
Bimodules over categories enriched over

closed monoidal categories

Volodymyr Lyubashenko

May 31, 2022



Plan

1. Filtered abelian groups

2. Properties of products and coproducts

3. Properties of enriched ends and coends

4. Filtered graded abelian groups

5. Symmetric monoidal V-bicategories

6. Bicategories of V-categories

7. V-bicategory of bimodules

8. Composition of bimodules

9. Tensor cocategory

10. Coderivations

11. A∞-categories



Filtered abelian groups

We consider a partially ordered commutative monoid L be
with the operation + and neutral element 0. Of course, we
assume that a 6 b, c 6 d imply a + c 6 b + d . We assume
that L satisfies the following conditions:

1. for all a, b ∈ L there is c ∈ L such that a 6 c , b 6 c
(that is, (L,6) is directed);

2. for all a, b ∈ L there is c ∈ L such that c 6 a, c 6 b
(that is, Lop is directed);

3. for all a ∈ L there is c ∈ L such that a + c > 0.

If L is a directed group (satisfies (i)), then L satisfies (ii) and
(iii) as well for obvious reasons.
An L-filtered abelian group is an abelian group M together
with, for every l ∈ L, a subgroup F lM such that a 6 b ∈ L
implies that FaM ⊃ FbM and ∪l∈LF lM = M .



The category AbL of L-filtered abelian groups is a symmetric
monoidal category. The tensor product of a family M1, . . . ,
Mn, n > 1, is the tensor product of abelian groups Mi ,
equipped with the filtration

F l(⊗n
i=1Mi) = Im(⊕l1+···+ln=l ⊗n

i=1 F liMi → ⊗n
i=1Mi).



Definition
A category V is monoidal when it is equipped with a functor
⊗ : V × V → V , tensor product, associative in the sense:
– there is a natural isomorphism, associator,
αA,B,C : A⊗ (B ⊗ C )→ (A⊗ B)⊗ C ,
and unital:
– there are an object 1, the unit object, and natural
isomorphisms 1⊗ A→ A, left unitor,
and A⊗ 1→ A, right unitor,
such that Mac Lane’s pentagon for α commutes and an
equation involving the above data holds.
A monoidal category V is symmetric when it is equipped with
a natural isomorphism c : X ⊗ Y → Y ⊗ X , satisfying
appropriate equations.



In practice it is simpler to say that L-filtered abelian groups
constitute a symmetric multicategory ÂbL. It is formed by
multilinear maps preserving the filtration:

ÂbL(M1, . . . ,Mn;N) = {multilinear maps f : M1×· · ·×Mn → N

| (F l1M1 × · · · × F lnMn)f ⊂ F l1+···+lnN}, n > 1.

Notice that ÂbL(M1, . . . ,Mn;N) is naturally isomorphic to
AbL(M1 ⊗ · · · ⊗Mn,N) for n > 1.

We recall the definition of a closed monoidal category, leaving
aside that of a closed multicategory.
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ÂbL(M1, . . . ,Mn;N) = {multilinear maps f : M1×· · ·×Mn → N

| (F l1M1 × · · · × F lnMn)f ⊂ F l1+···+lnN}, n > 1.
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Definition
A monoidal category V is closed if for each pair X ,Z of
objects of V there is an object V(X ,Z ) of V and an evaluation
element

evVX ,Z ∈ V
(
X ⊗ V(X ,Z ),Z

)
such that for an arbitrary morphism φ : X ⊗ Y → Z ∈ V there
exists a unique morphism ψ : Y → V(X ,Z ) such that

X ⊗ Y
φ → Z

X ⊗ V(X ,Z )

1⊗ψ↓ ev

→

commutes.



The unit object is Z, equipped with the filtration

F lZ =

{
Z, if l 6 0,

0, otherwise.

The monoidal category AbL is symmetric. Furthermore, it is
closed. Associate with M ,N ∈ AbL an L-filtered abelian
group AbL(M ,N) ⊂ Ab(M ,N) with

F lAbL(M ,N) = {f ∈ Ab(M ,N) | ∀λ ∈ L (FλM)f ⊂ Fλ+lN}.

The internal hom is obtained as
AbL(M ,N) = ∪l∈LF lAbL(M ,N). The evaluation

ev : M ⊗ AbL(M ,N)→ N , m ⊗ f 7→ (m)f ,

is a morphism of AbL, and it turns AbL into a closed
symmetric monoidal category.



The multicategory ÂbL is closed. Namely, for each family of
L-filtered abelian groups M1, . . . , Mn, N there is internal hom
object ÂbL(M1, . . . ,Mn;N) ⊂ Âb(M1, . . . ,Mn;N) ∼=
Multi(M1 × · · · ×Mn,N). It is filtered by subgroups

F lÂbL(M1, . . . ,Mn;N) = {f ∈ Multi(M1 × · · · ×Mn,N) |
| ∀(λk) ∈ Ln (Fλ1M1 × · · · × FλnMn)f ⊂ Fλ1+···+λn+lN}.

The internal hom is defined as
ÂbL(M1, . . . ,Mn;N) = ∪l∈LF lÂbL(M1, . . . ,Mn;N).
The evaluation

ev : M1 × · · · ×Mn × ÂbL(M1, . . . ,Mn;N)→ N ,

(m1, . . . ,mn, f ) 7→ (m1, . . . ,mn)f ,

is a morphism of ÂbL, and it turns ÂbL into a closed
multicategory.



