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Abstract
The Lyapunov exponents of the linearization
T = —z+ 2B+ c&x

of a noisy Duffing-van der Pol oscillator are key quantities in the inves-
tigation of the stochastic Hopf bifurcation of this system. Considering
the white noise case we derive a simple equation exhibiting them ex-
plicitly as functions of the fourth moment of the invariant measure of
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an associated diffusion with drift given by a potential function and ad-
ditive noise, and, consequently, in terms of hypergeometric functions.
This representation leads to different kinds of complete and explicit
asymptotic expansions, as well as a rather complete account of global
properties of the Lyapunov exponents as functions of § and o.

Key words and phrases: Lyapunov exponents; noisy damped linear os-
cillator; Duffing-van der Pol oscillator; Furstenberg-Khasminskii formula; in-
variant measure; diffusion on the circle; asymptotic expansion.

1991 AMS subject classifications: primary 60 H 10, 34 D 08; secondary:
60 J 60, 35 B 32.

Introduction
The deterministic Duffing-van der Pol oscillator
¥ = —r+2B8%— a2 — 1%

exhibits a Hopf bifurcation near a value of the bifurcation parameter 3
(damping) at which its eigenvalues are purely imaginary. Adding white noise
to the system results in splitting the degeneracy. Two different Lyapunov ex-
ponents appear and the “stochastic Hopf bifurcation scenario” emerges. Its
pattern has been observed in computer simulations by Schenk-Hoppé [12].

As long as the largest of the two exponents as a function of the bifurcation
parameter is negative, 0 as a fixed point of the motion is stable. Stability
is lost as soon as the top exponent \; crosses the axis and two regimes of
different qualitative behavior emerge which depends on the sign of the second
Lyapunov exponent As.

Though looking rather appealing in the simulations, only a few of the
sketched features have been understood mathematically. See Schenk-Hoppé
[12] for an account of this.

Basic to an understanding of this bifurcation scenario are global and local
properties of the Lyapunov exponents as functions of the damping and noise
parameters which figure in the linearization at 0 of this system. Passing to

the coordinates v = (), the linearization at 0 of the noisy Duffing-van der
&



Pol oscillator is given by

0 1 0 0
d’Ut = (_1 2B)Utdt+<0 0>’UtOth, (1)

in which (W})4er is a two-sided one-dimensional Brownian motion on
(Q,F,IP). The key to investigate their properties are the Furstenberg-
Khasminskii formulas in which the Lyapunov exponents are represented as
spatial means in terms of the invariant measures of the projection of (1) onto
the unit circle. The infinitesimal generator of this diffusion was asymptoti-
cally expanded in o (for 0 — 0) as well as the invariant measure to obtain
the first terms in an expansion of the exponents as functions of ¢ in Arnold,
Papanicolaou, Wihstutz [5] and later in a more general setting in Pardoux,
Wihstutz [10]. In a related paper by Arnold, Eizenberg, Wihstutz [2] a cor-
responding large noise asymptotics is made in a still more general setting by
means of large deviations methods, without, however, yielding more concrete
results for the system considered here.

Our aim in writing this paper is to collect as many results on local and
global properties of the Lyapunov exponents as functions of noise and damp-
ing as possible to support a better understanding of the stochastic Hopf
bifurcation than one is able to get from the knowledge of the first term in
their expansions for small or large noise. To achieve this, we start again with
the Furstenberg-Khasminskii formulas. The key to our analysis is a very
simple explicit integral representation of the exponents A\; and Ay given in
section 1 by

2
M(B,0) = B+2-C(B,0)

2
Xa(B,0) = B—2-C(8,0)

where C(f,0) is the fourth moment of the invariant measure of a linear
diffusion given by
d.’Et = —Ul(ﬁt)dt+Uth,
with potential drift
6

U(x) = E—(2ﬁ2—1)x2, z€R



(Theorem 1). In Theorem 2 this representation is seen to lead to an explicit
description of Ay, A2 in terms of hypergeometric functions.

