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This is an unofficial, bibliographical guide for the theory of the topological
recursion and its applications1. If you find that some results have been omitted
or are incorrectly referred to or presented, you are welcome to contact me at
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1 General properties

The topological recursion (TR) is an axiomatic construction of a family of cor-
relation functions ωg,n indexed by two integers g, n ≥ 0, from the initial data
of a spectral curve C equipped with a differential ω0,1 and a fundamental bidif-
ferential of the second kind ω0,2. This construction has many properties which
suggests that it provides non-trivial, interesting geometric invariants of a new
type, and makes it suited for computations. This geometric nature has not been
unveiled yet precisely enough, but is the subject of current work. Here is a list
of those properties:

1I thank B. Eynard, R. Kramer, N. Orantin for comments and additions.
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1.a TR is defined as a normalized solution of loop equations [68, 25] – which
are ‘local’ Virasoro constraints (more precisely constraints forming the
positive part of a Witt Lie algebra). The set of all solutions to the loop
equations is described by a generalization of TR, called blobbed TR [32].
[34] sets up a global version of topological recursion, useful in formulating
the theory in case of spectral curve with higher order ramification points
[36].

1.b TR fits in a more general (involving other Lie algebras) procedure of quan-
tization of quadratic Lagrangians in symplectic vector spaces [83, 7].

1.c The recursive structure in TR is encoded in a Hopf algebra of graphs à la
Ronco-Loday [54, 47].

2. For compact spectral curves C, symplectic invariance of ωg,0 [69, 70] when
C is embedded as a Lagrangian subvariety of T ∗C. This is one of the
deepest and still mysterious property of TR.

3.a Variational formula – with respect to the parameters of the initial data
ω0,1. ωg,n encode the n-th order derivative of ωg,0 [68]. One advantage of
TR, compared to other constructions say in integrable systems, is that it
is a pointwise construction in the space of spectral curves.

3.b Holomorphic anomaly equation – obtained by studying variations of ω0,2,
and specializing to ω0,2 which is modular, but non-holomorphic in the
periods of the spectral curve [66].

3.c Singular limits: if a family of spectral curve degenerates, the ωg,n diverge
and one understands how [68].

4. Non-perturbative TR: when the spectral curve is compact and has non
trivial topology, one can add corrections to the TR wave function so as
to make it a section of a spinor line bundle on the spectral curve. These
corrections involve theta functions and their derivatives, and offer a win-
dow into non-perturbative effects in matrix models and topological strings
[65].

2 Existing open problems

1. Quantum curve conjecture: the TR wave function is annihilated by
a differential (or difference) equation whose coefficients have controlled
singularities. This has been proved for compact spectral curves of genus
0 [35], and for many other special cases e.g. [33, 105, 4, 102]. Quantum
variety conjecture: for any n ≥ 1 the TR n-point wave function is annihi-
lated by a n-body quantum Hamiltonian whose coefficients have controlled
singularities. This is known at least for the spectral curves coming from
the 1-hermitian matrix model. A strong version of the conjecture is that
loop equations are equivalent to this property.
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2. Integrability conjecture: for compact spectral curve, the partition
function is a formal tau function of the multi-KP hierarchy [20]. In partic-
ular, this would imply the quantum variety conjecture for compact spectral
curves.

3. Proving (and understanding the geometric nature of) symplectic in-
variance in the most general setting possible. In particular, symplectic
invariance for spectral curves of the form Polynomial(ex, ey) = 0 is not
covered by the current results, but is expected to be true as it is related
to framing invariance in topological strings [37].

4. The Â-TR conjecture [45, 46, 21]: the non-perturbative TR wave func-
tion on the SL2(C)-character variety of hyperbolic knot in S3 is annihilated
by the Â-difference equation – which is the difference equation satisfied by
the colored Jones polynomial. A related (and stronger, in a sense) version
of this conjecture is that the non-perturbative TR wave function computes
the asymptotic expansion of the colored Jones polynomial.

5. The mirror symmetry-TR conjecture: show that global TR can com-
pute (when there is no LG model available, the initial data should be
determined) Gromov-Witten theory ancestor potential of symplectic vari-
eties with non semi-simple quantum cohomology.