The category V is assumed to be additive, closed symmetric
monoidal, complete (has all limits) and cocomplete (has all
colimits). Furthermore, it is set-like, which means that there is
an isomorphism of internal hom with coproduct as a first
argument with the product of internal homs. It is obvious that
coend in the first argument of the hom-functor can be moved
outside as an end. It is not clear to me that the same can be
done for enriched coend, internal hom and enriched end. We
work with set-like categories V which have this property.

Prior to defining A∞-categories we study the V-bicategory of
bimodules over V-categories. Actually, we exhibit
isomorphisms which are a part of the structure of a
V-bicategory but do not prove equations between them, like
the pentagon relation etc.
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Properties of products and coproducts

Proposition
For all V (complete and cocomplete locally small symmetric
monoidal closed) there is a natural isomorphism

V(X ,
∏
i∈I

Yi) ∼=
∏
i∈I

V(X ,Yi).



Part of proof.
Define χi = X ⊗ pri : X ⊗

∏
j∈I V(X ,Yj)→ X ⊗ V(X ,Yi).

Combined together they give
χ = (χi) : X ⊗

∏
j∈I V(X ,Yj)→

∏
i∈I [X ⊗ V(X ,Yi)].

A natural morphism φ :
∏

j∈I V(X ,Yj)→ V(X ,
∏

i∈I Yi) is
obtained from

X ⊗
∏
j∈I

V(X ,Yj)
χ→
∏
i∈I

[X ⊗ V(X ,Yi)]

X ⊗ V
(
X ,
∏
i∈I

Yi

)X⊗φ↓
ev →

∏
i∈I

Yi

∏
ev↓

Define ηj = V(X , prj) : V(X ,
∏

i∈I Yi)→ V(X ,Yj). Combined
together they give a natural morphism
η = (ηj)j∈I : V(X ,

∏
i∈I Yi)→

∏
j∈I V(X ,Yj).



Proposition
For all V there are natural morphisms
ψ :
∏

i∈I V(Xi ,Y )→ V(
∐

i∈I Xi ,Y ) and
ξ : V(

∐
i∈I Xi ,Y )→

∏
i∈I V(Xi ,Y ) such that ψ � ξ = 1.



Part of proof.
A natural morphism ψ :

∏
i∈I V(Xi ,Y )→ V(

∐
i∈I Xi ,Y ) is

obtained from(∐
i∈I

Xi

)
⊗
∏
j∈I

V(Xj ,Y )
∼=→

∐
i∈I

[
Xi ⊗

∏
j∈I

V(Xj ,Y )
]

(∐
i∈I

Xi

)
⊗ V

(∐
i∈I

Xi ,Y
)1⊗ψ↓ ∐

i∈I

[
Xi ⊗ V(Xi ,Y )

]
∐

[1⊗pri ]↓

Y

ev

↓
← (1)i∈I

∐
i∈I

Y

∐
ev

↓

Natural morphisms ξj = V(inj ,Y ) : V(
∐

i∈I Xi ,Y )→ V(Xj ,Y )
combine to ξ : V(

∐
i∈I Xi ,Y )→

∏
j∈I V(Xj ,Y ).



Lemma (obvious)
For any X ∈ ObV the functors V(X , -) : V → V ,
V(-,X ) : Vop → V are left exact, that is, for any diagram
I → V , i 7→ Yi , there are natural isomorphisms

lim
i∈I
V(X ,Yi) ∼= V(X , lim

i∈I
Yi),

and
lim
i∈I op
V(Yi ,X ) = V(colim

i∈I
Yi ,X ).



Definition
A small V-category C consists of

I a set Ob C of objects of C,

I an object C(X ,Y ) of V for every pair of objects X , Y in
C,

I an arrow idX : 1→ C(X ,X ) in V called an identity for
every object X in C,

I an arrow � : C(X ,Y )⊗ C(Y ,Z )→ C(X ,Z ) in V , a
composition for each triple of objects X , Y , Z in C,

such that the composition is associative and unital.
V-functors are supposed to preserve the identities and the
composition.



Example
When V is a closed monoidal category, the commutative
diagrams

X ⊗ V(X ,Y )⊗ V(Y ,Z )
ev⊗1→ Y ⊗ V(Y ,Z )

X ⊗ V(X ,Z )

1⊗�↓
ev → Z

ev
↓

X ⊗ 1
∼= → X

X ⊗ V(X ,X )

1⊗idX ↓
ev → X

wwwwww
make V =

(
ObV , (V(X ,Y ))X ,Y∈ObV

)
into a V-category.

External tensor product A� B of V-categories A and B has
by definition ObA� B = ObA× ObB and
(A� B)

(
(A,B), (C ,D)

)
= A(A,C )⊗ B(B ,D).
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Definition (Kelly)
let E be a V-category. Let B be an E-bimodule = V-functor
B : Eop � E → V . Enriched end of B is the equalizer∫

E∈E
B(E ,E )

ι−→∏
E∈E

B(E ,E )
(prE ′ �β)E ,E ′→
(prE �γ)E ,E ′

→
∏

E ,E ′∈E

V
(
E(E ,E ′),B(E ,E ′)

)
,

where β : B(E ′,E ′)→ V
(
E(E ,E ′),B(E ,E ′)

)
is adjunct to

B
E α : E(E ,E ′)⊗ B(E ′,E ′)→ B(E ,E ′)

and γ : B(E ,E )→ V
(
E(E ,E ′),B(E ,E ′)

)
is adjunct to

composition

E(E ,E ′)⊗ B(E ,E )
c−→ B(E ,E )⊗ E(E ,E ′)

αB
E→ B(E ,E ′).