In section 2, Theorem 1 is further exploited. In Theorem 3 we give an
explicit expansion of A\; and A, in Laurent series near o = oo. In Theorem
4, for the case |3| < 1 the expansion near ¢ = 0 starting with the terms
exhibited by Pardoux, Wihstutz [10] is completely and explicitly derived
form Theorem 1. As a by-product of Theorem 3, it is seen not to converge
anywhere except at 0 = 0. In case |3| > 1, a similar expansion involves some
ideas related to large deviations since in this case the invariant measure
degenerates as ¢ — 0. The expansion is given in Theorem 5. A 3D plot of
(8, 0) exhibiting the global features of the function is given based on the
formula of Theorem 1 again.

Finally, in Theorem 6 of section 3 we show some global properties of A;
and As as functions of the damping parameter 5. For o fixed, A; is increasing
on IR, ), increasing on IR_. Like the function for the deterministic case
o =0, A\; may decrease on IR_, Ay on IR,. For |3| < 1 fixed, \; is increasing
in ¢. Finally we show that for each o > 0 there is exactly one root of A\, as
a function of .

1 Explicit formulas for the Lyapunov expo-
nents

For the convenience of the non specialist reader we shortly recall some ba-
sic facts about Lyapunov exponents and the Furstenberg-Khasminskii for-
mula. See also [4] or [1] for an overview of this subject. Consider a linear
Stratonovich differential equation

m
dX, = ApXydt +3 A;X,0dW{, X, =z € R (2)
j=1
where Ao, ..., Am € R and W', ..., W™ are independent Wiener pro-
cesses with tow sided time. Let (®;x);cr denote the solution of (2) with
initial condition Xy = z. By the multiplicate ergodic theorem there exists
a random splitting R? = E;(w) @ ...® E,(w) and (deterministic) Lyapunov
exponents A\; > ... > )\, such that

.1
v Biw)\ {0} = lim ;log|@(w)al = A.
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For x # 0 we may decompose the solution of (2) into its radial and angular
part by setting r, = |Xy|, 8¢ = f—: Using Ito’s formula we see that (s;) ek is
a diffusion on the unit sphere S%~! which is generated by the SDE

ds; = ga,(st) dt—i—ZgAj(st) o dWY,

j=1
where we set
ga(s) = As— (s, As) (A e R™ 5 € 5471,

For the radial part (r;);cr we obtain

t mo _
e = To exp (/0 (87, AoSr) dT—l—Z/O (sry Ajsy) ode_)
j=1

= 719 exp (/Ot[hAo(sT) + ilkAj(sT)] dr + il/ot<sT’AjsT> dWﬁ) ,

ha(s) = (s, As),
1
ka(s) = 5((14 + A*)s, As) — (s, As)?, A e R™ s e 54

Since the Ito integrals in the formula for r, are of order v/ we have for large
t:

1 1 st U
Slogr ~ /0 [hao () + 3 ka, (s,)] dr.
j=1
Suppose now that the following hypoellipticity condition is fulfilled:
dim L(gag,---,94,)(s) = d—1 forallse S* 1, (3)

where L£(gag,---,94,,)(s) denotes the Lie algebra generated by the these
vector fields at the point s. Then it is known that the Oseledets spaces
E; possess smooth densities (see [7]). Hence z possesses almost surely a
nonvanishing component in F; and we have

A= }E&;logrt a.s.
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Furthermore it is known that under the hypoellipticity condition (3) the dif-
fusion (s;)scr possesses a unique invariant smooth distribution whose density
p solves the adjoint Fokker Planck equation

L*p = 0,
where

1 &,
L = gA0+§ZgAj
i=1

denotes the generator of the diffusion (s;) and L* is the formal adjoint of L.
So the ordinary ergodic theorem tells us that

A1 = lim %logrt = /Sd—l[hAO(S) +j§kAj (s)] p(s)ds. (4)

t—00

This is the Furstenberg Khasminskii formula for A;. By inverting time one
obtains a similar formula for the lowest Lyapunov exponent A,. Finally one
has the trace formula

P
Y dih; = trace(Ay), (5)
i=1

where dy,...,d, denote the (deterministic) dimensions of the Oseledets

spaces. Given the fact that in our case we are in a two dimensional set-
ting, the invariant measure of the angular part of the adjoint Fokker-Planck
equation is easily computed. Calculations of this type were executed for ex-
ample in Nishioka [9], Guo [16]. In order to simplify the integral in (4) we
use a decomposition of ¢ by splitting off a term belonging to the range of the
infinitesimal generator, to obtain a very simple explicit representation of the
Lyapunov exponents in terms of different types of hypergeometric functions.

