On the cohomology of flows of stochastic and
random differential equations

Peter Imkeller Christian Lederer
Institut fiir Mathematik Institut fiir Mathematik
Humboldt-Universitat zu Berlin Humboldt-Universitat zu Berlin
Unter den Linden 6 Unter den Linden 6
10099 Berlin 10099 Berlin
Germany Germany
imkeller@mathematik.hu-berlin.de lederer@mathematik.hu-berlin.de
May 26, 2000
Abstract

We consider the flow of a stochastic differential equation on d-dimensional
Euclidean space. We show that if the Lie algebra generated by its diffusion vec-
tor fields is finite dimensional and solvable, then the flow is conjugate to the flow
of a non-autonomous random differential equation, i.e. one can be transformed
into the other via a random diffeomorphism of d-dimensional Fuclidean space.
Viewing a stochastic differential equation in this form which appears closer to
the setting of ergodic theory, can be an advantage when dealing with asymptotic
properties of the system. To illustrate this, we give sufficient criteria for the
existence of global random attractors in terms of the random differential equa-
tion, which are applied in the case of the Duffing-van der Pol oscillator with two
independent sources of noise.
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Introduction

In this paper we try to answer the following basic question: when is a stochastic
differential equation cohomologous to a non-autonomous random ordinary differential
equation? In other words: under which conditions can one find a random coordi-
nate change on the state space which transforms the flow generated by the stochastic
differential equation into the flow of a non-autonomous random one?



Let us first state this problem in a little more precise terms, for systems on Wiener
space (€2, F, P) with an m-dimensional Wiener process W and the canonical shift 6,
on {2 by time ¢ which is P-ergodic for ¢ # 0. Suppose fy, -, fm are smooth vector
fields in R? and let ¢ = (¢;);cr denote the (possibly only local) flow of the stochastic
differential equation

m
dxy = fo(zy) dt + Z fi(x) o dW} (1)
i=1
A non-autonomous random differential equation is given by a smooth random vector
field g(-,z),r € R4, through
d.’L't = g(Ht-, .’L't) dt. (2)

Then our question asks for a random diffeomorphism ® of the state space R such that
¢ and the (local) flow x generated by (2) are related by the conjugation equation

P o et Xt (D_l = ¢t, t e R. (3)

Why could one be interested in having a relationship such as (3)? For our initial
aims, the reason was this. While the framework of the treatment of (1) is stochastic
analysis, (2), describing a motion along a stationary vector field, fits better into the
methodology of ergodic theory. Fortunately, the cohomology relation (3) preserves
asymptotic invariants such as Lyapunov exponents, rotation numbers, or invariant
subspaces such as Oseledets spaces, invariant manifolds, or random attractors (see
Arnold [Arn98]). So, if aspects of ergodic theory are involved in the study of asymptotic
properties of (1), it could be much simpler to look at (2) instead, and then let ® do the
rest of the work. In a simpler setting, this concept has already been used in [Imk98| to
study the existence of global random attractors of systems like the randomly perturbed
Duffing-van der Pol oscillator, or the Lorenz equation. We shall give another illustration
of this idea in section 4 below, where we study the existence of global random attractors,
and consider the Duffing-van der Pol oscillator with two different sources of noise as
another example.

The answer we shall give in this paper to the conjugation problem is this: we show
that if the Lie algebra L generated by fi---, f,, is solvable and finite dimensional,
then there is a random diffeomorphism @ solving (3). This reminds somewhat the
generalization of the well known Doss-Sussmann method of solving a stochastic differ-
ential equation through an associated ordinary differential equation, given by Yamato
[Yam79], Kunita [Kun80] and Krener and Lobry [Kre81]. In fact, some algebraic as-
pects of the algorithm to be described, are similar to the ones used in the literature.
This algorithm, which is our principal tool to derive the main results, reduces grad-
ually the algebraic complexity of the Lie algebra £, and this way creates a chain of
random diffeomorphisms the composition of which yields ®. The algorithm had to be
taylor made for the central purposes of ergodic theory, however. They can be expressed
by requiring that the noise terms of the "remainder” stochastic differential equations
updated in each step, have to be made stationary. To achieve this goal, we use the
following simple observation. If X,Y are smooth stationary semimartingales, then



the generally non-stationary process X o dY can be made stationary by passing to its
moving average process

t
e*t/ ¢* X,0dY,, teR.

The paper is organized as follows.

In section 1 we collect some auxiliary results concerning stationary semimartingales,
and prove some algebraic identities to be used crucially in the reduction algorithm. The
latter is first described in the relatively simple framework of nilpotent Lie algebra in
section 2, and leads to the conjugation theorem (Theorem 2.1). In section 3 we pass
to the case of a solvable Lie algebra £. In this framework the reduction algorithm
turns out to be even formally simpler. Yet, the stochastic differential equations to
be solved in each step become gradually more involved, and are much less explicit
and transparent. In section 4, we first discuss some general sufficient conditions for
the existence of global random attractors in the situation of the preceding sections.
We finally consider a concrete problem, the Duffing-van der Pol oscillator with two
independent linear sources of noise: multiplicative noise on both position and velocity.
In this simple case the Lie algebra of the linear diffusion vector fields is solvable, but
not nilpotent.

We expect that more asymptotic properties of random differential equations given
by stochastic differential equations become treatable via conjugation. One example
promises to be local linearization of random dynamical systems, as described in the
theorem by Hartman-Grobman: for non-autonomous random differential equations
Wanner [Wan93] derived local linearization results, which are preserved by conjugation.

We restrict our attention to the case of nilpotent resp. linear solvable Lie algebras
in order to see explicitly the dependence of the conjugation in w, which would be
not so clear in the case of nonlinear solvable Lie algebras. We also remark that it
seems possible to obtain a conjugation result using an implicit technique without any
assumption on the Lie algebra generated by the diffusion vector fields. At the moment
however this implicit technique does not provide enough information about the nature
of the conjugation (e.q. temperedness) to be used for proving existence of attractors.

