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Abstract

In their 1993 paper [16], Schimansky-Geier and Herzel discovered nu-
merically that the Kramers oscillator (which is identical with the Duffing
oscillator forced by additive white noise) has a positive top Lyapunov
exponent in the low damping regime.

In this paper, we study the Kramers oscillator from the point of view
of random dynamical systems, to which we give a brief introduction. In
particular, we confirm the findings in the paper [16] about the Lyapunov
exponent by performing more precise simulations, revealing that the Lya-
punov exponent is positive up to a critical value of the damping, from
which on it remains negative.

We then show that the Kramers oscillator has a global random at-
tractor which in the stable regime (large damping) is just a random point
and in the unstable regime (small damping) has very complicated geo-
metrical structure. In the latter case the invariant measure supported by
the attractor is a Sinai-Ruelle-Bowen measure with positive entropy. The
Kramers oscillator hence undergoes a stochastic bifurcation at the critical
value of the damping parameter.
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stochastic bifurcation.

AMS 1991 subject classification: primary 34 F 05, 60H10; secondary 93 E
03,93 E 15.

1 Introduction

Since its introduction by Duffing in 1918, the (forced) nonlinear oscillator with
a cubic stiffness term given by

1,2 4

Bty + Ul(ae) = f(1), Ule) = —a-+ b%, a,b>0,v>0 (L1

has been one of the paradigms of nonlinear dynamics (see e.g. Guckenheimer
and Holmes [6]).

If the forcing is chosen to be

f(t) = \/2ey &(t), &(t) white noise,

(1.1) describes stochastic motion of a particle in a bistable potential, where
€ > 0 stands for the temperature of a heat bath. This model was proposed
and studied by Kramers in his celebrated paper [11], hence the name “Kramers
oscillator”.

We put ¢ = @ = b = 1 and write the Langevin equation (1.1) correctly as a
stochastic differential equation (SDE) (see [1]) for z;, y = 2 as

dfl?t = U dt,
dye = (=vyye = U'(2)) dt + /27 dW,, (1.2)

where W, is a standard Wiener process. For every initial value (20, y0) the solu-
tion of (1.2) exists and forms a Markov process possessing a unique stationary
measure with density

p(x,y) = Nexp <—U(a:) - 1/2_2> , (1.3)

where N is a norming constant, i.e. p is the unique probability density solving
the Fokker-Planck equation G*p = 0, where

G = g+ gy + U () () + 75 (1.4

is the formal adjoint of the generator

O (vl +7% (15)
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of the Markov process. Note that p is independent of the friction (or damping)
coefficient 4 which will serve as a bifurcation parameter. This means that the
family of SDE (1.2) does not undergo a P-bifurcation (see Arnold [2, Chap. 9]),
i.e. there is no qualitative change of the stationary density as v varies.

The Lyapunov exponents Aq(y) > Ag(y) corresponding to the measure p are
defined to be the two possible exponential growth rates of the solutions of the
variational equation (linearization) of (1.2) given by

0 1 0 1
dvt = < —U”(]jt) — ) Utdt = < 1— 31:? — >Utdt, (16)

where 2; is the 2 component of the solution of (1.2) starting with random initial
values (29, yo) having density p.
By the trace formula (see (2.8)), one can immediately read off from (1.6)
that
A(y) +A2(y) =—y <0 forall >0,

meaning that the solution of the variational equation contracts volume at an
exponential rate —~.
Schimansky-Geier and Herzel [16] now observed the remarkable fact that

A1(y) >0 for v not too large. (1.7

This is, to our knowledge, the first example given of a dynamical system for
which additive noise produces an unstable stationary measure.

Our aim in this paper is to have a new look at the Kramers oscillator from the
point of view of random dynamical systems. It will turn out that the Kramers
oscillator has a global random attractor for all values of v, but it undergoes
a stochastic bifurcation at that value of the friction coefficient at which A1(5)
changes sign, with dramatic changes of the topological structure of the attractor
and the invariant measure supported by the attractor.

We stress that nothing of this is visible on the level of the Fokker-Planck
equation, i.e. if we stay in the Markovian context, but only emerges from looking
at the Kramers oscillator as a (random) dynamical system.