Properties of enriched ends and coends

Lemma
Let B be an E-bimodule, B : Eop � E → V . For X ∈ ObV
there is a natural isomorphism of V-functors
V
(
X ,
∫
E∈E B(E ,E )

)
→
∫
E∈E V

(
X ,B(E ,E )

)
.



Definition
Let E be a small V-category and let B : Eop � E → V be an
E-bimodule. The enriched coend of B is the coequalizer

∐
E ,F∈E

E(E ,F )⊗B(F ,E )
(c�αB

E �inF )E ,F→
(BEα�inE )E ,F

→
∐
E∈E

B(E ,E )→
∫ E∈E

B(E ,E ).

Proposition
Let B be an E-bimodule, B : Eop � E → V . For Y ∈ ObV
there are natural morphisms of V-functors
Ξ : V

(∫ E∈E
B(E ,E ),Y

)
→
∫
E∈E V

(
B(E ,E ),Y

)
,

Ψ :
∫
E∈E V

(
B(E ,E ),Y

)
→ V

(∫ E∈E
B(E ,E ),Y

)
, that satisfy

Ψ � Ξ = 1.
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Corollary

[∫
E∈E
V
(
B(E ,E ),Y

) Ψ−→ V
(∫ E∈E

B(E ,E ),Y
)

V(iE ,1)

Ξ�pE
→ V

(
B(E ,E ),Y

)]
= pE .

Definition
A complete and cocomplete locally small symmetric monoidal
closed category V is called set-like if the morphism ψ or ξ is
invertible.

If one of ψ or ξ is invertible, then so is the other and,
moreover, ψ and ξ are inverse to each other.
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Lemma
Assuming that V is set-like we find that natural morphisms of
V-functors

Ξ : V
(∫ E∈E

B(E ,E ),Y
)
→
∫
E∈E
V
(
B(E ,E ),Y

)
,

Ψ :

∫
E∈E
V
(
B(E ,E ),Y

)
→ V

(∫ E∈E
B(E ,E ),Y

)
are inverse to each other.

Example
The category V = Set is complete, cocomplete and Cartesian
closed with the internal hom Set(X ,Y ) = Set(X ,Y ). The
morphisms
ξ = (Set(inj ,Y ))j∈I : Set(

∐
i∈I Xi ,Y )→

∏
j∈I Set(Xj ,Y ) are

invertible by the definition of
∐

i∈I Xi . Thus, Set is
non-additive set-like.
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Example
Let k be a commutative ring. The category V = k-Mod is
complete, cocomplete, additive and closed symmetric
monoidal with the tensor product M ⊗k N and internal hom
k-Mod(M ,N) = k-Mod(M ,N) equipped with the obvious
action of k. The morphisms

ξ = (k-Mod(inj ,N))j∈I : k-Mod(
∐
i∈I

Mi ,N)→
∏
j∈I

k-Mod(Mj ,N)

are invertible by the definition of
∐

i∈I Mi . Thus, k-Mod is
set-like.



Lemma
The category AbL has small colimits and the forgetful functor
AbL → Ab preserves colimits.

Lemma
The category AbL has small limits. The l-th filtration term of
limi∈I (Mi ∈ AbL) is

F l lim
i∈I

(Mi ∈ AbL) = lim
i∈I

(F lMi ∈ Ab) ⊂ lim
i∈I

(Mi ∈ Ab).

Thus,

lim
i∈I

(Mi ∈ AbL) =
⋃
l∈L

lim
i∈I

(F lMi ∈ Ab) ⊂ lim
i∈I

(Mi ∈ Ab).

Proposition
The category AbL is set-like.
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Filtered graded abelian groups
We extend the consideration to the graded setting.
An L-filtered graded abelian group is a Z-graded abelian
group M together with, for every l ∈ L, a graded subgroup
F lM such that a 6 b ∈ L implies that FaM ⊃ FbM and

∪l∈LF lM = M . The symmetric multicategory ĝrAbL of
L-filtered graded abelian groups is formed by multilinear maps
of certain degree preserving the filtration:

ĝrAbL(M1, . . . ,Mn;N)d =

{(multilinear maps f : Mk1
1 × · · · ×Mkn

n → Nk1+···+kn+d)ki∈Z |
| (F l1Mk1

1 × · · · × F lnMkn
n )f ⊂ F l1+···+lnNk1+···+kn+d},

n > 1. There is a sign for composition!
This multicategory is representable by a symmetric monoidal
category which we denote grAbL.



One deduces the tensor product of a family M1, . . . , Mn,
n > 1, as the tensor product of Z-graded abelian groups Mi ,
equipped with the filtration

F l(⊗n
i=1Mi) = Im(⊕l1+···+ln=l ⊗n

i=1 F liMi → ⊗n
i=1Mi).

Thus, ĝrAbL(M1, . . . ,Mn;N) is naturally isomorphic to
grAbL(M1 ⊗ · · · ⊗Mn,N) for n > 1.
The unit object is Z, concentrated in degree 0, equipped with
the mentioned filtration.
The monoidal category grAbL is symmetric with the signed
symmetry of Z-graded abelian groups.



Furthermore, grAbL is closed.
In fact, let M ,N ∈ grAbL. Associate with them a new graded
L-filtered abelian group grAbL(M ,N) ⊂ grAb(M ,N) with

F lgrAbL(M ,N)d =

{f ∈ grAb(M ,N)d | ∀λ ∈ L ∀k ∈ Z (FλMk)f ⊂ Fλ+lNk+d}.

