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1 Reading

• Richard J. Szabo “An Introduction to String Theory and D-brane Dynamics” chapter 2 and
3 discuss the bosonic string, subsections 5.2 and 5.3 T-duality, subsection 6.4 presents a
derivation of the DBI action from the ws and finally, Chapter 7 discusses properties of the
DBI.

• Barton Zwiebach “A First Course in String Theory” (Get the Second Edition for more!)
chapters 12 and 13 discuss open and closed strings while 15 includes Quantization of open
strings on Dp-branes. T-duality of closed strings is in 17 and T-duality of open strings in 18.
Finally, read the subsections 23.5, 23.6 and 23.7 for a discussion very similar with the one we
had in class motivating the AdS/CFT correspondence.

• E. D’Hoker and D. Z. Freedman, Supersymmetric gauge theories and the AdS/CFT corre-
spondence, hep-th/0201253 (section 5 pages 40-47)

• O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large N field theories,
string theory and gravity, hep-th/9905111 (subsection 3.1 pages pages 55-61)

2 Closed vs open Strings

Begin by showing that Polyakov’s action S = − 1
4πα′

∫
d2σ
√
−ggαβ ∂αXµ∂βX

ν ηµν enjoys scale
invariance. This will allow you to write Polyakov’s action in the conformal gauge gαβ = ηαβ

S = − 1

4πα′

∫
d2σ ∂αX · ∂αX (1)

where the e.o.m. for Xµ reduce to the free wave equation(
∂2

∂τ2
− ∂2

∂σ2

)
Xµ = 0 or ∂+∂−X

µ = 0 (2)

using lightcone coordinates σ± = τ ± σ.
You must still make sure that the equation of motion for gαβ is still satisfied!
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Show that the equation of motion for gαβ is Tαβ = 0 which in conformal gauge looks like

T01 = Ẋ ·X ′ = 0 and T00 = T11 =
1

2
(Ẋ2 +X ′ 2) = 0 or (∂+X)2 = (∂−X)2 = 0 (3)

You will now solve the free wave equations subject to two constraints arising from Tαβ = 0.
Imposing the boundary condition

Xµ(σ, τ) = Xµ(σ + 2π, τ) (4)

(this is for closed strings) show that the solution can be written as

Xµ(σ, τ) = Xµ
L(σ+) +Xµ

R(σ−) (5)

where

Xµ
L(σ+) =

1

2
xµ +

1

2
α′pµ σ+ + i

√
α′

2

∑
n 6=0

1

n
α̃µn e

−inσ+

, (6)

Xµ
R(σ−) =

1

2
xµ +

1

2
α′pµ σ− + i

√
α′

2

∑
n 6=0

1

n
αµn e

−inσ− . (7)

with xµ and pµ being the center of mass position and momentum of the string.
Then show that

αn = (αµ−n)∗ , α̃n = (α̃µ−n)∗ (8)

because X has to be real.
Use the definition of Virasoro’s

Ln =
1

2

∑
m

αn−m · αm L̃n =
1

2

∑
m

α̃n−m · α̃m (9)

to show that the constraints take the form

(∂−X)2 = α′
∑
n

Ln e
−inσ− = 0 and (∂+X)2 = α′

∑
n

L̃n e
−inσ+

= 0 (10)

where by definition the zero mode

αµ0 = α̃µ0 =

√
α′

2
pµ (11)

Putting everything together derive

M2 = −pµpµ =
4

α′
N =

4

α′
Ñ (12)

where
N =

∑
n>0

αn · α−n and Ñ =
∑
n>0

α̃n · α̃−n (13)

N = Ñ is called the level matching condition.
As we discuss in class this is why closed strings lead to a theory spacetime of gravity.
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For open strings σ lives on an interval [0, π] rather that a circle. The mode expansion is obtained
from that of the closed string through the “doubling trick” which identifies σ ∼ −σ on the S1.
This immediately implies the Neumann boundary condition (∂σX = 0)

Xµ(τ, σ) = Xµ(τ,−σ) ⇒ αµn = α̃µn (14)

For open strings there is only one set of oscillators and the definition of the zero mode changes
to

αµ0 =
√

2α′pµ (15)

that finally leads to

M2 = −pµpµ =
1

α′
N (16)

In contrast to closed strings, for open strings we have states created by only one oscillator that
yield spacetime gauge fields.

