Lineare Algebra und analytische Geometrie II* SS 2012

ÜBUNGSBLATT 8, Abgabe spätestens bis in der VL am Do. 14.06. um 13.15 Uhr

- [Parallelität] Seien X und Y affine Räume und seien $X_1, X_2 \subset X$ zwei affine Unterräume von X. Zeigen Sie:
 - a) Sind X_1 und X_2 parallel und ist $X_1 \cap X_2 \neq \emptyset$, so ist $X_1 \subset X_2$ oder $X_2 \subset X_1$.
 - b) Ist $f: X \to Y$ eine affine Abbildung und sind $X_1, X_2 \subset X$ parallel, so sind $f(X_1), f(X_2) \subset Y$ parallel.

(3 Punkte)

- 2 [Translationsvektoren] Zeigen Sie die folgenden Aussagen durch Rechnen mit Translationsvektoren, also ohne Hilfe neuer Koordinaten.
 - 1. Die Diagonalen eines Parallelogramms schneiden sich im Mittelpunkt. Hinweis: Betrachten Sie dazu in der Ebene $X = \mathbb{A}_2(\mathbb{R})$ die Punkte p_0, p_1, p_2, p_3 als Ecken eines Parallelogramms, wobei $\overrightarrow{p_0p_1'} = \overrightarrow{p_2p_3'}$ gilt.
 - 2. Die Seitenhalbierenden eines Dreiecks schneiden sich in einem Punkt und teilen sich im Verhältnis 2:1.
 - 3. Der Strahlensatz: Sei X ein affiner Raum über K mit affin unabhängigen Punkten $p_0, p_1, p_2 \in X$ und seien $q_1 \in p_0 \vee p_1$, $q_2 \in p_0 \vee p_2$ von p_0 verschieden. Sind die Geraden $p_1 \vee p_2$ und $q_1 \vee q_2$ parallel, so gilt:

$$TV(p_0, p_1, q_1) = TV(p_0, p_2, q_2).$$

Hinweis: siehe auch [F3], Seite 25 f.

(4 Punkte)

- \mathfrak{Z} [Semilineare Abbildung] Sei K ein Körper. Zeigen Sie:
 - a) Eine Abbildung $F: K^n \to K^n$ ist genau dann semilinear, wenn es einen Automorphismus α von K und eine Matrix $A \in M(n \times n; K)$ gibt, so dass für alle Spaltenvektoren $(x_1, \dots, x_n)^t \in K^n$ gilt:

$$F\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) = A \cdot \left(\begin{array}{c} \alpha(x_1) \\ \vdots \\ \alpha(x_n) \end{array}\right).$$

b) Seien V und W Vektorräume über K und sei $G:V\to W$ eine semilineare Abbildung. Dann ist für jeden Untervektorraum $V'\subset V$ auch $G(V')\subset W$ ein Untervektorraum. Ist G injektiv, so gilt weiter: $\dim G(V')=\dim V'$.

(7 Punkte)

- \mathcal{A} [Dilatationen, Fixpunkte] Sie X ein affiner Raum. Beweisen Sie die folgenden Aussagen:
 - a) Eine Dilatation mit zwei verschiedenen Fixpunkten ist die Identität.
 - b) Eine Affinität $f:X\to X$ ist genau dann eine Dilatation, wenn für jede Gerade $Y\subset X$ die Bildgerade f(Y) parallel zu Y ist.

(6 Punkte)