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Curve counting in antiquity

I Euclid (c. 300 BC): 2 points determine a line

I Apollonius (c. 200 BC): 8 circles are tangent to 3 given ones



Curve counting in the 19th century

I (1848) Steiner: 7776 conics tangent to 5 given ones

I (1859) de Jonquières: actually, no, there are 3264

I (1849) Cayley, Salmon: 27 lines on a cubic surface

I (1874) Schubert: general methods



Curve counting: the quintic

I 2875 lines (classical)

I 609250 conics (S. Katz, 1986)

I String theorists! (Candelas, de la Ossa, Green, Parkes; 1991): 2875, 609250,
317206375, 242467530000, 229305888887625, 248249742118022000,
295091050570845659250, 375632160937476603550000,
503840510416985243645106250, ...

I Kontsevich : can mathematically define the topological A-model — and make
calculations

I Givental (1995) : and the physicists prediction is correct

Since then the Gromov-Witten theory has been the source of endless mathematics.



Why Gromov-Witten invariants exist

Algebraic approach

Use derived geometry (Kontsevich) or virtual fundamental classes (Li-Tian,
Behrend-Fantechi).

Analytic approach

Perturb holomorphic curve equation (Gromov, Floer, Ruan-Tian) either locally in order
to construct virtual classes (Fukaya-Ono, Pardon) or globally (Hofer-Wysocki-Zehnder).



J-holomorphic curves: local theory

If (X , J) is an almost complex manifold, and (C , j) is a Riemann surface, we can ask
for a map f : C → X satisfying df ◦ j = J ◦ df .

This is a nonlinear elliptic PDE. Its linearization is Fredholm with index
2((3− d)(1− g) +

∫
C f ∗c1(M)) (by Riemann-Roch).

In an ideal world, the index is the dimension of the moduli space of such maps.

In the real world, we perturb the equation to make this true.

Index vanishes when M is Calabi-Yau (c1(M) = 0) of complex dimension d = 3.



J-holomorphic maps: global theory

When there’s a symplectic form ω so that g = ω( · , J · ) is a metric, then the quantity

I =

∫
C
f ∗ω

is both topological (because ω is closed) and is the g -area of f(C).

Using this control, Gromov classified how families of such maps may degenerate, and
showed that after allowing certain explicit bubbling behaviors, the space of solutions
becomes compact (after fixing topological data).



Gromov-Witten invariants of Calabi-Yau 3-folds

Since the moduli of holomorphic maps to a Calabi-Yau 3-fold is compact (for fixed
topological data), and zero dimensional (after perturbation), one can define a number
by counting the points of this set.

To see this did not depend on the perturbation ξ, one considers a 1-parameter family
of perturbations ξt connecting two generic choices ξ0 and ξ1.

The moduli space of maps which are holomorphic for some perturbation in the path
M(ξt) gives a 1-dimensional cobordism from M(ξ0) to M(ξ1).

Degenerations have complex codimension 2, so are not encountered in this path, so

0 = [∂M(ξt)] = [M(ξ0)]− [M(ξ1)]



Open Gromov-Witten theory?

In string theory, the strings may end on extended objects called branes.

Translation: there should be an ‘open’ Gromov-Witten theory which counts
holomorphic curves ending on Lagrangian submanifolds.



Why open Gromov-Witten invariants do not exist (?)

Recall we consider moduli of perturbed solutions M(ξ0) and M(ξ1), and try to
compare them by considering a 1-parameter family interpolating between them, M(ξt)

However, when studying curves with boundary, ∂M(ξt) has other components!

This is because the space of choices to smooth a boundary degeneration is R, whereas
the space of choices to smooth an interior degeneration is C. So for curves with
boundary, degenerations appear in codimension one.

Naively, this seems to mean the corresponding count is not well defined, since
0 = [∂M(ξt)] 6= [M(ξ1)]− [M(ξ0)].



But they have been calculated!

Nevertheless, in the string literature, there are various calculations of open
Gromov-Witten invariants! (Ooguri-Vafa, Aganagic-Klemm-Marino-Vafa, ...)

Some are even confirmed by mathematical calculations (Katz-Liu, Graber-Zaslow, ...)
— which however were made in the absence of a definition!

Important hint from Witten: the open Gromov-Witten invariants should have
something to do with the Chern-Simons theory on the Lagrangian.

Ooguri-Vafa conjecture

Transport the conormal to a knot across the conifold transition. The open
Gromov-Witten invariants of the resulting Lagrangian are the colored HOMFLYPT
invariants of the knot.



Knots

Definition
A knot is an embedding of a circle into three dimensional space,

f : S1 → R3

θ 7→ (x(θ), y(θ), z(θ))

Two knots are the same (isotopic) if there is a 1-parameter family of such embeddings
interpolating between them.



Knots in antiquity



Knots in the 19th century

Gauss
For two knots f (θ), g(φ) consider the work done by simultaneously moving a magnetic
charge along g , and an electric charge along f :

W ∼ 1

4π

∫ ∫
f (θ)− g(φ)

|f (θ)− g(φ)|3
· (df × dg)

Lord Kelvin
Maybe atoms are knots in the ether?