The internal hom is defined as
grAbL(M ,N)• = ∪l∈LF lgrAbL(M ,N)•. The evaluation

ev : M ⊗ grAbL(M ,N)→ N , m ⊗ f 7→ (m)f ,

is a morphism of grAbL, and it turns grAbL into a closed
symmetric monoidal category.



A commutative L-filtered graded ring Λ is a commutative
monoid (commutative algebra) in grAbL. Modules over Λ in
grAbL are called L-filtered Z-graded Λ-modules and are
identified with commutative Λ-bimodules (for short,
Λ-modules). The category of them with grading and filtration
preserving Λ-module maps is denoted Λ-ModL. It is symmetric
monoidal with the tensor product M ⊗Λ N . The unit object 1
is Λ with its filtration.



The category Λ-ModL is closed.
In fact, let M ,N ∈ Λ-ModL. Associate with them a new
graded L-filtered Λ-module Λ-ModL(M ,N) ⊂ Λ-Mod(M ,N)
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Λ-ModL(M ,N)• = ∪l∈LF lΛ-ModL(M ,N)•. The evaluation

ev : M ⊗Λ Λ-ModL(M ,N)→ N , m ⊗ f 7→ (m)f ,

is a morphism of Λ-ModL, and it turns this category into a
closed symmetric monoidal one.



Lemma
The category Λ-ModL has small colimits and the forgetful
functor Λ-ModL → Λ-Mod preserves colimits. Namely,
colimi∈I (Mi ∈ Λ-ModL) = colimi∈I (Mi ∈ Λ-Mod) with the
filtration

F l colim
i∈I

(Mi ∈ Λ-ModL)

= Im
[
ql : colim

i∈I
(F lMi ∈ Λ-Mod)→ colim

i∈I
(Mi ∈ Λ-Mod)

]
.



Lemma
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Proposition
The category Λ-ModL is set-like.
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Symmetric monoidal V-bicategories

We shall encounter bicategories B enriched over the
symmetric monoidal 1-category V at the level of 2-cells only.
Thus it has a collection of objects, with 1-morphisms between
the objects, and for any parallel 1-morphisms f , g : x → y , a
hom-object B(x , y)(f , g) ∈ V . This can be identified with a
V-Cat-enriched bicategory. Symmetric monoidal bicategories
were defined by Schommer-Pries. Definition of a symmetric
monoidal V-bicategory can be obtained from the Set case by
requiring that the tensor product be a V-functor, in place of
natural transformations were natural V-transformations, which
are elements of a hom-set: the functor V(1, -) applied to the
object of V-transformations. Similarly with natural
V-modifications. Equations between pastings of those are the
same as in the Set case.



Bicategories of V-categories
We suppose that V is set-like complete and cocomplete locally
small symmetric monoidal closed category. Let us denote by
V-Cat the bicategory, whose objects=0-cells are small
V-categories, 1-morphisms=1-cells are V-functors,
2-morphisms=2-cells are natural transformations
λ : F → G : A → B which consist of collections(
λX ∈ V(1,B(FX ,GX ))

)
X∈ObA such that

A(X ,Y )
G→ B(GX ,GY )

=

B(FX ,FY )

F↓
B(1,λY )→ B(FX ,GY )

B(λX ,1)↓

V-Cat is a symmetric monoidal bicategory.
Dropping the 2-cells we get a symmetric monoidal category,
which we denote again by V-Cat by abuse of notation.



The unit object of the monoidal category V-Cat is the
V-category 1 with Ob1 = {∗}; 1(∗, ∗) = 1V is the unit object
of the monoidal category V . The composition is an obvious
isomorphism 1V ⊗ 1V → 1V and the unit is id1V .



For small V-categories E and C the (right) internal hom
V-Cat(E , C) is given (following Kelly) by
I ObV-Cat(E , C) = {V-functors E → C},
I V-Cat(E , C)(F ,G ) =

∫
E∈E C(FE ,GE ), the object of

V-transformations F → G : E → C, this enriched end is
explicitly defined as the enriched equalizer∫

E∈E
C(FE ,GE )

ι−→
∏
E∈E

C(FE ,GE )
(prE ′ �β)→
(prE �γ)
→

∏
E ,E ′∈E

V r
(
E(E ,E ′), C(FE ,GE ′)

)
,

where β : C(FE ′,GE ′)→ V r
(
E(E ,E ′), C(FE ,GE ′)

)
is

adjunct to composition

E(E ,E ′)⊗C(FE ′,GE ′)
F⊗1→ C(FE ,FE ′)⊗C(FE ′,GE ′)

�−→ C(FE ,GE ′)

and γ : C(FE ,GE )→ V r
(
E(E ,E ′), C(FE ,GE ′)

)
is

adjunct to composition

E(E ,E ′)⊗ C(FE ,GE )
c−→ C(FE ,GE )⊗ E(E ,E ′)

1⊗G→ C(FE ,GE )⊗ C(GE ,GE ′)
�−→ C(FE ,GE ′).