Notations and preliminaries

Our basic probability space is the m—dimensional canonical Wiener space (92, F, P),
enlarged such as to carry an m—dimensional Wiener process indexed by R. More
precisely, 2 = C(R,R™) is the set of continuous functions on R with values in R™,
F the o—algebra of Borel sets with respect to uniform convergence on compacts of
R, P the probability measure on F for which the canonical Wiener process Wy =
(W, ..., W™, t € R, satisfies that both (W})i>o and (W_;)¢>o are usual m—dimensional
Brownian motions. The natural filtration {F! = (W, — W, : s <u,v <t):R3> s <
t € R} of W is assumed to be completed by the P—completion of F. For ¢t € R, let
0; : Q2 — Qw— w(t+-) —w(t), the shift on Q by t. It is well known that 6, preserves
Wiener measure P for any ¢ € R and is even ergodic for ¢ # 0. Hence (Q, F, P, (6;)cr)



“w..”

is an ergodic metric dynamical system (see Arnold [Arn98]). As usual, we use a “o” to
denote Stratonovich integrals with respect to Wiener process.

For a random vector X, we denote by Px the law of X with respect to P. V is used
as a symbol for the gradient of vector fields on R%. Lie brackets between vector fields
will be denoted by the usual symbol [-, -], scalar products in R™ by (.,.).

1 Stationary stochastic integrals and some algebra

It is well known that the Wiener process can be made stationary by just adding a
suitable drift. This way one obtains the stationary Ornstein-Uhlenbeck process. To be

more precise, the sde
dZt = th — Zt dt

has the stationary solution
t
Z = e_t/ e*dWs.

Now suppose that X and Y are stationary semimartingales of the Brownian filtration.
Then the stochastic integral Y odX need not be stationary, just as the Wiener process.
By passing to the same moving average process as above, we may add a drift to the
stochastic integral to make it stationary. We will briefly elaborate on this, and then
consider particular cases of semimartingales of this type, generated by multiple integrals
of the Ornstein-Uhlenbeck process.

For p > 1,2 > 0 let Fy(z) = [In(z + 1)]P. Then F, is a moderate function (see for
example Revuz, Yor [Rev99]). Denote by S the set of continuous semimartingales X
of the Brownian filtration with decomposition dX; = {a;, dW;) + b;dt such that X, a,b
are stationary, and such that

E(Fy(sup |ai])) < oo, E(F,(sup [b)) <oo, E(F,(sup [Xif)) <oo
0<t<1 0<t<1 0<t<1

for all p > 1. Clearly, an Ornstein-Uhlenbeck process belongs to the class S.

Lemma 1.1 Let X,Y € S with canonical (forward) decomposition dX = (a,dW) +
bdt,dY = (c,dW) + ddt,

t
7, = e*t/ &Y, 0 dX,,
t € R. Then Z € S, satisfies

E(Fy(sup |Z))) <00, p>1,
0<t<1

the sde
dZt = }/; (o] dXt — tht,

and has the (forward) decomposition

1
dZ; = (Y}at, th) + (§<at, Ct) + Yib, — Zt) dt.



Proof:
In the following C' will denote a constant varying from line to line and depending only
on p unless stated explicitely.

Once we know that Z; is well defined, stationarity of Z is automatic from the
following equation, which is a consequence of the stationarity of X and Y

0 t
Zgo b, = / eYyiy 0 X,y = € / &Y, 0 dX, = Z,.

Let us first show that

Fp(\/olesY;odXs\)) < 0. (@)

First of all, we have the decomposition

1(czs, cs)]ds.

1 1 1
/ eY,0dX, = / e’ Yy(as, dWy) + / e’[Ysbs +
0 0 0 2

Hence, using the inequality of Burkholder, Davis and Gundy (see Revuz, Yor [Rev99],
p. 170) we have

Fy( |/165YodX )
CUBE [ ¢ VidaydWl)) + BE( [ Vb, +;<a5,cs>]ds\>>}

1

C(E [/ Yefla,Pds]?) + B(B( [ e+ as,cs)]ds|)))

< C(E(Fp(oiggllm)) + E(F, (sup a])) + E(F (sup \bt|))+E(Fp(os<g<pl\ct\)))-

IN

IN

Now we are able to prove (4). To see next that Z; is well defined, note that
00 1
12| < Z n\/ €'Y, 0dX,| 00 (i)
— 0
So by the lemma of Borel-Cantelli, Z; will be well defined, if we can show that

1
P(|/ &Y, 0dX,| > e®) < o0
0

n=1

for some 0 < o < 1. By definition of F,, this amounts to show

o0 1
> P(Fp(|/ e’ Y, 0dX,| > n) < oco.
n=1 0

This in turn is an obvious consequence of (4). Now the SDE valid for Z as well
as the semimartingale decomposition of Z are obvious. = Moreover, since F,(zy) <
2? max(Fy(x), F,(y)) for z,y > 0, we may restrict to the verification of

E(F,(sup |Z;])) <oo, p>1. (5)
0<t<1



Indeed, we have

E(Fy( sup [Z])) (6)

0<t<1

< C{B(F(Z) + B(F(sup | [ € VyasdW,)))

+ B[ elvb+ lan c)]lds)) @
< O{B(E@) + B[ e Vi la,Pds]?)
+ B[ elVib+ S an c)]lds). ®

—0o0

We proceed to estimate the first term in the last line of (6), the second one being
treated similarly. We have with some 0 < a < 1, a constant C'(«) varying from line to
line and ¢ > p

B[ e Yi[la,fasth)
(S e [ @ ViPlasPds]? 0 0_guin)
n=0
<SP [ Wl o6 > )
=1
<1 -I—ZP ie [/ e |Y5|2|a5\2ds]5 00_(ny1) > el% - 1)
=1 =0

<1+C(a zzp[/ €2 |V, |2 a,[2ds]} > C eont1?)