Tait
Well, anyway, let’s classify them...





How to tell knots apart?

Knot invariants
are rules for assigning some quantity to each knot, so that the quantity stays constant
in 1-parameter families. Two knots assigned different values are thus different knots!

A knot invariant is most useful when:
It is computable from a knot presentation, has a geometric meaning, and takes
different values on different knots. These desiderata are in considerable tension.

One way to construct invariants

Give some formula in terms of a 2d projection of the knot, and check it doesn’t change
under the Reidemeister moves. This method does not usually clarify the geometric
meaning of the invariant.



Knot polynomials

Alexander polynomial

1-variable Laurent polynomial; up to normalization the generator of the ideal in
Z[π1/[π1, π1]] which annihilates the module Z[π1, π1]/[[π1, π1], [π1, π1]]. Easy to
compute; relatively weak.

Jones polynomial

1-variable Laurent polynomial; comes from braid representations of operator algebras
from statistical mechanics; defined in terms of 2d projection; satisfies skein relation.
Harder to compute, but stronger.

HOMFLYPT polynomial

2-variable Laurent polynomial; generalizes both Jones and Alexander; defined in terms
of 2d projection; satisfies skein relation.



Skein relations



Skein relations

taken from https://www.maths.dur.ac.uk/Ug/projects/highlights/PR4/Goulding_Knot_Theory_report.pdf

https://www.maths.dur.ac.uk/Ug/projects/highlights/PR4/Goulding_Knot_Theory_report.pdf


Skein module

For an oriented 3-manifold M, the skein module Sk(M) is the module freely generated
over Z[a±, z±] by framed links; modulo the skein relations.

Existence of the HOMFLYPT invariant is equivalent to the statement that Sk(S3) is
generated by the class of the empty link. Indeed, 〈K 〉 = HOMFLYPT(K ) · 〈∅〉.



HOMFLYPT from 2d

2d CFT

Quantum
groups HOMFLYPT

Drinfeld,
Jimbo

Jones

Reshetikhin, Turaev



HOMFLYPT from 3d

3d Chern-
Simons

2d CFT

Quantum
groups HOMFLYPT

Witten

Witten
Drinfeld,
Jimbo

Jones

Reshetikhin, Turaev

〈K 〉 =

∫
HolK (A) e

ik
4π

∫
trA∧dA+ 2

3 A∧A∧A DA

This integral over all connections
has no existing mathematical
definition



Two problems

Define open Gromov-Witten invariants

The main obstruction is dealing with the boundary degenerations which appear in
codimension one in moduli.

Give a rigorous, geometric interpretation of the HOMFLYPT invariant

The existing mathematical constructions begin in one way or another from a 2d
projection; the existing physical interpretation uses the nonexistent Feynman integral.

These problems solve each other!



Open Gromov-Witten invariants

Theorem (Ekholm-Shende)

For CY3 X and appropriate Lagrangian L, there exists a space of parameters P, and
for λ ∈ P, compact zero dimensional moduli spaces Mχ(X , L, λ) of bare (no symplectic
area zero components) maps u : (Σ, ∂Σ)→ (X , L) with domain of Euler characteristic
χ, and an invariant

ΨX ,L,λ = 1 +
∑
χ

∑
u∈Mχ(X ,L,λ)

wt(u) · z−χ · Qu∗[Σ] · au◦L · 〈u(∂Σ)〉 ∈ Sk(L)[[Q]]

which is independent of λ, and invariant under deformations of X , L.

Here, wt(u) ∈ Q is for dealing with orbifold issues; u∗[Σ] is the fundamental class of
the image, and u ◦ L is a linking number.



Proof



Geometric meaning of the HOMFLYPT polynomial

Theorem (Ekholm-Shende)

Let K ⊂ S3 be a knot, and L ⊂ T ∗S3 \ S3 a pushoff of the conormal bundle of K .
Then the degree 1 term of ΨT∗S3\S3,L is the HOMFLYPT polynomial of K .

One can also fill T ∗S3 \ S3 with the resolved conifold and have the same result. This
establishes the prediction of Ooguri and Vafa.



Proof

Consider in T ∗S3 the quantity ΨT∗S3,S3∪L. By the degree 1 term, we mean the
contribution of curves which wrap once around the generator in H1(L). For appropriate
almost complex structure there is exactly one such curve: the annulus tracing the path
of the knot K under the pushing off of L. This annulus contributes as exactly
〈K 〉 ∈ Sk(S3).



Proof

Now degenerate the almost complex structure along a cosphere bundle which separates
L from the zero section S3, in sense of symplectic field theory. In the limit we can have
only broken curves with one part in T ∗S3 \ S3 with boundary on L, and another part in
T ∗S3 with boundary on the zero section S3. These curves may be asymptotic to index
zero Reeb orbits — but there are no such orbits, so the curves must be compact. This
means there are no curves whatsoever in the S3 component.