I the identity transformation 1F : 1→ V-Cat(E , C)(F ,F ) is
1F =

(
1FE : 1→ C(FE ,FE )

)
E∈E ,

I the composition of objects of V-transformations
V-Cat(E , C)(F ,G ) comes from the composition in C:

V-Cat(E , C)(F ,G )⊗ V-Cat(E , C)(G ,H)
∃!�→ V-Cat(E , C)(F ,H)

=∏
E∈E

C(FE ,GE )⊗
∏
E∈E

C(GE ,HE )

ι⊗ι
↓

m→
∏
E∈E

C(FE ,HE )

ι
↓

=

C(FE ,GE )⊗ C(GE ,HE )

prE⊗prE

↓
� → C(FE ,HE )

prE

↓



The evaluation V-functor ev : E � V-Cat(E , C)→ C,
(X ,F ) 7→ F (X ), consists of morphisms which are diagonal
maps in the following commutative diagram

E(X ,Y )⊗ [E , C](F ,G )
F⊗ιprY→ C(FX ,FY )⊗ C(FY ,GY )

C(GX ,GY )⊗ C(FX ,GX )

G⊗ιprX ↓

C(FX ,GX )⊗ C(GX ,GY )

c↓
� → C(FX ,GY )

�

↓→

In the non-enriched case this diagram corresponds to familiar

FX
Ff → FY

=

GX

λX ↓
Gf → GY

λY↓



The evaluation is a V-functor.
The fact that (V-Cat, ev) is the right internal hom in
(V-Cat,�) is proven by Kelly.

Consider a V-bicategory V-Cat, whose objects are small
V-categories, 1-morphisms are V-functors, 2-cells
F → G : E → C are the objects
V-Cat(E , C)(F ,G ) =

∫
E∈E C(FE ,GE ) ∈ ObV . The

V-categories of morphisms V-Cat(E , C) = V-Cat(E , C) have a
prescribed vertical composition of 2-cells given above. The
horizontal composition
V-Cat(A,B)� V-Cat(B, C)→ V-Cat(A, C) is the
composition of V-functors on objects.



The evaluation is a V-functor.
The fact that (V-Cat, ev) is the right internal hom in
(V-Cat,�) is proven by Kelly.
Consider a V-bicategory V-Cat, whose objects are small
V-categories, 1-morphisms are V-functors, 2-cells
F → G : E → C are the objects
V-Cat(E , C)(F ,G ) =

∫
E∈E C(FE ,GE ) ∈ ObV . The

V-categories of morphisms V-Cat(E , C) = V-Cat(E , C) have a
prescribed vertical composition of 2-cells given above. The
horizontal composition
V-Cat(A,B)� V-Cat(B, C)→ V-Cat(A, C) is the
composition of V-functors on objects.



Remark
The set of natural transformations {λ : F → G : E → C} in
the sense of usual diagram is in bijection with the set
V
(
1,V-Cat(E , C)(F ,G )

)
of morphisms of the unit object of V

to the object of V-transformations F → G : E → C.

Since the associators and unitors of V-Cat are natural
transformations of V-functors, V-Cat is enriched in V-Cat,
that is, it is a V-bicategory. Another example of a
V-bicategory is the bicategory of bimodules, aka profunctors,
aka distributors:



V-bicategory of bimodules
For us a module over a V-category A will mean a right
module, that is, a V-functor M : A → V . We use right
operators instead of left ones. The V-category of A-modules
V-Cat(A,V) is denoted also Mod-A. Similarly the V-category
of left A-modules V-Cat(Aop,V) is denoted A-Mod. One may
represent an A-module M as a collection (M(X ))X∈ObA of
objects of V together with the action
M(X )⊗A(X ,Y )→ M(Y ), associative and unital in the
obvious sense.
For V-categories A, B we consider A-B-bimodules, which are
by definition Aop � B-modules, that is, V-functors
Aop � B → V . The V-category of A-B-bimodules
V-Cat(Aop � B,V) is denoted also A-Mod-B:

A-Mod-B(M ,N) =

∫
(A,B)∈Aop�B

V(M(B ,C ),N(B ,C )).



By general properties of closed symmetric monoidal categories
A-Mod-B is isomorphic to V-Cat(B,V-Cat(Aop,V)) and to
V-Cat(Aop,V-Cat(B,V)) = V-Cat(Aop,Mod-B). Thus, an
A-B-bimodule M induces for any object A of A a B-module
M(A, -).



Example
Let S be a set. Let D be a discrete V-category = the
V-category with ObD = S and objects of morphisms

D(X ,Y ) =

{
1, if X = Y ,

∅, if X 6= Y ,

where ∅ ∈ ObV is the initial object. For any X ∈ ObV we
have ∅ ⊗ X ∼= X ⊗ ∅ ∼= ∅. The composition in D reduces to

l = r : 1⊗ 1
∼=−→ 1. The unit morphisms are 1X = id1.

A D-bimodule A : Dop �D → V consists of a function
ObA : S × S → ObV , (X ,Y ) 7→ A(X ,Y ) and action
morphisms A(X ,Y )⊗ 1→ A(X ,Y ),
1⊗A(X ,Y )→ A(X ,Y ). However, the action morphisms
coincide with r (resp. l) (the unitors of V) due to unitality of
the action. Therefore, D-bimodules A are identified with
functions ObA : S × S → ObV .



Composition of bimodules
Bimod can be viewed as a category weakly enriched in the
closed symmetric monoidal category V-Cat. Objects of
V-bicategory Bimod are small V-categories, denoted A, B, C,
etc. V-categories of morphisms from A to B are
Bimod(A,B) = A-Mod-B. The composition V-functor is

⊗B : A-Mod-B � B-Mod-C → A-Mod-C,

(M ,N) 7→ M ⊗B N =

∫ B∈B
M(-,B)⊗ N(B , -),

where the coend is taken in enriched sense. In other terms,
(M ⊗B N)(A,C ) is the coequalizer (α is the action)∐

B,B′∈B

M(A,B)⊗ B(B ,B ′)⊗ N(B ′,C )
(αM
B⊗1N(B′,C)�inB′ )B,B′→

(1M(A,B)⊗N
Bα�inB)B,B′

→

∐
B∈B

M(A,B)⊗ N(B ,C )→
∫ B∈B
M(A,B)⊗ N(B ,C ).



