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Abstract

Lyapunov exponents and rotation numbers of linear two dimensional stochas-
tic differential equations are described by variants of Furstenberg-Khasminskii
formulas exhibiting the interaction of drift and diffusion in terms of Lie brack-
ets of their projections into projective space. In case of one diffusion matrix of
sheer type and general drift, the formulas simplify to expressions containing the
moments of one dimensional diffusions of potential type.

Applications are given to the following systems perturbed by white noise: the
harmonic oscillator and the inverted pendulum linearized in its unstable equilib-
rium position. Their Lyapunov exponents and rotation numbers are explicited in
terms of hypergeometric functions, and are asymptotically expanded into series
as functions of the noise parameter. A complete account of the stability diagrams
of the systems is given. Lines of change of stability and of maximal stability are
described in the planes spanned by the damping and noise resp. restoring force
and noise parameters. The area in the planes where stabilization by noise for
the inverted pendulum takes place is investigated.

1991 AMS subject classifications: primary 60 H 10, 34 D 08; secondary 60 J
60, 58 F 11.

Key words and phrases: stochastic differential equations, random dynamical
systems, Lyapunov exponents, rotation numbers, invariant measures, ergodic theory,
stability, harmonic oscillator, inverted pendulum, stabilization by noise.



Introduction

Lyapunov exponents and rotation numbers are among the most important invariants of
dynamical systems perturbed by noise. Lyapunov exponents describe the asymptotic
exponential growth rate of the trajectories of the random dynamical system, while rota-
tion numbers give their asymptotic rate of rotation, in more than two dimensions with
respect to a moving plane. In the Furstenberg-Khasminskii formulas, these numbers
appear as spatial mean values via ergodic theory (see Furstenberg [14], Khasminskii
[19], and Arnold [3] for an exposition of the theory and more references).

In this paper, we shall start from the Furstenberg-Khasminskii representation, to
give simple formulas for Lyapunov exponents and rotation numbers of linear stochastic
differential equations in two dimensions. They exhibit the Lyapunov exponents as
perturbations of the trace of the drift matrix. The perturbation is expressed in terms of
Lie brackets linking the projections of the drift and diffusion vector fields into projective
space, integrated with respect to the invariant measures of the forward and backward
infinitesimal generators on projective space. They become particularly simple in case
of just one diffusion matrix. In case the diffusion matrix is of sheer type, we can further
simplify the formulas thus obtained, and express the exponents in terms of the moments
of the invariant measure of a simple one-dimensional diffusion of gradient type, this way
extending the work begun in [15] for the noisy damped harmonic oscillator to general
drift. The typical formulas exhibited link the eigenvalues of the drift matrix with
both Lyapunov exponents and rotation numbers of the system perturbed by noise by
expressions which are rather easy to investigate. They not only allow to recover the well
known results on their asymptotic expansions for small and large noise, but even give
access to a complete description of their global behaviour over the whole range of the
systems’ parameters. The resulting complete stability diagrams we are able to give are
new, and have no counterpart in the existing literature on stochastic systems. In fact,
the Furstenberg-Khasminskii approach to describe ergodic invariants has been followed
in an immense number of papers, partly for real and partly for white noise. Here is a
selective, by no means complete list of references: Ariarathnam, Xie [1], Arnold, Crauel
Wihstutz [5], Arnold, Eizenberg, Wihstutz [6], Arnold, Papanicolaou, Wihstutz [9],
Kozin, Prodromou [18], Namachchivaya, Van Roessel, Doyle [23], Pardoux, Wihstutz
[26], [27], Pinsky [28], [29], Pinsky, Wihstutz [31], [32], Wedig [40], [41], Wihstutz [42].

The detailed study of stability diagrams and possibilities of stabilization by noise
on the basis of the simple formulas given is done for two particular simple mechanical
systems: the harmonic oscillator and the inverted pendulum linearized at its unsta-
ble equilibrium position. Thus the equation we investigate is the second order linear
stochastic differential equation

j—28)+ay+oWy=0,

with a one-dimensional Brownian motion W, noise parameter o, damping parameter 3,
and strength of the restoring force a. Using the canonical passage to a two dimensional
system of the first order, i. e. setting



