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Abstract

We address the following problem from the intersection of dynamical
systems and stochastic analysis: Two SDE dz; = Z;n:o fi(x:) o dW/ and
dzy = z;nzo g;(z¢)odW{ in R? with smooth coefficients satisfying f; (0) =
9;(0) = 0 are said to be smoothly equivalent if there is a smooth random
diffeomorphism (coordinate transformation) A(w) with A(w,0) = 0 and
Dh(w,0) = id which conjugates the corresponding local flows,

p(t,w) o h(w) = h(Ow) 0 P(t,w),

where O:w(s) = w(t + s) — w(t) is the (ergodic) shift on the canonical
Wiener space. The normal form problem for SDE consists in finding the
“simplest—possible” member in the equivalence class of a given SDE, in
particular in giving conditions under which it can be linearized (g;(z) =
Df;(0)c).

We develop a mathematically rigorous normal form theory for SDE
which justifies the engineering and physics literature on that problem. It
is based on the multiplicative ergodic theorem and uses a uniform (with
respect to a spatial parameter) Stratonovich calculus which allows the
handling of non-adapted initial values and coefficients in the stochastic
version of the cohomological equation. As a by—product, we prove a gen-
eral theorem on the existence of a stationary solution of an anticipative
affine SDE.



The study of the Duffing—van der Pol oscillator with small noise con-
cludes the paper.
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1 Introduction

Normal form theory was initiated by Poincaré in 1892 and is a technique of
fundamental importance for dynamical systems, in particular for bifurcation
theory. It aims at simplifying a nonlinear deterministic or random dynamical
system in the neighborhood of a reference solution by means of a smooth change
of coordinates. In this paper, we consider dynamical systems in R?, and the
reference solution is assumed to be the fixed point = 0.

We briefly recall those facts from deterministic normal form theory relevant
to the stochastic case. For recent presentations of the deterministic theory
see e.g. Anosov and V. I. Arnold [1], Vanderbauwhede [23], or Katok and
Hasselblatt [14].

Two smooth vector fields f and g in R? with f(0) = g(0) = 0 are called
smoothly equivalent, if the local flows ¢ and 1 generated by ¢ = f(z) and
% = g(z) are smoothly equivalent, i.e., if there is a € diffeomorphism (also
called coordinate transformation)® h: R? — R? with h(0) = 0 for which

p(t)oh="ho(t) locally.
Differentiating this with respect to ¢ gives the equivalent infinitesimal form
foh=Dhy. (1.1)

Normal form theory for vector fields now seeks an h for which g is “simplest—
possible”, in other words: we look for the “simplest—possible” element in the
€ equivalence class of f.

Since (1.1) implies B = Dh(0)~1 ADh(0), where A = Df(0) and B = Dg(0)
are the Jacobians of f and g at x = 0, respectively, and since a linear mapping is
considered simplest—possible if its matrix representation is in Jordan canonical
form (which requires the choice of a basis in R?) it is reasonable to assume

1Deterministic as well as stochastic normal form theory makes statements about germs of
(e diffeomorphisms or vector fields, i. e., equivalence classes of > diffeomorphisms or vector
fields which coincide in a neighborhood of 0. However, for ease of presentation we ignore this
point.



without loss of generality that A is in Jordan canonical form, and h is near—
identity, i.e., Dh(0) = id. Then B = A for any such h. The normal form of f
at the fixed point 0 is thus the natural generalization of the Jordan canonical
form to the nonlinear case.

The ultimate aim of normal form theory is the linearization of f, i.e., to find
an h such that g(z) = Az, or f ~ A, against which there are obstructions in
the form of “resonances”.

Formal normal form theory now expands f, g and h into formal Taylor series
at 0, f(2) ~ Azt Y5, fu(@), g(a) ~ Av+ Y20, gu(2), hiz) ~ o432, ha(e),
inserts those expansions into equation (1.1), equates coefficients of order n >
2 (which are homogeneous polynomials), and tries to successively determine
hy, such that g, is zero, or at least “simplest—possible”. For this purpose we
introduce spaces of homogeneous polynomials.

Let forn € N

d
NG = {r=(nye ) € @ I = Yom =)

be the set of multi-indices of length n. Denote by z7 := z'z3” - - - 2* the scalar

monomial in d variables of degree |7| = n. Then

Hpg:=HpaR) ={f= > a"f,: f, e R}

TENd

is the vector space of homogeneous polynomials of degree n in d variables with
values in R?. We also write |7| = n for 7 € N¢. Observe that

A= An,d) = #N¢ = ( "+s_1 )

so that
D =dim Hn,d(Rd) =A-d,

in particular
A = dim H, 4(R").

A basis F = (uy,...,uq) of R* and the basis (z7);|=p of Hyqa(R') = R* give
a basis (27F) = (€7 ;) i=1,...,4; r|=n Of Hn,a(R?), and

d
Hn,d 3> f= Z Zfi,TxTui = kF(f) = (kF(f‘r))lrlzn = (fi,'r) €R”

|7|=n i=1

(column vectors, ordered lexicographically) identifies H, ¢ with RP, where kr
is the mapping which assigns F coordinates (respectively (™ F') coordinates) to



an element of R? (respectively H,, 4). We can identify H, 4(R?) with the tensor
product of H, 4(R') and R?,

Hya(RY) = Hy (R @ RY = RA @ RY,

where the above choice of bases induces the basis with elements z7 ® u; in
H, 4(R%), and the isomorphism induced by the coordinate mappings maps this
basis to the standard basis f; ® e; € R® @ R?.

Inserting the above Taylor expansions into (1.1) and equating coefficients
gives the cohomological equations

gn(2) = (adn A)hn(z) + kn(2), 122,
where the linear operator
adpA:Hyg— Hpg, hp— (ady A)hy(z) := Ahp(z) — Dhy(z)Az.  (1.2)
is called cohomological operator. Further,
kn = fn+ Po(f, gk hie,2 <k <n —1),
where
Po = Tu{Su-1(f = A) 0 Sp_1(h—id) = DSn_1(h —id)Su_1(g = A)}, (1.3)

is a polynomial of the lower order terms fy, gg, hg, 2 < k < n —1, of f,
g, and h. Here T,,(f) denotes the term of order n of f, S,(f) is the n—jet
(Taylor polynomial of order n) of f. For example, ko = fo, k3 = f3 — Dhs ga,
ks = fi+ fo2 092 — Dhs g3 — Dhg3 g2, etc.

The operator ad , A depends linearly on the entries of A, and its D x D
matrix representation is

where I; and I, are A X A and d X d unit matrices, respectively, T'(A4), is the
A x A matrix describing the linear mapping on H,, 4(R!) = R® given by

d
. o)
h = Z h z” — Z Z hTa—a?jajkxk =: T(A)n(h),
IT|=n I7|=n j,k=1
and A ® B = (a;;B) is the Kronecker product of A and B.

