: use the connection between Schröder trees, NC(n) and the Möbius function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < @</p>

From the QSSEP we constructed a random correlation matrix

$$\textit{G}_{ij} = \textit{Tr}(
ho\textit{c}_i\textit{c}_j^\dagger)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

From the QSSEP we constructed a random correlation matrix

$$G_{ij} = Tr(\rho c_i c_j^{\dagger})$$

The cumulants of the entries of G give the loop polynomials as $N o \infty \ (i_k/N o x_k)$

$$E[G_{i_1i_{\sigma^{p-1}(1)}}G_{i_{\sigma^{p-1}(1)}i_{\sigma^{p-2}(1)}}\dots G_{i_{\sigma(1)}i_1}]^c = \frac{1}{N^{p-1}}Q_{\sigma}(x_1,\dots,x_p) + O(\frac{1}{N^p}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

From the QSSEP we constructed a random correlation matrix

$$G_{ij} = Tr(\rho c_i c_j^{\dagger})$$

The cumulants of the entries of G give the loop polynomials as $N \to \infty \ (i_k/N \to x_k)$

$$E[G_{i_1i_{\sigma^{p-1}(1)}}G_{i_{\sigma^{p-1}(1)}i_{\sigma^{p-2}(1)}}\dots G_{i_{\sigma(1)}i_1}]^c = \frac{1}{N^{p-1}}Q_{\sigma}(x_1,\dots,x_p) + O(\frac{1}{N^p}).$$

The loop polynomials are free cumulants:

$$\Pi_{x} = \mathbb{1}_{[0,x]}; \quad x \in [0,1]$$
$$Q_{\sigma}(x_{1}, \dots, x_{n}) = \kappa_{n}(\Pi_{x_{1}}, \Pi_{x_{\sigma(1)}}, \Pi_{x_{\sigma^{2}(1)}}, \Pi_{x_{\sigma^{n-1}(1)}})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

THANK YOU

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●