Combinatorics of the Quantum Symmetric

Simple Exclusion Process,

associahedra and free cumulants

> Algebra, Geomerty and Physics Seminar Humboldt University Berlin / MPIM Bonn / Zoom
> 17 may 2022

Philippe Biane
CNRS, IGM
Université Gustave-Eiffel

Main Topic: Loop polynomials

A family of polynomials $Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)$ indexed by $\sigma=$ circular permutation of $[1, n]$

Main Topic: Loop polynomials

A family of polynomials $Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)$ indexed by $\sigma=$ circular permutation of $[1, n]$

$$
\begin{aligned}
Q_{1} & =x_{1} \\
Q_{12} & =x_{1}\left(1-x_{2}\right) \\
Q_{123} & =x_{1}\left(1-2 x_{2}\right)\left(1-x_{3}\right)=Q_{132} \\
Q_{1234} & =x_{1}\left(1-2 x_{3}-3 x_{2}+5 x_{2} x_{3}\right)\left(1-x_{4}\right) \\
& =Q_{1243}=Q_{1432}=Q_{1342} \\
Q_{1324} & =x_{1}\left(1-x_{3}-4 x_{2}+5 x_{2} x_{3}\right)\left(1-x_{4}\right)=Q_{1423}
\end{aligned}
$$

Main Topic: Loop polynomials

A family of polynomials $Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)$ indexed by $\sigma=$ circular permutation of $[1, n]$

$$
\begin{aligned}
Q_{1} & =x_{1} \\
Q_{12} & =x_{1}\left(1-x_{2}\right) \\
Q_{123} & =x_{1}\left(1-2 x_{2}\right)\left(1-x_{3}\right)=Q_{132} \\
Q_{1234} & =x_{1}\left(1-2 x_{3}-3 x_{2}+5 x_{2} x_{3}\right)\left(1-x_{4}\right) \\
& =Q_{1243}=Q_{1432}=Q_{1342} \\
Q_{1324} & =x_{1}\left(1-x_{3}-4 x_{2}+5 x_{2} x_{3}\right)\left(1-x_{4}\right)=Q_{1423}
\end{aligned}
$$

-Encode the asymptotic fluctuations of the Quantum Symmetric Simple Exclusion Process.

Main Topic: Loop polynomials

A family of polynomials $Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)$ indexed by $\sigma=$ circular permutation of $[1, n]$

$$
\begin{aligned}
Q_{1} & =x_{1} \\
Q_{12} & =x_{1}\left(1-x_{2}\right) \\
Q_{123} & =x_{1}\left(1-2 x_{2}\right)\left(1-x_{3}\right)=Q_{132} \\
Q_{1234} & =x_{1}\left(1-2 x_{3}-3 x_{2}+5 x_{2} x_{3}\right)\left(1-x_{4}\right) \\
& =Q_{1243}=Q_{1432}=Q_{1342} \\
Q_{1324} & =x_{1}\left(1-x_{3}-4 x_{2}+5 x_{2} x_{3}\right)\left(1-x_{4}\right)=Q_{1423}
\end{aligned}
$$

-Encode the asymptotic fluctuations of the Quantum Symmetric Simple Exclusion Process.
-Goal of the talk: Give a combinatorial formula for Q_{σ}; explain that they are free cumulants

Algebraic characterization of the loop polynomials

1. Q_{σ} is of degree 1 in each of the variables x_{i}.

Algebraic characterization of the loop polynomials

1. Q_{σ} is of degree 1 in each of the variables x_{i}.
2. $Q_{1}\left(x_{1}\right)=x_{1}$ and $Q_{12}\left(x_{1}, x_{2}\right)=x_{1}\left(1-x_{2}\right)$.

Algebraic characterization of the loop polynomials

1. Q_{σ} is of degree 1 in each of the variables x_{i}.
2. $Q_{1}\left(x_{1}\right)=x_{1}$ and $Q_{12}\left(x_{1}, x_{2}\right)=x_{1}\left(1-x_{2}\right)$.
3. For $n \geq 2$ they satisfy the boundary conditions:

$$
Q_{\sigma}=x_{1} P_{\sigma}\left(x_{2}, \ldots, x_{n-1}\right)\left(1-x_{n}\right)
$$

Algebraic characterization of the loop polynomials

1. Q_{σ} is of degree 1 in each of the variables x_{i}.
2. $Q_{1}\left(x_{1}\right)=x_{1}$ and $Q_{12}\left(x_{1}, x_{2}\right)=x_{1}\left(1-x_{2}\right)$.
3. For $n \geq 2$ they satisfy the boundary conditions:

$$
Q_{\sigma}=x_{1} P_{\sigma}\left(x_{2}, \ldots, x_{n-1}\right)\left(1-x_{n}\right)
$$

4. Continuity condition for $i=1,2, \ldots, n-1\left(s_{i}=(i i+1)\right)$:

$$
\left.Q_{\sigma}\right|_{x_{i}=x_{i+1}}=\left.Q_{s_{i} \sigma s_{i}}\right|_{x_{i}=x_{i+1}}
$$

Algebraic characterization of the loop polynomials

1. Q_{σ} is of degree 1 in each of the variables x_{i}.
2. $Q_{1}\left(x_{1}\right)=x_{1}$ and $Q_{12}\left(x_{1}, x_{2}\right)=x_{1}\left(1-x_{2}\right)$.
3. For $n \geq 2$ they satisfy the boundary conditions:

$$
Q_{\sigma}=x_{1} P_{\sigma}\left(x_{2}, \ldots, x_{n-1}\right)\left(1-x_{n}\right)
$$

