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THE YANG-BAXTER EQUATION: A PICTURE
Definition
A set-theoretic solution to the Yang-Baxter equation is a tuple
(X, r), where X is a set and r : X × X −→ X × X a function such
that (on X3)

(r × idX) (idX × r) (r × idX) = (idX × r) (r × idX) (idX × r) .

For further reference, denote r(x, y) = (λx(y), ρy(x)).
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APPLICATIONS OF YBE
Historical applications:
I Study of a system with delta function repulsive potential

(Yang).
I Study of an 8-vertex model in statistical mechanics

(Baxter)
Contemporary applications:
I Quasi-triangular Hopf algebras,
I Quantum computation,
I Differential geometry,
I Cryptography,
I Quadratic algebras.
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DEFINITIONS AND EXAMPLES
Definition
A set-theoretic solution (X, r) is called
I left (resp. right) non-degenerate, if λx (resp. ρy) is bijective,
I non-degenerate, if it is both left and right non-degenerate,
I involutive, if r2 = idX×X,

Examples
I Twist solution: r(x, y) = (y, x),
I Identity: r(x, y) = (x, y).
I Let G be a group: r(g, h) = (gh, 1G).
I Lyubashenko, where f, g : X → X are maps with fg = gf :

r(x, y) = (f(y), g(x)).
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THE STRUCTURE MONOID AND GROUP

Definition
Let (X, r) be a set-theoretic solution of the Yang-Baxter
equation. Then the monoid

M(X, r) =
〈
x ∈ X | xy = λx(y)ρy(x)

〉
,

is called the structure monoid of (X, r).

The group G(X, r) generated by the same presentation is called
the structure group of (X, r).
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RECOVERING SOLUTIONS

Theorem (ESS, LYZ, S, GV, GM)
Let (X, r) be a non-degenerate solution to YBE, then there exists
a unique solution rG on the group G(X, r) such that the
associated solution rG satisfies

rG(i× i) = (i× i)r,

where i : X → G(X, r) is the canonical map.

However, there exists a unique solution rM on M(X, r) such that
rM|X×X = r.
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MONOIDS AND GROUPS FROM SOME SOLUTIONS

I If r(x, y) = (y, x), then M(X, r) ∼= Z|X|≥0,
I if r(x, y) = (x, y), then M(X, r) ∼= FM(X),
I if r(g, h) = (gh, eG), then M(X, r) ↪→ G× Z≥0.
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MONOIDS AND GROUPS OF I-TYPE

Theorem (GIVdB, JO)
Let (X, r) be a finite, involutive non-degenerate set-theoretic
solution. Then, G(X, r) is a group of I-type.

In particular, G(X, r) is a regular subgroup of Z|X| o Sym(X) and
M(X, r) is a regular submonoid of N|X| o Sym(X).
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DERIVED STRUCTURE MONOID
Definition
Let (X, r) be a set-theoretic solution. Denote the monoid

A(X, r) =
〈
x ∈ X | xλx(y) = λx(y)λλx(y)(ρy(x))

〉
.
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DERIVED STRUCTURE MONOID

Definition
Let (X, r) be a set-theoretic solution. Denote the monoid

A(X, r) =
〈
x ∈ X | xλx(y) = λx(y)λλx(y)(ρy(x))

〉
.

If (X, r) is left non-degenerate, then for any x ∈ X there exists a
map σx : X −→ X such that

A(X, r) =
〈
x ∈ X | xy = yσy(x)

〉
.
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DERIVED STRUCTURE MONOID
Definition
Let (X, r) be a left non-degenerate set-theoretic solution. Then

A(X, r) =
〈
x ∈ X | xy = yσy(x)

〉
.

Furthermore, s(x, y) = (y, σy(x)) defines a left non-degenerate
set-theoretic solution.
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RELATING BOTH MONOIDS

Theorem (LV, JKA)
Let (X, r) be a left non-degenerate set-theoretic solution. Then,
M(X, r) is a regular submonoid of

A(X, r)o Sym(X),

where x ∈ X is embedded as (x, λx).
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WHAT IS THE MONOIDS STRUCTURE

For bijective left non-degenerate set-theoretic solutions, one
extends σ· : X −→ Sym(X) to a map σ· : A(X, r) −→ Aut(A(X, r)).

Theorem
Let (X, r) be a finite bijective left non-degenerate solution. Then,
there exists a positive integer d such that ad is central in A(X, r)
for every a ∈ A(X, r).