we obtain the linear stochastic differential equation
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Positive a corresponds to the usual harmonic oscillator, while negative « describes the
case of the inverted pendulum. The Lyapunov exponents Ay > Ay of the system are
given as the (a.s.) exponential growth rates of the vector z; as { — oo, i. e. they
are the possible values of limye 3 In ||z]|. Due to Birkhoff’s ergodic theorem, they
are constant. We interpret stability of our linear system as a synomym for a negative
leading exponent Aq, since it gives the minimal possible rate on an exponential scale
with which both individual trajectories are attracted to 0, as well as two point motions
are mutually attracted to each other. If z is given in polar coordinates (r,¢), the
rotation number p of the system, another ergodic constant, is the asymptotic rate
of rotation of z, in other words the asymptotic average of the integral increments
of the angular process ¢y, formally p = lim;_ %fot d¢s. For two dimensional linear
deterministic systems governed by an autonomous matrix A, Lyapunov exponent and
rotation number are just given by the real resp. 1maginary parts of the eigenvalues of
A.

Setting v = 0%/2, the top exponent and the rotation number become functions
M(a, B,7) and p(a, 3,7) of the three parameters. First of all, our formulas allow to
expand the two invariants asymptotically in 4 near v = co (where they are analytic)
and near v = 0 (where the expansions consequently fail to be absolutely convergent).
We can also express the exponents entirely in terms of three types of hypergeometric
functions. Asymptotic expansions and explicit descriptions are then used to study
analytically and plot the global behavior of A\; and p as functions of two parameters,
while one is kept fixed. In particular we find and describe their null lines, i.e. the
lines where their stability behavior changes from contraction to explosion or vice versa,
and their minimal lines, i.e. lines on which maximal stability with respect to the
noise parameter is attained. If a system parameter changes so that in the given two
dimensional parameter space the top Lyapunov exponent increases, the system loses
stability, 1. e. one and two point motions are attracted at slower rates, if it decreases,
the system gains stability, 1. e. they are attracted at ever faster rates. If the exponent
crosses a null line becoming positive, the asymptotic behaviour of both the one and two
point motion changes qualitatively: instead of being attracted by 0 they are repelled
from 0, both at an exponential rate determined by the constant Lyapunov exponent. On
the minimal line, the exponential growth rate of one and two point motions is minimal.
In particular, as long as this line runs in the domain of negative top exponent, it
gives the maximal contraction rate. These lines will be represented as one-dimensional
graphs in the (a,y)— resp. (3,v)—planes, while the respective third parameter is kept
fixed.

For the harmonic oscillator, the picture is given in the (3,~)—plane, for its interest
in the question of the stochastic degeneration of the deterministic Hopf bifurcation the
system undergoes at 3 = 0. We see that for # > 0, the system remains unstable for all
noise intensities. For # < —1, the function v +— Ai(e, 3,7) first gains stability, then



crosses a minimal line with a simple equation given by

B = Co (52 - 1>%a

with a numerically known constant ¢g, then monotonically loses stability, thereby cross-
ing the null line.

The picture we obtain for the linear inverted pendulum is particularly interesting.
For negative 3, i.e. normal damping, there is a critical value ag < 0 of the restoring
force parameter such that for a between ag and 0 the function v — A;(a, 8,7) crosses
a null line twice, while crossing a minimal line between the two changes of stability.
For a < ay, the system is and remains unstable for all noise intensities. So while the
restoring force is above the critical ag, which is a constant multiple of 32, stabilization
of the inverted pendulum by noise is possible, if the noise intensity is kept within the
limits of a well defined interval.

To explain what happens in more intuitive terms, let us fix a restoring force between
0 and the critical og. Then for noise turned off (y = 0), the mathematical pendulum
falls if it leaves its equilibrium position, despite the presence of damping. The top
exponent is positive, and the system unstable. Now, as noise is turned on, while its
intensity 7 is still below a threshold value described by the corresponding crossing of
the null line, noise is not strong enough to counterbalance the gravitation, and the
pendulum still falls, just at an ever decreasing exponential rate. If the noise strength
crosses the null line, the fast oscillating noise pushes strong enough, and often enough
into the direction opposite to the gravitational force, so that trajectories of the pen-
dulum are attracted to the equilibrium point. So at this null line, increasing the noise
stabilizes the system. Increasing the noise intensity further will lead to still improving
the counterbalancing effect, until at the minimal line this effect reaches its optimum.
After this, the roughness of the erratic noise trajectories takes over. At the second
crossing of the null line, the random pushing is strong enough to wipe out the balanc-
ing effect. The mathematical pendulum is pushed so hard into the direction opposite
to the gravitational force, that it overshoots, 1. e. it is pushed very rapidly into a
position in which the gravitational force is in the same direction as the push. In this
situation, even if the random push is initially opposite to the force, the effect of the
latter is actually enhanced. Thus at the second null line crossing, by the overshooting
effect, noise destabilizes. Increasing the noise strength further adds to this destabilizing
effect. We should, at this point, hasten to emphasize, that we are of course discussing
the mathematical, i. e. linear, version of the physical inverted pendulum. Still, the
behaviour of the trajectories of the nonlinear pendulum can be accounted for, at least
locally, in this situation, and our results give some new insight as well. As long as we
are in the stability region just described, the general theory of local linearization and
invariant manifolds for random dynamical systems (see Arnold [3], Chap. 7) implies
that there is a random neighborhood of the equilibrium point 0, in which the trajec-
tories of the nonlinear systems show stable behaviour, with Lyapunov exponents close
to the ones of the linearization: there is a local stable manifold.