4. Continuity condition for $i=1,2, \ldots, n-1\left(s_{i}=(i i+1)\right)$:

$$
\left.Q_{\sigma}\right|_{x_{i}=x_{i+1}}=\left.Q_{s_{i} \sigma s_{i}}\right|_{x_{i}=x_{i+1}}
$$

5. Exchange relation:

$$
\begin{gathered}
{\left.\left[x_{i}\right]\left(Q_{\sigma}+Q_{s_{i} \sigma s_{i}}\right)\right|_{x_{i}=x_{i+1}}-\left.\left[x_{i+1}\right]\left(Q_{\sigma}+Q_{s_{i} \sigma s_{i}}\right)\right|_{x_{i}=x_{i+1}}=} \\
2\left(\left[x_{i}\right] Q_{\sigma^{-}}\left(x^{-}\right)\right)\left(\left[x_{i+1}\right] Q_{\sigma^{+}}\left(x^{+}\right)\right)
\end{gathered}
$$

$$
\left(s_{i} \sigma=\sigma^{+} \sigma^{-}, \sigma^{+} \text {moves } i+1 \text { and } \sigma^{-} \text {moves } i .\right)
$$

Exclusion Process

The exclusion process describes particles hopping on an interval $\{1,2, \ldots, N\}$ and satisfying the exclusion principle: at most one particle per site

Exclusion Process

The exclusion process describes particles hopping on an interval $\{1,2, \ldots, N\}$ and satisfying the exclusion principle: at most one particle per site

Particles can jump to neighbouring sites if empty and may exit or enter the interval from the boundary points 1 and N with rates $\alpha, \beta, \gamma, \delta$.

In the large time limit a current is established and the configuration of particles converges to a stationary measure μ which is a probability measure on the set of configurations

$$
\Omega=\{0,1\}^{N}
$$

In the large time limit a current is established and the configuration of particles converges to a stationary measure μ which is a probability measure on the set of configurations

$$
\Omega=\{0,1\}^{N}
$$

The exclusion process is a paradigm of non-equilibrium statistical mechanics. It is simple enough to be solvable yet sufficiently complex to exhibit non-trivial behaviour. It has been the object of numerous studies in physics, probability and combinatorics literature.

Quantum Symmetric Simple Exclusion Process

Fermionic particles on $\{1,2, \ldots, N\}$ are subject to a Hamiltonian

$$
H_{t}=\sum_{j=1}^{N} c_{j+1}^{\dagger} c_{j} W_{t}^{j}+c_{j}^{\dagger} c_{j+1} \bar{W}_{t}^{j}
$$

Quantum Symmetric Simple Exclusion Process

Fermionic particles on $\{1,2, \ldots, N\}$ are subject to a Hamiltonian

$$
H_{t}=\sum_{j=1}^{N} c_{j+1}^{\dagger} c_{j} W_{t}^{j}+c_{j}^{\dagger} c_{j+1} \bar{W}_{t}^{j}
$$

$W_{t}^{j}, j=1, \ldots N-1=$ independent complex Brownian motions

Quantum Symmetric Simple Exclusion Process

Fermionic particles on $\{1,2, \ldots, N\}$ are subject to a Hamiltonian

$$
H_{t}=\sum_{j=1}^{N} c_{j+1}^{\dagger} c_{j} W_{t}^{j}+c_{j}^{\dagger} c_{j+1} \bar{W}_{t}^{j}
$$

$W_{t}^{j}, j=1, \ldots N-1=$ independent complex Brownian motions
$c_{i}^{\dagger}, c_{i}=$ fermionic creation and annihilation operators, satisfying

$$
c_{i} c_{j}^{\dagger}+c_{j}^{\dagger} c_{i}=\delta_{i j}
$$

acting on

$$
V=\left(\mathrm{C}^{2}\right)^{\otimes N}
$$

Quantum Symmetric Simple Exclusion Process

Fermionic particles on $\{1,2, \ldots, N\}$ are subject to a Hamiltonian

$$
H_{t}=\sum_{j=1}^{N} c_{j+1}^{\dagger} c_{j} W_{t}^{j}+c_{j}^{\dagger} c_{j+1} \bar{W}_{t}^{j}
$$

$W_{t}^{j}, j=1, \ldots N-1=$ independent complex Brownian motions
$c_{i}^{\dagger}, c_{i}=$ fermionic creation and annihilation operators, satisfying

$$
c_{i} c_{j}^{\dagger}+c_{j}^{\dagger} c_{i}=\delta_{i j}
$$

acting on

$$
V=\left(\mathrm{C}^{2}\right)^{\otimes N}
$$

V is the quantum version of $\Omega=\{0,1\}^{N}$.
A state of the form $e_{i_{1}} \otimes \ldots \otimes e_{i_{N}}$ corresponds to a classical configuration ($e_{0}=$ empty, $e_{1}=$ occupied).

Quantum Symmetric Simple Exclusion Process

The distribution of the quantum particles is determined by a density matrix ρ_{t} a positive hermitian operator on V with $\operatorname{Tr}\left(\rho_{t}\right)=1$.

Quantum Symmetric Simple Exclusion Process

The distribution of the quantum particles is determined by a density matrix ρ_{t} a positive hermitian operator on V with $\operatorname{Tr}\left(\rho_{t}\right)=1$.
It satisfies the evolution equation:

$$
d \rho_{t}=-i\left[d H_{t}, \rho_{t}\right]-\frac{1}{2}\left[d H_{t},\left[d H_{t}, \rho_{t}\right]\right]+\mathcal{L}_{b d r y}\left(\rho_{t}\right) d t
$$

$\mathcal{L}_{\text {bdry }}$ is a boundary term describing what happens at the boundary sites $1, N$.