6. The TR-CFT conjecture. It is known that the loop equations can be
identified with Ward identities in a CFT. More precisely, if the spectral
curve is chosen as that of a Fuchsian (connection with simple poles only)
Hitchin system with Lie group G on a Riemann surface C, the TR ampli-
tudes should give the asymptotic expansion (in the heavy limit) of the cur-
rents in the WG-algebra conformal field theory obtained by the Sugawara
construction. This should work for both the classical case (β = 2⇒ Q = 0)
and non-classical case (β ≠ 2⇒ Q ≠ 0). Unpublished work of Eynard and
Ribault explores this problem. This may be used to obtain a TR proof of
the already proved cases of the AGT conjecture (relating conformal blocks
to Nekrasov partition functions of supersymmetric gauge theories), as well
as its generalizations.

7. Prove the remaining unknown cases of TR in Hurwitz theory. In particu-
lar, the r ≥ 4-spin q-orbifold Hurwitz numbers in genus > 0 which remain
unsolved. In the latter case, the conjectural TR is equivalent to the con-
jectural r-spin (and q-orbifold generalization of) the ELSV-like formula of
Zvonkine [101, 86].

8. What is the meaning in enumerative geometry (CohFT and their K-
theoretic generalization, mirror symmetry, gauge theory, etc.) of the β-
deformation (aka non-commutative) TR ?

3



3 Large N expansion of matrix models

1. The computation of the all-order largeN expansion of U(N)-invariant cor-
relation functions of a wide class of unitarily invariant hermitian matrix
models, in computed by TR in a universal way from algebraic geometry
on the spectral curve: 1-hermitian matrix model [5, 6, 56], chain of matri-
ces and matrix model in external field [55, 72], multi-trace matrix model
[25, 16] These expansions are formal in application to combinatorics and
quantization, and have the status of Poincaré asymptotic series in random
matrix theory. In the latter case, a growing corpus of works in analysis
[1, 77, 28, 27, 78, 29, 15, 26] shows that such asymptotic expansions do
exist.

2. Understanding the geometric nature of the first terms in this large N ex-
pansion. The leading covariance is related to the fundamental bidifferen-
tial of the second kind ω0,2, therefore to a (1d restriction of) the Gaussian
free field on the half-spectral curve. The order 1 correction to the free
energy ωg=1,n=0 is related to the Bergman tau function on Hurwitz space
and the determinant of the Laplacian on the spectral curve [81, 63, 64].

3. Hermitian matrix models provide particular examples of KP and Toda
integrable systems [76], generating series of enumerative geometry of sur-
faces (e.g. Kontsevich matrix model [82]), conformal field theories on the
spectral curve [84, 85], partition function of gauge theories and topologi-
cal string theory [90, 61, 62]. Therefore, the intuition developed in matrix
models was important in reaching new applications of the topological re-
cursion to geometry, although these applications do not enter the realm
of matrix models.

4. β matrix models provide a 1-parameter deformation of hermitian matrix
models, and their large N expansion is governed by the β-deformation of
the topological recursion [41, 42, 43, 13]. β governs the transition between
commutative and non-commutative curves. Namely, when βN = O(1),
the initial data for topological recursion becomes a D-module instead of
a curve. Ongoing work of Eynard brings the theory to a axiomatic form
and extends most properties of the TR to this non-commutative TR.

Here are two original applications to random matrix theory.

5. The all-order finite size corrections to the large deviations of the maximum
eigenvalue in β-matrix ensembles is computed by β-TR [23, 31]. As a
consequence, modulo a proof that two limits commute (which has not
been obtained yet), the all-order left and right tails of Tracy-Widom β
distribution (describing the fluctuations of the maximum of the eigenvalue
of the random β-matrix model in a generic situation) are computed by
TR. Only the first two terms are rigorously known in the literature, and
this conjecture predicts in particular an expression for the transcendental
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constant giving the order 1 term, which matches the (difficult) known
cases for β = 1,2,4.

6. TR gives the all-order asymptotics of Töplitz determinants – which are re-
lated to integrals over U(N) – for a class of symbols supported on several
arcs [88]. This case does not belong to the Fisher-Hartwig class, which
could be handled by Riemann-Hilbert steepest descent analysis, and there-
fore was not accessible before.

