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Two theories

Topological recursion [Eynard-Orantin, Chekhov-Eynard-Orantin]:
• Matrix models, loop equations
• Enumerative geometry (Kontsevich-Witten, Gromov-Witten,

Hurwitz, Mirzakhani-Weil-Petersson...)
• Differential equations, WKB analysis

BPS structures [Gaiotto-Moore-Neitzke, Bridgeland, Kontsevich-Soibelman]:
• 4d N = 2 QFT, hyperkähler geometry / Hitchin system
• Stability conditions on triangulated CY3 categories
• Generalized DT invariants, wall-crossing
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Let X cpt Riemann surface, usually P1
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Summary

Γ,Z ,Ω(γ) . . .

Σ ⊂ T ∗X
spectral curve/cover

ωg ,n,Dℏϕ = 0 . . .

φ = Q(x)dx2

quadratic differential

spectral networks
(diff. eqn, counting trajectories...)

||

topological recursion
(residues, combinatorics...)

""

��
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A formula

Fg (m) =
B2g

2g(2g − 2)

∑
γ∈Γ

Z (γ)∈H

Ω(γ)

(
2πi
Z (γ)

)2g−2

.
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What we do

• Prove for "hypergeometric" example

φHG =
m∞

2x2 − (m∞
2 +m0

2 −m1
2)x +m0

2

x2(x − 1)2
dx⊗2

+ 8 other examples arising from limits/confluence.
• In particular,

• Extend GMN construction of BPS structures
• Compute BPS invariants (existence, location, classification of

saddles)
• Show Borel-resummed Voros symbols solve a natural "BPS

Riemann-Hilbert problem"
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Spectral curves of hypergeometric type

All are genus 0, degree two curves,

y2 = Q•(x)

Name Q•(x) Assumption

Gauss (HG)
m∞

2x2 − (m∞
2 +m0

2 −m1
2)x +m0

2

x2(x − 1)2
m0,m1,m∞ ̸= 0,

m0 ±m1 ±m∞ ̸= 0.

Degenerate Gauss (dHG)
m∞

2x +m1
2 −m∞

2

x(x − 1)2
m1,m∞ ̸= 0,
m1 ±m∞ ̸= 0.

Kummer (Kum) x2 + 4m∞x + 4m0
2

4x2

m0 ̸= 0,
m0 ±m∞ ̸= 0.

Legendre (Leg)
m2

∞
x2 − 1

m∞ ̸= 0.

Bessel (Bes)
x + 4m2

0
4x2 m0 ̸= 0.

Whittaker (Whi)
x − 4m∞

4x
m∞ ̸= 0.

Weber (Web)
1
4
x2 −m∞ m∞ ̸= 0.

Degenerate Bessel (dBes)
1
x

–

Airy (Ai) x –
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Meromorphic quadratic differentials

Let X compact Riemann surface, ωX canonical bundle.

Meromorphic quadratic differential φ: meromorphic section of ω⊗2
X .

Locally, φ = Q(x)dx⊗2.

Usual notion of zeroes and poles, their orders, etc.

Call P := set of poles of φ, T := set of turning points (zeroes +
simple poles).
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Spectral cover

Given a meromorphic q.d. φ, construct the spectral cover (Σ, π, λ):

Σ =
{
λ ∈ T ∗X |λ2 = π∗φ

}
⊂ T ∗X

together with

π|Σ : Σ → X , λ = θcan|Σ

inherited from T ∗X .

(Σ, π, λ) is a branched double cover with a meromorphic one-form
smooth away from π−1(P).
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Definition. [Bridgeland] A BPS structure is a tuple (Γ,Z ,Ω):

• finite rank free abelian group Γ, equipped w/ antisymmetric
pairing ⟨·, ·⟩ : Γ× Γ → Z "charge lattice"

• homomorphism of abelian groups Z : Γ → C "central charge"
• map of sets Ω : Γ → Q (or Z) "BPS invariants"

such that
• Ω(γ) = Ω(−γ)

• For some (any) norm || · || on Γ⊗ R, there is > 0 s.t.

Ω ̸= 0 =⇒ |Z (γ)| > C · ||γ||
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BPS structures

Terminology:
• finite - only finitely many Ω(γ) ̸= 0
• uncoupled - Ω(γ1),Ω(γ2) ̸= 0 =⇒ ⟨γ1, γ2⟩ = 0
• integral - all Ω(γ) ∈ Z

• active class (BPS state) - Ω(γ) ̸= 0
• BPS ray - Zγ · R>0, γ active class

Note: all our BPS structures will be finite, uncoupled and integral
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GMN construction

Gaiotto-Moore-Neitzke constructed BPS structures – we consider
rank 2 case.