2 Random Dynamical Systems

We will now very briefly explain those concepts of the theory of random dynam-
ical systems which are relevant for our case. We refer the reader to Arnold [2]
for a more detailed and systematic treatment.

The definition of a random dynamical system is tailor-made to cover the
most important families of dynamical systems under the influence of randomness
which are currently of interest, in particular random and stochastic ordinary and
partial differential equations and random difference equations. Randomness
could describe environmental or parametric perturbations, internal fluctuations



(as in the case of the Kramers oscillator), measurement errors, or just lack of
knowledge. One of the advantages of our approach is the fact that we study
randomness in the framework of classical dynamical systems theory, enabling
us to utilize all its powerful machinery.

2.1. Definition (Random Dynamical System (RDS)). A (smooth) ran-
dom dynamical system (RDS) ¢ on the state space R? with two-sided continuous
time R is a pair of the following objects:

(1) Model of the noise: A metric dynamical system 0=(6; );er in the sense of
ergodic theory on a probability space (Q,F,P), i.e. (t,w) — O:w is measurable
and the family of selfmappings 6; : @ — Q of Q forms a flow (i.e. 6y = id,
Oi4s = O 00, for all s,t € R) which leaves the measure P invariant (i.e. ;P =P
for all t € R, where (6,P)(B) := P(6;(B)) is the image of the measure P under
the mapping 6;). We also assume for simplicity that § is ergodic.

(ii) Model of the system perturbed by noise: A cocycle ¢ over 6, i.e.
a measurable mapping ¢ : R x Q@ x R? — RY (,w,z) — ¢(t,w,z), for
which (t,2) ~ @(t,w,z) is continuous and the family ¢(t,w) : R? — RY
z +— p(t,w,z), of random selfmappings of R? are €' (continuously differen-
tiable) and form a cocycle over 8, i.e. satisfy the cocycle property

e(0,w) =id, ¢t + s,w) = (t,fsw) o p(s,w) for allt,s € Randw € Q. (2.1)
Here o means composition of mappings. m

It follows from the cocycle property that all mappings ¢(¢,w) are diffeomor-
phisms, with inverse

cp(t,w)_l = p(—t, bw).

Note also that O(w,z) := (fiw, p(t,w,x)) is a dynamical system (flow) on
Q x RY called the skew product flow corresponding to .
We now explain how the solution of an SDE fits into this framework.

2.2. Example (SDE as an RDS). Let
dey = f(ze)dt + g(zt) 0 AW, (2.2)

be a (Stratonovich) SDE in R? with m-dimensional Wiener process 1. We can
assume without loss of generality that time is two-sided, i.e. we solve (2.2) from
t = 0 forwards as well as backwards in time.

We claim that, modulo conditions [2, Sect. 2.3], the random mappings which
assign to each initial value 2 € R? the solution ¢(#,w, z) of (2.2) at time ¢ form
an RDS.

To this end, we model white noise resp. W as a metric dynamical system as
follows: Let Q be the space of continuous functions w : R — R™ which satisfy
w(0) = 0, let F be the Borel o-algebra in © corresponding to the topology of
uniform convergence on compacts, and let P be the Wiener measure (distribution



of W) on F. Define the shift on Q by 6,w(s) = w(t+s) —w(t), reflecting the fact
that the Wiener process has stationary increments rather than being stationary.
Then 6 is an ergodic metric dynamical system on (Q, F,P) “driving” the SDE
(2.2), and Wi(w) = w(t). ]

Invariant measures are of fundamental importance for an RDS as they encap-
sulate its long-term and ergodic behavior. Hence to find and describe them is
one of the primary tasks.

2.3. Definition (Invariant and Stationary Measure). Let ¢ be an RDS.
(i) A random probability measure w + g1, on (R? B%), B? the Borel sets in
TRd, is said to be invariant under ¢ if for all + € R

p(t,w)pe = pow P-as.
(ii) A probability measure p on (R%, B?) is called stationary for an SDE (2.2)

if it is invariant under the Markov semigroup P(t,z, B) = P{w : ¢(t,w, z) € B}
generated by the solution of the SDE for time R, i.e. if

p() = AdP(t,x, Jp(dz) for allt > 0.