=1 n=0

<140y i BE([ ¢ [V,Pla,ds]?)

=1 n=0 (an + [? )

<1+ O(a) BE(L[ ¢V, Plafds]?)).
Now, finally, the same arguments as used for (4) yield (5). This finishes the proof. O

In the construction of stationary diffeomorphisms which describe the conjugation of
the flows in the following section, a recursively defined family of processes of the above
type will play an essential role. To describe them, we use the following notation. Let

AOZ{]-a""m}a

and recursively for n € N

= U AI:L—1

k>2
Let then for ¢ € Ag,t € R



To set up the recursion, suppose for i € A, stationary processes z;" have been defined.
Let ¢ = (i1, +,%%) € Apy1 be given, with 41,--- i € A,. In this case we also denote
li| = k. Then we define for t € R

k-1

) =et /t e ] 27 (s) o d27. (s).

—00 j=1

For obvious reasons we call these integrals stationary multiple Ornstein-Uhlenbeck in-
tegrals. According to Lemma 1.1 and by induction on n, they are elements of the class

S.

For the algorithm of reduction of algebraic complexity to be discussed in the follow-
ing section, we shall need some identities concerning the Lie algebra generated by the
diffusion vector fields of a stochastic system. It is the aim of the following considera-
tions to provide them.

To this end we have to introduce some more notation. A vector field A : R — R? is
called complete if it generates a global flow (®7);cgr. In this case we set

exp(tA) = &7,

(This notation is consistent since ®{4 = ®£.) For smooth complete vector fields A, B
the Lie bracket [A, B] is defined by

4,B)@) = &

o ( exp (tA)'(x)) ' Bo exp(tA)(z).

t=0

We define recursively the n-fold Lie brackets [A, B],, by

B, n =20,
4, Bln = { [4,[A, Blos], neN.

Let us briefly recall the notion of nilpotence. If (£, [-,-]) is a Lie algebra, let

L' = [£,L]={[A,B]: A,Be L},
En-l—l — [L,,Cn],

n € N. Then L is called nilpotent if there exists n such that £" = 0.

Suppose now that L is generated by finitely many smooth complete vector fields
Ay, ..., A, If L is nilpotent then L is obviously finite dimensional. In this case
it is well known that every element of £ is complete (see e.g. [Pal57]).

Lemma 1.2 Let A, B : R* = R% be smooth complete vector fields and assume that the
Lie algebra generated by A and B is nilpotent. Let (®;)cr denote the flow generated
by A. Then we have

_ o ¢n
® ' Bod, = >[4 B, teR.

n=0 """



Proof:
Let

Ult,z) = @ '(z) B(®i(2)),
V(t,z) = itn[A Blo(z) (teR,zeRY.

n= 0

Then we have U(0,-) = B =V/(0,-) and furthermore

0 0 ! 1
pr”(h7) = gy, ) BlPel)
= o ) el @) B @)
_ aﬁ @) U9 (@)
= [4,0()]@)
and 9 o0 ¢n
5V 6) = X 1 4 Bla@) = A V()

This implies U = V. O

Lemma 1.3 Let A, B : R — R? be smooth complete vector fields and assume that
the Lie algebra generated by A, B is nilpotent. Then we have

%exp(A—l—)\B) = Boexp(A+ AB) + exp(A+ AB)' ch [A, B,

wherecn:m—n,,nEN

Proof:
For A € R let ®* denote the flow of # = A(x) + AB(z). Fix x € R%. Then

do_,, . 0
gl = 33

= (4(®)(2)) + AB'(2}(x))) %cbi(m) + B(®}(x))

(A(®) (@) + AB(2}(2)))

and %(I);\(x)‘tzo = 0.
Since the fundamental solution of

Z = (A(@N2) +AB'(2}(x))) Z



is given by ¢ — ®)'(x), the variations of constants formula and the above lemma give
us

S0 = 0@ [ 8@ B@w) ds

o
= '@ [ > > (A, Bla(x) ds

According to the above lemma we have furthermore

B}) = @B +elE) 52 5 14 Bl
Hence
S exp(A+AB)(x) =+ &(a)
N N

= @7 (z)B(z) + &} («’f)n lm [A, Bl,(7)

= B(®)z)) — )'(z i_ojlni +<I>i‘,(x)2 (n—il-l)! [A, Bl,(z)

— B(exp(A+ AB)(z)) + exp(A + AB)'(z) i‘l (ni 5 —%> (A, B, ()
O

2 The case of diffusion vector fields with nilpotent
Lie algebra

Let Ag, ..., A, be smooth vector fields on R%. We consider the stochastic differential
equation

i=1
The aim of the following considerations is to construct a random diffeomorphism &

and a random vector field g : Q x R — R? such that the flow (x;)icr of the random
differential equation

dy: = g(0s-, ye) dt (10)
is conjugate to the flow (&;);er of (9) by virtue of @, i.e. we have for t € R
¢y = P(6,-) o xt 0 ot (11)

In this section we suppose in addition that the diffusion vector fields Ay,..., A, are
complete and that the Lie algebra generated by these vector fields is nilpotent. This



will allow for a rather explicit construction of a natural finite family of random diffeo-
morphisms which compose to yield the desired ®. In the next section we shall work
under the weaker assumption of solvability of the Lie algebra. Our algorithm will then
yield ® as a finite composition of diffeomorphisms as well, but with less transparent
structure.

We shall now describe an algorithm by which the complexity of the Lie algebra of
the diffusion vector fields is gradually reduced. In this algorithm we shall encounter
the stationary multiple Ornstein-Uhlenbeck integrals of the preceding section, and an
analogous family of Lie brackets of the diffusion vector fields.