Choose a sufficiently nice meromorphic φ = Q(x)dx⊗2 (say,
hypergeometric type).

Let Σ̃ denote Σ with simple poles filled in.
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GMN construction

Define:

• Γ := {γ ∈ H1(Σ̃,Z) | ι∗γ = −γ}, ι the sheet-exchange

• Z (γ) :=
∮
γ

√
φ =

∮
γ

√
Q(x)dx

(in all our examples, Σ is genus 0, Γ is easy to determine and Z (γ)
is easily computed as linear combinations of parameters mi .

Now, to define Ω : Γ → Z.
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Spectral networks

Fix ϑ ∈ R/2πZ. The foliation of phase ϑ, Fϑ(φ) is given by

Im e−iϑ

∫ x √
Q(x)dx = const

A trajectory of phase ϑ is any maximal leaf of Fϑ(φ).
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Figure 1: Q(x) = r/x2
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Spectral networks
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d Q(x) = 1/x5
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Spectral networks

Fact: Trajectory pentachotomy:
i saddle
ii separating
iii generic
iv closed
v recurrent
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Spectral networks

Fact: Trajectory pentachotomy:
i saddle
ii separating
iii generic
iv closed
v recurrent for us, by Jenkins
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Spectral networks

Definition. The spectral network (Stokes graph) Wϑ(φ) of phase
ϑ is the collection of all separating and saddle trajectories in Fϑ.

Example: QWeb(x) =
1
4x

2 −m2
∞

a ϑ < ϑc b ϑ = ϑc c ϑ > ϑc
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Spectral networks

Fact: Every saddle trajectory or closed trajectory has a canonical
lift γ ∈ Γ (up to sign)

For example, if both endpoints simple zeroes:
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Spectral networks

Definition. The BPS invariants Ω(γ) of φ are defined below for
γ ∈ Γ appearing as canonical lifts of saddles in Wϑ(φ)

or ring
domains in Fϑ(φ)

Ω(γ) =



+1 type I
+2 type II
+4 type III
−1 deg. ring domain
−2 nondeg. ring domain

Otherwise, Ω(γ) = 0.

Note, in the original (type I and nondeg r.d.) case, these are Euler
characteristics of certain moduli spaces of quiver representations.
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BPS spectrum

Simple example (Bessel): QBes(x) =
x + 4m2

0
4x2

Ω(γBPS) = −1
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BPS structure

Main example: QHG(x) =
m2

∞x2 − (m2
∞ −m2

1 +m2
0)x +m2

0
x2(x − 1)2

Ω(γBPS) = ±1
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BPS structure

Weird example (Legendre): QBes(x) =
m∞

(x − 1)(x + 1)

Ω(γBPS) = 4, Ω(γBPS) = −1
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Spectral curves

A (TR) spectral curve is a tuple (C, x , y ,B):

• C compact Riemann surface
• x , y : C → P1 nonconstant meromorphic functions, dx and dy

do not vanish simultaneously
• Bidifferential: meromorphic section

B(z1, z2) ∈ p∗1(T
∗C)⊗ p∗2(T

∗C)

with some properties (pi : C × C → C projection).
For us, C = P1 so there is a canonical B ,

B(z1, z2) :=
dz1dz2

(z1 − z2)2
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Spectral curves

Zeroes or poles order ≥ 3 of dx : ramification points, denoted r ∈ R

Note: Given q.d. φ on X = P1 with corresponding spectral cover
(Σ, π, λ) of genus 0, we can obtain a TR spectral curve by taking

C := Σ, x := π, y :=
λ

dx
, B :=

dz1dz2
(z1 − z2)2

.
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Topological recursion

Start with ω0,1(z0) := y(z0)dx(z0), ω0,2(z0, z1) = B(z0, z1).

Then

ωg,n+1(z0, z1, · · · , zn) :=
∑
r∈R

Res
z=r

Kr (z0, z)

[
ωg−1,n+2(z , z , z1, · · · , zn)

+
′∑

g1+g2=g
I1⊔I2={1,2,··· ,n}

ωg1,|I1|+1(z , zI1)ωg2,|I2|+1(z , zI2)

]

for 2g + n ≥ 2,where

Kr (z0, z1) =
1

(y − ȳ)dx

∫ ζ=z

ζ=z̄
B(z0, ζ)

z̄ is “local conjugation" near ramification point r .