Furthermore, M(X, r) is an abelian-by-finite monoid
If one drops the bijectivity, one can still extend to
endomorphisms.
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LND SOLUTIONS

General left non-degenerate solutions: HARD!

Sketch
I For some positive d, σd

a is idempotent for all a ∈ A(X, r).
I A(X, r) is a finite LEFT

〈
xd | x ∈ X

〉
-module.

I Study divisibility in the latter to obtain a chain:

Bn ⊆ ... ⊆ B1 =
〈
xd | x ∈ X

〉
.

I Somehow
〈
xd | x ∈ X

〉
acts abelian on factors.

Hence, A(X, r) and its algebra are Left Noetherian.
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UNDERSTANDING THE ALGEBRAS

Theorem
Let (X, r) be a finite bijective left non-degenerate solution and K a
field. Then, KM = KM(X, r) is a Noetherian PI-algebra, with

ClKdim(KM) = GKdim(KM) = rk(M) = rk(A) ≤ |X|.
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ONE SHOULD WATCH OUT

Theorem (CCS,CJVAV)
Let (X, r) be a finite left non-degenerate set-theoretic solution.
TFAE
I (X, r) is bijective,
I (X, r) is right non-degenerate.
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ON A CONJECTURE OF GATEVA-IVANOVA
Conjecture
Let (X, r) be a finite bijective left non-degenerate solution. Does
the cancellativity of M(X, r) imply that (X, r) is involutive?

Theorem
Let (X, r) be a finite bijective left non-degenerate solution. Then
the following are equivalent:
I (X, r) is an involutive solution,
I M(X, r) is a cancellative monoid,
I KM is a prime algebra,
I KM is a domain,
I GKdim(KM) = |X|.
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PRIME IDEALS A AND M

Since every element in A(X, r) is normal, it follows that every
prime ideal is determined by invariant subsets of X under
certain σx.

Theorem
Let (X, r) be a finite left non-degenerate solution. Then every
prime ideal P of M(X, r) of height k is determined by prime ideals
Q1, ...,Qn of A(X, r) of height k, i.e.

P = (Q1 ∩ ... ∩ Qn)
e.
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ONGOING RESEARCH

I Study M(X, r) and KM(X, r) for left non-degenerate
idempotent solutions

I Study M(X, r) and KM(X, r) for general left non-degenerate
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OPEN PROBLEM

Can one prove that for (bijective) left non-degenerate solutions,
the irreducible representations of the algebra KM(X, r) are
finite-dimensional?
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SHIFT OF FOCUS

We used solutions to generate nice algebraic structures.
Can we do the reverse?
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STRUCTURE GROUP AS MOTIVATING EXAMPLE

Recall following theorem.

Theorem
Let (X, r) be a bijective non-degenerate solution, then there exists
a group morphism

G(X, r) ↪→ Agr(X, r)o 〈λx | x ∈ X〉 ,

where x 7→ (x, λx) and the projection on A(X, r) is bijective.
In fact, the resulting projection G(X, r) −→ Agr(X, r) is a bijective
1-cocycle.
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CHARACTERIZATIONS

In fact, the results in the previous theorem are equivalent.

Theorem
Let (G, ◦) and (A,+) be groups. Then the following are
equivalent:
I There exists a bijective 1-cocycle π : G −→ A,
I there exists an embedding of groups G −→ Ao Aut(A,+),

where the projection on A is bijective,
I There exists a skew left brace (G,⊕, ◦), where (G,⊕) is

isomorphic to (A,+).
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WHAT ARE SKEW LEFT BRACES

Definition
Two groups (A,+) and (A, ◦) form a skew left brace (A,+, ◦), if
for any a, b, c ∈ A, it holds that

a ◦ (b+ c) = (a ◦ b)− a+ (a ◦ c),

where −a denotes the inverse of a in (A,+).
Moreover, if (A,+) is abelian, then (A,+, ◦) is a left brace
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EXAMPLES OF SKEW BRACES

Example
1. Every group (G,+) has the skew left brace structure

(G,+,+), these are trivial skew left braces.
2. Let (X, r) be a bijective non-degenerate solution, then G(X, r)

has a skew brace structure, which is a left brace if and only
if (X, r) is involutive.

3. The dihedral group D2n =
〈
a, b | an = b2 = 1, bab = a−1〉

has a left brace structure, where aibj + akbl = ai+k+jlbj+l

with j, l ∈ {0, 1}.
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CREATING SOLUTIONS ON G(X,R) (1)

Definition (Rump, CJO, GV)
Let (B,+) and (B, ◦) be groups on the same set B such that for
any a, b, c ∈ B it holds that

a ◦ (b+ c) = (a ◦ b)− a+ (a ◦ c).