To define it, we use the notation of the preceding section. For i € Ay, AY = A; is
just the diffusion vector field appearing in the " diffusion term of (9). If for i € A,,
A? is defined, and we pick ¢ = (i1, -, ) € Apy1, we let

At —1An A Al

i1) lg—19

We begin by rewriting (9) with stationary drift and driving processes. Let 2? be the
stationary Ornstein-Uhlenbeck processes corresponding to W¢ 1 < i < m. Defining

=Ag+ ) A (t) teR, (12)
i=1
we may write (9) as
dzy = By () dt + Y A)(4) o d2)(t). (13)
i€Ag

Note that the vector field B is stationary in t.
Now let
% = exp()_ 2)(0) A47).
i€Ag
Then ®) = ® 0 6,,t € R is a stationary process of random diffeomorphisms of R¢.
Lemma 1.3 allows us to compute the generator of the flow ®°. The formally infinite

sums we shall write in the sequel are in fact finite, due to the hypothesis of nilpotence
for the Lie algebra of the diffusion vector fields. We have for z € R?

AP} (z) (14)

= > %exp<ZtA0) o dz)(t)

o i€h tj=2(t), j€Ao

= S {Aoexp( Y Lt)AY)(x)

+ exp ( ZA ( )AO) 21 Cn [2}; Q,A?]n(x)} o dz](t)

= 2 A (®(x)) odz (1)

i€Ag

0 Y D [ A0AY A(x) 0 d=0(0)

ZEAO n=1 ]EAO

10



Now recall the definition of iterated Lie brackets, and note that they match the notation
A1. Recall also the Definition of the stationary processes zjl-, j € A1, and note that

2 (t)...2 (t)odz (t) = odz(t)+ z(t)dt,
(jl:---ajk € AOa ]: (Jl,ajk) € Al)

Hence we have for n > 1

> [ )AG Alln(z) 0 d2}(t)

i€Aho  JEAo

= > > [AY, (A AT () 2 (1) 2 (t) o d2)(t)

i€AQ jl,...,anA()

= > Aj@) o (dz(t) + 2 (t)db).

JEAL||=n+1

So we can rewrite (14) as

d®?(z Z AY(®Y(x)) o d2)(t) (15)
ZA Cli A dZ ( ) (t)dt).

In order to solve (13) we use the ansatz
Ty = (D?(yt)a

where y is an unknown (forward) semimartingale. This yields

dy = (0d®))(ys) + () (ye) o dye (16)
ZA A7 (D4 (ye) 0 d2; () + () () ZA ci Ai (yr) © (dz; (t) + 2 (t)dt)

+ (®7)' (ye) o dys
= > Al(m)odz () + (B] )'(yt){ Y- e Ai(ye) o (dz (1) + 2 (t)dt) + dyt}-

i€AQ 1€EA

Comparing this equation with (13) we see that z is a solution of (13) iff y is a solution
of

By o ®(y:) dt = (®))(y){ X e Allye) o (d2} (1) + 2 (1)) + dy ). (17)

i€Aq

This equation is equivalent with

dy, = Btl(yt)dt - Z C|i|Azl(yt) © dzil(t)’ (18)

1€EA1
where the stationary vector field B! is defined by

Bi(y) = (®))'(y) "B/ o®(y) — 3 caAi(y)

i€EA

11



Now let ¢° be the flow of (13) and denote the flow of (18) by ¢!. Suppose that
= ¢ € R Then we have

$ (&) = 20 = @)(z) = )0 ¢y(x0) = B} 0y, 0 (Pg) ™ (§)
Since ®° is stationary this means that ¢' is conjugate to ¢° via @, i.e.
¢ = (®°06,) o ¢, 0 (@), teR. (19)

Note that equation (18) has the same structure as the original equation (13). In
particular the Lie algebra generated by A}, i € Ay, is again nilpotent since the vector
fields A} lie in £' = [£, L], where L denotes the Lie algebra generated by A?, 1 € A,.
So, 1f L is nilpotent of degree n (i.e. £"** = {0}) it is clear that we have just to
repeat this reduction algorithm n times to arrive at a stationary random differential
equation whose flow is conjugate to the flow ¢° of the original sde (13).
For the sake of completeness we summarize the general reduction step. In the nth
step we consider a flow ¢™ which has the generator

dgp(z) = Bplgr ()] dt — 3 apAf[e] ()] o dz}'(t) (20)

i€EA,

where B™ is a stationary vector field and af,i € A,, are given real numbers (for n =0
we have a) = 1 and B is given by (12)). Define the (n + 1)* diffeomorphism ®" of
R¢ by the formula

P" = exp(z ail A7 z1(0)).

1E€EA,

Define the real numbers a?'*!, i € A1, by

n+l __ n s (s :
@y = —C H Gy V= (i1, -5 25) € Apga
i}

and the stationary vector field B"*! by

Bt (z) = (@") (0, 2) ' By 0 @™ (0, ) Y af AT (z) 2T (2).

1€EA1

Then the flow ¢™*! of

d¢n+1( ) — Bn+1[¢n+1( dt+ Z an+1An+1[¢n+1( )]odz"“(t) (21)

1€EAR11
is conjugate to ¢™ by virtue of the diffeomorphism ®”, i.e. we have
¢ = (®"0b;) o ¢ftto (®")7Y, teR.

If the Lie algebra generated by the vector fields A?, i € Ao, is nilpotent of degree n
then the vector fields A?*! in (21) vanish, i.e. (21) is a stationary random differential
equation. Our main result is therefore proved.

