Large random matrices
are everywhere
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Tilings and sugar melting
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1. Random tilings

e These are 2d projections of a 3d picture

2d tiling «<— Piling up cubes in the corner of a room




1. Random tilings

e These are 2d projections of a 3d picture

2d tiling <«— Piling up cubes in the corner of a room

e Model for random piling /sugar melting

eN)

- Choose N randomly, with probability proportional to exp (— &5

(Boltzmann law: e energy per cube, T temperature)

- Choose a piling with N cubes, randomly
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1. Random tilings

(Gelfand-Tsetlin 1950, Cohn-Larsen-Propp 1998)
b — ¢
There are |]-—

1<) )

tilings of the trapezoid

having green tiles sticking out at positions ¢ > € > ...

2
— There are P(t) = (H b EJ) tilings of the hexagon

=)

1<)

having green tiles crossing the vertical section

at positions ;> 6 > ...
e Random choice of tiling of the hexagon

= Probability to see ¢;,(,,... is proportional to P(¢)
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1. Random tilings

2
Random choice of tiling  P(¢) = (H 0 — 4 )

i

1<

Probability to observe ¢, ¢; close to each other is small
— {1,0,... are not independent from each other

They rather tend not to be close to each other !



1. Random tilings

For very large tilings chosen at random

Observation: Arctic circle phenomenon

there is a (non-random) curve c such that
with probability ~1 when N is large

- outside c: frozen tiles

- inside c: fluctuating tiles (surface looks rough)

Questions

- Describe c/the distribution of ‘-
VN

- describe the law of (microscopic) fluctuations inside ¢
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Spectrum of (random) matrices



2. Spectrum of (random) matrices

e A matrixis a table filled with numbers

® A matrix of size n X n represents a linear transformation

x1 — A(L1)x; + A(1,2)x, +--- + A(l,n)xn

21) AQ22) 2,m) X2 = A2, x1 + A2, 2% + - + A2, M)x
\ An1) AMmn2) --- Am,n) ) Xn — AM, 1)x; +AM,2)x + -+ A(n, n)xn,
: _ —sin©
® Example: forn=2 ( o )

represents the rotation of angle 0 in the plane




2. Spectrum of (random) matrices

e (Given a matrix H of size n xn

v=(vi,...,vn) is an eigenstate with eigenvalue E

if Hactson v as H-w H-v=(Evy,...,Ev,)

rescaling by the factor E \V
w
V

e Under certain assumptions on H (hermitian)

there are exactly n eigenstates (up to scale)
and n corresponding eigenvalues E; > - > Eq



2. Spectrum of (random) matrices

¢ Random (hermitian) matrix of size n x n

— random spectrum E; >--- > E,

® When the random model does not have a preferred direction

(1900 ... Dyson, Wigner, Mehta ... 1960)

Probability to find E; near x; at precision § <« 1
is proportional to 8™ - p(x) - H(Xi —%j)?

1<)
Questions Whennis large

-How do E; > ... > E, distribute ?

- How does E; = max(Ey,...,E,,) behave ?
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What happens for
independent random variables 2



3. Independent random variables

p(y)
Consider a random variable Y ‘.&
Y

Make n independent measurements of it: Yi,...,Yn

w = Mean(Y) o = Variance(Y)

Central limit theorem

Vit Un A nptVios

n large

S random, with Gaufdian distribution

L 1 | 1 1 1 1 1 1 | 1 .
-4 -2 ] 2 4

(Gaufs law)



3. Independent random variables

Make n independent measurements: Yi,...,Yn
m, = max(yi,...,Yn)

Fluctuations of the maximum
(Fisher-Tippett 1928, Gumbel 1935, Gnedenko 1942)

Assume p(y) ~ y%e PY" with B,y >0
y large

Then m,, ~ an +bnré&
n large
In(n)

3
¢ random with Gumbel distribution p(&) = exp(—& — exp(—¢§))

1/y |
Non-random an = ( ) and by = (an) < Anp



3. Independent random variables

Mn = max(yi,...,Yn) = an + bn &

. I I 1 1 1 ! | 1 1 1 | I I . n " }
-2 L 2 4 6 8

(Gumbel’s law)



3. Independent random variables

Summary

e The behavior of the sum and the max
of independent n random variables with n large

is well-understood since ~a century

(Gaufs’s law, Gumbel’s law, etc.)

e Universality phenomenon
it depends very little on the random model considered

(on the details of p(y))
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What happens for eigenvalues
of large random matrices 2



4. Eigenvalues of large random matrices

¢ Inrandom tilings & >--->{, areintegers

e In random matrices E; >...> E, are real numbers

In both cases, probability to find them around xi,...,xn

at precision § < 1 is proportional to | [(xi —x;)
1<)

— these random variables are strongly correlated
( xi tends to avoid being close to X;)

The previous laws (Gaufs, Gumbel, etc.) do not apply !