This is equivalent to the infinitesimal condition G*p = 0 (Fokker-Planck equa-
tion), where G* is the formal adjoint of the generator G of P(t,x, B) given

b
' Ll d 82
= Z fi(= (923, E Zz 8xk6:cl

The concept of a stationary measure of the Markov semigroup corresponding
to (2.2) is older and more restrictive than the concept of an invariant measure
for the RDS generated by (2.2). There is, however, the following one-to-one
correspondence.

2.4. Theorem (Characterization of Markov Measures). Let ¢ be the
RDS generated by the SDE (2.2). Then there is a one-to-one correspondence
between the stationary measures p and those invariant measures p,, which are
measurable with respect to the past F° _ = o(Wi,t < 0) of the Wiener process
(so-called Markov measures), the correspondence being given by

ppe = m oot 0-w)p,  po = pi=Ep (2.3)

For a proof see [2, Sect. 1.7].
The procedure of passing from a deterministic stationary measure p to a
random invariant measure p,, described by (2.3) is called disintegration of p.



The so-called first method proposed by Lyapunov in his 1892 thesis to study
the long-term behavior of nonlinear systems was by means of the exponential
growth rates (today called Lyapunov exponents) of the solutions of the variation-
al equation (linearization). This method was filled with new life in 1968 when
Oseledets proved his celebrated Multiplicative Ergodic Theorem. We present
this theorem just for the particular case of an RDS which is generated by an
SDE with additive noise, and for a stationary measure [2, Theorem 4.2.13].

2.5. Theorem (Multplicative Ergodic Theorem for SDE). Let f € C? be
a vector field in R?, let o be a fivred d x m matriz and let W be an m-dimensional
Wiener process. Assume that the SDE

generates a unique RDS . Let p(z) > 0 be the density of a stationary measure
p(dz) = p(z)dz, i.e. p satisfies

d

d
. 0 1 o 07p(x)
G'p=— ; £ (fi(z)p(x)) + B} ; 1:1(00 )k,lm .
Let Df(x) := (ag’z(f)) be the Jacobian of f,
dvt = Df(xt)vt dt (25)

the variational equation of (2.4), and assume that the following integrability
condition is satisfied:

/]Rd [|Df(2)]| px)de < co. (2.6)

Then there exist d real numbers, called the Lyapunov exponents of ¢ under p,
AM>A > > A (2.7)

which are the possible exponential growth rates of the solutions vi(w, xo, vo) =
Dp(t,w, zo)vg of the variational equation (2.5), i.e. for P-almost all w, p-almost
all zo € R? and all vo(w, zg) € R4

1
tllglo n log ||ve(w, xo, vo(w, z0)|| = Aw, zo, vo(w, o))

exists and takes on values from the finite list (2.7). Furthermore, we have the
trace formula

d
;/\i = /]Rd(trace Df(z))p(z)dx . (2.8)



The sign of the top Lyapunov exponent A1 hence determines the stability of the
variational equation, and in turn (by appealing to the stable manifold theorem
for RDS, see [2, Chap. 7]) the stability of the original nonlinear RDS ¢.

It is thus important to obtain quantitative information about A; which often
can be drawn from a formula obtained by rewriting the variational equation (2.7)
in polar coordinates r = ||v]| € (0,00), s = ﬁ € S9! (the unit sphere in R9)
as a system

dSt = h(l‘t, St)dt, d?"t = Q(Ifﬂ st)rtdt, (29)

where h(z,s) = Df(z)s — Q(z,s)s, Q(z,s) := (Df(z)s,s), and (z,y) :=
Zle z;y; is the standard scalar product in R

Note that the equation for s; is decoupled from the one for r;, so that the
pair (¢, s;) forms a Markov process with state space R x S9=1 and generator
L=G+hg.

Integrating the equation for r; in (2.9) by separating variables and using the
ergodic theorem yields the following result.

2.6. Theorem (Furstenberg-Khasminskii formula). Assume the situa-
tion of Theorem 2.5. Then there exists a stationary measure v for the Markov
process (z4,5;) on R x S4=1 whose marginal on R? is p such that

A = AdXSd_I<Df(m)s,s>V(dm,ds). (2.10)

Another basic object of a deterministic dynamical system is an attractor, i.e. a
compact invariant set which attracts all orbits in the course of time, on which
thus the “essential” dynamics of the system takes place. We generalize this
concept to the random case. It is quite natural that an attractor of an RDS will
be a random rather than a deterministic set.