Quantum Symmetric Simple Exclusion Process

The distribution of the quantum particles is determined by a density matrix ρ_{t} a positive hermitian operator on V with $\operatorname{Tr}\left(\rho_{t}\right)=1$.
It satisfies the evolution equation:

$$
d \rho_{t}=-i\left[d H_{t}, \rho_{t}\right]-\frac{1}{2}\left[d H_{t},\left[d H_{t}, \rho_{t}\right]\right]+\mathcal{L}_{b d r y}\left(\rho_{t}\right) d t
$$

$\mathcal{L}_{\text {bdry }}$ is a boundary term describing what happens at the boundary sites $1, N$.
ρ_{t} is a random matrix, if the initial configuration is diagonal on the classical states the expected value $\bar{\rho}_{t}$ satisfies the same evolution as the classical SSEP.

Asymptotics and loop polynomials

As $t \rightarrow \infty$ one has $\rho_{t} \rightarrow \rho$ in distribution ρ is the stationary state (a random $2^{N} \times 2^{N}$ matrix)

Asymptotics and loop polynomials

As $t \rightarrow \infty$ one has $\rho_{t} \rightarrow \rho$ in distribution
ρ is the stationary state (a random $2^{N} \times 2^{N}$ matrix)
The two-point functions $G_{i j}=\operatorname{Tr}\left(\rho c_{i} c_{j}^{\dagger}\right)$ form a random matrix

$$
\mathrm{G}=\left(G_{i j}\right)_{1 \leq i, j \leq N}
$$

The random variable $G_{i j}$ encodes the correlations between sites i and j.

Asymptotics and loop polynomials

As $t \rightarrow \infty$ one has $\rho_{t} \rightarrow \rho$ in distribution
ρ is the stationary state (a random $2^{N} \times 2^{N}$ matrix)
The two-point functions $G_{i j}=\operatorname{Tr}\left(\rho c_{i} c_{j}^{\dagger}\right)$ form a random matrix

$$
\mathrm{G}=\left(G_{i j}\right)_{1 \leq i, j \leq N}
$$

The random variable $G_{i j}$ encodes the correlations between sites i and j.
The fluctuations of G are measured by their cumulants (connected correlation functions in physics)

$$
E\left[G_{i j_{1} 1} G_{i j_{2}} \ldots G_{i_{p} j_{p}}\right]^{c}=C_{p}\left(G_{i_{1} j_{1}}, G_{i 2 j_{2}}, \ldots, G_{i p j_{p}}\right)
$$

These are the quantities of interest.

Asymptotics of the cumulants

As $N \rightarrow \infty$ the leading cumulants scale as N^{-p+1}.

Asymptotics of the cumulants

As $N \rightarrow \infty$ the leading cumulants scale as N^{-p+1}.

$$
E\left[G_{i j_{1}} G_{i j_{2}} \ldots G_{i_{p} j_{p}}\right]^{c}=C_{p}\left(G_{i_{1} j_{1}}, G_{i 2 j_{2}}, \ldots, G_{i p j_{p}}\right)
$$

Asymptotics of the cumulants

As $N \rightarrow \infty$ the leading cumulants scale as N^{-p+1}.

$$
E\left[G_{i_{1} j_{1}} G_{i j_{2}} \ldots G_{i_{p} j_{p}}\right]^{c}=C_{p}\left(G_{i_{1} j_{1}}, G_{i j_{2}}, \ldots, G_{i_{p} j_{p}}\right)
$$

Only the ones for which j_{1}, \ldots, j_{p} is a cyclic permutation of i_{1}, \ldots, i_{p} have a nonzero limit.
If $i_{1} / N, i_{2} / N, \ldots, i_{p} / N \rightarrow u_{1}, u_{2}, \ldots, u_{p} \in[0,1]$ as $N \rightarrow \infty$, then

$$
E\left[G_{i_{1} i_{p}} G_{i_{p} i_{p-1}} \ldots G_{i_{2} i_{1}}\right]^{c}=\frac{1}{N^{p-1}} g_{p}\left(u_{1}, \ldots, u_{p}\right)+O\left(\frac{1}{N^{p}}\right)
$$

for some functions g_{p}.

Asymptotics of the cumulants

As $N \rightarrow \infty$ the leading cumulants scale as N^{-p+1}.

$$
E\left[G_{i_{1} j_{1}} G_{i j_{2}} \ldots G_{i_{p} j_{p}}\right]^{c}=C_{p}\left(G_{i_{1} j_{1}}, G_{i j_{2}}, \ldots, G_{i_{p} j_{p}}\right)
$$

Only the ones for which j_{1}, \ldots, j_{p} is a cyclic permutation of i_{1}, \ldots, i_{p} have a nonzero limit.
If $i_{1} / N, i_{2} / N, \ldots, i_{p} / N \rightarrow u_{1}, u_{2}, \ldots, u_{p} \in[0,1]$ as $N \rightarrow \infty$, then

$$
E\left[G_{i_{1} i_{p}} G_{i_{p} i_{p-1}} \ldots G_{i_{2} i_{1}}\right]^{c}=\frac{1}{N^{p-1}} g_{p}\left(u_{1}, \ldots, u_{p}\right)+O\left(\frac{1}{N^{p}}\right)
$$

for some functions g_{p}.
The g_{p} are piecewise polynomial functions, polynomial in each sector corresponding to an ordering of the u_{i}.

