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Definition of ASEP

1 q1 1q

Collection of particles on Z which evolves in time.

There are two Poisson processes of rates 1 and q < 1 associated with
each particle.

Each particle jumps one step to the right with rate 1, and jumps one step
to the left with rate q, if the neighboring positions are vacant. If the
position is occupied by another particle, the jump does not happen.

All Poisson processes are independent.



Stationary measures
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In general, the configuration can be described by a collection of random
variables. Let ηasept (z) be the number of particles in position z ∈ Z after
time t. This is a random variable with values 0 and 1.

Stationary measure Fix 0 ≤ p ≤ 1, and let {ηasept (z)}z∈Z be a collection
of independent, identically distributed Bernoulli random variables:

Prob (ηasept (z) = 1) = p, Prob (ηasept (z) = 0) = 1− p.



Step initial condition

−2 −1 0 1 2 · · ·· · ·

Highly non-stationary initial condition.

Asymptotic behavior in time ? It will NOT converge to a stationary
measure.

This type of questions: Harris, Liggett, Rost, . . . , . . . , . . .



Step initial condition

−2 −1 0 1 2 · · ·· · ·

Evolution in time ? Density :



−2 −1 0 1 2 · · ·· · ·

Theorem (Andjel-Vares, Benassi-Fouque, 87)

Let m = m(t), t ∈ R≥0, be a collection of integers such that

limt→∞
m(t)
t = y , y ∈ R. Then

lim
t→∞

P(ηasept (m(t)) = 1) = d(y) :=
0, y ≥ (1− q),
1
2

(
1− y

1−q

)
, −(1− q) < y < (1− q),

1, y ≤ −(1− q).

Moreover, for any fixed L ∈ Z>0 the random variables
{ηasept (m(t) + i)}i=−L,..,L converge, as t →∞, to i.i.d. Bernoulli
distributions with probability of 1 equal to d(y).
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We consider particles of various types (=classes, colors, species).

Set of types is linearly ordered, and a particle of a smaller type interacts
with a particle of a larger type as a particle with a hole.



0

Let us start with this initial condition. Let S1(t) be the position of the
second class particle at time t.

Asymptotics of S1(t) ?



0

Let us start with this initial condition. Let S1(t) be the position of the
second class particle at time t.

lim
t→∞

Prob

(
S1(t)

t
< x

)
= d(−x) =

1

2

(
1 +

x

1− q

)
.

Uniform distribution on [−(1− q); (1− q)].

P.A. Ferrari-Kipnis’95, P.A. Ferrari-Goncalves-Martin’08.
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The asymptotic distribution of the second class particle ?
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(Borodin-Bufetov’19) The asymptotic distribution of the second class
particle

lim
t→∞

Prob

(
S1(t)

t
< x

)
= d(−x) + (1− q)d(−x)(1− d(−x)).

Note the nontrivial dependence on q.
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(Borodin-Bufetov’19) The asymptotic distribution of the second class
particle

lim
t→∞

Prob

(
S1(t)

t
< x

)
= d(−x) + (1− q)d(−x)(1− d(−x)).

Note the nontrivial dependence on q.

q = 0: TASEP, Cator-Pimentel’13

for a class of initial configurations and general q: Borodin-Bufetov’19



Hecke algebra

W = Sn, si = (i , i + 1).

L(w) := number of inversions in w ∈W .

Hecke algebra: {Tw}w∈W — linear basis{
TsTw = Tsw , if L(sw) = L(w) + 1

TsTw = (1− q)Tw + qTsw , if L(sw) = L(w)− 1.

The linear map I : H → H

I :
∑
w

awTw →
∑
w

awTw−1

satisfies

I (hrhr−1 . . . h2h1) = I (h1) I (h2) . . . I (hr ) , hi ∈ H.



Random walk on Hecke algebra

Generators {G1, . . . ,Gk}, each of these generators has an independent
exponential clock. When the clock s rings, we multiply Gs to the current
position of the random walk P ∈ H — our new position is GsP. This is a
random walk on Hecke algebra.