0 1 00
In the sequel denote A = _1 28 and B = s 0 for 8,0 € RR.
The linearization of the Duffing-van der Pol oscillator we consider at the fixed
point 0 is given by

dv; = Awvdt + B o dW;. (6)

The Furstenberg-Khasminskii formula for the top Lyapunov exponent is given
by

M= [ [ha() + k()] plds) 7)
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where p is the invariant measure with respect to the angular component of
(6). Note that is sufficient to compute only the top Lyapunov exponent \;
since the Lyapunov exponents A1, A\, are related by the trace formula

AL+ Ay = trace(4) = 20.

In our particular case, the functionals become

ma() = 25 ane) = (00 ) el = (2T ),

oSy —51 + 205258}
1
kg(s) = 50%% — 0%s%s)
1
= 502(81}—5383): SESI.

In order to further compute \; we introduce coordinates on S* by setting

3
= (). ser-gial

In these coordinates, we have new functionals

ha(¢) = 2Bsin®¢, (8)
_ _ [—ocos’sing\  _ _( sing —2BcosPsin® ¢

gs(9) = ( o cos3 ¢ ) ga(9) = (— cos ¢ + 23 sin ¢ cos? gb) (9)
kg(¢p) = %O’Q(COS4 ¢ — sin® ¢ cos® @), o€ [—g, gﬂ'[, (10)

and the Furstenberg-Khasminskii formula

/2 1

A= / / (28sin® ¢ + 502 [cos* ¢ — sin? ¢ cos® ¢]) p(do),
—7/2

where p denotes the corresponding image measure of p under the mapping

¢ — Zf’ﬁg) In deriving (1) note that (7) is actually a spatial mean on P!,

the one-dimensional projective space, which is expressed in (8) — (10) by the

fact that the functionals have period m. To determine the invariant measure

p we have to solve the adjoint Fokker-Planck equation for the angular part



of (6). To do this, we pass to the coordinate ¢ € [—7/2,7/2[ as well. We
obtain the stochastic differential equation
1

dgr = —r-dsi(t) = (—1+2Bsingycos g)dt +ocos’ g odWy (1)
t

with periodic boundary conditions at —m /2, 7/2.
The infinitesimal generator of the corresponding diffusion on [—7/2,7/2]
is given by

Lf(9) = b(g) + 5ec' (@) f'(#) + S () f"(9), (12)
where

b(¢) = —142Fcospsing,
C(¢) = O'COSZ¢,

¢ €|-n/2,7/2[, f € C*[—n/2,7/2]) with periodic boundary conditions. In
terms of the trigonometric functions we have

Lf(¢) = ([—1+Qﬁsin¢cos¢]—a2sin¢cos3¢)f’(¢)+%02cos4¢f"(¢). (13)

Since for the vector fields generating the diffusion (11) on [—7/2,7/2|
Hormander’s hypoellipticity condition is fulfilled, the invariant measure p
possesses a C*°-density p. To determine p, we then have to solve the ordinary
differential equation with periodic boundary conditions on [—7 /2, 7/2[ given
by

]' 2 ! 1 U
_(EC p) + (b+ Ecc)p = «
with a suitable constant «, to be determined from the boundary conditions
and norming. This leads to

20 2av

c? c

By variation of constants the solutions of (14) is easily seen to be given
by



do

[ .o
po) = G(o) L2 ,
/7r/2 G(¢) /7r/2 C2G(0) d0 dd)

where
tan® ¢

3

G(p) = % exp (—%[tanqﬁ—i—
¢ € [—m/2,7/2[ (see also Nishioka [9]).
So, finally, by putting

- BtaHZ ¢]> 3

q(¢) = 2Bsin® ¢ + %02[0054 ¢ —sin® pcos’ 9|, ¢ €[-7/2,7/2],

we obtain the formula

o= [ oo do

—m/2

We shall next considerably simplify the preceding formula by splitting off ¢

a term contained in rg(L). This leads to the following formula, in which we
2

set v = %, as in the rest of the paper.