Of course, if damping is increased, the stability region generally becomes bigger. In
particular, stabilization happens at lower values of the noise intensity, and destabiliza-
tion at higher values. At the same time, the critical gravitational strength below which
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stabilization is no more possible, decreases, and our formula tells that it is a multiple
of (32

Even if the white noise perturbation of our systems is replaced by a closely related
real noise, complete stability diagrams are not available. It is therefore, at the moment,
hard to say, whether the feature of stabilization followed by destabilization within the
boundaries of a critical interval for « is a more general phenomenon. In particular, it
can not be said if there is a critical interval at all. Studies of the asymptotic expansion
for small noise of the Lyapunov exponents in this case (see Wihstutz [42]) seem to
indicate, that there might be no critical lower bound for «.

Stabilization and destabilization by nonrandom types of forcing of Hamiltonian or
dissipative systems such as our damped harmonic oscillator or inverted pendulum have
been the subject of a huge number of studies, many of which date back to the first
decades after 1900 (for example van der Pol [39], Stephenson [38]).We mention just a
few topics most related to the topics of our investigation. Dissipative as well as non-
dissipative harmonic oscillators with periodic or almost periodic noise are described in
the well known Matthieu equations. Klotter [17] for example gives a broad treatment
of Matthieu and related differential equations. The prototype of the systems studied
is given by

g+ (A+vcost)y = 0.
By using Floquet’s theory, one can see that for certain areas of the (A, ~)-plane the
biggest Floquet exponent is positive (exponential instability) while for different areas it
is zero (marginal instability). This way one obtains a nice stability map in the (X, ~)-
plane, the so-called Ince-Strutt map. For example, one can read from this map that if
A is fixed, increasing v from 0 to oo gives an infinite number of successive changes of
stability.

While for such systems with slow periodic forcing the analysis in the existing lit-
erature 1s focused on bifurcation studies, and stability diagrams such as the one just
sketched may be available, this is no more the case for deterministic systems with fast
periodic forcing which are more closely related to our white noise forcing. For example,
Bellman, Bentsman, Meerkov [12] present an analysis of nonlinear systems with fast
periodic or almost periodic forcing. The method of averaging over the fast oscillation
plays an important role in studies of this type. Various stabilization and destabilization
effects are known. But neither in this deterministic setting nor for related stochastic
forcing by e. g. real noise stability diagrams for the whole parameter region have been
given (see Mitchell [21]). For an overview of results for random forcing see Wihstutz
[42], see also Kao, Wihstutz [16].

This paper does not intend to create new methods of investigation of dynamical
systems perturbed by noise, which go essentially beyond the formulas of Furstenberg-
Khasminskii. It presents a rather simple computational trick leading to the very simple
formulas for Lyapunov exponents and rotation numbers in formulas (23) and (27). As
simple as this trick may seem, its effect is rather convincing. It yields the first com-
plete description of the global stability diagram of the well known and well studied
systems considered. Our approach essentially improves the results of numerous stud-
les of asymptotic expansions of Lyapunov exponents and rotation numbers for two-
dimensional systems for small and large noise. In many papers the first coefficients



of the expansions are derived, in the limit of small and large noise. Again we give a
selective list of references, which may be completed by looking to the bibliographies
of Arnold [3] or Wihstutz [42]: Ariarathnam, Xie [1], [2], Arnold, Crauel Wihstutz
[5], Arnold, Eizenberg, Wihstutz [6], Arnold, Oeljeklaus, Pardoux [8], Arnold, Papan-
icolaou, Wihstutz [9], Auslender, Milstein [11], Wu, Guo [43], Kozin, Prodromou [18],
Khasminskii, Moshchuk [20], Namachchivaya, Van Roessel, Doyle [23], Namachchivaya,
Van Roessel, Talwar [24], Nishioka [25], Pardoux, Wihstutz [26], [27], Pinsky [28], Pin-
sky, Wihstutz [30], [31], [32], Wedig [40], [41].