4. Eigenvalues of large random matrices

Consider a random (hermitian) matrix of size n x n

with independent Gaufs-distributed entries with variance o

Fluctuations of the maximum Tracy-Widom 1992

E; = max(E{,...,E) = ZG\/H+Gn_1/6E,

n large

¢, random with Tracy-Widom distribution

® Quite different from Gumbel’'s law !

® Universal!

® Describes as well fluctuations of £
on vertical section of large random tilings




4. Eigenvalues of large random matrices

Consider a random (hermitian) matrix of size n x n

with independent Gaufs-distributed entries with variance o

n large : macroscopic distribution of eigenvalues becomes non-random

but its shape is not universal (Wigner 1950)

position of n eigenvalues large n density of eigenvalues

~

L T
40+/Nn

< >

Bl




4. Eigenvalues of large random matrices

Pair correlations

The probability distribution of finding a eigenvalue at

at distance % from an eigenvalue at /nx

when n becomes large, is also known (wigner, Dyson, Mehta 50s ...)
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Energy levels of
heavy atomic nuclei



5. Heavy atomic nuclei

In quantum mechanics

- the state of a system is represented by a point
X(t) = (xa(t),...,xa(t)) 1In n-dimensional space

- the time evolution is described by a matrix H

1h

X(t+8) — X(t
( ) t) ~ H- X(t) (Schrodinger’s equation)

6 O small

- H is not random: it is specified by the components of
the system and their interactions



5. Heavy atomic nuclei

In general, understanding the evolution of the system

= finding the states with fixed energy (eigenvectors of H)

and the value of these energies (eigenvalues of H)

For heavy atomic nuclei (between 70 and 100 protons)

H is very complicated !

Wigner’s idea (1950s)

statistics of eigenvalues of H may look like the
statistics of eigenvalues of a typical large matrix chosen at random



5. Heavy atomic nuclei

Eigenvalues of H for atomic nuclei

= energy of particles that it can absorb (resonances)
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Figure 1.1. Slow neutron resonance cross-sections on thorium 232 and uranium 238 nuclei.
Reprinted with permission from The American Physical Society, Rahn et al., Neutron resonance

spectroscopy, X, Phys. Rev. C 6, 1854—-1869 (1972). (from Mehta’s book Random matrices)



5. Heavy atomic nuclei
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Annales Academiae Scientiarum Fennicae, Porter C.E. and Rosenzweig N., Statistical properties
| of atomic and nuclear spectra, Annale Academiae Scientiarum Fennicae, Serie A VI, Physica 44,

3 G 1Hoo e (from Mehta’s book Random matrices)
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Other surprising apparitions
of large random matrices



6. Other apparitions

Summary

® Universality phenomenon: repulsive random variables

can exhibit the same statistics as the eigenvalues of
large random matrices

® Proving universality (for large classes of models
of random matrices) has occupied mathematicians
from the 60s until now, is still an active topic of research

® We have encountered applications to

- random tilings
- statistics of high energy resonances in heavy nuclei



6. Other apparitions

Many other apparitions of the theory of (large) random matrices

® Data analysis (economics, linguistics, phylogenetics, ...)

® Statistics of zeroes of the Riemann zeta function

(related statistics of prime numbers)
(Montgomery 1970)

® Random crystal growth/interface growth
(Takeuchi-Sano 2010, Sasamoto-Spohn 2010)

® Statistics of distance between pine trees in Swedish forests
(lIe Caer 1990)

e Statistics of bus waiting times in Cuernavaca (Mexico)
(Krbalek-Seba 2000, Baik-Borodin-Deift-Suidan 2006)



Thawnk you for your attention !