Theorem 1 Set

Then we have

—n/
where . 5
7 exp(—v(l = ) = )
q(v) ~ 1 52
/0 ﬁexp(—u(1—52)— ) du



Proof: Consider

f(®) = —Incoso, ¢€|—n/2,7/2|,

f(—=7/2) = oo.
Then formally
Lf(¢) = (—1+2Bsin¢cosp — o cos® psin¢)tan g + %2 cos* ¢(30312 5
= _tan¢+Q(¢):tan¢_q*(¢), ¢ € [_7T/2a7T/2[,
hence
w/2
o= [ a) p(e) o (15)

w/2
= [ tanop(o) do.

—T

Though formal, this calculation can be made precise by approximating f
suitably by C*®-functions. Next, we substitute tan ¢ = s, tanf =t to obtain
for the numerator of (15) the expression

/_o:os/_sooexp(—[s+s3/3—532—t—t3/3+ﬁt2]) dt ds.

We replace t with u + s. Then the expression in the exponent simplifies to
give

[s+5%/3—Bs®> —(u+8)— (u+s)>/3+ B(u+s)?)]

2
— —u<s+u_225) —g—u(l—ﬁQ).

Hence the numerator of (15) becomes

/_O:O/OOOS exp <—[u(5_ “"'22ﬁ)2+£+u(1_52)]> du ds (16)

2 [ 1 u+ 203 1ru?
= Qﬁ-;/o NG < 5 ) exp(—;[ﬁ%—u(l—ﬁ?)]) du.
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A simpler calculation for the denominator combines with (16) to give

. om% <u+22ﬂ> exp (—; [§+u(1—ﬂ)2]> du -

>~ ] 1
; % exp (—; [%—i—u(l-ﬁ)?}) du
- ﬂ+%/ooovq(v)dv,

where the last line follows after substituting v = 2. a

The integral representation of the top Lyapunov exponent A; obtained
in Theorem 1 is simple enough to allow a representation in terms of hy-
pergeometric functions. Since these functions are implemented in many nu-
merical subroutine libraries we were able to give a 3D plot of the function
(B,7) — A1(B,7), using the built-in function HypergeometricPFQ of Math-
ematica (see Figure 1).

For k,l € IN, ay,...,a,b1,...,b, € R\ Z~ we recall the hypergeometric
function

_ L K (a)n - (ag)n 2"
kFl(al,...,ak,bl,...,bl,m) = 7;)(1)1)”— H, .’L'EI,

where (a), = [1'y(a+14), n > 0, and I C R is an interval centered at 0.
We do not discuss their radius of convergence, but remark that the types we
shall be using here converge on IR. In this notation, Theorem 1 yields the
following explicit formula, in which I' is Euler’s Gamma function.
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Theorem 2 Assume v = "72 > 0 and let « = ﬂ%ﬁ. Then for |B| # 1,
setting

GB,7) = [ P23 T2 B %
VR —1)-2-3Y6 (-
+ (B2 =12 2P T(I(3) 1 Fa(5 2, 550) | /
[ 2 23 T(T(3) 1Fa(}i 3. 55 0)
+923(8%2—1)-2-312T %) 1Fy(3: 2,5 )
+ (82 = 1)? 6*°T(R)T(3) 1Fa(5: 5, 3:9) |,

we have

Ay = ﬂ—%G(ﬂ,V)-

For || =1 we have

Y3 s D)

g 173 +\3
)\1 = ﬂ—f— <12 ,

2 F(%)

U5 s TG)

T 173 15
)\2 == ﬂ— 12

2 I

Proof: Let us give some arguments for the numerator function. We have
by dominated convergence

[T vo e (<ota- 5= @ (18)
_ (2 2y UYL s
L) B B [ e

1 (12\'"* &, 1273\" 1 _/n 1
-5 () E(e-0-Tm) ar+3)