1.1. Remark. One easily checks that if A is diagonal, then so is ad ,, A for any
n > 2. u



We will now present a treatment of the normal form problem for stochastic
differential equations (SDE). It deals with the basic question of how many “es-
sentially different” (modulo a C* near—identity coordinate transformation) SDE
exist.

Our effort is motivated by the fact that many dynamical systems in engi-
neering and physics are perturbed by noise. The desire to simplify those systems
prompted numerous publications (see, e. g., Coullet, Elphick and Tirapegui [12],
Nicolis and Nicolis [15], Schéner and Haken [20][21], Sri Namachchivaya and Lin
[22], and the references therein). All those authors work with a smallness pa-
rameter multiplying the noise terms, hence obtaining the stochastic normal form
as a small perturbation of the deterministic one.

Normal form theory without any smallness assumption was developed for
random diffeomorphisms by Arnold and Xu in [8], and for random differential
equations in [9] and [10].

However, normal form theory for SDE has so far defied rigorous analysis
for the following technical reason: When solving the stochastic version of the
cohomological equation one is forced to consider coefficients as well as solutions
which at time ¢ are not adapted to the natural forward filtration % _ of the
(two-sided) Wiener process. This fact, which is a “conflict” between (multi-
plicative) ergodic theory and classical stochastic analysis, has been clearly seen
but not rigorously handled by the pioneers of stochastic normal form theory
quoted above. It is the aim of this paper to dissolve this “conflict” and present
a rigorous treatment on the basis of multiplicative ergodic theory and of a uni-
form Stratonovich and anticipative calculus. We also show by way of an example
the usefulness of the stochastic normal form.

2 The stochastic cohomological equation

We consider the SDE

dry =Y _ fi(@)odW/, teR, f;(0)=0, (2.1)

=0

in R?, where as usual, dW_ stands for dt, f; € € for 0 < j < m, (2,F,P)
is the canonical two-sided Wiener space, Wy = (W},...,W/), t € R, the
canonical two-sided Wiener process, 3* __ the o-algebra generated by W, s < t,
completed by P-null sets, and 8;w(s) := w(t+s)—w(t), s,t € R. In the following
w will denote an arbitrary element of €2, whenever it appears in the argument
of a random variable.

Equation (2.1) uniquely generates a local €*° random dynamical system
(RDS) (or cocycle) ¢ over the ergodic dynamical system (Q,F, P, (6;)tcr), (see
Arnold and Scheutzow [6], Arnold [2] (Theorem 2.3.40), for a survey see Arnold
[3]). The domain D(t,w) and range R(t,w) of ¢(t,w) : D(t,w) = R(t,w) are



neighborhoods of 0. How many different such local RDS do exist modulo a
smooth random conjugacy?

The linear cocycle ®1(¢,w) := ®(¢,w) = Dp(t,w,0) on ToR? = R? is then
generated by the linearized SDE

dvy =Y Aju 0dW/, Aj:=Df;(0), 0<j<m. (2.2)
Jj=0
The multiplicative ergodic theorem holds for (2.2) (without any further integra-
bility assumptions, see [2], section 6.2), giving the Lyapunov spectrum

E(q)l) = E(G,Ao,. ..,Am,W) = {Al Z e Z Ad},

and the splitting R? = E; (w) @ ... ® E,(w) which is invariant, ®(t,w)E;(w) =
E;(6;w), t € R, and in which the different Lyapunov exponents A;y > ... >
Ap from the spectrum are realized as exponential growth rates forward and
backward in time,

. 1
v € Ej(w)\ {0} = t_lzrinoo glog |2t w)v|| = A,

and for which dim E;(w) = d;, d; the multiplicity of A;, 1 <14 < p.

2.1. Definition (Random coordinate transformation). A measurable
mapping h :  x R? —» R? is called (near—identity) random coordinate
transformation if

(i) h(w, ") € Diff ®(RY),

(ii) h(w,0) =0,

(iii) Dh(w,0) =id.
The diffeomorphism h(w, -) is also denoted by h(w). "

We now conjugate the local RDS ¢ generated by (2.1) with another local RDS
1) by means of a random coordinate transformation,

p(t,w) o h(w) = h(6iw) o (t,w) (locally), (2.3)
where 1 is generated by an SDE
dry = Zgj (61, 2¢) 0 AW, (2.4)
7=0

and h is chosen such that the SDE (2.4) makes sense, and its coefficients g; are
“as simple as possible”, the ultimate aim being linearization, i. e.,

dx; = ZAj:ct o dWy.

=0



It is important to realize that, while the diffeomorphisms ¢(t,w) and ¥(t,w)
map the fiber over w to the fiber over 6;w, the coordinate transformation A is
“static” and maps each fiber to itself, hence the h(w) on the left-hand side , and
the h(6;w) on the right-hand side of (2.3).

Although it will turn out that the transformation h(t,-,z) = h(6;-,z) to be
applied at time ¢ is in general not adapted to the filtration of W at ¢, we proceed
formally (and justify later): Applying the Stratonovich lemma to (2.3) gives

d(pt = dh; + Dh(0t, 'gbt) [¢) d’l/}t, (25)

where dh; denotes the t—differential of h(6;-,z), and dy; the t—differential of
@(t,-), etc. Inserting the differentials of ¢; and v into (2.5) yields

> Fi(hOexe) 0 dW/ = dhy + Y Dh(8;,30)g; (01, 1) 0 AW/, (2.6)
Jj=0 j=0
equivalently
dr, = Y g;(6s, ) 0 dW] (2.7)
7=0

—Dh(0;, )" dhy + Y Dh(0y,24) " f;(h(Bs-, 1)) 0 AW .

J=0

This is an equation for h and the g;, where the choice of h is made such that
the g; are simplest—possible.

We now make the simplifying assumption that we choose the canonical ba-
sis in R?. In other words, we leave the linearized SDE (2.2) untouched and
refrain from making it “as simple as possible” by choosing an appropriate (nec-
essarily non-adapted) random basis. See the treatment of the resonant case in
subsection 4.1.

As in the deterministic case, we make the formal Taylor series Ansatz

fil@) ~ A+ fin(2), j=0,...,m,

n=2

oo
9j(w,z) ~ Az + Zgj,n(w,w), 7=0,...,m,

n=2

h(w,:c) ~ T+ Z hn(wam)a

n=2

where f;, € H, 4, while g;,(-) and h,(-) € H, 4 are H, 4-valued random
variables.