The organization of the paper is as follows. In section 1, we derive the basic formulas
expressing Lyapunov exponents and rotation numbers by variants of the Furstenberg-
Khasminskii formulas in which the interaction between the drift and diffusion vector
fields is expressed by their Lie brackets (Theorems 1.1 and 1.2 and their Corollaries).

Section 2 is devoted to specializing the formulas of section 1 to the setting of two
matrices. It is here where the crucial simplification of the formulas for the exponents is
derived. They simplify to moment equations of invariant measures of one-dimensional
equations of potential type (Theorems 2.1 - 2.2 and their corollary).

In the third section we give explicit expressions of the Lyapunov exponents and
rotation numbers of the harmonic oscillator and the inverted pendulum in terms of
hypergeometric functions and derive asymptotic expansions at zero and infinite noise
intensity (Theorems 3.1 - 3.4 and 3.7 - 3.10). In the main Theorems 3.5 and 3.6 we
give a complete picture of the stability diagrams of the harmonic oscillator and the
inverted pendulum, and in particular the possibilities for the inverted pendulum to be
stabilized by noise.

Finally, we plot several stability diagrams exhibiting null lines, lines of maximal
stability, as well as the areas of stability and instability, for a sample of different, but
fixed, values of the damping parameter 3, which indicate the shape of the surfaces
of change of stability and maximal stability in the three dimensional parameter space.
Due to the restriction a = 1 in [15], the plots of [15] do not exhibit the most interesting
parts we found in the present paper: the area between o = 0 and the critical a for
which both stabilization and destabilization happen, as the noise intensity increases.
The analytical treatment of this main part of the global stability diagram in Theorems
3.5 and 3.6 therefore needed arguments essentially different from the ones used in [15].

Preliminaries and notation

Our basic probability space is the m—dimensional canonical Wiener space (Q, F, P),
enlarged such as to carry an m—dimensional Wiener process indexed by R. More
precisely, @ = C'(R,R™) is the set of continuous functions on R with values in R™,
F the o—algebra of Borel sets with respect to uniform convergence on compacts of
R, P the probability measure on F for which the canonical Wiener process W; =
(W}, ..., W), t € R, satisfies that both (Wt)tzo and (W—t)tzo are usual m—dimensional
Brownian motions. The natural filtration {F. = o(W, =W, : s <wu,v <t): R 3 s <
t € R} of W is assumed to be completed by the P—completion of F. For ¢t € R, let
0;: Q — Qi w(t+ ) —w(t), the shift on Q by t. It is well known that 6, preserves



Wiener measure P for any ¢ € R and is even ergodic for t # 0. Hence (0, F, P, (6;):cr)
is an ergodic metric dynamical system (see Arnold [3]). As usual, we use a “0” to
denote Stratonovich integrals with respect to Wiener process.

For a random vector X, we denote by Px the law of X with respect to P. Lie
brackets of vector fields are denotes as usual by [.,.], scalar products in R™ by the
brackets (.,.).

For the convenience of the reader, we briefly sketch the concepts of Lyapunov expo-
nents and rotation numbers for two-dimensional systems perturbed by white noise. See
Arnold [3] for a complete account of these subjects. Let Ag,---, A, be 2 X 2 matrices,

and consider the linear Stratonivich stochastic differential equation

dvy = Agzedt + > Ay zy 0 AW, (1)

=1

To exclude the trivial case, assume that at least one of Ay,---,A,, is non-zero. Let
(®;):er denote the fundamental solution of (1). Then the multiplicative ergodic the-
orem due to Oseledets states that solution trajectories (®;2):er for z € R* can have
at most two deterministic exponential growth rates. We give a more precise statement
for the more interesting case of two exponents, the other case being much simpler.