Example
Let D be a discrete V-category with ObD = S . The
composition of D-bimodules A and B is

(A⊗D B)(X ,Y ) =

∫ D∈D
A(X ,D)⊗ B(D,Y )

=
∐
D∈S

A(X ,D)⊗ B(D,Y ).

The object of V-transformations from A to B is

D-Mod-D(A,B) =

∫
(X ,Y )∈Dop�D

V
(
A(X ,Y ),B(X ,Y )

)
=

∏
(X ,Y )∈S2

V
(
A(X ,Y ),B(X ,Y )

)
As for general D the V-category D-Mod-D is monoidal.



Example
Let V be Set, then a V-category is a usual category. Let A,
B, C be small discrete categories, identified with sets
ObA = A, ObB = B , Ob C = C . An A-B-bimodule F is
identified with a function F : A× B → ObSet,
(a, b) 7→ F (a, b). The set of morphisms is

(A-Mod-B)(F ,G ) =
∏

a∈A,b∈B

Set(F (a, b),G (a, b)).

The composition of bimodules F : A → B and H : B → C is
(F ⊗B H) : A → C,

(F ⊗B H)(a, c) =
⊔
b∈B

F (a, b)× H(b, c).



The horizontal composition of 2-morphisms described by

A
F→
G
→ B

H→
K
→ C is

(A-Mod-B)(F ,G )× (B-Mod-C)(H ,K ) −→
(A-Mod-C)(F ⊗B H ,G ⊗B K )(

(fab : F (a, b)→ G (a, b))a.b,(hbc : H(b, c)→ K (b, c))b,c
)
7−→(⊔

b∈B

fab × hbc
)
a,c
.

Proposition
For any complete and cocomplete symmetric monoidal closed
category V the multiplication ⊗B is a V-functor.



The horizontal composition of 2-morphisms described by

A
F→
G
→ B

H→
K
→ C is

(A-Mod-B)(F ,G )× (B-Mod-C)(H ,K ) −→
(A-Mod-C)(F ⊗B H ,G ⊗B K )(

(fab : F (a, b)→ G (a, b))a.b,(hbc : H(b, c)→ K (b, c))b,c
)
7−→(⊔

b∈B

fab × hbc
)
a,c
.

Proposition
For any complete and cocomplete symmetric monoidal closed
category V the multiplication ⊗B is a V-functor.



Tensor cocategory

Since the set-like category V is additive, the V-categories
A-Mod-B are additive as well. For an arbitrary V-category E
we have the diagonal V-functor ∆ : E → E I , where I is a set,
E I
(
(Mi)i∈I , (Nj)j∈I

)
=
∏

i∈I E(Mi ,Ni). For E = A-Mod-B we
have a left and a right adjoint to the diagonal V-functor: the
coproduct

∐
i∈I : E I → E and the product

∏
i∈I : E I → E .

They are defined pointwise:(∐
i∈I

Mi

)
(A,B) =

∐
i∈I

[
Mi(A,B)

]
,

(∏
i∈I

Ni

)
(A,B) =

∏
i∈I

[
Ni(A,B)

]
.



Let D be a small V-category. Let A be a D-bimodule. Denote
by

T nA = A⊗Dn = A⊗D A · · · ⊗D A︸ ︷︷ ︸
n

, n > 0.

the n-th power of A. By definition, T 0A = A⊗D0 = yD is the
regular D-bimodule. Denote by TA the D-bimodule
TA =

∐∞
n=0 T

nA =
∐∞

n=0A⊗Dn. This is a coalgebra
(comonoid) in the monoidal V-category D-Mod-D. In fact,

TA⊗D TA ∼=
∞∐
n=0

∞∐
m=0

A⊗Dm ⊗D A⊗Dn

=
∞∐
k=0

m,n∈N∐
m+n=k

A⊗Dm ⊗D A⊗Dn ∼=
∞∐
k=0

m,n∈N∏
m+n=k

A⊗Dm ⊗D A⊗Dn.



Deconcatenation comultiplication,

∆ : TA =
∞∐
k=0

T kA →
∞∐
k=0

m,n∈N∏
m+n=k

TmA⊗DT nA ∼= TA⊗DTA,

is defined as
∐∞

k=0 ∆(k), where components of

∆(k) : T kA →
∏m,n∈N

m+n=k T
mA⊗D T nA are the obvious

isomorphisms T kA → TmA⊗D T nA, m + n = k .

Let A ∈ ObD-Mod-D, B ∈ Ob E-Mod-E . Given a V-functor
f̃ : D → E we can consider the restriction D-bimodule

f̃Bf̃ =
(
Dop �D f̃ op�f̃→ Eop � E B−→ V

)
: (X ,Y ) 7→ B(f̃ X , f̃ Y ).



Deconcatenation comultiplication,

∆ : TA =
∞∐
k=0

T kA →
∞∐
k=0

m,n∈N∏
m+n=k

TmA⊗DT nA ∼= TA⊗DTA,

is defined as
∐∞

k=0 ∆(k), where components of

∆(k) : T kA →
∏m,n∈N

m+n=k T
mA⊗D T nA are the obvious

isomorphisms T kA → TmA⊗D T nA, m + n = k .