For |3| = 1 this and a similar formula for the denominator yield the result.
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For |3 # 1, 7 = 0,1, 2 observe that the terms of order n = j (mod 3) yield
the jth term in the numerator of G(3, ), modulo a common multiplicative
constant. A similar argument for the denominator gives the result in this
case. a

2 Asymptotic expansions of the Lyapunov
exponents as functions of the noise param-
eter

Theorem 2 will imply in particular that the Lyapunov exponents as func-
tions of z = 4'/3 have Laurent series with just one term of negative order 1
at z = 0o. We shall confirm this claim first and give the expansion at z = oc.
As a consequence, A\; and Ay cannot be analytic at z = 0. Hence, if there is
an asymptotic expansion at v = 0, it cannot converge at any point except
v = 0. Nonetheless, expansions of this type exist and posses some interest for
example for the theory of bifurcations of the noisy Duffing-van der Pol oscil-
lator (see Arnold [1], Arnold, Namachchivaya, Schenk-Hoppé [3]). Their first
terms have been calculated in a more general setting by Auslender, Mil’stejn
[6] (see also Kozin, Promodrou [8]), Arnold, Papanicolaou, Wihstutz [5] and
Pardoux, Wihstutz [10]. In these papers a method was used which is based
on a formal expansion of the infinitesimal generator and the density of the
invariant measure, without taking into account the latter explicitly. We shall
show now, how Theorems 1 and 2 yield any term of the asymptotic expan-
sions at v = 0 rather easily. The arguments given here are straightforward
in case |3| < 1, and involve an elementary consideration in the spirit of large
deviations in case |3| > 1.

We state the following Lemma giving an explicit solution for a recursive
equation.

Lemma 1 Let (an)nen,, (bn)new, be sequences of real numbers. Suppose
that (cn)nem, is recursively defined by

n
ch -k = by, n2>0,
k=0
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and that ag # 0. Then we have

bo
Ch = —,
Qo
n -1 m+1 b
o= ) ( zn > ayy - - O,y (blm - —Oalm> (n>1).
m=1 %0 Lyeonylm > 1 o

h+...4¥lnm=mn

Proof: By passing to ‘;—g, n > 0, respectively Z—’;, n > 0, we may assume
ao = 1. Now the formula can be verified by elementary algebraic operations.
O

One can now use Lemma 1 to get an analytic expansion of the Lyapunov
exponents at oo.

Theorem 3 Let v > 0. Then we have

121/3 00 121/3 n
A = B+ 9 ’71/3 Z ((ﬁQ —1)- W) Cn;

n=0
where
G
I(g)
m=1 F(%)m l,oolm >1 i=1 Lit ! I'(5)
1 + ..—|—lm_:7’l
(n>1)

Proof: Starting with the expansions

()

/ /i exp (—U((l — 8. v ) dv
A 12
1 (12| 2 123\" 1 _/n 1
S B
/0 ! exp (-U((l -8 - Ulg > v

1/6 1/3\ ™
12 1 n 1
2 *« —_—  — —_— J—
Z<('B -1 ’)/2/3> n!r(3+6>’




which were derived in the proof of Theorem 2, we take the quotient in order
to describe Aq, Ao. To find the coefficients of the (absolutely convergent)

ny 1
quotient series, we then obviously have to apply Lemma 1 with a, = W,
nyl
b, = &%2—), n > 0. This immediately yields our formula. O

a

Corollary 1 The asymptotic expansions of A1, Ay tn v = 72 at v =0 do not
converge at any point vy except v = 0.

Proof: Theorem 3 states that \; and \y posses Laurent series in y/3 at
oo with just one term of negative order 1. Hence 0 is an essential singularity
for the functions in /3, hence also in 7. O

Let us now deal with the asymptotic expansions in v near v = 0. We first
treat the case |3| < 1 in which Theorem 2 yields a simple result.

Theorem 4 Suppose |B| < 1. Let

00:2,

_ < m+1 - (GZZ)'

= 123 (=)™ X lapu

m=1 Loyl >1 =1 \T78/07
h4+...4lm=n

(n>1).

il;hen the formal (but not convergent) asymptotic expansion of A1, Ay in v =
< at v = 0 is giwen by

2
7 "
e = bt S o (sageo)

Proof: We start with the formula of Theorem 1. By expanding

exp(—"lgz) this time, up to order n, we obtain the formula
00 ’U3’}/2
/ Vo exp (—v(1— %) — 21 aw (19)
0 12
1 00 ’yz
~?