Proof

By invariance we have the following equation in Sk(S3):

〈K 〉 = Ψbefore = Ψafter = ΨT∗S3,S3∪L ⊗ 〈∅〉

But since 〈K 〉 = HOMFLYPT(K )⊗ 〈∅〉, we conclude

ΨT∗S3,S3∪L = HOMFLYPT(K ). �



HOMFLYPT from 6d

3d Chern-
Simons

2d CFT

6d
Topological
open string

Quantum
groups

Holomorphic
open curve
counting

HOMFLYPT

Witten Witten

Witten

Gromov,
Floer,
Kontsevich,
Fukaya
...
Ekholm,
Shende

Drinfeld,
Jimbo

Jones

Reshetikhin, Turaev

Ekholm, Shende



Colored HOMFLYPT

More generally, Ooguri and Vafa predicted that the full series ΨT∗S3\S3,L is determined
by the colored HOMFLYPT invariants

They argued as follows: if going once around the cylinder introduces the Wilson line
along K given by the trace of the holonomy in the standard representation, then going
n times around the cylinder must introduce the Wilson line given by tracing the n’th
power of the holonomy.



Colored HOMFLYPT

In our setup, this translates to the prediction

ΨT∗S3\S3,L =
∑
π

Wπ ·HOMFLYPTπ(K ) ∈ Sk(L)

where the sum is over partitions, the Wπ ∈ Sk(L) are certain distinguished elements
corresponding to the irreps of GL(n), and the HOMFLYPTπ(K ) are the
corresponding ‘colored’ HOMFLYPT invariants.

Theorem (Ekholm-Shende): This is true.



The HOMFLYPT skein of the solid torus

Carries a commutative ring structure since a pile of two donuts can be smushed into
one donut.

Freely by variables indexed by Z \ 0, corresponding to certain knots winding that many
times around. (Turaev)



The HOMFLYPT skein of the solid torus

Isomorphic to the tensor square of the ring of symmetric functions.

Carries an action by the skein of the torus cylinder T2 × [0, 1] (put it on the outside).
This action is a specialization of the action of the Elliptic Hall algebra on symmetric
functions (Morton-Samuelson).

P1,0Wλ = (©+ a(q1/2 − q−1/2)cλ(q)) ·Wλ

P0,1Wλ =
∑

λ+�=µ

Wµ

In particular, the Schur basis Wλ is identified as the eigenskeins of encirclement (P1,0).



Relations from infinity

When we study curves possibly asymptotic to Reeb chords (or orbits) at infinity, the
index receives contributions from these asymptotes.

In particular, we can find positive dimensional moduli spaces.

The boundaries of these moduli spaces come from boundary breaking as before, and
also from SFT degenerations along chords.



Relations from infinity

Taking a skein valued count cancels the boundary breaking; what is left is the SFT
degenerations. By compactness, the total contribution of these is zero.

The simplest scenario is when L has only Reeb chords of index ≥ 1. In this case, all
SFT degenerations will consist of some curves in the symplectization union some
compact curves entirely in the interior.

In this case, writing A for the count of curves in the symplectization, and
Ψ = ΨT∗S3\S3,L for the count of curves in the interior as before, we have AΨ = 0.



Unknot conormal

When L is the conormal to the unknot, there are indeed only Reeb chords of index ≥ 1.

A natural map S∗S3 → P1 × P1 sends the unknot conormal torus to the standard
‘Clifford’ torus.

This can be used to count the holomorphic curves in the symplectization, yielding:

A =©− P1,0 − P0,1 + a2a−1
L P1,1



Unknot conormal

Finally, the equation (©− P1,0 − P0,1 + a2a−1
L P1,1)Ψ = 0 has the (unique up to

scalar) solution

Ψ =
∑
π

Wπ

∏
�∈π

aqc(�)/2 − a−1q−c(�)/2

qh(�)/2 − q−h(�)/2

where c is the content and h is the hook-length.



Conormal to longitude in solid torus

To pin down the contribution of the multiply covered cylinder, we study finally the
cotangent bundle to the solid torus, and consider the zero section and a pushoff of the
conormal to the longitude.

This geometry can be obtained from T ∗0 R2 ∪T ∗R2R2 ⊂ T ∗R2 multiplication with T ∗S1.

In particular, its holomorphic curve theory at infinity is determined by that of the (well
studied) Legendrian Hopf link.



Conormal to longitude in solid torus

This time we obtain

A = (P1,0 −©)⊗ a2 − a1 ⊗ (P1,0 −©) ∈ Sk(T2 × [0, 1])⊗ Sk(T2 × [0, 1])

Because the Wπ are the eigenskeins of P1,0, this means that Ψ =
∑

π cπWπ ⊗Wπ.

It follows from the unknot calculation that cπ = 1.

Hence, the full multiple cover contribution of the annulus is
∑

πWπ ⊗Wπ, as
predicted by Ooguri and Vafa.