4 Flat connections on surfaces, WKB, Higgs mod-
uli space

1 For any flat connection with meromorphic singularities on a compact curve
C, and any basis of flat sections, one can construct correlators which are
solutions of loop equations [12, 11, 60, 10]. In the case of h̵-connections, if
the flat sections are of topological type (this constrains the form of their
formal h̵→ 0 expansion), their formal WKB expansion is computed by the
TR wave function. This provides a conditional converse to the quantum
curve conjecture. By analysis of the Knizhnik-Zamolodchikov(-Bernard)
system, this also gives a perspective to study conformal blocks, as well
as the quantization of the Higgs moduli space, whose implications are
still under investigation. One may hope that it will shed light and give a
topological recursion derivation of the AGT conjecture.

2.a The above theory has been applied to show that the formal h̵→ 0 expan-
sion of tau functions associated with all the six Painlevé equations coincide
by the TR free energies [79]. In particular, various asymptotics of the uni-
versal local distributions in hermitian random matrix theory are computed
by TR – e.g. left-tail asymptotics of Tracy-Widom distribution related to
Painlevé II [18], large gap asymptotics of the sine-gap distribution related
to Painlevé V [89].

2.b [74] relates WKB expansion of the GKZ hypergeometric system to topo-
logical recursion.

3. The theory of 1. has been extended to handle difference equations on C
in [87] – see [Section 7, 3.] for an application.

4. [96, 51] proposed that the wave function of TR for Hitchin spectral curve
satisfies a quantum curve equation – in close relation with quantization of
the Higgs moduli space - although there is consensus that the proof is not
complete as such for curves of genus > 0.

5. The Taylor expansion of the special Kähler metric on the base of Hitchin
integrable systems is computed by the genus 0 sector of TR [9].

6. For elliptic spectral curves, [33] proved the quantum curve conjecture, and
showed that it implies new identities between modular forms.
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5 Combinatorics

1. TR solves the problem, on surfaces of arbitrary topology, of enumerating
maps (aka fatgraphs, discretized surfaces, etc.) [59], maps carrying sta-
tistical physics models (like Ising model, loop model, Potts model, etc.)
[19, 25], Grothendieck dessins d’enfants and hypermaps [80, 52]. As a
consequence of the singular limit property, it provides a proof of critical
exponents on surfaces of any topology, and formula for the asymptotics
number of maps in the limit of a large number of vertices.

2. Colored tensor models have a combinatorial interpretation as generating
series of discretized spaces of dimension D – and matrix models are re-
trieved for D = 2. Certain colored tensor models can be represented as
multi-trace matrix models, and as such, their formal large N expansion is
computed by blobbed TR [98, 14].

2.a TR solves the problem of enumerating branched covers (Hurwitz theory) of
P1 with one arbitrary, sorted by genus of the covering – this was Bouchard-
Mariño conjecture [38] proved in [67] (the earlier paper [24] proposed a
proof which was later found to be incomplete, due to ill-defined manip-
ulations of formal series). As a result, it gives a new proof – which is
purely combinatorial proof if one is allowed to use Kontsevich theorem
(former Witten conjecture) as an input – of the ELSV formula. TR also
solves a large class of variants of this enumeration problem [2], as well as
a q-orbifold [49] version and an r-spin version proved for r = 3, and for
arbitrary r but genus 0 in [30]. This also results in various ELSV-type
formulas for these different kind of Hurwitz numbers.

2.b A large class of Hurwitz problems were solved by TR in the series of papers
[2, 3]. Other interesting cases which are not covered by these papers but
are solved by TR are simple Hurwitz numbers (see 2.a), weakly monotone
Hurwitz numbers [48],

3. As TR computes sums over fatgraphs, it has applications to combinatorics
of the moduli space [40, 97, 8].

6 Chern-Simons theory

1. The large rank expansion of the LMO invariant of the Seifert 3-manifolds
S3/Γ [75, 91], where Γ is a finite isometry group, and colored HOMFLY
invariant of the knots going along the fibers of the Seifert fibration, are
computed by a specialization of the spectral curve of the relativistic ADE
Toda chain [39, 22, 17]. When Γ is a finite cyclic group, this includes the
case of HOMFLY invariants of torus knots [39]. When Γ is non abelian,
it proves that the large rank expansion of the colored HOMFLY of knots
along the fibers have singularities in the u = Nh̵-complex plane [22]. This
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is contrast with colored HOMFLY invariants of knots in S3, which are
Laurent polynomials in eu/d and eh̵/d for some integer d.