Let A ∈ ObD-Mod-D, B ∈ Ob E-Mod-E . Given a V-functor
f̃ : D → E we can consider the restriction D-bimodule

f̃Bf̃ =
(
Dop �D f̃ op�f̃→ Eop � E B−→ V

)
: (X ,Y ) 7→ B(f̃ X , f̃ Y ).



Definition
An augmented coalgebra morphism f : TA → T (f̃Bf̃ ) consists
of

I V-functor f̃ : D → E ;

I Morphism of D-bimodules f : TA → T (f̃Bf̃ )

such that

TA f → T (f̃Bf̃ )

=

TA⊗D TA

∆
↓

f⊗Df→ T (f̃Bf̃ )⊗D T (f̃Bf̃ )

∆↓

TA ε → yD
η → TA

= =

T (f̃Bf̃ )

f ↓
ε → yD

wwwwww
η→ T (f̃Bf̃ )

f↓



Define prl : TC → T lC as the map with components
0 : T nC → T lC for n 6= l and id : T lC → T lC.

Proposition
Augmented coalgebra morphisms f : TA → T (f̃Bf̃ ) are in
bijection with D-bimodule morphisms f̌ : T>0A → f̃Bf̃ .



Coderivations
Let A ∈ ObD-Mod-D, B ∈ Ob E-Mod-E , let
f : TA → T (f̃Bf̃ ), g : TA → T (g̃Bg̃ ) be augmented
coalgebra morphisms with the corresponding V-functors
f̃ , g̃ : D → E . Define a D-bimodule

f̃Bg̃ =
(
Dop�D f̃ op�g̃→ Eop� E B−→ V

)
: (X ,Y ) 7→ B(f̃ X , g̃Y ).

Define another D-bimodule QB = T (f̃Bf̃ )⊗D f̃Bg̃ ⊗D T (g̃Bg̃ ).
It is equipped with projections

prl : QB →
⊕

q+1+t=l

(f̃Bf̃ )⊗Dq ⊗D (f̃Bg̃ )⊗D (g̃Bg̃ )⊗Dt

and a kind of deconcatenation comultiplication

∆ = (∆⊗D1⊗D1, 1⊗D1⊗D∆) : QB = T (f̃Bf̃ )⊗D f̃Bg̃⊗DT (g̃Bg̃ )

→ T (f̃Bf̃ )⊗D QB ⊕ QB ⊗D T (g̃Bg̃ ).

This is a particular case of the following construction.



Let M(e.g . = V(1,D-Mod-D)) be an additive monoidal
category. Let C , D be coalgebras (comonoids) in M and let
V be an object of M. Then Q = C ⊗ V ⊗ D has an
associative comultiplication of the following kind

∆ : Q = C ⊗ V ⊗ D
(∆C⊗1V⊗1D ,1C⊗1V⊗∆D)→

C ⊗ C ⊗ V ⊗ D ⊕ C ⊗ V ⊗ D ⊗ D = C ⊗ Q ⊕ Q ⊗ D.

Associativity means the following equation

Q
∆ → C ⊗ Q ⊕ Q ⊗ D

=

C ⊗ Q ⊕ Q ⊗ D

∆↓
∆⊗1→ C ⊗ C ⊗ Q ⊕ C ⊗ Q ⊗ D ⊕ Q ⊗ D ⊗ D

1⊗∆↓

which is verified. For any l > 1 the iterated comultiplication

∆(l) : Q →
⊕

q+1+t=l

C⊗q ⊗ Q ⊗ D⊗t

with values in l factors is well-defined. Apply to C = T (f̃Bf̃ ),
D = T (g̃Bg̃ ).



Definition
The object Coder(f , g) of (f , g)-coderivations is the equalizer
of a pair of morphisms of V

D-Mod-D(TA,QB)
D-Mod-D(1,∆)→

β
→

D-Mod-D
(
TA,T (f̃Bf̃ )⊗D QB ⊕ QB ⊗D T (g̃Bg̃ )

)
,

where β denotes the composition

D-Mod-D(TA,QB)
(ḟ⊗1,1⊗ġ)→

D-Mod-D
(
TA,T (f̃Bf̃ )

)
⊗D-Mod-D(TA,QB)⊕

⊕D-Mod-D(TA,QB)⊗D-Mod-D
(
TA,T (g̃Bg̃ )

)
⊗D−−→ D-Mod-D

(
TA⊗D TA,T (f̃Bf̃ )⊗D QB)⊕
⊕D-Mod-D

(
TA⊗D TA,QB ⊗D T (g̃Bg̃ )

)
D-Mod-D(∆,1)→D-Mod-D

(
TA,T (f̃Bf̃ )⊗DQB⊕QB⊗DT (g̃Bg̃ )

)
.



The abelian group Coder(f , g)n equals the abelian group{
r ∈ D-Mod-D(TA,QB)n | r �∆ = ∆ � (f ⊗D r ⊕ r ⊗D g)

: TA → T (f̃Bf̃ )⊗D QB ⊕ QB ⊗D T (g̃Bg̃ )
}
.

Proposition
The abelian group Coder(f , g)n is isomorphic to
D-Mod-D(TA, f̃Bg̃ )n: for an element r ∈ Coder(f , g)n we
have

r = ∆(3) � (f ⊗D ř ⊗D g) : TA → QB.

On the other hand, for any ř ∈ D-Mod-D(TA, f̃Bg̃ )n this
equation determines an element r ∈ Coder(f , g)n.