Loop polynomials (Bernard and Jin, 2021)

Define $Q_{\sigma}\left(x_{1}, \ldots, x_{p}\right)$ for $0 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{p} \leq 1$, indexed by circular permutations σ of $1, \ldots, p$ by
$E\left[G_{i_{1} i_{\sigma}{ }^{p-1}(1)} G_{i_{\sigma^{p-1}(1)}{ }^{i_{\sigma} \rho-2}(1)} \ldots G_{i_{\sigma(1)} i_{1}}\right]^{c}=\frac{1}{N^{p-1}} Q_{\sigma}\left(x_{1}, \ldots, x_{p}\right)+O\left(\frac{1}{N^{p}}\right)$.
where $i_{k} / N \rightarrow x_{k}$ as $N \rightarrow \infty$

Loop polynomials (Bernard and Jin, 2021)

Define $Q_{\sigma}\left(x_{1}, \ldots, x_{p}\right)$ for $0 \leq x_{1} \leq x_{2} \leq \ldots \leq x_{p} \leq 1$, indexed by circular permutations σ of $1, \ldots, p$ by
$E\left[G_{i_{1} i_{\sigma^{\rho-1}(1)}} G_{i_{\sigma^{p-1}(1)} i_{\sigma}{ }^{p-2}(1)} \ldots G_{i_{\sigma(1)} i_{1}}\right]^{c}=\frac{1}{N^{p-1}} Q_{\sigma}\left(x_{1}, \ldots, x_{p}\right)+O\left(\frac{1}{N^{p}}\right)$.
where $i_{k} / N \rightarrow x_{k}$ as $N \rightarrow \infty$
The Q_{σ} are the loop polynomials. They give the values of the functions g_{p} in each sector.

Algebraic characterization of the loop polynomials

1. Q_{σ} is of degree 1 in each of the variables x_{i}.

Algebraic characterization of the loop polynomials

1. Q_{σ} is of degree 1 in each of the variables x_{i}.
2. $Q_{1}\left(x_{1}\right)=x_{1}$ and $Q_{12}\left(x_{1}, x_{2}\right)=x_{1}\left(1-x_{2}\right)$.

Algebraic characterization of the loop polynomials

1. Q_{σ} is of degree 1 in each of the variables x_{i}.
2. $Q_{1}\left(x_{1}\right)=x_{1}$ and $Q_{12}\left(x_{1}, x_{2}\right)=x_{1}\left(1-x_{2}\right)$.
3. For $n \geq 2$ they satisfy the boundary conditions:

$$
Q_{\sigma}=x_{1} P_{\sigma}\left(x_{2}, \ldots, x_{n-1}\right)\left(1-x_{n}\right)
$$

Algebraic characterization of the loop polynomials

1. Q_{σ} is of degree 1 in each of the variables x_{i}.
2. $Q_{1}\left(x_{1}\right)=x_{1}$ and $Q_{12}\left(x_{1}, x_{2}\right)=x_{1}\left(1-x_{2}\right)$.
3. For $n \geq 2$ they satisfy the boundary conditions:

$$
Q_{\sigma}=x_{1} P_{\sigma}\left(x_{2}, \ldots, x_{n-1}\right)\left(1-x_{n}\right)
$$

4. Continuity condition for $i=1,2, \ldots, n-1\left(s_{i}=(i i+1)\right)$:

$$
\left.Q_{\sigma}\right|_{x_{i}=x_{i+1}}=\left.Q_{s_{i} \sigma s_{i}}\right|_{x_{i}=x_{i+1}}
$$

Algebraic characterization of the loop polynomials

1. Q_{σ} is of degree 1 in each of the variables x_{i}.
2. $Q_{1}\left(x_{1}\right)=x_{1}$ and $Q_{12}\left(x_{1}, x_{2}\right)=x_{1}\left(1-x_{2}\right)$.
3. For $n \geq 2$ they satisfy the boundary conditions:

$$
Q_{\sigma}=x_{1} P_{\sigma}\left(x_{2}, \ldots, x_{n-1}\right)\left(1-x_{n}\right)
$$

4. Continuity condition for $i=1,2, \ldots, n-1\left(s_{i}=(i i+1)\right)$:

$$
\left.Q_{\sigma}\right|_{x_{i}=x_{i+1}}=\left.Q_{s_{i} \sigma s_{i}}\right|_{x_{i}=x_{i+1}}
$$

5. Exchange relation:

$$
\begin{gathered}
{\left.\left[x_{i}\right]\left(Q_{\sigma}+Q_{s_{i} \sigma s_{i}}\right)\right|_{x_{i}=x_{i+1}}-\left.\left[x_{i+1}\right]\left(Q_{\sigma}+Q_{s_{i} \sigma s_{i}}\right)\right|_{x_{i}=x_{i+1}}=} \\
2\left(\left[x_{i}\right] Q_{\sigma^{-}}\left(x^{-}\right)\right)\left(\left[x_{i+1}\right] Q_{\sigma^{+}}\left(x^{+}\right)\right)
\end{gathered}
$$

$$
\left(s_{i} \sigma=\sigma^{+} \sigma^{-}, \sigma^{+}, \text {moves } i+1 \text { and } \sigma^{-}, \text {moves } i .\right)
$$

$$
s_{i} \sigma=\sigma^{-} \sigma^{+}
$$

$$
s_{i} \sigma=\sigma^{-} \sigma^{+}
$$

$$
\begin{gathered}
i+1 \longleftrightarrow \\
\sigma^{+}
\end{gathered}
$$

How to use the defining relations

$$
\begin{aligned}
Q_{\sigma} & =A+x_{i} B+x_{i+1} C+x_{i} x_{i+1} D, \\
Q_{s_{i} / s_{i}} & =A^{\prime}+x_{i} B^{\prime}+x_{i+1} C^{\prime}+x_{i} x_{i+1} D^{\prime},
\end{aligned}
$$

where $A, B, C, D, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ do not depend on x_{i}, x_{i+1}.