Omar Kidwai School of Mathematics, Birmingham

Topological recursion, BPS structures, and quantum curves 31 / 45



Introduction Quadratic differentials BPS structures and spectral networks Topological recursion for hypergeometric spectral curves Riemann-Hilbert problem via quantum curves

Topological recursion

Start with ω0,1(z0) := y(z0)dx(z0), ω0,2(z0, z1) = B(z0, z1). Then

ωg,n+1(z0, z1, · · · , zn) :=
∑
r∈R

Res
z=r

Kr (z0, z)

[
ωg−1,n+2(z , z , z1, · · · , zn)

+
′∑

g1+g2=g
I1⊔I2={1,2,··· ,n}

ωg1,|I1|+1(z , zI1)ωg2,|I2|+1(z , zI2)

]

for 2g + n ≥ 2,

where

Kr (z0, z1) =
1

(y − ȳ)dx
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Topological recursion

Definition. Let Φ(z) be any primitive of y(z)dx(z). The g th free
energy (g ≥ 2) is

Fg =
1

2 − 2g

∑
r∈R

Res
z=r

[Φ(z)ωg ,1(z)]

[Iwaki-Koike-Takei] showed (for example):

FHG
g (m) =

B2g

2g(2g − 2)

(
1

(m0 +m1 +m∞)2g−2 +
1

(m0 +m1 −m∞)2g−2

+
1

(m0 −m1 +m∞)2g−2 +
1

(m0 −m1 −m∞)2g−2

− 1
(2m0)2g−2 − 1

(2m1)2g−2 − 1
(2m∞)2g−2

)
.

+ formulas for the other 8 examples.
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Result

Theorem. [Iwaki-K] For the spectral curves of hypergeometric
type, m generic, we have

Fg (m) =
B2g

2g(2g − 2)

∑
γ∈Γ

Z(γ)∈H

Ω(γ)

(
2πi
Z (γ)

)2g−2

, g ≥ 2

where H is any generic half-plane.

Conjecture. [Iwaki-K] This holds in higher rank too, under the
assumption the BPS structure is uncoupled (some evidence
presented, more in progress).
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What we have done

• TR can tell us something about spectral networks. Practically
speaking, TR can help us compute information about BPS
counts without ever having to draw a spectral network!

• On the other hand, spectral networks can teach us about the
structure of TR. Can we predict new examples?

• Our formula is one simple example of this. What can we learn
in more complicated or exotic cases?
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More results

We can upgrade these results to the analytic setting.

• Solve natural “BPS Riemann-Hilbert problem” associated to
the BPS structure using Voros symbols of quantum curves

• Natural TR intepretation of Bridgeland’s BPS τ -function
which generates the solution.
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BPS Riemann-Hilbert problem [Bridgeland, GMN]

• Fix (Γ,Z ,Ω). Seek functions Xγ (one for each γ) in the
ℏ-plane, prescribed jumping across BPS rays.

• Define twisted torus

T− :=
{
g : Γ → C∗ | g(γ1 + γ2) = (−1)⟨γ1,γ2⟩g(γ1)g(γ2)

}

Omar Kidwai School of Mathematics, Birmingham

Topological recursion, BPS structures, and quantum curves 37 / 45



Introduction Quadratic differentials BPS structures and spectral networks Topological recursion for hypergeometric spectral curves Riemann-Hilbert problem via quantum curves

BPS Riemann-Hilbert problem [Bridgeland-GMN]

Problem. Let (Γ,Z ,Ω) a sufficiently nice BPS structure.

Fix ξ ∈ T−. For all
non-BPS rays ℓ ⊂ C∗, find a piecewise-meromorphic map Xℓ : Hℓ → T− with

1 ∆ sector, ∂ rays ℓ1, ℓ2 (not BPS). For γ ∈ Γ, ℏ ∈ Hℓ1 ∩Hℓ2

Xℓ2,γ = Xℓ1,γ(ℏ)
∏
γ′∈Γ

Z(γ′)∈∆

(1 − Xℓ1,γ′(ℏ))Ω(γ′)⟨γ′,γ⟩

2 For γ ∈ Γ, whenever ℓ is not BPS, as ℏ → 0 in Hℓ

Xℓ,γ(ℏ) ∼ e−Z(γ)/ℏξ(γ)

3 For γ ∈ Γ, whenever ℓ is not BPS, there exists k s.t.

|ℏ|−k < |Xℓ,γ(ℏ)| < |ℏ|k

for |ℏ| ≫ 0 in Hℓ.
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Quantum curves

[Iwaki-Koike-Takei] constructed quantum curves which quantize the
spectral curves of hypergeometric type.