There exists a random splitting R* = Ey(w) @ Ey(w) and real numbers A; > Ay (the
Lyapunov exponents) such that for P-a. e. w € 2,7 = 1,2 we have

.1

To describe the Lyapunov exponents of the system as spatial averages, and also define

the rotation number, we decompose the equation in the usual way into its radial and

angular components r; = |x4], s = o (see for example Arnold, Oeljeklaus, Pardoux

[8]). Using Ito’s formula, radial and angular part are seen to fulfill the stochastic
differential equations

dry = Go(s)redt + 3 Gilse) re 0 W, (3)

=1

dSt = Eo(st) dit + Zﬁz(st) o] thZ (4)

i=1

The vector fields figuring in this decomposition are given by
G:(s) = (s, A;s), his)=A;s—7(s)s, s€S', 0<i<m.

Since the angular motion is in fact a motion on one-dimensional projective space, we
may work with the coordinate ¢ on [—7, 7] by setting s = :);;b . This has been
done for example in Pardoux, Wihstutz [27] as well. If we denote

AZ-:[“11 “?1], 0<i<m,

2 2
A9 Qo
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our vector fields are given in the ¢-coordinates by the formulas

q(¢) = ail cos® ¢ + a§2 sin® ¢ + (ai2 + aél) cos ¢ sin ¢,
hi(p) = (ah, —al,)sing cosd — ay, sin® ¢+ a}, cos® b,

0 <i<m, ¢ €[5 %[ Hence the angular part of (3) is given by the stochastic
differential equation
doy = ho(¢e) dt + > hi(dr) o dW, (5)
=1

whereas the radial part (4) becomes

dry = qo(de) redt + Y qi( ) re 0 AW, (6)

=1

The radial equation being linear, its solution can be readily given by
t m .
reo= roexp( | ao(6.)du+ > ai(60) o W)

1 m
= To eXp(/ [QO QDu 5 Z qbu du + qu % dWZ)

where we have used the transformation of Stratonovich integrals into Ité integrals.
Now let I'y, Iy denote the random angles giving the position of the Oseledets spaces
Ey, Ey on projective space. Then, due to the simple representation of the radial part,
the Lyapunov exponents given by (2) can be expressed in the form

t m
pene) = Jlim b [ l(6ue ) + L dh(ue vl du=x (7
g i=1

if ¢i(.,1),t € R, is the solution of (5) starting in .

It is most convenient to define the rotation number in the notation now established.
For a more complete account of the subject, in particular the definition of rotation
numbers in dimension higher than 2, where they have to be given with respect to
moving reference planes, see Arnold [3]. Intuitively, it expresses the asymptotic average
rotation of the system described by the angular motion of equation (5). More formally,
the corresponding generalization of the the multiplicative ergodic theorem states that
there exists a real number (the rotation number) p such that

= lim —/ dop,.

t—too

(5) thus yields the description analogous to (7)

. ! 1 &
p= i [Tl ) i+ 5 3 Bibou( )l 0
for any initial value t. Note that p is an integral average of angular increments, and

thus not confined to the interval [~Z, Z[. The Lyapunov exponents of a linear random



dynamical system can be considered as analogues of the real parts of the eigenvalues
of the matrix inducing a nonautonomous linear ordinary differential equation, the ro-
tation number analogues of their imaginary part. The term rotation number used for
deterministic monotone maps of the unit circle is a correct analogue of the term we
use here. The direct analogy has been investigated in the work of Ruffino ([34]), where
the random dynamical system studied consists of products of random monotone maps
of the unit circle. It is found that a version of the Oseledets multiplicative ergodic
theorem holds, and that the concept of rotation is consistent with the classical one
for deterministic systems. For the continuous parameter setting the analogy is briefly
discussed in Ruffino [33].

We shall assume that the angular motion of the system is non-degenerate. More
precisely, we suppose in the following that

(H) the Lie algebra generated by hg,- -, hy, is 1-dimensional throughout [—g, %[
Since we assumed that not all of the matrices Ay, ---, A,, are zero, (H) is equivalent to

the usual hypoellipticity condition of Hormander (see Arnold, Oeljeklaus, Pardoux [§],
p. 216). In this case it is well known that the adjoint Fokker-Planck equation forward
and backward in time associated with the angular motion (5) possesses unique solutions
among the probability measures on the unit circle with a C'"*°*—density, which describe
the laws of the angular positions I'1, 'y of the Oseledets spaces Fi, Fy of the system.
If the initial state ¢ is distributed according to one of these invariant measures, the
angular motion becomes stationary, and an application of Birkhofl’s ergodic theorem

transforms the temporal averages of (7) and (8) into spatial averages over [—Z, %]

b
taken with the invariant measures, thus giving the well known Fu7"stenberg-[(hasmi;stii
formulas. In fact, if the initial state is deterministic, due to the smoothness of the law
of T'y, we will observe a. s. only the top exponent A;.