How to use the defining relations

$$
\begin{aligned}
Q_{\sigma} & =A+x_{i} B+x_{i+1} C+x_{i} x_{i+1} D \\
Q_{s_{i} \sigma s_{i}} & =A^{\prime}+x_{i} B^{\prime}+x_{i+1} C^{\prime}+x_{i} x_{i+1} D^{\prime}
\end{aligned}
$$

where $A, B, C, D, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ do not depend on x_{i}, x_{i+1}. By the continuity condition

$$
A=A^{\prime}, \quad D=D^{\prime}, \quad B+C=B^{\prime}+C^{\prime} .
$$

How to use the defining relations

$$
\begin{aligned}
Q_{\sigma} & =A+x_{i} B+x_{i+1} C+x_{i} x_{i+1} D \\
Q_{s_{i} \sigma s_{i}} & =A^{\prime}+x_{i} B^{\prime}+x_{i+1} C^{\prime}+x_{i} x_{i+1} D^{\prime}
\end{aligned}
$$

where $A, B, C, D, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ do not depend on x_{i}, x_{i+1}. By the continuity condition

$$
A=A^{\prime}, \quad D=D^{\prime}, \quad B+C=B^{\prime}+C^{\prime} .
$$

Let $s_{i} \sigma=\sigma^{-} \sigma^{+}$and

$$
\Delta:=\left(\left[x_{i}\right] Q_{\sigma^{-}}\left(x^{-}\right)\right)\left(\left[x_{i+1}\right] Q_{\sigma^{+}}\left(x^{+}\right)\right) .
$$

By the exchange condition

$$
B-C^{\prime}=B^{\prime}-C=\Delta .
$$

One can obtain Q_{σ} for all n-cycles if one knows Q_{σ} for one of the cycles. Bernard and Jin prove that the conditions above completely determine the loop polynomials.

One can obtain Q_{σ} for all n-cycles if one knows Q_{σ} for one of the cycles. Bernard and Jin prove that the conditions above completely determine the loop polynomials.

Examples: $n=5$

$$
\begin{aligned}
Q_{12345} & =x_{1}\left(1-4 x_{2}-3 x_{3}-2 x_{4}+9 x_{2} x_{3}+7 x_{2} x_{4}+5 x_{3} x_{4}-14 x_{2} x_{3} x_{4}\right)\left(1-x_{5}\right) \\
Q_{13245} & =x_{1}\left(1-6 x_{2}-x_{3}-2 x_{4}+9 x_{2} x_{3}+10 x_{2} x_{4}+2 x_{3} x_{4}-14 x_{2} x_{3} x_{4}\right)\left(1-x_{5}\right) \\
Q_{12435} & =x_{1}\left(1-4 x_{2}-4 x_{3}-x_{4}+12 x_{2} x_{3}+4 x_{2} x_{4}+5 x_{3} x_{4}-14 x_{2} x_{3} x_{4}\right)\left(1-x_{5}\right) \\
Q_{14235} & =x_{1}\left(1-6 x_{2}-2 x_{3}-x_{4}+12 x_{2} x_{3}+7 x_{2} x_{4}+2 x_{3} x_{4}-14 x_{2} x_{3} x_{4}\right)\left(1-x_{5}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& Q_{12345}=Q_{13452}=Q_{14523}=Q_{15234}=Q_{15432}=Q_{12543}=Q_{12354}=Q_{14325} \\
& Q_{13245}=Q_{13254}=Q_{15423}=Q_{14523} \\
& Q_{12435}=Q_{14352}=Q_{15342}=Q_{12534} \\
& Q_{14235}=Q_{13524}=Q_{15234}=Q_{13542}=Q_{14253}=Q_{13425}=Q_{15243}=Q_{14352}
\end{aligned}
$$

One can obtain Q_{σ} for all n-cycles if one knows Q_{σ} for one of the cycles. Bernard and Jin prove that the conditions above completely determine the loop polynomials.

Examples: $n=5$

$$
\begin{aligned}
Q_{12345} & =x_{1}\left(1-4 x_{2}-3 x_{3}-2 x_{4}+9 x_{2} x_{3}+7 x_{2} x_{4}+5 x_{3} x_{4}-14 x_{2} x_{3} x_{4}\right)\left(1-x_{5}\right) \\
Q_{13245} & =x_{1}\left(1-6 x_{2}-x_{3}-2 x_{4}+9 x_{2} x_{3}+10 x_{2} x_{4}+2 x_{3} x_{4}-14 x_{2} x_{3} x_{4}\right)\left(1-x_{5}\right) \\
Q_{12435} & =x_{1}\left(1-4 x_{2}-4 x_{3}-x_{4}+12 x_{2} x_{3}+4 x_{2} x_{4}+5 x_{3} x_{4}-14 x_{2} x_{3} x_{4}\right)\left(1-x_{5}\right) \\
Q_{14235} & =x_{1}\left(1-6 x_{2}-2 x_{3}-x_{4}+12 x_{2} x_{3}+7 x_{2} x_{4}+2 x_{3} x_{4}-14 x_{2} x_{3} x_{4}\right)\left(1-x_{5}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& Q_{12345}=Q_{13452}=Q_{14523}=Q_{15234}=Q_{15432}=Q_{12543}=Q_{12354}=Q_{14325} \\
& Q_{13245}=Q_{13254}=Q_{15423}=Q_{14523} \\
& Q_{12435}=Q_{14352}=Q_{15342}=Q_{12534} \\
& Q_{14235}=Q_{13524}=Q_{15234}=Q_{13542}=Q_{14253}=Q_{13425}=Q_{15243}=Q_{14352}
\end{aligned}
$$

The goal is to give an explicit combinatorial formula for the Q_{σ}.