Plugging this into equation (2.6) and equating coefficients yields (calcula-
tions are as in the deterministic case) an identity for the linear part, and for
n>2

> 9B 0 dW = Y (adnA;)hn(6:) 0 AW — dhn(6;°)
Jj=0 j=0
+> kjn(0p) 0 AW, (2.8)
7=0

where ad ,A; : H, 4 — H, 4 is the linear operator defined in (1.2) by h,, —
(ad ,A))hn(z) := Ajh,(z) — Dhy(x)A 2, in matrix form ad ,4; = I; ® 4; —
T(Aj)n® I on H, 4(RY) =2 H, 4(R') ® R?, and

k n:fj,n+Pn(fj,kagj,k7hka2sksn_1)7 Jzoaam (29)

Here P, is a deterministic polynomial of the lower order terms of f; 1, g;r and
hi, 2 < k <n— 1, which is independent of j and explicitly given in (1.3).
We now define the stochastic cohomological operator by

dLn(hn) := dhn, =Y _(ad nAj)hy 0 AW/, (2.10)

J=0

acting on those H,, q—valued stationary stochastic processes h,(6,w) for which
the expression in (2.10) makes sense. With this definition, (2.8) turns into
the system of stochastic cohomological equations (suppressing the (6;w)
argument,)

m
= (kjn — gjn) 0 AW} =: dK, — dG,, (2.11)
7=0
which have to be solved successively for n = 2,. .., for dK,, known from previous

steps, and h,, choosen to make dG,, simplest—possible. The most desirable choice
is dG,, = 0, resulting in the task of solving the cohomological equations

dL,(hy) = dK,, n>2,

or, equivalently, looking for stationary solutions of the affine SDE
m .
dhn = ((ad nA;) i + kjin (64)) 0 AW/, n > 2, (2.12)
§=0
where k; , depends on the solutions of (2.12) of lower order 2 <k <n —1. We

have k;2 = f;2 deterministic, but for n > 3, k; ,, is typically random and not
adapted to the filtration of W.



Let ®,, be the linear cocycle on Hy, 4 generated by the SDE

dv; = Z(adnAj)vt odWi, n>2. (2.13)
§=0

The multiplicative ergodic theorem holds for ®,, (again without additional as-
sumptions) and gives the spectrum

X(®,) = {A; — (A7) : Ay € 2(D1), |7| =n},

where (A, 7) := Zle A;7;. This can be deduced from the form of ad ,4; given
in (1.4) and the following facts: If the linear cocycles ¥y and ¥, are generated
by the linear SDE d¥; = Z;’;O Ag-l)\Ili odW/, i = 1,2, then the linear cocycle
Uy ® Uy is generated by the linear SDE

AT @ Tr) =Y AV @ L + I © AP) (T @ Ty); 0 dWY,
=0

the spectrum of ¥; ® U5 is
(T @ Uy) = 2(Ty) + 2(T,)

([2], Theorem 5.4.2), and, finally, the spectrum of the cocycle generated by
dvy = 3770 (=T (Aj)n)ve 0 AW} is {—(A,7) : |7| = n} (see Arnold and Xu [10],
Theorem 3.1).

It turns out that we have a chance of finding a (unique) stationary solution
of (2.12) provided the linear SDE (2.13) is hyperbolic, i.e., 0 & X(®,). We
call the linear cocycle ® = ®; generated by (2.2) nonresonant of order n if
0 ¢ ¥(®,,), resonant of order n otherwise, n > 2.

3 The nonresonant case

The crucial property of the stationary processes k; ,(6;-) in the cohomological
equation (2.12) to ensure the existence of a stationary solution in case the linear
SDE (2.13) is hyperbolic, and which is in fact inherited by the solution, is the
property of temperedness.

3.1. Definition (Tempered random vector). A random vector X with

values in R is called tempered with respect to the metric dynamical system
(Qa 9:7]11)7 (et)tER) if

1
lim —

+ -
AT log™ | X (6:w)| = 0. (3.1)



The assumption (3.1) excludes the case lim sup,_, 4 ‘17| log™ | X (Bsw)| = oo, and
is implied by the integrability condition supy<;<; log™ | X (6;-)| € L'(P). We will
also make use of the fact that the set of real-valued tempered random variables
is a commutative ring with unit element.

3.2.THEOREM (FORMAL LINEARIZATION OF AN SDE). Given the SDE

dry = fi(w)odW{, [;(0)=0, 0<j<m,
j=0

and assume that the linear cocycle generated by

dvy = ZAjUt Othj, A;:=Df;(0), 0<j<m,
3=0

is nonresonant of any order n > 2. Then there is a random coordinate transfor-
mation h whose formal Taylor series h(w,x) ~ x + Y, <o hn(w,x) is uniquely
determined and has tempered coefficients h,, such that h formally linearizes the
above SDE.

3.3. Remark. (i) It is quite remarkable that at the beginning and at the end
of the above procedure we have two bona fide classical SDE, while the transfor-
mation converting the solutions of the first into the solutions of the second is
anticipative.

(ii) With the above procedure, infinitely flat terms of the f; at 0 cannot be
detected as they do not appear in formal power series. A random version of
Sternberg’s linearization theorem would assert that in the above situation the
nonlinear SDE (2.1) and its linearization (2.2) are indeed smoothly (and not just
formally) conjugate by a random coordinate transformation h(w,z). However,
such a theorem is still lacking. ]

The proof of Theorem 3.2 is quite complicated and is divided into three steps,
of which the first two are of technical nature, while the third one (on invariant
measures of affine SDE) is of independent interest. The result will be a formal
random Taylor series for h. To find a random coordinate transformation corre-
sponding to this formal random Taylor series is accomplished by the following
theorem.

3.4.THEOREM (BOREL’S THEOREM).Given hg = 0, hi(w,z) = =, hy Hp 4
valued random variables, n > 2. Then there is a random coordinate transfor-
mation h whose formal random Taylor series expansion has the coefficients h.,.

The proof is just an w—wise version of the deterministic proof given by Vander-
bauwhede [23], page 142, and is thus omitted.

10



3.1 Step 1: Boundedness of moments of solutions of a
hierarchical system of affine SDE

Our main task here will consist in proving that all processes in our hierarchical
system of affine SDE obtained by solving the cohomological equations (2.12)
step by step for fized initial conditions satisfy the conditions of the following
lemma.

3.5.LEMMA. Let u = (u(t,))se[0,1],0ere be an RF —valued stochastic process
which for fized x is P-a.s. continuous with respect to t, is adapted to (Ft ),
0 <t <1, and satisfies the following two conditions which from now on are
called

Conditions (C): For any p > 2 and any compact set K C R? there emist
constants ¢, and cp x € Rt such that

E ( sup [u(t, 0)|P) <
0<t<1

E ( sup |u(t,z) — u(t, y)|p) <cpilr—y|”’? for all z,y € K.
0<t<1
Then u is P-a. s. jointly continuous with respect to (t,x), and for p > d and any
compact set K C R? there exist constants C, € Rt and ¢ > 1 such that
E (sup sup |u(t,:c)|p) < Cp(diam K')4. (3.2)

reK 0<t<1

Proof. The joint continuity of u follows from (C) by Kolmogorov’s continuity
criterion, applied to the €[0, 1]-valued process z — u(-,z), and with p/2 > d.
(3.2) is a well-known implication of the fundamental continuity lemma of
Garsia, Rodemich and Rumsey, see for example Barlow and Yor [11], formula
(3.b), or Arnold and Imkeller [5]. =

We now prove that conditions (C) are passed on from u to processes obtained
from u by reasonable operations.