An element of Hecke algebra

h :=
∑
w

κwTw , κw ≥ 0,
∑
w

κw = 1,

can be interpreted as a random element of W . Random walk on Hecke
algebra generates the random walk on W .



Multi-species ASEP / Hecke algebra

W = Sn, generators: {Tsi}n−1i=1 . Equivalent language to for the
description of ASEP: Vocabulary

Random multi-species configuration — element of Hecke algebra

Update —- multiplication by Ts

ASEP evolution — element of Sn generated by random walk on
Hecke algebra

Projection to fewer colors — projection to cosets of parabolic
subgroups

Class-position symmetry — involution I swaps w and w−1.

Other Coxeter groups generate ASEP with a source (hyperoctahedral
group), ASEP on a ring (affine Weyl group Ãn).



Multi-species ASEP / Hecke algebra

W = Sn, generators: {Tsi}n−1i=1 . Equivalent language for the description
of ASEP.

Multi-species ASEP is generated by Hecke algebra:
Alcaraz-Rittenberg’93, Alcaraz-Droz-Henkel-Rittenberg’93, ...,
Lam’11 , Cantini-de Gier-Wheeler’15, ...

Class-position symmetry and applications for asymptotic analysis:
Angel-Holroyd-Romik’08 (TASEP, q = 0), Amir-Angel-Valko’08
(ASEP), Borodin-Bufetov’19 (inhomogeneous stochastic six vertex
model)

What happens if we consider other generators of the random walk on
Hecke algebra ?
In fact, a variety of other processes appear (stochastic six vertex model,
K-exclusion processes, coalescence processes, ... ).



Biased Card Shuffling

a < b , p = 1, q = 0.

Continuous time: Updates happen according to independent Poisson
processes on R≥0 attached to each pair of neighboring positions.
Question: When the sorting stops?



Multispecies TASEP on an interval

Interval {1, 2, . . . ,N}. Symmetric group SN .

Each transposition (i , i + 1) has independent exponential clock.

When the clock rings, we swap particles at i and i + 1, but only if it
will increase the number of color-position inversions.

t1 t2 t3 t4 t5 t6

1

2

3

4

4

3

2

1

Angel-Holroyd-Romik-08: What’s happening as N becomes large?
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Fig. 1. An illustration of an oriented swap process with n= 5. Trajectories are shown
by lines.

Our first result states that the trajectories converge to a certain family
of random curves. The limiting curve for a particle at a given location is
deterministic, once a random initial speed has been chosen, and is smooth,
except at two points. Define the scaled trajectory T n

k = Tk : [0,∞)→ [0,1] of
particle k by

T n
k (s) :=

(ηnns)
−1(k)

n
.

(a)

(b) (c)

Fig. 2. (a) Selected particle trajectories in a simulated oriented swap process with
n= 1000; (b) selected possible limiting trajectories for particle ⌊3n/10⌋; (c) selected lim-
iting trajectories (see Theorem 1.1).
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Theorem. [Angel-Holroyd-Romik] Set γy = 1 + 2
√
y(1− y).

If UN(k) is the last time the swap (k , k + 1) happens, then

UN(k)− Nγk/N

N1/3(γk/N)2/3
(
k
N (1− k

N )
)−1/6 d−−−−→

N→∞
F2, (Tracy-Widom distribution)

Proof is based on coupling with TASEP with step initial condition and
the result of Johansson’00.



2 O. ANGEL, A. HOLROYD AND D. ROMIK

Fig. 1. An illustration of an oriented swap process with n= 5. Trajectories are shown
by lines.

Our first result states that the trajectories converge to a certain family
of random curves. The limiting curve for a particle at a given location is
deterministic, once a random initial speed has been chosen, and is smooth,
except at two points. Define the scaled trajectory T n

k = Tk : [0,∞)→ [0,1] of
particle k by

T n
k (s) :=

(ηnns)
−1(k)

n
.