The abelian group Coder(f , g)n equals the abelian group{
r ∈ D-Mod-D(TA,QB)n | r �∆ = ∆ � (f ⊗D r ⊕ r ⊗D g)

: TA → T (f̃Bf̃ )⊗D QB ⊕ QB ⊗D T (g̃Bg̃ )
}
.

Proposition
The abelian group Coder(f , g)n is isomorphic to
D-Mod-D(TA, f̃Bg̃ )n: for an element r ∈ Coder(f , g)n we
have

r = ∆(3) � (f ⊗D ř ⊗D g) : TA → QB.

On the other hand, for any ř ∈ D-Mod-D(TA, f̃Bg̃ )n this
equation determines an element r ∈ Coder(f , g)n.



Theorem
The morphism of V

χ =
[
D-Mod-D(TA, f̃Bg̃ ) ∼= 1⊗D-Mod-D(TA, f̃Bg̃ )⊗ 1

ḟ⊗1⊗ġ→D-Mod-D(TA,T (f̃Bf̃ ))⊗D-Mod-D(TA, f̃Bg̃ )⊗
⊗D-Mod-D(TA,T (g̃Bg̃ ))

⊗(3)
D→D-Mod-D((TA)⊗D3,T (f̃Bf̃ )⊗D f̃Bg̃ ⊗D T (g̃Bg̃ ))

D-Mod-D(∆(3),1)→D-Mod-D(TA,QB)
]

induces an isomorphism for an arbitrary set-like category V :

D-Mod-D(TA, f̃Bg̃ ) ∼= Coder(f , g).

There is a morphism

Coder(f , g)→ D-Mod-D(TA,TB).



A∞-categories

Let A be a D-bimodule equipped with a degree 1 morphism

b̌ : T>0A → A, which we identify with TA pr−→ T>0A b̌−→ A,
that is, an element b̌ ∈ V(1[−1],D-Mod-D(TA,A)) such
that b̌|T 0A = 0. There is a (1, 1)-coderivation of degree 1,
b : 1→ 1 : TA → QA, given informally as
b = ∆(3) � (1⊗D b̌ ⊗D 1) : TA → QA. Formally,
b = b̌.V(1, χ), where

V(1, χ) : V(1[−1],D-Mod-D(TA,A))

→ V(1[−1],D-Mod-D(TA,QA)).

The morphism χ : D-Mod-D(TA,A)→ D-Mod-D(TA,QA)
is given in Theorem. Acting with the multiplication map
µ(3) : QA → TA we produce a degree 1 morphism
b̄ = b.V(1, µ(3)) : TA → TA.



Its value is computed due to expression of b:

b̄ � prl = b � µ(3) � prl

=
(
TA ∆(l)

→ (TA)⊗D l
∑

q+1+t=l 1⊗Dq⊗D b̌⊗D1⊗D t

→ T lA
)
.

Remark
The expression b̄2 : TA → TA equals r � µ(3) for a degree 2
(1,1)-coderivation r : TA → QA with

rk =
∑

y+p+z=k

(1⊗Dy ⊗D bp ⊗D 1⊗Dz) � by+1+z

= b � µ(3) � b̌|T kA : T kA → A.



Its value is computed due to expression of b:

b̄ � prl = b � µ(3) � prl

=
(
TA ∆(l)

→ (TA)⊗D l
∑

q+1+t=l 1⊗Dq⊗D b̌⊗D1⊗D t

→ T lA
)
.

Remark
The expression b̄2 : TA → TA equals r � µ(3) for a degree 2
(1,1)-coderivation r : TA → QA with

rk =
∑

y+p+z=k

(1⊗Dy ⊗D bp ⊗D 1⊗Dz) � by+1+z

= b � µ(3) � b̌|T kA : T kA → A.



The V-category B-Mod-C is tensored over V on the left and
on the right. E.g. the right action

B-Mod-C � V → B-Mod-C, (M ,X ) 7→ M ⊗ X ,

(M ⊗ X )(A,B) = M(A,B)⊗ X .

In a particular case we consider the right action of
1[1] ∈ ObV on A ∈ ObD-Mod-D:

sA def
= A[1]

def
= A⊗ (1[1]).

Definition
The pair (A, b̌ : TsA → sA), deg b̌ = 1, b0 = 0, is called an
enriched A∞-category if b̄2 = 0. Equivalently, if
b � µ(3) � b̌ = 0, see the previous slide.
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In a particular case we consider the right action of
1[1] ∈ ObV on A ∈ ObD-Mod-D:

sA def
= A[1]

def
= A⊗ (1[1]).

Definition
The pair (A, b̌ : TsA → sA), deg b̌ = 1, b0 = 0, is called an
enriched A∞-category if b̄2 = 0. Equivalently, if
b � µ(3) � b̌ = 0, see the previous slide.



Example
Let D be a small V-category and let A be a differential
monoid in D-Mod-D. That is, degree 0 morphism
m2 : A⊗D A → A is an associative multiplication, degree 0
morphism η : yD → A is its unit (where yD is a regular
bimodule), degree 1 differential d : A → A (an element of
V(1[−1],D-Mod-D(A,A)) ∼= D-Mod-D(A[−1],A)) is a
derivation and d2 = 0. We convert A into an enriched
A∞-category by setting

b2 = −
(
A[1]⊗D A[1]

σ−1⊗Dσ−1

→A⊗D A
m2→A σ−→ A[1]

)
,

b1 =
(
A[1]

σ−1

→A d−→ A σ−→ A[1]
)
.

Other components bn vanish. One checks that b̄2 = 0.



Thank you for your attention!