3.6.LEMMA. Let u satisfy conditions (C), and let

v(t,z) = /tu(s,x) dWs, w(t,z) = /tu(s,m)ds,
0 0

where W is a scalar Wiener process. Then v and w satisfy conditions (C).

Proof. This is an immediate consequence of Burkholder’s and Holder’s in-
equalities. ]

11



The following considerations will be crucial for the algorithm by which we solve
our hierarchical system of affine SDE. Let d;, d> € N, and for 0 < ¢ < m suppose
that (ui(t,71))tcp0,1],0,cr® 18 @ parametrized semimartingale with decomposi-
tion

t moot .
wi(t, 1) = / wi(s,x1)ds + Z/ vl (s, 1) dW], (3.3)
0 = Jo

with values in R%. Let, moreover, By, Bi,...,B,, be d2 x d» matrices, and
denote by (®(t)):cr the linear flow in R? generated by the linear SDE

m
dye =) _ Bjye o dWy. (3.4)
§=0
We now consider the SDE
m
dzy = Z(Bjxt + Uj(t,ﬂi‘l)) o thjy To = ZTg € R?. (35)
§=0

Let (p(t,21)):er be the flow generated by (3.5), the value of which at z, € R
will be written as ¢(t,z1)zs.

3.7.LEMMA. Let u; = (ui(t,%1))¢c[0,1],0,crr be given by (3.3). Assume that w;
and v} (hence u;), 0 <i<m, 1< j<m, satisfy conditions (C). Let

t m i
pltaon)es = [ ploanaa)ds+ Y [ 9(s,a1,02)7
0 = Jo

be the semimartingale decomposition of the solution flow of (8.5). Then ¢, p,
and Y7, 1 < j < m, satisfy conditions (C).

Proof. (i) We only prove the second of the conditions (C) for ¢.
Let us start by writing the It6 form of (3.5). We have

dy: = > (Bjys +u;(t,z1))dW/ (3.6)
j=1
1 m ) 1 m J
+ | (Bo + §ZBj)yt + §Zvj(t,x1) dt.
j=1

Jj=1

Now fix p > 2 and a compact set K C R? xR¢. Then for any (z1, ), (y1,y2) €
R% x R% | Burkholder’s and Jensen’s inequalities as well as the hypothesis yield,
with suitable constants c;, ¢z, ¢3,x and with the abbreviation

1/p
f(t):=E ( sup [¢(s, z1)T2 — w(s,yl)yzl”> ;

s€[0,t]

12



f(ay < 01{|£U2 — ya|

1/p
+Z]E ( sup | B i (p(s, 1) 22 —w(s,yl)yz)dwﬁlp)

tef0,1] Jo

t

1/p
+ZIE (sup | (uj(S,m)—ug'(sayl))dWﬁp)

t€el0,1 0
1/p
+E [ sup | Bo+ ZBQ (s, x1)z2 — (s, y1)y2)ds|”
tef0,1]
+ 1/p
+ZE (sup | [ wls,m0) — o5, yl))dsw) }
tel0,1 0
t
< o (m —ual+ [ s+ o - y1|1/2)
0
1
< ox (|<w1,m2) ol [ f(t)dt). 3.7
0

To (3.7) we have to apply Gronwall’s lemma to obtain with a suitable constant
Cp,K € R+

E ( 81[1p] lo(t, z1)w2 — w(t,yl)ml’”) < epicl(T1,22) — (y1,92)[P/2. (3.8)
tel0,1

This is the second of the conditions (C) for ¢.
(ii) Next observe that according to (3.6) for any ¢ € [0,1] and (z1,z2) €
R¥ x R
P (t, 21, 22) = Bjp(t, w1)w2 + uj(t, 1),

1o
p(t, 1, x2) By + = 232 (t,x1)ms + = 5 Zvﬁ(t,ml).
=

Hence by our hypotheses and (3.8), ¥/ and p satisfy the conditions (C) as well.
O

Next we show that conditions (C) are inherited from u and its characteristics
to a polynomial of u and its characteristics.

13



3.8.LEMMA. Let
mooat . t
u(t,z) = Z/ v (s, 2)dW) +/ w(s,z)ds, te€0,1],z € R™,
= o 0

take values in R%, and assume that u, v/ and w satisfy conditions (C). Let p
be a polynomial in the variable y € R . Then, if

mooet . ¢
<pou)<t,x):; / & (s, 2)dW? + / r(s,2)ds,

also pou, ¢ and r satisfy conditions (C).

Proof. First note that, by Ité’s formula, ¢/ and r are of the same structure
as p o u. Hence it suffices to prove the conditions for p o u.

Due to Holder’s inequality, it is evidently enough to consider the case of a
real-valued u and a polynomial p of the form p(y) = y' for some I € N. Then

for y1, y2 € R
-1

py1) — p(y2) = (g1 —y2) D _ ylyh™ " (3.9)
k=0

Now observe that by conditions (C) for any z € R%

t€[0,1]

E <sup |u(t,m)|p> <c¢p (3.10)

for a suitable constant ¢, € Rt. Then (3.9) and an application of Holder’s
inequality obviously allow us to deduce conditions (C) for p ou from (3.10) and
the condition (C) for u. m

3.9.LEMMA. Let u = (u(t,z))ieo1],0ere with values in R? satisfy conditions
(C), let (®(t))ter be the linear flow generated by (8.4) for ds = d, and let W be
a scalar Wiener process. Then the processes

v(t,z) = /Oté(s)lu(s,a:) dWs, w(t,x) = /Ot ®(s) Lu(s, x)ds

satisfy conditions (C).