Then (B,+, ◦) is called a skew left brace
If (B,+) is abelian, one says that (B,+, ◦) is a left brace.

Denote for a, b ∈ B, the map λa(b) = −a+ a ◦ b. Then,
λ : (B, ◦) −→ Aut(B,+) : a 7→ λa is a well-defined group
morphism.
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CREATING SOLUTIONS ON G(X,R) (2)

Theorem
Let (B,+, ◦) be a skew left brace. Denote for any a, b ∈ B, the
map rB(a, b) = (λa(b), (a+ b) ◦ b). Then (B, rB) is a bijective
non-degenerate solution. Moreover, if (B,+) is abelian, then
(B, rB) is involutive.

Remark
Let (X, r) be a bijective non-degenerate set-theoretic solution.
Then, G(X, r) is a skew left brace.



28

THE *-OPERATION IN SKEW LEFT BRACES

Definition
Let (A,+, ◦) be a skew left brace. For any a, b ∈ A, denote

a ∗ b = −a+ a ◦ b− b = λa(b)− b.

Denote X ∗ Y for the additive subgroup generated by x ∗ y, where
x ∈ X, y ∈ Y and X,Y ⊆ A.

Example
1. For (G,+,+), one sees that a ∗ b = 0. Actually a

characterization.
2. For (D2n,+, ·) one can see that (aibj) ∗ (akbl) ∈ 〈a〉.
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WHERE DOES THE ∗-OPERATION ORIGINATE
Definition
Let (A,+, ◦) be a skew left brace. We call A two-sided, if for any
a, b, c ∈ A it holds that

(b+ c) ◦ a = (b ◦ a)− a+ (c ◦ a).

Theorem
Let (A,+, ◦) be a left brace. Then, (A,+, ◦) is two-sided if and
only if (A,+, ∗) is a Jacobson radical ring.

Proposition
Let (A,+, ◦) be a left brace. Then A is two-sided if and only if the
∗-operation is associative.
Breaks down for skew left braces.
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SOLUTIONS LIKE LYUBASHENKO’S

Definition (Retraction)
Let (X, r) be an involutive non-degenerate set-theoretic solution.
Define the relation x ∼ y on X, when λx = λy. Then, there exists
a natural set-theoretic solution on X/ ∼ called the retraction
Ret(X, r).

Denote for n ≥ 2, Retn(X, r) = Ret
(
Retn−1(X, r)

)
. If there exists

a positive integer n such that |Retn(X, r)| = 1, then (X, r) is
called a multipermutation solution
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WHY ARE MULTIPERMUTATION SOLUTIONS INTERESTING

Theorem (CJOBVAGI)
Let (X, r) be a finite involutive non-degenerate set-theoretic
solution. The following statements are equivalent,
I the solution (X, r) is a multipermutation solution,
I the group G(X, r) is left orderable,
I the group G(X, r) is diffuse,
I the group G(X, r) is poly-Z.
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STRUCTURE OF SKEW LEFT BRACES

Definition
Let (B,+, ◦) be a skew left brace. Denote for any a, b ∈ B the
operation a ∗ b = λa(b)− b and denote for any positive integer
n > 1, the set B(n) = B(n−1) ∗ B. If there exists a positive integer
n such that B(n) = 1, we say that B is right nilpotent. If B(2) = 1,
we say that B is trivial.

Theorem (GIC)
Let (X, r) be an involutive non-degenerate set-theoretic solution.
If the natural left brace G(X, r) is right nilpotent, then the
solutions (G(X, r), rG) and (X, r) are multipermutation solutions.
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LEFT IDEALS AND IDEALS

Definition
Let (B,+, ◦) be a skew left brace. Then, a (normal) subgroup I of
(B,+) such that B ∗ I ⊆ I is called a (strong) left ideal.
Furthermore, if I is in addition a normal subgroup of (B, ◦) then I
is called an ideal of B.

Definition
Let (B,+, ◦) be a skew left brace. If there exist left ideals I, J of
B such that I+ J = B = J+ I, then B is called factorizable by I
and J.
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WHY INTERESTED IN STRONG LEFT IDEALS?