2. See Section 2, 4.

7 Enumerative geometry of surfaces and mirror
symmetry

0.a Kontsevich proved in [82] Witten’s conjecture [104], stating that ψ-classes
intersection numbers on Mg,n satisfy Virasoro constraints. These con-
straints are equivalent to TR for generating series of ψ-classes intersections
for the spectral curve x = y2/2.

0.b The topological recursion for the Bessel curve xy2 = 1 gives [50] the topo-
logical expansion of the Brézin-Gross–Witten matrix model – and this
matrix integral is known since [94] to be a tau function of the KdV hierar-
chy. [99] constructs a sequence (Θg,n)g,n of cohomology classes on Mg,n,
satisfying axioms different from that of a cohomological field theory, and
such that TR amplitudes for the Bessel curve are the intersection of these
classes with ψ-classes.

0.c Via hyperbolic geometry, Mirzakhani obtained in [95] a famous recursion
on 2g − 2 + n > 0 for the Weil-Petersson volume of the moduli space of
bordered surfaces of genus g with n boundaries. After Laplace transform,
this recursion is equivalent to TR for the spectral curve y = sin(2π

√

2x).

1. These two examples led to far reaching generalizations. For any initial
data, ωg,n can be expressed in terms of tautological intersection theory on
Deligne-Mumford moduli space of curves [57, 58, 44]. An important result
of [92, 53] gives a partial converse: TR computes the correlation function
of semi-simple cohomological field theories, and the action of the Givental
group on CohFT can be explicitly carried to the initial data of TR. This
result uses the difficult result of Teleman [103] that Givental group action
is transitive on CohFT on a given semi-simple Frobenius algebra. The
identification of this action on initial data of TR was done by study of
graphs. It is also understood now in a spirit closer to Givental’s original
formula via [Section 1, 1.b].

2 Based on these results, the most remarkable achievement of TR is the
proof [71, 73] of Bouchard-Klemm-Mariño-Pasquetti conjecture [37] for
toric Calabi-Yau 3-folds X: TR for their mirror curve of X computes
the closed and open Gromov-Witten invariants of X. The initial data
of TR in this case is provided by toric mirror symmetry (identification
of Frobenius manifolds: quantum cohomology on A, Landau-Ginzburg
model B side). It should be noted that all those cases have semi-simple
Frobenius manifolds.
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3 In the case of the AN -singularity, the loop equations are equivalent to
W -constraints for the ancestor potential. [93]

4 0.a admits a generalization to the moduli space of open Riemann surfaces,
and a modification of TR computes the relevant intersection numbers in
this case [100]. This theory is still under investigation.
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recursion, Annales Institut Poincaré - D 1 (2014), no. 2, 225–264, math-
ph/1307.4957.

[17] G. Borot and A. Brini, Chern-Simons theory on spherical Seifert mani-
folds, topological strings and integrable systems, Adv. Theor. Math. Phys.
(2018), math-ph/1502.00981.

[18] G. Borot and B. Eynard, Tracy-Widom GUE law and symplectic invari-
ants, (2010), nlin.SI/1011.1418.

[19] , Enumeration of maps with self avoiding loops and the O(n) model
on random lattices of all topologies, J. Stat. Mech. (2011), no. P01010,
math-ph/0910.5896.

[20] , Geometry of spectral curves and all order dispersive integrable
system, SIGMA 8 (2012), no. 100, math-ph/1110.4936.

[21] , All-order asymptotics of hyperbolic knot invariants from non-
perturbative topological recursion of A-polynomials, Quantum Topology
(2015), math-ph/1205.2261.

[22] , Spectral curves, root systems, and application to SU(N) Chern-
Simons theory on Seifert spaces, Sel. Math. New Series 23 (2017), no. 2,
915–1025, math-ph/1407.4500.

[23] G. Borot, B. Eynard, S.N. Majumdar, and C. Nadal, Large deviations
of the maximal eigenvalue of random matrices, J. Stat. Mech. (2011),
no. P11024, math-ph/1009.1945.

[24] G. Borot, B. Eynard, M. Mulase, and B. Safnuk, A matrix model for
simple Hurwitz numbers, and topological recursion, J. Geom. Phys. 61
(2010), no. 26, 522–540, math-ph/0906.1206.