Proof. ®(t)~! satisfies the SDE

do(t)™' ==Y " ®t) "' BjodW/, ®(0)=1I.
j=0
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Hence for any p > 1 we have

E ( sup ||<I>(t)_1||”> < 0. (3.11)
t€[0,1]

Then it is clear that Burkholder’s inequality, Holder’s inequality and (3.11)

imply that v and w satisfy conditions (C). o

We finally come to the announced hierarchical system of affine SDE. Let (d,,)nen
be a sequence of integers. For 0 < j < m and each n € N, let 4;, be a
d, x dp matrix, and let p; , be a polynomial in the variables (zi,...,2,-1) €
R4 x - x R¥»-1, with p;; = b; € R a fixed vector. Then our hierarchical
system of affine SDE is as follows:

m

dr} = Y (Ajaz} +pj) 0dW/, x5 =z €RY, (3.12)
7=0

d} = ) (Ajax] +pja(a})) odW], z5=m €R%,  (3.3)
§=0
5 |

d.CL‘? = Z(Aj,nx? +pj,n($%a s ,.CL‘?_I)) ° thJa (314)

<.
I
o

3

xoza:neRd",

The algorithm for successively solving this system is as follows: Let (®,(t)):er
be the linear cocycle in R% generated by the linear SDE

m
dyp =3 Aguy? 0 dWi, b =y € R (3.15)
j=0
We first solve the first affine SDE (3.12). Denote the resulting affine cocycle by
(¢1(t))ter which by the variation of constants formula is given by

m ot
p1(t)e = 01(t) | = + Z/ 31 (s) " pja 0 dW/
j=0"0

Then insert the cocycle ¢1(¢)z1 into the second equation (3.13) in place of z}
which gives a non—autonomous affine SDE whose solution flow is denoted by
o (t, 1), etc. At step n insert 1 (8)x1, - -, @no1(t, L1, -, Tn_2)Typ_1 into the
nth equation (3.14) which gives a non—autonomous affine SDE

m

dl’? = Z(Aj,nx? + pj,n(‘Pl (t)xla ... JQO’H/—I(tJ T1ye-- Jmn—2)xn—1) o thja
=0
Tl =1z, € Rin, (3.16)
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with solution flow ¢, (t,z1,...,Zn_1).
Note that the first n affine SDE considered as one equation generate the >
RDS

pt)(x1,. ., xn) = (P1(t)T1, 02(t, T1) T2y - -, Pt T, -+ o, Tp—1)Tp).  (3.17)

3.10.PROPOSITION. Forn € N, represent the solution of the nth equation (3.16)
as

1
(Pn(t,xl,...,xn_l)xn = / ’Un(S,Zli'l,...,ZL'n)dS
0

mot
+Z/ up(s,21,. .., 2n)dW].
j=170

Then for any n € N, ¢p, as well as v" and u}, 1 < j < m, satisfy conditions

(C).

Proof. We use induction on n.

The assertion holds for n = 1. This is an immediate consequence of Lemma,
3.7, choosing u; = b;.

Let us now assume that the assertion holds for ¢i,...,pn_1 and their
characteristics. Consequently, Lemma 3.8 yields that all the components of
Pim—1(p1(®)x1, ..., on—1(t, 21,...,Zn—2)Tp—1) and their semimartingale char-
acteristics satisfy conditions (C). Hence Lemma 3.7 applies and gives condition

(C) for ¢y, as well as for v} and v™. o

3.11.PROPOSITION. Let fort € R
Xl(t) = Z/ q)l(S)_lbj o dWsj,
7=0""0
and forn > 2 and (z1,...,2n 1) € R x --- x Rin—1

Xn(t,.Z'l,...,.’L'n_l) = (318)

m t
Z/ ‘Pn(s)_lpj’n((pl (t)wl, ey (,Onfl(t, T1yen- ,Z‘nfz).%'nfl) o dI/VsJ
j=0"0

Then X, satisfies conditions (C).

Proof. This is an immediate consequence of Proposition 3.10 and Lemmas 3.8
and 3.9. o

Here is our final and main result of step 1.
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3.12.THEOREM. Consider the hierarchical system of affine SDE introduced in
(3.12) to (8.14). Then for anyn > 2, anyp > di1+---+dn—1, and any compact
set K C R x -+ x Rdn-1 there exist constants cp, € RY and g > 1 such that

E sup sup |Xn(t, 21,...,2n-1)|P | < cpp(diam K)7, (3.19)
(ml’---vwn—l)eK tE[O,l]
where X, is defined by (3.18).

Proof. Combine Proposition 3.11 with Lemma 3.5. o

3.2 Step 2: Inheritance of temperedness

We first study the inheritance of temperedness in case tempered vectors (see
Definition 3.1) are inserted into random fields. Property (3.2) will play a crucial
role hereby, as indicated by the following lemma.

3.13.LEMMA. Let (X(y))ycrar be a P-a.s. continuous random field with values

in R for which the following condition holds: For p > dy and for any compact
set K C R% there exist c, € RT and ¢ > 1 such that

E (sup |X(y)|p) < ¢p(diam K)9. (3.20)
yeK

Let Y be a random vector with values in R% | and for e > 0 and m € N let

A i={w € Q: Y (Ow)| < mexp(te), t € RT }.
Then there exists a constant cc ,, € Rt such that for any n € Z+

E <1A€.m sup X (Y)(at-)l”> < Ce,m exp(neq),

t€[n,n+1]
where p and q are related by (5.20).
Proof. Forw € A, ,, and t € [n,n + 1] we have
|V (6;w)| < mexp(te) < mexp(e) exp(ne).

Hence due to (3.20)

E<1Am sup |X(Y)(0t-))|1’> < E <1As,m sup |X(y)|p>
t€[n,n+1] YEBe m.n
< cp(diam Be pn)Y, (3.21)

where
Bemni={y € R% . ly| < mexp(e) exp(ne)}.

m. Hence the desired inequality follows readily from (3.21). o

But diam B, ,, n, < €4, ,e,m €xp(ne), with a constant depending just on d;, € and
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3.14.THEOREM. Let (X(y)),cra be a P-a.s. continuous random field with val-
ues in R% for which the following condition holds: For p > di and for any
compact set K C R4 there exist a ¢p € R and a ¢ > 1 such that

E (sup |X(y)|p) < ¢p(diam K). (3.22)
yeK

Let Y be a tempered random vector with values in R* . Then the R —valued
random vector X(Y) is tempered.

Proof. Define A, ;, as in Lemma 3.13. We shall prove that
L1
tl_l)r& 7 log™ | X (Y)(6w))| =0,

remarking that the behavior for ¢ & —oo can be treated similarly. Since Y is
tempered, A; ;T Q (m 1 00) P-a.s. for any € > 0.

Let € > 0 be given. We have to prove that there exists a d(¢) > 0 such that
for any m € N we have

. 1
LAseym hiri)solip 7 log™ | X (YV)(0w)| <&, P-as. (3.23)

(3.23) will indeed imply temperedness since A5y n T, P-a.s. , for m 1 oo and
any € > 0.

To prove (3.23), let £, § > 0, m,n € N be given. Then by (3.22) and Lemma,
3.13

P(AsmN{ sup Tlog" [X(V)(0)] > <))

te[n,n+1]
< P(AsmN{ sup [X(Y)(0:)] > exp(ne)})
te[n,n+1]
< E(la,,, exp(—npe) sup [X(Y)(6:))[7)

te[n,n+1]
< cm,5exp(ngd — npe) = ¢y, exp(n(gd — pe)).