12



Theorem 2.1 Let Ay, ..., A, be smooth vector fields on Re. Let (¢;)iecr be the (pos-
sibly local) flow associated with the stochastic differential equation

dxy = Ag(xy)dt + Z A; 0 dVVti

i=1

Assume that the diffusion vector fields A4, ..., A,, are complete and that the Lie algebra
generated by these vector fields is nilpotent. Then there is a random vector field g and
a random diffeomorphism ® such that ¢ and the flow (xi)icr of the random differential
equation

dy; = g(et'7 yt) dt

are conjugate, i.e. for anyt € R we have
¢ = D(0;,-) o x4 0 D

Proof:
Just take n as in the remark above, let g = By™, and ® = ®%o0...0 ®". O

3 The case of linear diffusion vector fields with solv-
able Lie algebra

In this section we consider the stochastic differential equation

dz, = fo(z)dt+ Y. Ajz, 0 dW/ (22)

=1

where f; is a smooth vector field on R% and A4, ..., 4,, € R%?. So we restrict ourselves
to the case of linear diffusion vector fields. In return the condition we impose on the
Lie algebra generated by the diffusion vector fields is weakened: we shall suppose that
it is solvable. We briefly recall this notion. For a Lie algebra (L, [-,-]), we let

‘Cl = [L,E],
En+1 = ['Cm['n]a

n € N. Then L is called solvable if there exists n € N such that £,, = 0. Note that
nilpotence implies solvability. Note also that the Lie algebra generated by two vector
fields is always solvable.

In our case, solvability has more consequences, which help us to regain the framework
of nilpotent Lie algebras after a modification of our reduction algorithm. In fact, our
Lie algebra £ generated by the diffusion vector fields A, - - -, A, is finite dimensional.
Hence, due to the theorem of Lie there exists a basis By, -, B, of L such that, if

ICZ' = Span{Bi7 T Bn}7

13



then [£, ;] C Kit1,1 <1 < n. Since £ = K4, we have [L, L] C Ko, and hence £, L] is
nilpotent.

We shall now modify the reduction algorithm presented in the previous section, so
that it fits the given situation. We will in fact see that it is ready made for the solvable
case.

We start again by introducing stationary drifts and driving noises in (22), so that
our flow ¢ is generated by the sde

dr, = B(z)dt+ Y Ajz,0dz)(t), (23)
i€Ag
where the stationary vector field B? is defined by
Bi(z) = folz)+ ) Afz 2} (t). (24)
j=1

Define the linear stationary vector field
Cy = > A)A), teR. (25)

1€Ao

Let

@) = exp(—CY)
and define the flow ¢' by

¢ = )y (¥p) (26)
In order to compute the generator of the flow ¢! we need a modification of lemma

1.3. In the sequel [A, B] denotes the commutator of the matrices A, B instead of
the Lie brackets which will cause a change of the signs at some places (note that

[A, B]commutator - _[A7 B]Lie bracket)-

Lemma 3.1 Suppose A : R — R¥? is continuously differentiable. Then we have

;%&W ZGM&MM—/szwMMJWMM&mMEJW
0

= ANVA(N) + i en [AN), A’ (V)] 2™V,

where (as before) ¢, = (n—ll—l)! - .
Proof:
The variation of constants formula for d%etA(’\) gives us
d 1
aeA()‘) = /0 B(s) ds
where

B(S) — e(l—s)A()\)Al()\)esA(/\)_

14



Since
B(s) = —e1=MM40), 4/()]eY

dcf\ AN = /OIB(s)ds=/1(BO ~|—/SB'u)du) ds
_ / / A=0AN[4()), A'(V)]e* AP du ds
— AN - / (1 — u) =AM A1), A/ (N)]e* AP dy

0

we have

1
— AN () — / s e AM[AN), A/(V)] e 4N ds AN,
0
The proof of the second equation is similar to the proof of lemma 1.3. O

Using the first equation of lemma 3.1 and noting that we can rewrite (23) as
dg;(z) = B[4} (x)ldt + odC} ¢}(z)
we get for z € R4
dgy(z) = od®] ¢y (®)~"(z) + @} oddy (@)~ () (27)
= [—@? 0 dCy — /0 U5 e [CF, odCVes ds @] ¢ (89) ()
+ 7 [Bigy dt+odC7 6] (@) (2)
= - /0 Ly e [C0,0dC01e*C? ds ¢} + IBYY(99) " dt
= - /0 U5 €750 [C0, 0dCVes? ds ¢} + BVBY(®) o} dt.
Next define the process I'! by the following Stratonovich differential
odl'} = — /01 se* 00, 0dCP)e* ds (28)

Note that by definition the semimartingale I'! possesses stationary characteristics, but
need not be stationary itself. In order to see that we may apply Lemma 1.1 to pass to

a stationary moving average of I'!, let us fix p > 1 and compute the characteristics of
I'". Indeed, we have

odl'l = — se —sCp AO A9 57 ds da;(t),
t k j

J:k=1,j<k

where

daji(t) = 2] (t) dz;(t) — 2 (t) d2j (1) = 25 (1) 0 dz(t) — 2(t) 0 d2j(t) = oday(t),
is the differential of the Ornstein-Uhlenbeck area process. Note that we even have

dajp(t) = 20(t) AW} — 20(t)dW], 1<j<k<m.
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Hence we have to prove that

E(F,(sup |v])) < o0 (29)

0<t<1
for p > 1, where for t € [0,1],1 <1 <m
m 1 —s 0 s 0 .
== Y [ sen Al A e ds[2(0) 1y (k) — 20 1y (7))
Gk=1j<k”C

The property
Bz +y) < 6 [Fp(x) + Fp(y)],

x,y > 0, shows that (29) will be a consequence of

1 0 0
E(Fy(sup | [ se A}, A e’ ds 2} (t)]) < o0 (30)
o<t<1 Jo

for j < k fixed. But, again due to the properties of the function F}, this is a consequence
of the inequalities

E(Fp(sup |23(1)])) < oo, E(sup |C}P) < oo
0<t<1 0<t<1

for any p > 1, which follow easily from the properties of the Ornstein-Uhlenbeck
process. So Lemma 1.1 applies, and we my define

Cl=et /too e odl!, teR, (31)
which is a stationary semimartingale belonging to the class S. The equation
odl'} = odC} + C} dt,
which is valid due to Lemma 1.1, allows us then to rewrite (27) in the following form

dgy(x) = odCy¢; +Cieydt (32)
+®) By (@;)7" ¢y (x) dt.