Definition
Let (X, r) be a bijective non-degenerate solution. Then, we call a
split X = Y ∪ Z a decomposition if Y and Z are non-empty
subsolutions and r(X × Y) = Y × X and r(Y × X) = X × Y.

Proposition
A decomposition X = Y ∪ Z gives rise to a factorization
G(X, r) = 〈Y〉+ 〈Z〉. and both terms are strong left ideals in
G(X, r). Vice versa, every strong left ideal of a brace B gives rise
to a decomposition of (B, rB).
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INTUITION: FACTORIZATIONS IN GROUPS

Theorem (Ito’s Theorem)
Let G = A+ B be a factorized group. If A and B are both abelian,
then G is metabelian (i.e. there exists an abelian normal
subgroup N of G such that G/N is abelian).

Theorem
Let G = A+ B be a factorized group, where A and B are abelian.
Then there exists a normal subgroup N of G contained in A or B.

Theorem (Kegel-Wielandt)
Let G = A+ B be a factorized group, where A and B are nilpotent.
Then, G is solvable.
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SURPRISING RESULTS

Theorem
Let B = I+ J be a factorized skew left brace. If I is a strong left
ideal and both I and J are trivial skew left braces, then B is right
nilpotent of class at most 4. If both are strong left ideals, then B
is right nilpotent of class at most 3.

Theorem
Let B = I+ J be a factorized skew left brace. If I is a strong left
ideal and both I and J are trivial skew left braces, then there
exists an ideal N of B contained in I or J.
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EXTENDING IS NOT POSSIBLE

Example (No Kegel-Wielandt)
There exists a simple (no non-trivial ideals) left brace of size 72,
which is hence not solvable. By standard techniques one sees
that this is factorizable by the additive Sylow subgroups.

Example (No relaxing conditions)
There exists a skew left brace of size 18 that is factorizable by 2
left ideals, both not strong left ideals. However, there is no ideal
of the skew left brace contained in either of the left ideals.
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WHERE DOES THE ∗-OPERATION ORIGINATE?

Theorem (Rump)
Let (R,+, ∗) be a Jacobson radical ring. Then, the operation
a ◦ b = a+ ab+ b defines a group operation on R. In particular,
(R,+, ◦) is a left brace satisfying

(b+ c) ◦ a = (b ◦ a)− a+ (c ◦ a).

Vice versa, every such two-sided brace (B,+, ◦) gives rise to a
Jacobson radical ring (B,+, ∗).

Theorem (Lau)
Let (B,+, ◦) be a left brace. The operation ∗ is associative if and
only if B is two-sided.
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RING THEORETICAL INSPIRATION

I (Semi-)prime ideals (related to solvability),
I Radicals,
I Nil, nilpotent (what side?) (Köthe?),
I Modules? (widely open),
I Skew braces of size 64?
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HOT FROM THE NEEDLE
Theorem (Smoktunowicz, Shalev)
Let (B,+, ◦) be a left brace of p-power order (pn). If p > n+ 1,
then there exists a pre-Lie ring associated to B/ann(p2) and vice
versa.
Does this provide a framework to understand the
counterexample of Bachiller?

Conjecture (false, Bachiller)
Let (B, ◦) be a finite solvable group. Then there exists an abelian
group (B,+) such that (B,+, ◦) is a left brace.

Conjecture (Byott)
Let (B,+, ◦) be a finite skew left brace with (B,+) solvable. Is
(B, ◦) solvable?
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PRIME IDEALS OF KM

Can we describe prime ideals of the algebra KM? Let us first
consider prime ideals not intersecting the monoid.

Theorem
Let (X, r) be a finite left non-degenerate solution. Then there
exists an inclusion preserving bijection between prime ideals of
KG(X, r) and prime ideals P of KM with P ∩M = ∅.



42

PRIME IDEALS OF KM

Can we describe prime ideals of the algebra KM? Let us first
consider prime ideals not intersecting the monoid.

Theorem
Let (X, r) be a finite left non-degenerate solution. Then there
exists an inclusion preserving bijection between prime ideals of
KG(X, r) and prime ideals P of KM with P ∩M = ∅.



43

DIVISIBILITY IN M

Let Y ⊆ X. Denote MY =
⋂

y∈Y yM and DY = MY \
⋃

x∈X\Y M{x}.

Theorem
Let (X, r) be a finite left non-degenerate solution. Let P be a
prime ideal in KM with P ∩M 6= ∅. Then,

P ∩M =
⋃
Y∈F

DY ,

where F = {Y ⊆ X | DY ∩ P 6= ∅}.
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