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1 Reading

e E. D’Hoker and D. Z. Freedman, Supersymmetric gauge theories and the AdS/CFT corre-
spondence, hep-th /0201253 (section 4 pages 25-38)

e O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large N field theories,
string theory and gravity, hep-th/9905111| (subsection 1.3.1 pages 16-19 and subsection 2.2.1
pages 36-45)

e M. J. Duff, “TASI Lectures on Branes, Black Holes and Anti-de Sitter Space” hep-th/9912164
(pages 23-32)

2 Type ITA supergravity in 10D

With the help of P. West hep-th/9811101 pages 58-66 (or Polchinski “String theory” volume 2,
chapter 12, pages 84-89), derive the bosonic part of type IIA supergravity Lagrangian in 10D by
dimensionally reducing the bosonic part of A" = 1 supergravity in 11D.

3 AdS Space
The anti-de Sitter AdSp2 is the hyperboloid defined by embedding in p + 3 dimensional space
p+l
(X0 — (X7 4 (X = R 1)
i=1

This definition makes its SO(p + 1, 2) isometries manifest.
The metric in the embedding p + 3 space reads

p+1
(ds)® = —(dX°)? — (dXPT2)* +) "(dX")? (2)

i=1
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3.1 Global coordinates
Substitute [

X% =R coshp cost
XP*2 = R coshp sint
X'=RsinhpQ' i=1,....,p+1 (3)

in to find
(d5)2 — R2 [dp2 — cosh? pdt2 + sinh? P (de+1)2] (4)

The time coordinate the way it was defined has range 0 < ¢t < 2w. The hyperboloid has closed
timelike curves. Consider the covering space —oo < t < 400 that has no closed timelike curves.
This is what we will call “the AdS space”.

Change variable to tan 6 = sinh p. Show that the new variable has range 0 < § < 7/2 and that the

metric becomes )

R .
(ds)? = p— [—dt? + d6? + sin® 0 (dp41)?] (5)

Note that the topology of this space is R x SP*2 as df? + sin® 0 (dQp41)? = (dQp42)%

3.2 Poincaré coordinates

Substitute

X0 = % [1 +u? (R2 (D)2 - tQ)}

XPt2 = Rut
XPH = i 1 - (B2 + @) - )]
X'=Ruz® with i=1,...,p (6)
in and get
(ds)® = R? (‘1“2)2 u? (—dt* + (df)2)] (7)

Finally, show that setting u = % leads to

(ds)? = 1;22 (dy2 —df? + (d:E’)2) (8)

Lwhere ; are coordinates on a p + 1-sphere.



4 Reissner-Nordstrom black holes and AdS space

Write down Einstein’s equations with gravity coupled to a U(1) gauge field.
Show that they admit a solution of the form

ds® = —A (p)A—(p)dt® + Ay (p) T A_(p) " dp? + p*dQ3
n -9
P 2

Ai(p):(l—ri) ri:G(Mi M?-Q?). 9)
p
with two horizons located at r =7, and r =r_.

Cosmic censorship forbids a naked singularityﬂ and requires that the singularity at r = 0 is
hidden behind a horizon. Show that this implies that

M =|Ql. (10)

This inequality should remind you of the BPS bound we discovered when studied susy algebras
with central charges!

Consider the extremal geometry M = |@Q|, and let the double horizon be at ro. Change the
radial coordinate to

rT=p—To; (11)
and show that
1 2
Ai:17Tf0:<1+T—O> EH(T)il and p2:r2(1+r*0) , (12)
P r "
so that 2
At = —H(r)de* + H(r)? (dr® +17d0)" . (13)

In these coordinates SO(3) is manifest (isotropic coordinates).
Then show that the near the horizon geometry (r = 0) looks like

2 2
ds* = — < " > dt* + (1 + T—O) (dr? +r2d0,)
r+70 r
Lo a4 T g2 4 2 (14)
o2 2drT 47 )
Defining yet another new coordinate
2
o
_70 15
=T, (15)
so that dz/z = dr/r, we find a direct product of an anti-deSitter spacetime with a sphere:
2
ds* — 7;(2) (—dt* + d=®) + r3dQ3 . (16)
z N——
[ —

AdSQ X 82 .

Note that the Reissner-Nordstrom solution is also asymptotically flat! This means that it interpo-
lates between two maximally symmetric spacetimes!

2Naked is a singularity that is not “hidden” from the observer by an event of horizon. An observer can travel
there and return with no obstruction to report on what was observed.



5 The D3 Brane solution

First derive the Type IIB sugra field equations:

1 4 i 1~ [l po L~ [+poTu
R;u/ = iH,u,pO'HVp + 62 <FluF11/ + ZF?)MUpFSVp + ﬁFngo'T’UF5Vp ) (17)
where
F =dC i
Hs =dB F3=F3 - CHj (18)
Fy = dA, Fs=F;— 1Ay NH3+ iBAF;
Fy = dA]

Then consider the following Ansatz: a constant dilaton ¢, vanishing axion C' = 0, vanishing two-
forms A2y = Buw = 0, Fis)uvpor ~ €uvporv0”H and a metric of the form

ds®> = H™ 3 (§)da"dz,, + H? (§)dg? (19)

where z#, u = 0,---,3 will be the coordinates along the brane, while i € R® the coordinates
perpendicular to the brane. Show that the Ansatz above is a solution of the the sugra equations
provided H is harmonic in the transverse directions (i.e. satisfies O, H = 0, except at the position
of the brane, where a pole will occur). Then, plug in the susy transformations dilatino and gravitino
susy transformations

Our 1

1
— TH* Ly p \2
OA KF Imr 74 Gs "€ + (Fermi) (20)
1 i 1 oT v * .
0Py = ;Due + @lemMF”l Mol e+ %(FM” G3por — P Gappp)€” + (Fermi)?

Observe that most of the terms immediately go to zero apart from one from which we lern that
this solution preserves 16 supersymmetries (i.e. half of the total number).
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