Now choose § < %. Then for all m € N the Borel Cantelli lemma yields

1
1a,,, limsup sup " log™ | X(Y)(6:))| <e.

n—0o0  t€[n,n41]
This clearly implies (3.23) and completes the proof. o

As a second issue we study the inheritance of temperedness by geometric series.
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3.15.THEOREM. Suppose X is an R?—valued tempered random wvector. Let
(Tr)nen be a sequence of random linear operators in R? with negative Lyapunov
indez, 1. e., for some deterministic § > 0

1
lim sup ~ log || < —6.
n—oo N

Then -
Y =) Tu(X 06(n))
n=0
1s absolutely and geometrically convergent and tempered.
Proof. Choose € > 0 such that 2¢ < 8. Then by the assumptions, from a
certain index n on, ||T,]|(X 08(n)) < exp((2e —B)n) from which the convergence

statements follow. As to the temperedness of Y, there exists a random variable
R, such that for t € R

Yobl < D ITalllX 06(n+1)

n=0
oo
< R.)_exp(en — Bn)exp(e(n + [t])
n=0
R ! exp(elt])
= Y — -l S8 )
1 —exp(2e — f) P
which clearly implies that Y is tempered. o

3.3 Step 3: Invariant measures of a hierarchical system of
affine SDE

We return to the setting of a hierarchical system of affine SDE introduced above
(see Theorem 3.12), and determine its invariant measures.

So let (®,,(t)):er be the linear cocycle in R%» generated by (3.15). The mul-
tiplicative ergodic theorem holds for ®,,, giving its Lyapunov spectrum X(®,,).
Having in mind our cohomological equations in the nonresonant case, we as-
sume that all these cocycles are hyperbolic, i.e., 0 € X(®,,) for all n € N. Then
Ré» = E(w) ® E¥(w), where ES(w) = @, , <0Fin(w) is the stable space, and
E}¥(w) = ®x,,>0En(w) is the unstable space of ®,. Denote by =« (7)) the
projection whose range is E* (E?), and whose kernel is E (E¥).

For convenience we recall the following facts (see [2], section 4.3).

3.16.LEMMA. Assume that the cocycle ®, is hyperbolic. Then there exists a
constant B, > 0 such that

. 1 u _
lim sup % IOg ||7rnq>n(k) ! ” S _/Bn)

k—o0
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and 1
lim sup — log |75 @, (=k) ™| < —fh.
k—o0 k

We first consider the affine SDE of order one. We recall that a probability
measure u(dw,dr) = p,(dr)P(dw) on (2 x R*,F ® B) with marginal P on
(Q, ) is called invariant for the RDS ¢ if p(t,w)py = po,w P-a.s.

3.17.THEOREM. Consider the affine SDE in R%

do} = (Ajaz} +bj) 0 dW/, (3.24)

Jj=0

and assume that the corresponding linear cocycle ®, generated by dyt =
Z;n:o Aj 1yt odW] is hyperbolic. Then the affine cocycle p1 generated by (5.24)
has a unique invariant measure, namely the random Dirac measure py, = Oy, (w),
i. e., we have p1(t, )k = K1 0. Here k1 = k5 ® k¥, and

Ky =Y m o (—k)"HX; 06 y), (3.25)
k=0
ki ==Y o ®i(k) (X 0y), (3.26)
k=0
where
m 0 ) m 1 .
X = Z/ él(t)ilbj o thJ, X = Z/ @1(t)71bj o thJ
im0/ -1 =00

The sequences in (8.25) and (3.26) converge P-a. s. absolutely and geometrically,
and the limits k5 and K} as well as k1 = Kk ® kY are tempered random vectors.

Proof. (i) We first prove the statements on temperedness. X; and X;' are
tempered by Theorem 3.14 since a constant vector is tempered. Hence Theorem
3.15 and Lemma 3.16 yield that ] and } exist and are tempered. Thus k1 is
tempered.

(ii) We now check that d,, is invariant, i.e., that p1(¢,-)k1 = k1 0 6;. This
is equivalent with 77" (6;-)¢1 (¢, -)k1 = K7 (6;-) for t € R. Using the variation
of constants representation of ¢; and the fact that for k € Z+

mo k4l
S [ ) ez = 200X 000,
=0
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we obtain, after some rather lengthy, but elementary manipulations,

N—oo

N—-1
it Iny = lim () <— Zﬁo@(k)l(Xroek))
k=0

m t
kY o0, +7er/ ®1(s)" b 0 dWY.
j=0"0

A similar argument holds for the stable component.
(iii) The uniqueness of the invariant measure is a consequence of hyperbol-
icity and is proved in [2], Theorem 5.6.2. o

Now suppose that ki,...,k,_1 are tempered random vectors with values in
R% ... Ré=-1 respectively such that u’ = d.,, 1 < i < n — 1 is the unique
invariant measure of the ith equation of our hierarchical system of affine SDE.
We now study the nth SDE

m

dzy = (Ajna +Pin(01(D)k1, - o1 (K1, Kin2)kin_1))0dW] (3.27)
j=0

in R% . Note the fundamental fact that the validity of Lemma 3.5 entails the
famous substitution rule for Stratonovich integrals (see Arnold and Imkeller [5],
Corollary 1): If  is any random variable and W a scalar Wiener process, then
u(t,n) (though nonadapted) is Stratonovich integrable, and

, teR (3.28)
=17

t t
/ u(s,n) o dWs = / u(s,x) o dWs
0 0

Hence the anticipative affine SDE (3.27) makes sense, and it generates an affine
cocycle o, (t,K1,--.,kn—1). We now determine its invariant measure.

3.18. THEOREM. Suppose all equations of the hierarchical system of affine SDE
have a hyperbolic linear part. Then each of the equations has a unique invariant
measure. This measure is a random Dirac measure (stationary solution) whose
supporting random variable can be obtained step by step by determining k1 ac-
cording to Theorem 3.17, inserting 1 (t)k1 into the second SDE, etc., where the
stable and unstable component of k., of the nth equation (8.27) is given by

K5 =Y s od,(—k) (X, 0b_y), (3.29)
k=0
K== w0 @y (k)X 0 ), (3.30)
k=0
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where

X‘r: = Z/ p], 901 (t)ﬁla sy Pn—1 (ta Kiy.--, ’fn—Q)K/n—l) o thJJ

Xt.= E / @n(t)_lpj,n(cpl K1y s Prno1(tyh1yee s bn—2)kin_1) o dW;.
— /0

The sequences in (8.29) and (3.30) converge P-a. s. absolutely and geometrically,
and the limits k;, and k% as well as kK, = K, ® Kk are tempered random vectors.