2.7. Definition (Attractor of RDS). Let ¢ be an RDS and let A(w) be a
random compact set, i.e. w — A(w) is a measurable mapping into the space of
non-void compact subsets of R%. Such a set is called invariant if p(t,w)A(w) =
A(fw) for all ¢ and w.

An invariant random compact set A is called a (global random) attractor of
@ if for any random variable X

tlim Plw:d(p(t,w, X), A(bw)) >} =0 forall £>0, (2.11)
oo

where d(z, A) := infyec4 ||z — y|| is the distance of z and A. ]

Note that in the definition of an attractor the orbit ¢(¢,w, X) is compared with
A(fw), but both objects are continuously moving with time. It turns out that
asking for P-almost sure convergence of the distance would be too restrictive —
hence the convergence in probability in (2.11).



The existence of an attractor A(w) helps locating invariant measures, since
by a result of Ochs [13, Theorem 2]

po(Aw)) =1 P-as. (2.12)

for any invariant measure g, .
The next section of the paper will consist of applying the above concepts to
the Kramers oscillator.

3 Analysis of the Kramers Oscillator

Consider the SDE (1.2) describing the Kramers oscillator. Recall that without
loss of generality we make the choice ¢ = a = b = 1. We choose 7y as the
parameter which we would like to vary.

As the coefficients of (1.2) do not satisfy global Lipschitz conditions, there
is the possibility of explosion of solutions in finite time. We first have to make
sure that the SDE indeed generates a global RDS ¢.

3.1. Theorem (Existence of RDS). The SDE (1.2) for the Kramers oscil-
lator generates a C* RDS ¢ in R? (this RDS will henceforth also be called the
Kramers oscillator).

This is a particular case of a result of Schenk-Hoppé [14, Theorem 5.8] for the
Duffing oscillator with additive as well as multiplicative noise (see also [2, Sect.
9.4]). The idea of the proof is to convert (1.2) into a random differential equation
(perturbed by real noise) by means of a random coordinate transformation.

To assure the reader that the statement of Theorem 3.1 is not so obvious let
us mention that it does in general not suffice for the existence of an RDS that
none of the solutions ¢(t,w, zq), o € R? any initial value, explodes in finite
time.

The next question is about invariant and stationary measures. As pointed
out in the Introduction, it is a striking feature of the Kramers oscillator (U
could be replaced by a more general potential) that the Fokker-Planck equation
G*p = 0, G™ given by (1.4), can be explicitly solved to yield the density (1.3),
and this density turns out to be independent of the friction parameter ~.

We claim that p(dz,dy) = p(z,y)dzdy is the unique stationary measure.
This would be immediate if G* were elliptic (i.e. if the diffusion matrix oo™ were
positive-definite). For the Kramers oscillator, however, the diffusion matrix

oor=( 0 9
L0 2y

has rank 1, so we are in the non-elliptic case.
To prove uniqueness of the stationary measure in the non-elliptic case we
check whether the Lie algebra generated by the two vector fields f(z,y) =



(y,—yy — U'(z)) and g(z,y) = (0,4/27) in (1.2) has full dimension 2. If yes,

this implies that G and G* are hypoelliptic, hence all solutions of G*q = 0 are

C™. However, by a result of Kliemann [10], a second measure with a smooth

density cannot coexist with a measure whose density is positive everywhere.
The Lie bracket [f, g] can be easily calculated to be

P+ 5 - g G — g S0 1
[f,g](l‘,’() = ( dga v dfa a}i :_\/27< — > (31)

692
19 TRy —ags — gy

At each (z,y) € R? the vectors g(z,y) and [f, g](z,y) are clearly linearly inde-
pendent proving that the corresponding Lie algebra is full.
We summarize our findings in the following theorem.

3.2. Theorem (Existence and Uniqueness of Stationary Measure).
The Kramers oscillator has the unique stationary measure

pldx,dy) = p(z,y)dedy, p(x,y) = Nexp (—U(z) — %) , (3.2)

where N is a norming constant.

Although p is independent of v (i.e. the long-term behavior of one trajectory
o(t,w, z) does not “feel” 7), the RDS ¢ (i.e. the simultaneous motion of two
and more points) does depend on v, and so does the disintegration

Ho (dz, dy) = tlif?o @(t, 0_w)p(dz, dy)

(see (2.12)). We will see that for small damping, ¢ has many more invariant
measures, due to the fact that ¢ has a highly nontrivial attractor. However, p,
is the unique Markov measure.