_ = L7 spi1/2 —u 241
- /71_ 73 2(12 1)3> 'k!/o e dutoly™)

['(3k +3/2) + o(y*" ).

- \/1_723 Z(n r 1)3>k'k'
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The companion expansion for the denominator is given by

[ e (-oa- -0 @ 20)

Now

r <3n+ %) - (3(§§;Ln JT. n>0.

Hence (19) and (20) may be written in the alternative form
Z 2 o (6k)!

JI= 32 523 3-28(82—-1)3) (3k)'k!

Z 2 " (6k +2)!

4\/1 =3 = \3.35(F —1)3) (Bk+1)k!

Hence we have to apply Lemma 1 with

Fol™). (1)

+o(y™).  (22)

(6n)! (6n + 2)!
= bn = — Z .
= Byl Gont "=

This yields

o = 2 and
o= XU Y (g R+ 1) -2
m=1 Lyl >1 =1 (313)'1;!
L4 tln=n
S m o (6],)!
= 12Y (-1)™*+ COLNS o0
mzzl( ) W Z.:Hl(sz,-)!zi! (n>1)

This is the claimed formula. a
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Remarks: 1. The divergence of the series associated with Aj, Ay is ex-
hibited by showing the first few terms in the expansion already. We have

gl 157 16959° 590257 .
:t -
(1-p% q:64(1 — B2)471024(1 — ﬁ2)7$2084(1 — g0 +0(7°)

The first two terms in this expansion were given by Pardoux, Wihstutz [10]
(see also Arnold [1]).

2. The formula for A;, Ay in case |3| = 1 given in Theorem 2 indicates
that there is no asymptotic expansion at v = 0 in this case. Let us now turn
to the case |3| > 1. Here, as v — 0, both numerator and denominator of the
formula of Theorem 1 explode. Hence we need another type of argument.

/\1/2 = ﬁi4

Theorem 5 Assume |3| > 1. Then the formal (but not convergent) asymp-

totic expansion of A1, g iny =% at v =0 is given by

Mp = BED (8- 1)~Gn=1/2 . (23)

n=0

where the c, can be computed as follows:
There ezist a C* function ¢ defined on a neighborhood of o = /2 whose
derivatives at xy can be computed via the recursion

$e) = VB $a) = s o = —AEIEEEL
and C® functions f,qg:IRT — IR satisfying
FO0) = @ @), P0) = 56" ) (2)
such that N
o= o () D0 ez

17



(Theorem 1). Substituting v = %Y ’3,: L we get

0] 6
/ wPe 5 P gy
1/2 Jo

1
A = B+ -(B%=-1 =
1/2 /B 2(6 ) e_%(ﬂ2_1)3/2(%_$2) dr
0
1 / /Oo 2o tH@ gg
o (B2 —1)/2 Jo__
5 Q(B ) / e tH(:c) dx
0
where t = W and
x5 4
H(z) = =— — 22+ —.

For v = 0 (deterministic case) we have of course A, = £ /52 —1 (the
eigenvalues of A). So, setting

1 1 o0 1
p(dr) = 7e’?H(‘”)d:r where 7, = / e 7@ dg for 4 > 0,
t 0
Po = 5\/55
we have

1
Az = 5i§\/52—1/m+$2 pe(dz), ~>0.

So we have to study the behavior of [R+ 2%p;(dz) for ¢t — 0. The potential
H has a global minimum at zy = /2 where H(zy) = H'(zy) = 0 and
H"(zp) > 0. Therefore we can find a neighborhood U of zg, € > 0, and a
strictly increasing C* function ¢ : |xg — €, 29 + €| — U, such that

(x — 0)?

Hog(a) = ",

T €|xo — €, %0 + €.
This is seen as follows. Since H has a root of order two at x = ¢, H can be

written as H(z) = (x — 20)?G(x) where G is a polynomial with G(zq) > 0.
Now define ¢ by ¢~1(x) = ¢ + (x — 29)1/2G () in some neighborhood of z.