3 T-duality and the string coupling

Problem 18.5 from Zwiebach (this numbers correspond to the second edition of the book – the
problems are also there in the first edition)

4 Born-Infeld action

Show that in four dimensions the Born-Infeld Lagrangian

LBI = −b2
√
− det

(
ηµν +

Fµν
b

)
+ b2 (17)

can be written as

LBI = −b2
√

1 +
FµνFµν

2b2
− Fµν F̃µν

16b4
+ b2 = −b2

√
1− E2 −B2

b2
− ( ~E · ~B)2

b4
+ b2 (18)

where E and B is the electric and magnetic field respectively.
The point of this exercise is to make you see that this action is a regularized version of Maxwell

theory. The Born-Infeld theory removes the divergence of the electron’s self-energy in classical
electrodynamics by introducing an upper bound of the electric field at the origin.

Show that the equation of motion for the electric field is:

∇ ·

 ~E√
1− E2

b2

 = 0 (19)

In the presence of a point charge

∇ ·

 ~E√
1− E2

b2

 = Qδ(r) (20)
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show that it’s solution is
~E =

Q√
r4 + Q2

b2

r̂ (21)

The electric field at the origin is not divergent!

5 String ending on a D-brane

Problems 20.6 and 20.7 from Zwiebach (second edition)

6 AdS/CFT: parameters identification

As we discussed in the class IIB string theory in AdS5 × S5 is dual to N = 4 SYM under some
parameter identification:

4πgs = g2YM and
R4

`4s
= λ (22)

where on the string theory side we have

• the string coupling constant gs

• the effective string tension R2/α′ = R2/`2s.

while on the gauge theory side λ = g2YMN

• N is the rank of the gauge color group

• gYM the coupling constant.

Derive (22) by:

1. expanding the DBI action for the D3 brane and comparing it to the YM action and

LDBI = −Tp
√
−det (ηµν + 2πα′Fµν) ∼ Tp (2πα′)

2
FµνF

µν+· · · −→ LYM =
1

g2YM
FµνF

µν+· · ·

(23)

2. identifying the tension of the supergravity soliton solution (ADM mass) around N coincident
D3 Branes (see last lecture and HW 4) with the D-Brane tension Tp = 1

(2π)p`p+1
st gst

that we

calculated in class using string theory.

In order to expand the DBI action you need the identity

det

(
A B
C D

)
= detA · det

(
D − CA−1B

)
= detD · det

(
A−BD−1C

)
(24)

Prove that this identity is true by first observing that(
A B
C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
(25)
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7 The effective potential in Schwarzschild background

Consider a real, massless Klein-Gordon scalar field in the background of a Schwarzschild black hole

S =
1

2

∫
d4x
√
−ggµν∂µφ∂νφ . (26)

Plug in the Schwarzschild metric

ds2 =

(
1− 2MG

r

)
dt2 +

(
1− 2MG

r

)−1
dr2 − r2dΩ2 . (27)

It is very useful to use the tortoise coordinate defined as

r∗ = r + 2MG log (r − 2MG) . (28)

Define ψ = rφ and decompose ψ in spherical harmonics Y`,m. After performing the angular integrals
show that the action can be written in the following form

S =
∑
`,m

S`,m with S`,m =
1

2

∫
dt dr∗

[(
∂ψ`m
∂t

)2

−
(
∂ψ`m
∂r∗

)2

− V`(r∗)ψ2
`m

]
(29)

where the effective potential that the scalar field feels is

V`(r
∗) =

r − 2MG

r

(
` (`+ 1)

r2
+

2MG

r3

)
. (30)

Plot the potential for ` = 0, 1, 2.
Repeat this calculation for a scalar in the background of a Dp-brane.

8 Derive Newton from Einstein

If you have never derived Newton from Einstein, now is the time! All you have to do is to impose
that the particles are moving much slower that the speed of light and that the gravitational fields
is week and static.

Write down the geodesics equation

d2xµ

dλ2
+ Γµνρ

dxν

dλ

dxρ

dλ
= 0 (31)

and impose that the particles are moving slowly, i.e.

dxi

dτ
<<

dt

dτ
. (32)

The geodesic equations become

d2xµ

dτ2
+ Γµ00

(
dt

dτ

)2

= 0 . (33)
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For a static field (∂0gµν = 0) show that

Γµ00 = −1

2
gµν∂νg00 . (34)

If the gravitational fields is week you can safely expand around Minkowski

gµν = ηµν + hµν with |hµν | << 1 . (35)

Using all the above show that

d2t

dτ2
= 0 ⇒ dt

dτ
= const (36)

and then that
d2xi

dt2
=

1

2
∂ih00 . (37)

This is Newtons equation
~a = −~∇V (38)

if you identify h00 = V the gravitational potential.
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