We next clarify the existence of an attractor.

3.3. Theorem (Existence and Uniqueness of Attractor). The Kramers
oscillator has a unique global random attractor A(w) for any value of v > 0.

This was proved by Imkeller and Schmalfuss [8, Sect. 3.4], using the only present-
ly available technique for the white noise case which we briefly describe (follow-
ing Ochs [12]):

(1) Transform the SDE (1.2) into a random differential equation (containing
real noise only) by using a linear random coordinate transformation keeping
and replacing y; by z, =y — /2y u(fw) + Fx;, where

t \
ur(w) = u(fpw) = e_(7/2)t/ 6(7/2)3dWs(w)

— 00



is the stationary Ornstein-Uhlenbeck process, i.e. the unique stationary solution
of du = —ZTudt + dW. The transformed equations are

2

.’I.}tIZt—%l‘t-l-\/Q’yUt, ,Zl’tI—_ZZt—UI(l‘t)-l-v—

2 4 l‘t, (33)

where the white noise term has dropped out.

(i1) Use the “Lyapunov function” V(z,z2) := U(z) + § and prove that Vi <
a(0,w)V; + B(fiw) with [adP < 0.

(iii) The affine equation v; = «(fiw)ve + F(f:w) has a unique stationary
solution, hence by (ii) and the comparison principle the equation (3.3) has an
absorbing set. This implies the existence of a unique attractor for (3.3).

(iv) The transformation in (i) is “tempered”, hence can be inverted to yield
an attractor for the original SDE.

We will numerically determine the attractor after our analysis of the Lya-
punov exponents.

3.4. Theorem (Lyapunov Exponents). Let ¢ be the Kramers oscillator
and p(dz, dy) = p(z,y)dedy be the unique stationary measure.

(i) The integrability condition (2.6) for the variational equation (1.6) is sat-
isfied, so that the Multiplicative Ergodic Theorem (2.5) for ¢ and p applies. In
particular,

A (y) + A2(y) = =7 <0,

thus 5
A) =20 2 =5 2 X(y).

(i1) Stationary measure on R? x S1: Parametrizing the unit circle S' by
s = (cosa,sina) and identifying points « = 0 and a = 27 of the interval
[0, 27], we have for the angle of the variational equation

doy = h(zg, a)dt = (—%T? cos 2a;y — %sin 2ay)dt. (3.4)
The Markov process (x4, y:, a;) on R? x [0, 27] having generator

L= G—{—h(x,a)a%,
where G is the generator of (x,y:) given by (1.5), has exactly two station-
ary measures with marginal density p on R?2  These measures have support
R? x [—%,0] and C* density q(x,y, ), resp. support RZ x [i—”, 7| and density
q(z,y, a0 —m).

(iit) Furstenberg-Khasminskii formula: We have

Aly) = /]1@2/_ ((2 — 32?) sin 2a + y(cos 2a — 1)) q(z,y, a)dzdyda.  (3.5)

us
4

10



Proof. (i) The norm of the Jacobian

Df(=) = < 1—03:,;2 —17 )

satisfies ||Df(z)|] < Cy + Co2? which is clearly integrable with respect to p as
the density decays exponentially fast.

(ii) Note first that all functions involved are 7-periodic so that we can restrict
ourselves to the a interval [—7, 7], identifying again the endpoints.

We first verify that the Lie algebra generated by the vector fields X =
(y,—vy — U'(2),h(z,a)) and Y = (0,4/27,0) on R? x [-Z, 2] has full rank
3. This can be done with the recipe (3.1) by calculating [X,Y], [X, [X, Y]],
(X, [X,[X,Y]]] and [[X,Y], [X, [X,Y]]] which we leave as an exercise.

We conclude that L*, though not elliptic, is hypoelliptic, hence all solutions
of L*v = (0 are C'°°. To prove uniqueness of the solution we utilize a result of
Kliemann [10] saying that the possible supports of stationary measures are the
so-called invariant control sets C' of the deterministic control system

e = X (&) +u(t)Y (&),

where u(t) is a piecewise constant control function with values in R, and on
such a C' the stationary measure is unique. By directly inspecting the function
h(z,a) we find that C' = R? x [—% 0] is the unique invariant control set.