We next define the stationary vector field
B, = ®} B} (%))~ + Cy,
t € R. So we may rewrite (32) in the final form

dg; (x) = By ¢y () dt + 0dCy ¢y (z). (33)

We now use the fact stated above that [£, L] is nilpotent, to start a modification of
the algorithm of the preceding section. Let

d' = exp(—C;), ®; =d'0h;, teR,
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and set
9=, ¢, (@), teR. (34)

We now argue with the second part of Lemma 3.1 to find the generator of ¢2. For
r € R? we can write

dgi(z) = od®; ¢y (®') 7 (z) + Py o dgy (') (x) (35)
= [— (I>1 odC1
+ Z )" en[CF, 0dCY] 1] @7 (') (2)
+‘I>% Odctlét( D 7He) + @; B} ¢y (B1)H(z) dt
= Z( )", [CF, 0dCyln 67 () + @y By (9;) 7" ¢ () dt

n=1

Since C! is a process in [£, £], the sum in (35) is in fact finite. Let
o ¢
O =t Z(—1)"+lcn/ ¢*[CL,0dCY],, teR.
n=1 —00

Then, Lemma, 1.1 applies again to show that C? € S. So, if we set
Bi = ®; B, (®') ' +CY,

we may write
dgi (z) = 0dCY ¢;(z) + Bi; (x) dt. (36)
We turn to the recursion step of our algorithm. Let £ > 2, and suppose that a flow

#* on R?, a stationary vector field B*, and a stationary vector field C* € S are given
such that

dgt (z) = odCf ¢} (x) + By ¢y (x) dt. (37)
We define the diffeomorphism of step k& by

dF = exp(—CF), (38)
and let ®F = ®* 0 §;,¢+ € R. Then we may set
=9 g (®F)!, teR. (39)

Then the same computation as above gives us the generator of ¢**!. For x € R? we
have

(@) = L elCl odCll, o ) + O BE (®)7 6 @) dh, - (40)
where again the sum is finite. To obtain a stationary SDE we again define

S t
Cop(t) = 3 (=1)" e, / ’[CF, 0dCH,,, teR. (41)

n=1
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According to lemma 1.1, C**! € 8. So, finally setting
Bt = @) By (®*)7 + Cf
t € R, we obtain the asserted stochastic differential equation
dgi ! (z) = odCy o (2) + Bt g (x). (42)

This completes the recursion step.

Since [£, L] is nilpotent, we know that our algorithm stops after finitely many steps.
So we obtain our second main result

Theorem 3.1 Let fy be a smooth vector field on R%, Ay,---, A, € R Let ¢ =
(¢t)ter denote the (possibly local) flow associated with the stochastic differential equa-
tion o
d.fEt = f() (.Tt) dt + Z AZ Tt O thZ
i=1
Assume that the Lie algebra generated by Ay, ---, A,, is solvable. Then the assertions
of Theorem 2.1 hold true.

4 An application: the existence of random attrac-
tors

Let us first recall the notion of a random attractor. For more details consult Crauel,
Debussche, Flandoli [Cra97] or Keller, Schmalfuss [Kel98]. Note first that under the
smoothness conditions assumed from section 1 on for the vector fields, the completion
result of Arnold, Scheutzow [Arn95] implies that the flows of diffeomorphisms generated
by our stochastic differential equations in fact generate random dynamical systems (see
Arnold [Arn98]). More precisely, the flow (¢;)i>o of diffeomorphisms on R generated
by a stochastic differential equation is called random dynamical system on the metric
dynamical system (2, F, P, (6;):cr) if the following cocycle property is satisfied:

¢s+t(w) = ¢t(05w) o ¢3(W), ¢0(w) = idea

for w € Q,s,t > 0. An obvious modification gives the notion of a random dynamical
system for flows with parameter space R instead of R.. Whenever we speak of a flow,
we shall, as our hypotheses on the vector fields allow, tacitly assume that it is a random
dynamical system.

A family (A(w),w € Q) of closed subsets of RY is called measurable if for any z € R?
the function w — d(A(w),z) = inf{|z — y| : y € A(w)} is measurable. Motivated by
the needs of section 4.2, we shall define random attractors for more general systems
of attracted sets. Let D be a system of measurable closed and nonempty sets w —
D(w). In addition we suppose that D fulfills the following filtering property: if D’ is
a measurable set with closed and nonempty images and D'(w) C D(w) for w € © and
D € D then D' € D. Such a system is briefly named universe. We hasten to emphasize
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that the system of compact random sets uniformly bounded in w is a universe, the one
the reader may imagine if we speak of universes. We call it universe of compact sets.
As we shall see in section 4.2, it is however not the only one which matters for us.
For a given universe D a measurable set A € D with compact images is called a
random attractor for the random dynamical system (¢;):>o if A is ¢-invariant, i.e. for
w € ) we have
Pr(w)A(w) = A(Ow),

and absorbs sets from D, i.e.

Jim dist(¢(0_w)D(0_w), A(w)) =0
for any D € D, see Flandoli, Schmalfuss [F1a96], where dist denotes the semi-Hausdorff

distance

dist(A, B) = sup inf |z — y|.
€A YEB

Note that a random attractor is unique. We remark that the more intuitive relationship
tli)m dist(¢s(w) B, A(6x(w)) =0

holds only for convergence in probability.
The following theorem is a version of Crauel, Flandoli [Cra94], Flandoli, Schmalfuss
[F1a96] or Schmalfuss [Sch97]:

Theorem 4.1 Let D be a universe of measurable sets. Suppose that v — ¢y(w)z is
continuous. In addition we suppose that there exists a compact measurable set B € D
such that

éi(0_4w)D(0_yw) C B(w)

fort > t(w, D) and any D € D. Then there exists a random attractor with respect to
D.