18



Using the coordinate transformation z = ¢(y) on U, we have for ¢t > 0

Zo+te z—20)2 1
/ " b)) (p)e” T da + / 22 1) gy
/+‘162 pr(dz) = == Tote (@—20)? —
R ’ e —1H(x)
/%06 ¢'(x)e dx+/IR+\Ue dx
IE(¢(By)?¢' (By)) + r1(t)
E(¢'(By)) +r2(t)

where (By):>o is a Brownian motion starting at =, and the remainder terms
r1,T9 are given by

1 (z—w0)> 1
r(t) = / z)%¢ (x)e dﬂc+/ g2t H(®) d:c) ;
1( ) v 21t ( RT\ ]zo—e,zo—l—e[QS( ) Cb( ) RT\U
1

(z—2q)? 1
) = / Hz)e " g ~HH@) g ) |
T2( ) V27t ( R*\ Jzo—€,z0+€] ¢ (-’L')e t el RT\U ¢ v

Now it is easy to see that ry,ry are infinitely flat at ¢ = 0 (i.e. r1,75 and
all their derivatives vanish for ¢ — 0). This shows that ¢ — [g+ 22p;(dz) is
C*, the derivatives at t = 0 being given by

(%)n/m z? py(d) L <%>n%

f(t) = E(6(B)*¢'(B)), g(t) = E(¢(B)).
Using Ito’s formula it is easy to see that the derivatives of f,g at t = 0 are
given by (25). From the definition of H and ¢ it follows that the derivatives
of ¢ at zo are given by the recursion (24). So, noting that £ = (52—1)"%?4,
(23) follows easily. O

=0
with

3 Global properties of the Lyapunov expo-
nents as functions of the noise and damping
parameters

In this section we shall collect a few results about the global behavior of \;
and Ay as functions of the noise parameter ¢ and the damping parameter
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B. They again will turn out to be be consequences of the simple formulas
of Theorem 1. The global behavior of A; is illustrated in figure 4 which was
obtained using the built-in Mathematica function FindRoot.

For simplicity of exposition we shall from now on interpret the integral
term in Theorem 1 as an expectation of a nonnegative random variable V
with density

3.2

% exp (—v(l — %) - Ulg >

o 1] 342 )
/0 ﬁexp (—u(l —B?) - ulg > du

(recall that v = "72) Then Theorem 1 may be paraphrased by stating

v>0

q(v) =

A = 5+%IE(V), (26)
N = 5—%1{3(1/). (27)

Since the density ¢ of V' does not depend on the sign of 3, we have obviously
the equality

X(B,7) = =M(=5,7).

For this reason we will formulate the global results only for the top Lyapunov
exponent A;.

Theorem 6
i) Let v >0 fized. Then 8 — A\ (5,7) is increasing on R.
it) If || < 1 the function v — A\ (B,7y) is increasing.

iii) There exists a smooth strictly decreasing function f : R —IR, with

limg, « f(B) = oo, such that {(B,7) € R x Ry | \i(B,7) = 0} =
graph(f). In particular, for each v > 0 the function 5 — X (B,7)
possesses a unique Toot.

Proof: Let 6 = 1 = %2 and
my = ]E(Vk) = / vkq(v) dv,
0
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denote the k-th moment of V' (k > 0). Since we may always interchange the
order of differentiation and integration, we obtain

aml

— = 2B(my—m?
8ﬁ ﬁ( 2 1),
(9m1 2
—— = —d0(mymg —my).
6 30(mama = ma)
Furthermore integration by parts leads to the recursion

Mgy3 = %[(k + %)mk - (1 — ,82)mk+1] (k Z 0)

Putting all together, we arrive at
At = B+ dmy,
0\
o\ 1 2
95 gml + 5(1 — (%)(my — mi).
Since my — m? > 0 for all 3 € R, > 0, i) and ii) are proved.
In order to prove iii) we need some more estimates for the partial deriva-
tives %—’\ﬂl and 94 on the set {\; = 0}.
Since we know already that A; has no root for § > 0 we will from now on
assume that g < 0.
Let 8 < 0,7 > 0 and assume that A;(8,7) = 0. Then, using the above
calculations, we obtain that

18] 111 8]
mlzy, m3:§§+(ﬁ2_1)7
So the Cauchy-Schwarz inequality yields the estimate
1 51 3
Hence
oA
6—5 = 1+2[8(om?] — 2|B|6m,
8P B8R . 18]
> 142—— -2 — —1)— >
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since

BEN* _ ABPTL . . B
<1+27> > 4T [§+(5 —1)7].