Non-crossing partitions

Set partitions of $\{1,2, \ldots, n\}$ without crossing:

$$
\pi=\{1,3,4\} \cup\{2\} \cup\{5,6\}, \cup\{7\} \cup\{8\}
$$

Non-crossing partitions

Set partitions of $\{1,2, \ldots, n\}$ without crossing:

$$
\begin{gathered}
\pi=\{1,3,4\} \cup\{2\} \cup\{5,6\}, \cup\{7\} \cup\{8\} \\
|N C(n)|=\text { Cat }_{n}=\frac{1}{n+1}\binom{2 n}{n}
\end{gathered}
$$

Kreweras complement

$$
\begin{aligned}
& \pi=\{1,3,4\} \cup\{2\} \cup\{5,6\}, \cup\{7\} \cup\{8\} \\
& K(\pi)=\{1,5,7,8\} \cup\{2,3\} \cup\{4\} \cup\{6\}
\end{aligned}
$$

Free cumulants (R. Speicher)
$A=$ unital algebra, $\varphi: A \rightarrow C$ such that $\varphi(1)=1$.

Free cumulants (R. Speicher)

$A=$ unital algebra, $\varphi: A \rightarrow C$ such that $\varphi(1)=1$.
The free cumulants are $\kappa_{n}=n$-linear form on $A, n=1,2, \ldots$, defined implicitly by

$$
\varphi\left(a_{1} a_{2} \ldots a_{n}\right)=\sum_{\pi \in N C(n)} \kappa_{\pi}\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

where $\kappa_{\pi}\left(a_{1}, \ldots, a_{n}\right)=\prod_{p \text { part of } \pi} \kappa_{|p|}\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{|p|}}\right)$

Free cumulants (R. Speicher)

$A=$ unital algebra, $\varphi: A \rightarrow C$ such that $\varphi(1)=1$.
The free cumulants are $\kappa_{n}=n$-linear form on $A, n=1,2, \ldots$, defined implicitly by

$$
\varphi\left(a_{1} a_{2} \ldots a_{n}\right)=\sum_{\pi \in N C(n)} \kappa_{\pi}\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

where $\kappa_{\pi}\left(a_{1}, \ldots, a_{n}\right)=\prod_{p \text { part of } \pi} \kappa_{|p|}\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{|p|}}\right)$
One has

$$
\kappa_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{\pi \in N C(n)} \mu(\pi) \varphi_{\pi}\left(a_{1}, \ldots, a_{n}\right)
$$

where μ is the Möbius function of $N C(n)$:

$$
\mu(\pi)=\prod_{p \text { part of } K(\pi)}(-1)^{|p|-1} \mathrm{Cat}_{|p|-1}
$$

Examples:

$$
\begin{array}{cc}
\varphi\left(a_{1}\right)=\kappa_{1}\left(a_{1}\right) & \{1\} \\
\varphi\left(a_{1} a_{2}\right)=\begin{array}{cc}
\kappa_{2}\left(a_{1}, a_{2}\right) & \{1,2\} \\
+\kappa_{1}\left(a_{1}\right) \kappa_{1}\left(a_{2}\right) & \{1\} \cup\{2\}
\end{array}
\end{array}
$$

hence

$$
\begin{aligned}
\kappa_{1}(a) & =\varphi(a) \\
\kappa_{2}\left(a_{1}, a_{2}\right) & =\varphi\left(a_{1} a_{2}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)
\end{aligned}
$$

$$
\begin{array}{ccc}
\varphi\left(a_{1} a_{2} a_{3}\right)= & \kappa_{3}\left(a_{1}, a_{2}, a_{3}\right) & \{1,2,3\} \\
& +\kappa_{1}\left(a_{1}\right) \kappa_{2}\left(a_{2}, a_{3}\right) & \{1\} \cup\{2,3\} \\
& +\kappa_{2}\left(a_{1}, a_{3}\right) \kappa_{1}\left(a_{2}\right) & \{1,3\} \cup\{2\} \\
& +\kappa_{2}\left(a_{1}, a_{2}\right) \kappa_{1}\left(a_{3}\right) & \{1,2\} \cup\{3\} \\
+ & \kappa_{1}\left(a_{1}\right) \kappa_{1}\left(a_{2}\right) \kappa_{1}\left(a_{3}\right) & \{1\} \cup\{2\} \cup\{2\} \\
\kappa_{3}\left(a_{1}, a_{2}, a_{3}\right)= & \varphi\left(a_{1} a_{2} a_{3}\right)-\varphi\left(a_{1} a_{2}\right) \varphi\left(a_{3}\right)-\varphi\left(a_{1} a_{3}\right) \varphi\left(a_{2}\right) \\
& -\varphi\left(a_{1}\right) \varphi\left(a_{2} a_{3}\right)+2 \varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \varphi\left(a_{3}\right)
\end{array}
$$

Schröder trees

Plane, rooted trees such that each internal vertex has at least two descendants.

Schröder trees

Plane, rooted trees such that each internal vertex has at least two descendants.

Schröder trees with 4 leaves

Schröder trees

Plane, rooted trees such that each internal vertex has at least two descendants.

Schröder trees with 4 leaves
Counted, in terms of the number of leaves, by the small Schröder numbers $s_{n}=1,1,3,11,45, \ldots$ for $n=1,2,3, \ldots$ (A001003 in OEIS) with generating series $\frac{1+x-\sqrt{1-6 x+x^{2}}}{4 x}$.