Proof. Since Theorem 3.12 holds, and since (k1,...,%,_1) is a tempered vec-
tor, Theorem 3.14 applies and entails that X, and X, are tempered. Hence by
Lemma 3.16 and Theorem 3.15, the series in equations (3.29) and (3.30) have
the convergence properties claimed, and the limits xJ'* are tempered. Hence
finally x,, is tempered.

Invariance and uniqueness of k,, are proved as in Theorem 3.17. o

3.19. Remark. (i) By means of the substitution rule (3.28), x; can also be
written as

sz/ B (1) (3 (64-)by) o VW,

Z/ &, ()1 (7Y (8s-)b;) 0 AW,

where the 1ntegrals exist as the P-a.s. limits of the non-adapted Stratonovich
integrals f - and fo for T — oo. Similarly for k.

(ii) Again by the substitution rule (3.28), the cocycle (3.17) evaluated at
k := (Ki1,...,Ky) is equal to the solution of the first n equations with non—
adapted initial value k, and is the unique stationary solution of these equations,
p(t)k = kol t € R "

This completes the proof of Theorem 3.2. We close with an example.

3.20. Example (The one-dimensional case). For d = 1, H,; =
(choose the basis z"e;) for all n > 2. The linearization of the SDE dx
Sito fi(x) odW is dv = 37" ) Aju 0 AW whose explicit solution is

Rl

O (t,w) = exp(Aot + Z AW (w)).

=1

Hence A = Ag is the Lyapunov exponent. Further, ad,A4; = —(n —1)A;, and
2(®,) = {—(n—1)A}. We have nonresonance for all n if and only if A # 0. The
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unique stationary solution of the nth cohomological SDE

dh,, = Z((adnAj)hn + kjn(0)) 0 AW

7=0
is
- { Yo Soexp((n — 1) Sy AWk (B0) 0dW/, X >0,
— S JyS exp((n — 1) i AWk (8:8,7) 0 dW/, X <0,

4 The resonant and small noise case

4.1 Resonant case

If 0 € ¥(®,) we cannot guarantee anymore that the cohomological equation
(2.11) of order n has a solution for any right-hand side . Assume for simplicity
that ® has simple spectrum (all Lyapunov exponents A; are different, equiva-
lently all E; are one—dimensional). Then by Theorem 9 of Arnold and Imkeller
[5], the linear SDE (2.1) can be diagonalized by means of a random (anticipative)
coordinate transformation w; = P(f,w)vy, so that the linear cocycle

‘I’(t, w) = P(Gtw)é(t,w)P(w)_l = dia‘g ("pl (t7 w)7 tee 7¢d(t7w))

has the same spectrum as @, is diagonal, and has generator

dw, =Y diag (Q; (w1 (6:-)),- -, Q; (wa(6e-)))wy 0 AW/, (4.1)
3=0
where Q;(u) = (Aju,u), and F = (u1,...,uq) is a basis of random eigenvec-

tors such that u; € E;. The anticipative Stratonovich SDE (4.1) makes sense.
Further, all ad , A; become diagonal matrices in this basis (see Remark 1.1), so
that the random cohomological equation (2.11) decouples into D scalar SDE.
Recall that for n > 2, 2(®,,) = {A; — (A,7) : A; € 2(D),|7| = n}.

If (i,7) is such that A; — (A,7) # 0 we put dG4™ = 0, and solve
the corresponding affine cohomological equation as usual. If for some (i,7),
A; — (A,7) = 0 (resonance of order n) we make the convention to choose
hi™ =0, hence dG4™ = dK%7, i.e., we will not try to simplify G&%™ (which will
only be possible in rare exceptions anyway). We call the result of this procedure
after N steps normal form of order N. The formal handling of the hierar-
chical system of anticipative SDE can be justified as in the nonresonant case
which we refrain from making explicit here.
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4.2 Small noise: a case study

The engineering and physics literature on stochastic normal forms has worked
exclusively in a center/stable situation, and with a smallness parameter mul-
tiplying the noise terms, thus obtaining a stochastic normal form as a small
perturbation of the deterministic one.

We will now connect our general approach developed in the previous sections
(which is independent of any smallness assumptions) with the existing physics
and engineering literature by presenting a stochastic analogue of a very success-
ful procedure proposed by Elphick et al. [13] for simultaneously obtaining the
normal form, eliminating the stable variables from the center equation, and de-
termining the center manifold. This was done for random differential equations
by Arnold and Xu [9].

We are now in a position to carry this procedure over to the SDE case.
We will, however, not repeat details and just emphasize that all nonresonant
(anticipative Stratonovich) cohomological equations in the SDE analogues of
Theorems 2.1 and 3.1 of [9] are solved as in the nonresonant case of section 3,
and, following our convention made in subsection 4.1, for all resonant equations
we make the trivial choice h,, = 0 for the random transformation. This math-
ematically rigorous procedure finally justifies earlier important work on normal
forms for SDE quoted at the beginning of this article.

We now discuss the following application: In stochastic bifurcation theory
one needs to study an SDE

dzy = fo(zy,@)dt + o Z fi(@s, @) o dWY (4.2)
j=1

in R?, where the smooth vector fields f;(z,a) smoothly depend on a parameter
a € R™, and o € Ris a (small) intensity parameter. We assume that f;(0,a) =
0 for all @ € R™, so that the linearization of (4.2) is

m
dvy = Ag(a)vedt + UZAj(a)Ut o dW}, Aj(a) := D, fi(z,a)|z=0, 0 < j <m.
j=1
Assume further that for (a, o) = (0,0) the deterministic linear equation
o= Aov, Ao = Dgfo(x,0)]s=0

is in a center/stable situation (no eigenvalues with positive real part) and
has been brought into Jordan canonical form by a (deterministic!) coordi-

nate transformation, so that R = R% x R?% is the invariant splitting for
A§ .
Ag = ( 00 /?s ) into a center and stable part.
0

We treat (o, o) € R™*! as a small parameter and seek the normal form and
center manifold reduction for small (z,a, o) as a polynomial in (z°)P(z%)%lo".
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All cohomological operators (hence all linear cocycles) are now deterministic
and of the form
dLy(hy) = dhy, — (ad pAg)hpdt.