(iii) This is just formula (2.10) applied to our case and taking into account
that due to the m-periodicity the integral over [0, 2] is twice the integral over
[_%a %] d
Formula (3.5) can be used as the starting point for the asymptotic analysis of
A(y) for small as well as large y. For example, applying the method of adjoint
asymptotic expansion (see e.g. Arnold, Doyle and Sri Namachchivaya [3]) to
formula (3.5) we dare to make the following conjecture. For details see Arnold

and Imkeller [4].

3.5. Conjecture (Asymptotic Expansion of Top Lyapunov Expo-
nent). Assume the situation of Theorem 3.4. Then

A@) = My P+ o(y' %) for v =0, (3.6)

where Ay > 0 and lim,_q o(y'/3)/4'/? = 0.
In particular, there exists some vy > 0 such that A(y) > 0 for all vy € (0,70).

Figures 1 and 2 depict the top Lyapunov exponent A(y) as a function of 4.
Figure 1 shows the range 0 < 4 < 0.7 and Figure 2 the range 0 < v < 100. The
data support that A(y) has a steep growth with vertical slope from A(0) = 0 to
a positive maximum at y; & 0.9. Then A(y) decays and crosses 0 at y2 = 0.53,
reaches its minimum at 3 & 4 and then seems to increase and converge to 0
for v — oo.

11



For the calculation we used the definition of A(y) as the exponential growth
rate of a typical solution of (1.6). The SDE (1.2) was numerically integrated by
an Euler scheme with 10% steps of size 0.0005. We calculated 300 values of A(y)
for Figure 1 and 600 values for Figure 2.

Figure 1: The top Lyapunov exponent A(y) of the Kramers oscillator for 0 <
v < 0.7

Figure 2: The top Lyapunov exponent A(y) of the Kramers oscillator for 0 <
~ < 100

We now turn to the numerical computation of the attractor. For this we use a
subdivision algorithm developed by Dellnitz and Hohmann [5] for deterministic

12



dynamical systems and adapted to the random case by Keller and Ochs [9, 12].

As the top Lyapunov exponent A(y) changes sign at 5 &~ 0.53, we expect a
stochastic bifurcation (qualitative change of ¢, see [2, Chap. 9]) on the level of
attractors and invariant measures if ¥ moves across ;.

Figure 3: The random attractor A(w) of the Kramers oscillator in the unstable

regime (y = 0.25)

This can indeed be observed numerically:

(1) Stable regime: For all parameter values ¥ > 43 the global random
attractor consists of just one random point, A(w) = {a(w)}. It follows by
(2.12) that the unique invariant measure of ¢ is the random Dirac measure
pw(dz, dy) = da(w)(de,dy) which is also the disintegration of the unique sta-
tionary measure p in the sense of Theorem 2.4.

(ii) Unstable regime: For all parameter values v € (0,72), the random at-

13



tractor is a “chaotic” object with Cantor-set-type transversal intersections, see
Figure 3 for a particular realization of A(w). Figure 3 was produced by the
subdivision algorithm starting with a box of size 7x 7 and stopping after 15 sub-
divisions in each direction. The fact that A(w) is complicated is quite feasable
because in this case Ai(y) > 0 > Ay(7), thus a typical point of the attractor
has a one-dimensional unstable manifold which necessarily has to belong to the
attractor (see Schenk-Hoppé [15, Theorem 7.3]).

We refer the reader to Ochs [12] and the forthcoming paper by Arnold and
Imkeller [4] for more details.

We also have obtained numerical information on the disintegration p, of p
supported by A(w) in the unstable case. It turns out that p, is so extremely
complex that it cannot be reproduced without using colors. We claim that in
this case p, is a Sinai-Ruelle-Bowen measure, and ¢ has positive fibre entropy
hy,(p) under p,,. The fibre entropy only measures the information production
by the cocycle ¢ and suppresses the one by 6, see Gundlach [7]. More precisely,

hu(p) = A(v) >0,

where we have used Pesin’s entropy formula (which has never been rigorously
proved for non-compact state spaces).

Acknowledgement: The authors are grateful to Hannes Keller for produc-

ing the figures.
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