Associahedra

A dissection of a polygon is a collection of non-crossing diagonals

The dissections of a polygon form a simplicial complex, the associahedron which can be realized as a polytope.

Schröder trees and associahedra

There is a natural bijection between Schröder trees and dissections of polygons.

Prime Schröder trees

A Schröder tree is prime if the righmost edge of its root is a leaf. Counted by the large Schröder numbers $S_{n}=2 s_{n-1}$.

Prime Schröder trees

A Schröder tree is prime if the righmost edge of its root is a leaf. Counted by the large Schröder numbers $S_{n}=2 s_{n-1}$.

For each Schröder tree t, with $n-1$ leaves, we can build two prime Schröder trees t_{1} and t_{2}, with n leaves

Corners

corner=angle between pair of consecutive edges.
A Schröder tree with n leaves has exactly $n-1$ corners, numbered from left to right.

Corners

corner=angle between pair of consecutive edges.
A Schröder tree with n leaves has exactly $n-1$ corners, numbered from left to right.

A Schröder tree determines a non-crossing partition of its corners:

$$
\pi(t)=\{1,3\},\{2\},\{4,5,6,11\},\{7\},\{8,10\},\{9\}
$$

Prime Schröder trees and Möbius function on $N C(n)$ (Josuat-Vergès, Menous, Novelli, Thibon, 2017)

Prime Schröder trees and Möbius function on $N C(n)$
(Josuat-Vergès, Menous, Novelli, Thibon, 2017)
In a prime Schröder tree remove, for each internal vertex, the internal edges pointing out of this vertex, except the leftmost and rightmost ones.

Prime Schröder trees and Möbius function on $N C(n)$
(Josuat-Vergès, Menous, Novelli, Thibon, 2017)
In a prime Schröder tree remove, for each internal vertex, the internal edges pointing out of this vertex, except the leftmost and rightmost ones.

\rightarrow forest of binary trees

Prime Schröder trees and Möbius function on $N C(n)$
(Josuat-Vergès, Menous, Novelli, Thibon, 2017)
In a prime Schröder tree remove, for each internal vertex, the internal edges pointing out of this vertex, except the leftmost and rightmost ones.

\rightarrow forest of binary trees
\rightarrow non-crossing partition of the leaves $=K(\pi(t))$ (remove rightmost leaf).

Prime Schröder trees and Möbius function on $N C(n)$

 (Josuat-Vergès, Menous, Novelli, Thibon, 2017)In a prime Schröder tree remove, for each internal vertex, the internal edges pointing out of this vertex, except the leftmost and rightmost ones.

\rightarrow forest of binary trees
\rightarrow non-crossing partition of the leaves $=K(\pi(t))$ (remove rightmost leaf).

$$
\prod_{p \text { part of } K(\pi)} \text { Cat }_{|p|-1}=|\mu(\pi)|
$$

is the number of prime Schröder trees with $\pi(t)=\pi$.

A formula for the loop polynomials

A formula for the loop polynomials

$t=$ prime Schröder tree t, with $n+1$ leaves, $k \in[1, n]$ and σ circular permutation.
Label the corners of t, by the numbers $\sigma(k), \sigma^{2}(k), \ldots, \sigma^{n-1}(k), k$.

$$
\sigma=2,4,8,5,9,1,6,11,10,3,7, \quad k=7
$$

A formula for the loop polynomials

$t=$ prime Schröder tree t, with $n+1$ leaves, $k \in[1, n]$ and σ circular permutation.
Label the corners of t, by the numbers $\sigma(k), \sigma^{2}(k), \ldots, \sigma^{n-1}(k), k$.

$$
\sigma=2,4,8,5,9,1,6,11,10,3,7, \quad k=7
$$

For each internal vertex $i(v)=$ the smallest label of corners of v.

$$
x^{t, k, \sigma}=\prod_{v}\left(-x_{i(v)}\right) \quad\left(\text { here } x^{t, 7, \sigma}=(-1)^{6} x_{2} x_{4} x_{1} x_{6} x_{3} x_{10}\right)
$$

Theorem: for each $k \in[1, n]$ one has

$$
Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=-\sum_{t \in p S_{n+1}} x^{t, k, \sigma}
$$

Proof of the main formula

$$
Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=-\sum_{t \in p S_{n+1}} x^{t, k, \sigma}
$$

Proof of the main formula

$$
Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=-\sum_{t \in p S_{n+1}} x^{t, k, \sigma}
$$

First check that it does not depend on k : for this rewrite Q_{σ} as a sum over $N C(n): x^{t, k, \sigma}$ depends only on $\pi(t)$ and σ.

Proof of the main formula

$$
Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=-\sum_{t \in p S_{n+1}} x^{t, k, \sigma}
$$

First check that it does not depend on k : for this rewrite Q_{σ} as a sum over $N C(n): x^{t, k, \sigma}$ depends only on $\pi(t)$ and σ.

Then check the boundary condition (x_{1} and $\left(1-x_{n}\right)$ are factors of Q_{σ})

Proof of the main formula

$$
Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=-\sum_{t \in p S_{n+1}} x^{t, k, \sigma}
$$

First check that it does not depend on k : for this rewrite Q_{σ} as a sum over $N C(n): x^{t, k, \sigma}$ depends only on $\pi(t)$ and σ.

Then check the boundary condition $\left(x_{1}\right.$ and $\left(1-x_{n}\right)$ are factors of Q_{σ})

Then check the continuity and the exchange conditions (uses simple properties of Schröder trees).