[25] G. Borot, B. Eynard, and N. Orantin, Abstract loop equations, topologi-
cal recursion, and applications, Commun. Number Theory and Physics 9
(2015), no. 1, 51–187, math-ph/1303.5808.

9



[26] G. Borot, V. Gorin, and A. Guionnet, Fluctuations for multi-cut discrete
β-ensembles and application to random tilings, in progress.

[27] G. Borot and A. Guionnet, Asymptotic expansion of beta matrix models
in the multi-cut regime, (2013), math-ph/1303.1045.

[28] , Asymptotic expansion of β matrix models in the one-cut regime,
Commun. Math. Phys 317 (2013), no. 2, 447–483, math.PR/1107.1167.

[29] G. Borot, A. Guionnet, and K. Kozlowski, Large-N asymptotic expansion
for mean field models with Coulomb gas interaction, Int. Math. Res. Not.
(2015), no. 20, 10451–10524, math-ph/1312.6664.
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Annales Henri Poincaré (2012), hep-th/1105.2012.

[40] K.M. Chapman, M. Mulase, and B. Safnuk, The Kontsevich constants
for the volume of the moduli space of curves and topological recursion,
Commun. Numb. Th. Phys. 5, 643–698, math.AG/1009.2055.

10



[41] L.O. Chekhov and B. Eynard, Matrix eigenvalue model: Feynman graph
technique for all genera, JHEP (2006), no. 0612:026, math-ph/0604014.

[42] L.O. Chekhov, B. Eynard, and O. Marchal, Topological expansion
of the Bethe ansatz, and quantum algebraic geometry, (2009), math-
ph/0911.1664.

[43] , Topological expansion of beta-ensemble model and quantum alge-
braic geometry in the sectorwise approach, Theoretical and Mathematical
Physics 166 (2011), no. 2, 141–185, math-ph/1009.6007.

[44] L.O. Chekhov and P. Norbury, Topological recursion with hard edges,
(2017), math.AG/1702.08631.

[45] R. Dijkgraaf and H. Fuji, The volume conjecture and topological strings,
Fortsch. Phys. 57 (2009), 825–856, hep-th/0903.2084.

[46] R. Dijkgraaf, H. Fuji, and M. Manabe, The volume conjecture, perturbative
knot invariants, and recursion relations for topological strings, Nucl. Phys.
B 849 (2011), 166–211, hep-th/1010.4542.

[47] X.-M. Ding, Y. Li, and L. Meng, Hopf algebra of topological recursion,
math-ph/1607.08136.

[48] N. Do, A. Dyer, and D.V. Mathews, Topological recursion and a quantum
curve for monotone Hurwitz numbers, J. Geom. Phys. 120 (2017), 9–36,
math.GT/1408.3992.

[49] N. Do, O. Leigh, and P. Norbury, Orbifold Hurwitz numbers and Eynard-
Orantin invariants, math.AG/1212.6850.

[50] N. Do and P. Norbury, Topological recursion on the Bessel curve, math-
ph/1608.02781.

[51] O. Dumitrescu and M. Mulase, Quantization of spectral curves for mero-
morphic bundles through topological recursion, math.AG/1411.1023.

[52] P. Dunin-Barkowski, N. Orantin, A. Popolitov, and S. Shadrin, Combina-
torics of loop equations for branched cover of the sphere, Int. Math. Res.
Not. (2017), math-ph/1412.1698.

[53] P. Dunin-Barkowski, N. Orantin, S. Shadrin, and L. Spitz, Identifica-
tion of the Givental formula with the spectral curve topological recursion
procedure, Commun. Math. Phys. 328 (2014), no. 2, 669–700, math-
ph/1211.4021.

[54] J.N. Esteves, Hopf algebras and topological recursion, J. Phys. A: Math.
Theor 48 (2015), no. 44, math-ph/1503.02993.

[55] B. Eynard, Large N expansion of the 2-matrix model, JHEP (2003),
no. 0301:051, hep-th/0210047.

11



[56] , All genus correlation functions for the hermitian 1-matrix model,
JHEP (2004), no. 0411:031, hep-th/0407261.

[57] , Recursion between Mumford volumes of moduli spaces, Annales
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