Let φ denote the topological recursion wave function φ(x) := eS(x),

S(x) :=
∞∑

k=−1
ℏk

∑
2g−2+n=k
g≥0, n≥1

1

n!

∫
ζ1∈D(z;ν)

. . .

∫
ζn∈D(z;ν)

(
ωg,n(ζ1, . . . ζn) − δg,0δn,2

dx(ζ1)dx(ζ2)

(x(ζ1) − x(ζn))2

)

where D(z ;ν) divisor depending on parameters ν. This is a formal
series in ℏ.

A quantum curve is a (formally depending on ℏ) differential
operator Dℏ(ν) (geometrically, an sl2-oper) such that

Dℏ(ν)φ = 0,

and classically limits to the spectral curve.
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Quantum curves

Example (Weber):

y2 − (
x2

4
−m2

∞) = 0, ν = (ν∞+ , ν∞−), ν∞+ + ν∞− = 1

Quantum curve:
(
ℏ2 d2

dx2 −
(
x2

4
−m2

∞

)
− ℏ

(
ν∞+ − ν∞−

2

))
φ = 0
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Voros coefficients

Let dSodd :=
dS(x)− ι∗dS(x)

2
.

For any γ ∈ H1(Σ,Z), β ∈ H1(Σ,P \ T ,Z), the Voros coefficients
are

Vγ :=

∮
γ
dSodd(x)dx , Vβ :=

∫
β
dSodd

≥1 (x)dx

where ≥ 1 denotes truncation of the ℏ−1 and ℏ0 terms.

[Iwaki-Koike-Takei] computed Vγ and Vβ explicitly, which can be
written in terms of the BPS spectrum, in a similar formula as Fg .
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Borel sum

Consider a formal series f =
∑∞

k=1 fkℏk .

The Borel transform fB is

fB(y) :=
∞∑
k=1

fk
(k − 1)!

yk−1.

The Borel sum in direction ℓ = e iϑ · R>0,

Sℓ(f ) :=

∫ e iϑ∞

0
fB(y)e

−y/ℏdy

If all goes well, the Borel sum is a piecewise analytic function in ℏ
that jumps certain rays, and asymptotic to the original f . We are
able to compute the Borel sums of Vγ , Vβ , more or less by hand
(see results of Aoki, Takei, Koike, Kamimoto and others).
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(Almost) doubled BPS RHP

One more detail: the intersection pairing on Σ is trivial, so the BPS
RHP for (Γ,Z ,Ω) is trivial.

Remedy: ΓD := Γ⊕ Γ∗ with

Γ∗ :=
{
β ∈ Γ∨ | ι∗β = −β

}
⊂ Γ∨

with the nondegenerate pairing

⟨(γ1, β1), (γ2, β2)⟩ := ⟨γ1, γ2⟩+ β2(γ1)− β1(γ2)

with Zγ,β := Z (γ), and Ω(γ, β) = Ω(γ).

By Poincare-Lefschetz duality, we may identify elements in Γ∗ with
elements of H1(Σ,P \ T ,Z) using the intersection pairing.
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Result

Theorem. [Iwaki-K] Let Q(x) be of hypergeometric type, and Vγ ,
Vβ denote the Voros coefficients of Dℏ(ν). Then

Xℓ,γ(ℏ) := σγ · Sℓe
−Vγ(ℏ), Xℓ,β(ℏ) := σβ · Sℓe

Vβ(ℏ)

where σ is a sign, solves the BPS Riemann-Hilbert problem for the
corresponding almost-doubled BPS structure, with constant term
ξ = ξ(ν) given explicitly.
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Further

• Higher rank: conjecture + a few experiments (ongoing)
• Relation to Joyce structures / Joyce function
• Relation to Nekrasov partition function
• Coupled case?
• β-deformed case (ongoing w/ K. Osuga)
• q-deformed case (5d BPS states)
• TBA equations
• . . .
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