We add the trivial equations da = 0 and do = 0. The result is given by the
(rather obvious) white noise analogue of Theorem 3.1 of [9] and is (omitting
remainder terms) as follows: The center variable satisfies

dxf = Afxidt + Zgjc-(ﬂt-,xf,a,a) odW/, da;=0, do;=0,
j=0

where g is a random polynomial of order N in z¢ and M in (a,0), and the
(approximate) stochastic center manifold is given by its graph

R% x R™ 5 (2°, a,0) = me(-, 2%, a,0) € Ré,

where m,. is a random polynomial of order N in z¢ and M in (a, o).
The prototypical Duffing—van der Pol oscillator

j=ay+pBy—y> —y’y (4.3)

under the influence of parametric and additive noise has been the subject of
numerous investigations (see Arnold, Sri Namachchivaya and Schenk—Hoppé
[7], Schenk-Hoppé [17],[18],[19], and the references therein). For a < 0 fixed
and 3 the bifurcation parameter, the system (4.3) exhibits a Hopf bifurcation
for 8 = 0. For 8 < 0 fixed and «a the bifurcation parameter, it undergoes a
pitchfork bifurcation at a = 0.

To reduce complexity, we will treat a particular case of parametric noise: Let
the parameter a be replaced by a + oW, where W stands, as usual, for white
noise, and o is a strength parameter. With z = (g), the perturbed version of

(4.3) is

0 1 0 0 0
=[5 (S e (2 8 rem

Here W is a two-sided one—dimensional Wiener process. The linearization of
(44)atz=0is

dth(g ;)vtdt+a<(1] 8)Ut°th- (4.5)

The pitchfork scenario under small random perturbations

Put for simplicity § = —1. Then the eigenvalues of the linear part of the
deterministic equation (4.4) (¢ = 0) are (—1++/1 + 4a)/2. We treat (o, 0) as a
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small two-dimensional parameter and will determine the simultaneous stochastic
normal form and center manifold reduction of (4.4) for small z, o and o.

The (formidable) calculations are formally the same as in the real noise case
(just replace in [9] £(t) by W, with all the obvious consequences). We introduce
the auxiliary processes U, V, X, and Y which are the unique stationary solutions
of the scalar SDE

dUy = =Uidt + dW,, dV; = Vidt + dWy,
and
dXt = —Xtdt + dUt, d},t = —thdt + Ut o th
Note that V anticipates the future of W. The resulting center SDE (up to terms
of order 3 in z¢ and 2 in («,0)) is
dif = (a—aolU; —o®)xldt + (0 — 0*U; — ao)zf o dW;

+(=1+20U; — 0*(3U;V; + 4Y; + 2U; + U?)

+3a — ao(15U; + 7X; + 4V;) — 18a?) (x§)3dt

+(0 — 0 (4U; + 3X; + V) — 10a0)(z5)? o dW;. (4.6)
Note that this is an anticipative SDE since V is anticipative.

The approximate center manifold is the random function (z¢ a,0) —

me(-, 2%, a,0) = 2° given by
me(-, 2% a,0) = (—=V20Uy + 2v/20%Zy — V2ax
+2v2a0 (Uy + Xo) + 2v20%)z°
+(V2 — V20 (4U, + 3Xy)
+02 HSppy — TV20 + ac Hiyyy — 47V202) (2€)3,
where H3, o, and H3y,; are certain anticipative random variables which are very
complicated functions of lower order terms.

The computational effort for these results is enormous and could only be
accomplished by using the computer algebra program MAPLE. There are 106
cohomological equations to be solved to determine the coefficients. For the real
noise case, these cohomological equations fill 18 pages and can be found in an
appendix to a reprint version of [9].

The scalar SDE (4.6) can now be utilized for stochastic bifurcation theory

of the two—dimensional SDE (4.4), similarly as in Arnold and Boxler [4].
For example, linearizing the SDE (4.6) at z. = 0 gives the scalar SDE

dv; = (o — aoU; — a®)vidt + (6 — 0*U; — ao)vg o dWy

which can be explicitly solved to give its Lyapunov exponent

t 02

1
2 _62 lim = UsodWy, =a—a? — —

Ae(a,0) =a—a tm g ) 5
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where we have used
t t "
/ Us o dW, =/ UgydW, + =
0 0 2

and f(f Us dWs [/t — 0 P-a.s. This is in full agreement with an asymptotic formula
for the top Lyapunov exponent A (a, o) of the two—dimensional linear SDE (4.5)
(for 8 = —1) by Pardoux and Wihstutz [16] (Theorem 5.3) which gives

M(a,0) = Ae(a,0) + O(ch).

In particular A\1(0,0) = —”2—2 + O(0*), hence the disturbed system is still stable
at the deterministic critical value @ = 0, and the stochastic pitchfork bifurcation
(bifurcation of two new invariant measures from the trivial reference measure
do) is delayed to the parameter value

2 02
—+....

o
Q= ... =
14+ +v1—202 2

at which A;(a¢,0) = 0.

The Hopf scenario under small random perturbations

We now assume that a < 0 is fixed and g is the bifurcation parameter which
varies in the interval |8] < v/—4a so that the frequency

wg =+ —a—[3?/4

is well-defined. We follow [7] and obtain the normal form for small z, 8 and o.
The linearized SDE (4.5) is for 0 =0

. (01

b = ( o) ) 2,
with eigenvalues g + 4wy which are purely imaginary for 4 = 0. We have
dimension d = d. = 2 for the center space, while the stable component is
not present. All cohomological equations are hence resonant (in the random
sense, i.e., all Lyapunov exponents vanish). Our recipe for their solution is as
follows: If in a cohomological equation the right—hand side is random, we choose
hn = 0 (hence do not simplify g,), while if the right—hand side is nonrandom
we search for a nonrandom h,, for which g, is “as simple as possible” by means
of deterministic normal form theory.

The truncated stochastic normal form for N = 3 and M = 1 in polar co-

ordinates (r, ), £1 = rcosp, x2 = rsingp, is as follows (again after formidable
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computational efforts which we omit):

1
dry = (gn - 57‘?) dt +
5r2 272
T_t2 (—27}2 + (ﬂ - 4wd> sin 2¢; — i3 sin 4y
w3 wd wq

+ rf cos 2%) o odW,,

6+3
der = ( d+ ﬁrf) dt +
dwqy
1 3r? 572 r?
— -1 4=t —14+ =t 20, — —t_ 4
2y ( + ws +( +2w§)cos Vi 2w§ cos 4y
3 2
_2—31 sm2<pt)aoth

For ¢ = 0 we recover the deterministic truncated normal form, from which
the Hopf bifurcation at 8 = 0 can be read off. For o # 0, the corresponding
Pardoux—Wihstutz formula ([16], Theorem 4.1) for the Lyapunov exponents of
(4.5) yields for fixed a < 0

0.2

8w

+

N

Al,g(ﬂ,d) = +O(04).

[SHV]

At 8 =0, X2(0,0) <0 < X;(0,0), so that the trivial solution has already lost
its stability. Stochastic Hopf bifurcation consists of the premature bifurcation
of a first invariant measure from the trivial one at 8; < 0 where A\;(31,0) =0,
and then of a second measure at 82 > 0 where A2(82,0) = 0.
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