(a)

(b) (c)

Fig. 2. (a) Selected particle trajectories in a simulated oriented swap process with
n= 1000; (b) selected possible limiting trajectories for particle ⌊3n/10⌋; (c) selected lim-
iting trajectories (see Theorem 1.1).

P
ic
tu
re

fr
o
m

A
n
g
el
-H

o
lr
oy
d
-R

o
m
ik
-0
8
.

O
n
ly

2
1
o
u
t
o
f
1
0
0
0
tr
a
je
ct
or
ie
s
sh
ow

n
.

Question. Set TOSP
N — the time when the systems stops

[AHR-08]: We have TOSP
N ≈ 2N. What are the fluctuations?

Theorem. Bufetov-Gorin-Romik’20

TOSP
N − 2N

21/3 N1/3

d−−−−→
N→∞

F1,

where F1 is another Tracy-Widom distribution.
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Question. Set TOSP
N — the time when the systems stops

Theorem. (Bufetov-Gorin-Romik-20)

TOSP
N − 2N

21/3 N1/3

d−−−−→
N→∞

F1,

Proof is based on symmetries of interacting particle systems
Borodin-Gorin-Wheeler’19, Galashin’20; also we prove some of
conjectures from Bisi-Cunden-Gibbons-Romik’20.



Mallows measure on Sn
Sn — symmetric group, L(w) — number of inversions in w , and
0 ≤ q < 1.

Prob (w) = qn(n−1)/2−L(w)Z .

For q = 0 this measure is concentrated on one word (longest element),
for general q it is “not far” from it for large n.

If we run multi-species ASEP on a finite interval of length n for a long
time, it converges to this measure.

Mallows’53

n→∞: Gnedin-Olshanski’09, Gnedin-Olshanski’11



Other sets of generators also lead to interesting particle systems.

[a; b] := {j ∈ Z : a ≤ j ≤ b} the interval between a and b. Sa;b ⊂ Sn
permutes the elements from [a; b] only.

Mallows element

Ma;b :=
∑

w∈Sa;b

Zq(b−a+1)(b−a)/2−L(w)Tw , Ma;b ∈ H(Sn),

where L (w) is the number of inversions in w . The main property of the
element Ma;b is

TwMa;b =Ma;bTw =Ma;b, for any w ∈ Sa;b.



Let n = NM, with M,N ∈ Z>0, and consider the following set of
generators of a random walk on the Hecke algebra :{
M(x−1)M+1;xMMxM+1;(x+1)MT(xM,xM+1)M(x−1)M+1;xMMxM+1;(x+1)M

}N−1
x=1

.

This dynamics generates a multi-species ASEP(q,M).
q = 0: M-exclusion TASEP.



Let n = NM, with M,N ∈ Z>0, and consider the following set of
generators of a random walk on the Hecke algebra :{
M(x−1)M+1;xMMxM+1;(x+1)MT(xM,xM+1)M(x−1)M+1;xMMxM+1;(x+1)M

}N−1
x=1

.

This dynamics generates a multi-species ASEP(q,M).

Construction is related to the notion of fusion:
Kulish-Reshetikhin-Sklyanin’81, Corwin-Petrov’15.

Single species version of ASEP(q,M) was introduced by
Carinci-Giardina-Redig-Sasamoto’15

Multi-species version of ASEP(q,M) was introduced by Kuan’16

M →∞ : q-TAZRP (single species version introduced by
Sasamoto-Wadati’98).

Instead of just T(xM,xM+1) we can have arbitrary interaction between two
blocks. This leads to a variety of processes and possible interactions, and
one obtains multi-species versions of all these processes. In particular, in
M →∞ limit one recovers the models of Povolotsky’13.



Summary

Many multi-species interacting particle systems can be interpreted as
random walks on Hecke algebras

The structure of Hecke algebras can be useful for the asymptotic
analysis. In particular, the involution Tw → Tw−1 is a powerful tool.

There is a lot of information available about Hecke algebras. There
is a potential for more applications of this point of view on
interacting particle systems.