The other important example of universes is given by the tempered random sets. A
random variable R > 0 is tempered if

L rogt R(Ow) = 0 (43)

lim
t—+o0 t|
for w € €, see Arnold [Arn98], p.164. Note that (43) is equivalent to

Jim e R(Ow) =0 forany c>0.

A measurable set D is called tempered if D(w) is contained in a ball with center zero and
tempered radius R(w),w € €. Then the system of measurable sets with compact and
nonempty tempered images forms the universe of tempered sets. The universe which
matters in section 4.2 consists of tempered sets with a simple additional condition and
will be described precisely later on.

Of course, the universe of compact sets is contained in the tempered one. Let us
briefly point out that the difference is not very big from the point of view of random
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dynamical systems, however. Temperedness of R may be paraphrased by stating that
the Lyapunov exponent of the stationary process ¢ — R(f;w) is zero. But if it is not
zero, then we automatically have

lim sup — log™ R(f,w) = +o0.

1
t—+oo |t‘
4.1 Sufficient criteria for existence

In this section we shall give an application of the main result of the previous section to
the problem of existence of global attractors for flows generated by stochastic differen-
tial equations. Let fy be a C* vector field on R%. We consider a stochastic perturbation
of the dynamical system described by the differential equation

dxy = folxy) dt. (44)

More precisely, let Ay, ---, A, € R¥™% and consider the sde

dzy = fo(ze) dt + > A;mp 0 dW. (45)

=1

We assume that the flow ¢ generated by (45) is forward complete. Following the ideas
of our prototypical approach of random attractors in [Imk98], we assume that (44)
has a Lyapunov function V', so that the system has an attractor. The problem of
existence of a random attractor for (45) will be approached in the following form. We
ask whether V' is still a Lyapunov function for the perturbed system. As such it will
then provide a random attractor.

Assume from now on that the Lie algebra generated by Ai,---, A,, is solvable. Fix
n € N such that C"*! = 0, let C?,---,C", ®°, ... ®" be defined as in the preceding
section, and let

g(.,y):(bno...o(bo fo((‘bno"'oq)o)ily)+Z@no'--O@kck(@no---o@k)fly.
k=0

Then the main result of the preceding section states that the flow x generated by the
random differential equation

dy, = g(et'a yt) dt (46)

and ¢ are conjugate. It is very easy to deduce from the definition of ® and Lemma 1.1
that the random diffeomorphisms are tempered (i.e. that the random variables ||®|]
are tempered). The following Theorem describes the natural relation between random
attractors in the different coordinates.

Theorem 4.2 Let ® = ®"o---0®°. Then there is a one-to-one correspondence between
random attractors of ¢ and x. If (A(w),w € Q) is a random attractor of x, then
(P(w) A(w),w € Q) is a random attractor of ¢ attracting tempered sets. If (B(w),w €
Q) is a random attractor of ¢, then (' (w) B(w),w € Q) is a random attractor of x
attracting tempered sets.
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Proof:
We know that ¢ and yx are conjugate by the tempered diffeomorphism ®. Hence the
proof is the same as in [Imk98]. O

We next introduce the function

h(c, - chy) = e or0e™ fo((e o 0e™)y)
n
+ Z e—c” o o e—ck ck (e—c” ° oe ck)—ly’
k=0

&, -, c" € R4 y € R Note that h and ¢ are related by the formula
g(ay):h(c(())vao(?ay)a yERd-

We shall subsequently use the abbreviations ¢ for a vector (% ---,c") and C for the
vector of processes (C?,---,C™). The following result is basic for the existence of
attractors and generalizes Theorem 2.2 of [Imk98| to our situation.

Theorem 4.3 Let U : R? — R, be a C'-function such that lim ;00 U(z) = o0.
Suppose that for any M > 0

lu(c) = sup |h(c,y)|, ce (R>IH
ly|[<M

we have
Ep,(Ip) < 00 (47)

where Pc is the law of C. Suppose there exists a measurable function k : (R¥>*4)"+ — R
such that we have

E(sup |k(Co¥y)|) < oo, (48)

0<s<1
limsup  sup (VInU(y), h(c,y)) <1
ly| =00 c€supp(Pe) k(C)
Ep. (k) < 0. (50)

Then x has a random attractor which attracts compact sets. If U preserves tempered-
ness, then x has a random attractor for tempered sets.

(49)

Proof:
The proof is essentially the same as for Theorem 2.2 in [Imk98]. The hypothesis of
subexponential growth there is replaced by the two hypotheses (47) for I, and (48)
for k. (48) is needed to justify the application of Birkhoff’s ergodic theorem, (47) for
verifying the finiteness of the random variable

0 0
Y = /_ exp(/ k(Co 0 0,) du) 1 (Co o 8,) dv

from which a random attractor is constructed. O

Also the perturbation result of [Imk98| generalizes to our setting of solvable Lie
algebras for the diffusion vector fields.
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Theorem 4.4 Let V be a Lyapunov function of

dy = fo(y) dt,

i.e. suppose there exists a > 0 such that

lim sup(VInV (y), fo(y)) < —c.

ly|—o0

Suppose that there exists a measurable function k : (R4t — R, such that (47)
and (48) are fulfilled, as well as

| (VI V(). foly) - h
D e ey (V10 V (1), fo())] W Sh

EPC (k) < Q. (52)

Then x has a global random attractor for the compact sets. If V preserves temperedness,
then x has a random attractor for the tempered sets.