In a similar manner one sees that 23 > 0 if 3 < —1 (in case |3| < 1 this is
already known).
Finally we note for later use that for f < —1

o 1 2 OM] L BP-1 0N
% W[“(ﬁ _1)35] = 316 0B

Now we are able to prove that A\; = 0 is the graph of some strictly de-
creasing function f:IR_—1IR,.
Let T be a component of {\; = 0}N] — oo, 0[x]0, cco[. Since %—’\5, 24 >0
on [I' we see that ' must be the graph of a strictly decreasing function
f : I—]0,00[, were I is an open subinterval of | — 0o,0[. (Note that I
must be open, since I' is an embedded sub-manifold of | — oo, 0[]0, col.)

Hence, if inf I > —o0, then

5, = Jlim f(8) =cc.
(Otherwise we had A;(infI,d,) = 0 (by continuity) hence (infI,d,) € T,
since I' is a component of {\; = 0}N] — 0o, 0[x]0, 0o[. But this cannot be the
case since [ is open.)
By similar arguments we see that I' must lead into the axes. But the
origin is the only point on the axes where A\; = 0 (just remember that
A1(B,6) is explicitly known for 6 = 0 and § — A;(0, ) is strictly increas-
ing). Hence we have sup = 0 and limg_,o f(8) = 0. This also shows that
{A\1 = 0}N] — 00, 0[x]0, 00| has at most one component, since § — (5, 9)
is strictly increasing for |3| < 1.
Now, since we know from the explicit formula of Theorem 2 that A; has a
root, for 5 = —1, we can conclude that {\; = 0} has exactly one component,
which is the graph of a smooth strictly decreasing function f :]3,,0]—R,
where (3, < —1, and if 8, > —oo, then limg_,g, f(5) = oc.
But f cannot explode for finite § since we have for 5 < —1 and ¢ = f(f)

oA
) = B o 388 _ 38
HORE 3

f(B).
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So it follows that 8, = —oc.

Finally we have to show that limg_,_ f(3) = oo.
Fix f < —1 and let p;(dz) be as in the proof of theorem 5. Using the notation
of the proof of theorem 5, after some lengthy calculations we see that

_ [0)g(0) - F(0)g0) _

—o 9(0)?

Since one sees easily that [,z%p(dz) — oo for t — oo, the function
t — [x%p;(dz) possesses local minima. Let #, be the smallest local min-
imum of this function. Then vy = to(8%—1)%/? is the smallest local minimum
of the function v — A1 (5, 7).

Since on the set {\; = 0} we have %—’\71 > 0, we see that the smallest lo-
cal minimum v, must be is smaller than the unique root of the function

v —(B,7)-

d 00
dt /0 $20t(d$)

Hence the line {\; = 0} must lie above the minimum line y = (5% — 1)3/2,
ie.
. > . 2 3 — ‘
i 105) > Jim -} =
O

Remark: Numerical evidence shows that the function ¢ — [ 2%p;(dx)
possesses a unique global minimum ¢, > 0 (numerically ¢, = 1.69461), and
that this function is decreasing on [0, ty[ and increasing on ¢, co[. This means
that for |3| > 1 the function y — \;(, ) is increasing on [0, #,(8% — 1)%?|
and decreasing on [to(8% — 1)%2,00]. (For |8] < 1 we already know that
v — Ai(B,7) is increasing on R™".)
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Figure 1: A; as a function of § and 7~
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Figure 2: \; as a function of 8 for fixed v
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Figure 3: A\; as a function of ~ for fixed
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Figure 4: Roots of )\
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