Proof of the exchange condition by cutting a prime Schröder tree into two prime Schröder trees

$$
\begin{gathered}
{\left.\left[x_{i}\right]\left(Q_{\sigma}+Q_{\left.s_{i} / \sigma_{i}\right)}\right)\right|_{x_{i}=x_{i+1}}-\left.\left[x_{i+1}\right]\left(Q_{\sigma}+Q_{s_{i} \sigma s_{i}}\right)\right|_{x_{i}=x_{i+1}}=} \\
2\left(\left[x_{i}\right] Q_{\sigma^{-}}\left(x^{-}\right)\right)\left(\left[x_{i+1}\right] Q_{\sigma^{+}}\left(x^{+}\right)\right)
\end{gathered}
$$

Proof of the exchange condition by cutting a prime Schröder tree into two prime Schröder trees

$$
\left.\left[x_{i}\right]\left(Q_{\sigma}+Q_{s_{i} \sigma s_{i}}\right)\right|_{x_{i}=x_{i+1}}-\left.\left[x_{i+1}\right]\left(Q_{\sigma}+Q_{s_{i} \sigma s_{i}}\right)\right|_{x_{i}=x_{i+1}}=
$$

Proof of the exchange condition by cutting a prime Schröder tree into two prime Schröder trees

$$
\left.\left[x_{i}\right]\left(Q_{\sigma}+Q_{s_{i} \sigma s_{i}}\right)\right|_{x_{i}=x_{i+1}}-\left[x_{i+1}\right]\left(Q_{\sigma}+Q_{s_{i} \sigma s_{i}}\right)| |_{x_{i}=x_{i+1}}=
$$

$$
2\left(\left[x_{i}\right] Q_{\sigma^{-}}\left(x^{-}\right)\right)\left(\left[x_{i+1}\right] Q_{\sigma^{+}}\left(x^{+}\right)\right)
$$

t

The loop polynomials as free cumulants

On $[0,1] \subset \mathrm{R}$ with Lebesgue measure let for $x \in[0,1]$

$$
\Pi_{x}=1_{[0, x]}
$$

The Π_{x} for a commutative family of random variables.

$$
\Pi_{x} \Pi_{y}=\Pi_{\min (x, y)}
$$

The loop polynomials as free cumulants

On $[0,1] \subset \mathrm{R}$ with Lebesgue measure let for $x \in[0,1]$

$$
\Pi_{x}=1_{[0, x]}
$$

The Π_{x} for a commutative family of random variables.

$$
\Pi_{x} \Pi_{y}=\Pi_{\min (x, y)}
$$

Theorem

$$
Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=\kappa_{n}\left(\Pi_{x_{1}}, \Pi_{x_{\sigma(1)}}, \Pi_{x_{\sigma^{2}(1)}}, \Pi_{x_{\sigma^{n-1}(1)}}\right)
$$

The loop polynomials as free cumulants

On $[0,1] \subset \mathrm{R}$ with Lebesgue measure let for $x \in[0,1]$

$$
\Pi_{x}=1_{[0, x]}
$$

The Π_{x} for a commutative family of random variables.

$$
\Pi_{x} \Pi_{y}=\Pi_{\min (x, y)}
$$

Theorem

$$
Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=\kappa_{n}\left(\Pi_{x_{1}}, \Pi_{x_{\sigma(1)}}, \Pi_{x_{\sigma^{2}(1)}}, \Pi_{x_{\sigma^{n-1}(1)}}\right)
$$

Proof: use the connection between Schröder trees, $N C(n)$ and the Möbius function.

Summary

Summary

From the QSSEP we constructed a random correlation matrix

$$
G_{i j}=\operatorname{Tr}\left(\rho c_{i} c_{j}^{\dagger}\right)
$$

Summary

From the QSSEP we constructed a random correlation matrix

$$
G_{i j}=\operatorname{Tr}\left(\rho c_{i} c_{j}^{\dagger}\right)
$$

The cumulants of the entries of G give the loop polynomials as $N \rightarrow \infty\left(i_{k} / N \rightarrow x_{k}\right)$
$E\left[G_{i_{1} i_{\sigma} \rho-1(1)} G_{i_{\sigma-1}{ }^{\rho-1}(1)^{i^{\rho}-2}(1)} \ldots G_{i_{\sigma(1)} i_{1}}\right]^{c}=\frac{1}{N^{p-1}} Q_{\sigma}\left(x_{1}, \ldots, x_{p}\right)+O\left(\frac{1}{N^{p}}\right)$.

Summary

From the QSSEP we constructed a random correlation matrix

$$
G_{i j}=\operatorname{Tr}\left(\rho c_{i} c_{j}^{\dagger}\right)
$$

The cumulants of the entries of G give the loop polynomials as $N \rightarrow \infty\left(i_{k} / N \rightarrow x_{k}\right)$
$E\left[G_{i_{1} i_{\sigma}{ }^{p-1}(1)} G_{i_{\sigma^{p-1}(1)}{ }^{i}{ }_{\sigma}{ }^{p-2}(1)} \ldots G_{i_{\sigma(1)} i_{1}}\right]^{c}=\frac{1}{N^{p-1}} Q_{\sigma}\left(x_{1}, \ldots, x_{p}\right)+O\left(\frac{1}{N^{p}}\right)$.

The loop polynomials are free cumulants:

$$
\begin{gathered}
\Pi_{x}=1_{[0, x]} ; \quad x \in[0,1] \\
Q_{\sigma}\left(x_{1}, \ldots, x_{n}\right)=\kappa_{n}\left(\Pi_{x_{1}}, \Pi_{x_{\sigma(1)}}, \Pi_{x_{\sigma^{2}(1)}}, \Pi_{x_{\sigma^{n-1}(1)}}\right)
\end{gathered}
$$

THANK YOU