(51)

Proof:
By a suitable modification of &, (51) and (52) are seen to imply (49) and (50). O

4.2 An example

We shall now give an example for a situation in which the Lie algebra generated by
the diffusion vector fields is solvable, but not nilpotent. This situation occurs if we
consider the well known noisy Duffing-van der Pol oscillator with independent noise
sources coupled to the position and velocity components. Formally, the system is given
by the second order sde

—ﬁyt+yf+yfg]t+yt—aytthl—py'tOWf:O,

where 8 € R, 0, p # 0.We pass in the usual way to a two-dimensional system of first
order equations by putting y; =y, y2 = y. With the matrices

0 0 0 0
we28) w32

and the nonlinear vector field

90(y) = [ v2 y € R,

—y1 + By2 — Yi — Yive ] ’
we obtain the following sde

dy; = go(ys) dt + Ay y; 0 AW, + Ay y, o AW,
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Since
0 0

[A27A1]n == l O_pn 0

] = Pn A17
we have for the Lie algebra £ generated by A;, A,
L =span{A;, Ao}, Ly =[L,L]=span{A4;}, L;=0.

So L is solvable, but not nilpotent.

Let us compute the conjugation diffeomorphisms, starting with the processes C°, C*.
We have
C) = 2)(t) A1 + 23(t) A3, tE€R,

and therefore by an elementary computation

@OZG_ngll 0]

V2 U1

where

0 o 29(0) 0
vy =e P20 gy, =271 1—er%0),
' 2 p 29(0) ( )

To compute C', let us start with the following special case of (28) and (31)
t 1 0 0
cl = —et / e / 5e7%% [CY 0dCPe“ ds (53)
—00 0

n t 1 m g m 0
= = Y et [ e [serBLAOM ;e DL 20 ds o dage(u),
jk=1,j<k —oo 70
where

odaj(u) = z;.) (u) o dzp(u) — 2p(u) o dz;-)(u) = z;-)(u)dzg(u) — zg(u)dz?(u)

is the differential of the Ornstein-Uhlenbeck area process corresponding to z;-) and zp,
for 1 < j < k < m. Note that in this differential, It6 and Stratonovich integration
yields identical results. Returning to our special case, we obtain

1 .
/ se s Lim DA [ 4 AJes Timy @) A g

0
1 1 0 ) .
- 0 ’ [UQ(S) v1(s) ] A [ _v(s) 1 ] ds

vi(s) wvi(s)

1 1
- - [1— e P20 — 20(y) e P?®)] 4.

Here vy (s) = e *7%®) | yy(s) = U—zg(li)(l — e*7%(0))_ Consequently, setting

o [0 1 0 0
_ 7 u 1— —pzy(u) _ 0 —pzy(u) d ’
vy = e 2 (u)2[ e pzy(u)e | o daya(u)
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we arrive at the equations

Ctl:l 0 0]’ (bl:ecg:l1 o].

—Vs 0

So the conjugation diffeomorphism is given by

<I)=(I)10<I>0:l 1 0].
Vg + V3 U1

Let
he,y) =e oe @ goe” 0e” y) +Cly+e ¢ e y,

c=(ct) € (R**?)2,y € R To prove that for small enough coupling constants o, p
the system has a global random attractor, our main task will consist in verifying the
conditions of Theorem 4.3. Now we know from [Imk98] that the Lyapunov function is
most easily given in the Lienard coordinates. We denote them by the symbol z. The
transformations are given by

Y1 ) T
t — t =
) lyg—ﬂyl-i-%yi”]’ (@) l$2+5$1—%$?]’

x,y € R% The Lyapunov function in the Lienard coordinates is then given by the

formula . . . .
= ﬂl’% + 51’% + Zl‘% + §($1 - 372)2,

x € R?, the Lyapunov function in the y—coordinates by

Uy) =V(t(y), yeR”.

First note that due to the integrability properties of the Ornstein-Uhlenbeck pro-

cesses 20, 23, and the fact that the quadratic variation of the area process a5 is bounded

by

V(z)

[0 + (6P, e,

we have

1
vy, —,V9,v3 € LP forany p>1. (54)
(%1

This in particular implies that ®° &' are tempered. As another consequence of (54)
and the fact that go has polynomial components, we can note that (47) is valid.

For the remainder of the hypotheses of Theorem 4.3, we may concentrate on treating
the nonlinear part of gy — h, which comes from the nonlinear part of g;. The arguments
for the linear part are simple (see [Imk98|. Recall first the formula for gy in Lienard
coordinates. We have

fol@) = Di(t™ (@) golt™ (@) = [ et hn ] .
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Let us denote its nonlinear part by
1,3
—3x
= 31
o0 =] ),

r € R2. Then we have on supp(P¢), writing

0 l 1 0 ] L l 1 0]
e == ] € = 7
Uo  Up us 1

oe (e o€ 1) = [ 0 3 ] -

cl

n(z) —e”
This in turn implies the equation

1 1 3 ]_
<vgqun@)—eﬂroaﬁn@@oef@):(amxi—xgp.-§@2+ug-my

We next use the simple estimate

(21 +23) =k(z), z€R’

DO | —

|zoa?] <
and remember (see [Imk98]) that x and |(V,V, fo)| are asymptotically equivalent, define
k on the above mentioned linear subspace of (R**%)? by

0 1\ __ 1
k(e ') = [1 = 5 (uz +us) — uy]

and by 0 outside, to arrive at the estimate

hm Sup Sup ‘(V ln V(x), n(x) _ e—cl o e—COn(ecO o ecl x)”

|z| =00 cesupp(Pc) |<V In V(.%), fo(l‘»‘ k(c) S 7 (55)

for some constant 7, which may be normalized by multiplying it to k. This gives (51) for
the nonlinear part. It remains to verify (48) and (52) for k. Now (48) is a consequence
of the standard martingale inequalities and the integrability properties (54). Next, note
that as ¢ — 0 on the linear subspace on which k£ does not vanish, we have uy, us — 0,
whereas u; — 1, hence k(c) — 0. But the random variables v; have just this asymptotic
behavior as p — 0. Indeed, v; — 1, and both vy, v3 — 0 as p — 0, for any o # 0. So
dominated convergence implies that, if o # 0 is fixed, by choosing p small enough, we
may get Ep,(k) < . Hence our system possesses a global random attractor for any
o # 0, and small enough p.
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