The infinitesimal generator of the forward (—I—) and backward (—) equation of the
angular motion governs the respective forward and backward Fokker-Planck equations

and 1is given by
1 m 1 m
=1 =1

m

for sufficiently smooth f on [—Z, Z[. Denote by pi the smooth densities of the proba-
bility solutions of the adjoint Fokker-Planck equations, i, e.

(Li)*pi =0,
and denote the quantities appearing in (7), (8) by
1 & 1 &
Qi:iQO+§Zq:’hi R:h0+§Zhih;.
i=1 =1

Then the Lyapunov exponents Ai, A2 and the rotation number p of (1) are expressed
by the following spatial averages

n= [ Q) ne)ds, (9

[ME]



A== [ Q-(é)p-(6)do, (10)

and

o= [ Ro)do. (1)

1 The basic formulas

The following relationship between the ¢— and h—vector fields will be crucial in the
derivation of our formulas for the Lyapunov exponents and the rotation number of the
system under consideration.

Lemma 1.1 Let A = l @i dn ], and

(12 d29

q(¢) = an cos® ¢ + agy sin® ¢ + (a12 4 az1) cos ¢ sin ¢,

h(¢) = (aga —ai1)sing cos¢ — ay sin? & + a4 cos® &,

¢ €[5, 5[ Then we have
h' = —=2q+ (a1 + az),
qd = 2h+ (an — aq),
h" = —4h + 2(@12 — (Lgl).
Proof:

We use the elementary relations for trigonometric functions
sin¢ = %(1 — cos 2¢),
cos’p = %(1 + cos 2¢),

sing cos¢p = % sin 2¢,

to write

N . .
q(¢) = 5[(011 + az) + (a1 — azz) cos 2¢ + (a1 + aa1) sin 24, (12)

1

h(qb) = 5[—((],21 — (1,12> + ((1122 — (111> Sin qu + ((1112 + (1,21) COS 2@/] (]3)

Differentiating the functions in (12), the second one twice, obviously leads to the
claimed equations. O

The first one of our basic representations of Lyapunov exponents will now be derived
with the aid of the preceding Lemma. We split off Q1+ a component in the range of
the infinitesimal generator to obtain formulas in which the interaction of the different
vector fields of the angular motion is exhibited in terms of their Lie brackets.

10



We shall denote vectors of functions (hy, - -+, hy,) by h and use (.,.) as well as symbol
for the scalar product in R™. The Lie bracket is denoted as usually by [.,.]. For vectors
of vector fields (g1, -+, 9n), (R1,- -+, hy) we also write [g,h] for the n x m—matrix

[gi7 hj]lSiSn,lstm.

Theorem 1.1 We have

trA o, b |
N = 2/__ () (0140

(h',h"Y(h,h B, h)?
iZ/_% ) 7h’ < ) > (¢)pi(¢)d¢

)
= s [ @) a
Y R CIRCLE

Proof:
Let f = % In(h, h). The formulas we are about to give are not completely rigorous, since
integrability of the functions involved is not everywhere clear. We remark that they can
be made completely rigorous by first choosing ¢ > 0 and working with f, = %11’1<h, h)+e
instead of f and letting € — 0 in the end. We have

ol 1 fzﬁ; b1+ 10
- :i:h0<<l2”l;;>>_<h’q/> 5<h’,h><h<,hh>h>_ (W, h)?

Here we have used Lemma 1.1 twice. Since by definition f_gg L fpi(¢p)de = 0, the

representation formula for A /5 is a direct consequence of (14) and the simple equation

(B WYk, BY — (W', BY? = (K, [h, B]h).

Corollary 1.1 If m =1, we have

2 2 —% h’l

(0) p£(¢) do.

/\1/2 _ tT'AO n 1 /5 [ho,h]]

11



Proof:

The second integral term in the representation of Theorem 1.1 vanishes if m = 1. O

The trace term in the decomposition of the Lyapunov exponents according to Theo-
rem 1.1 can be seen as the contribution of the drift vector field alone. The first integral
term exhibits the angular interactions of the drift with the diffusion matrices, whereas
the second one describes the interactions of the diffusion vector fields with each other.
Note that this term is always positive, due to the inequality of Cauchy-Schwarz.

We shall next give some formulas linking the Lyapunov exponents with the rotation
number.

Theorem 1.2 We have

Mp = tz%:t%/i<£iy&0®d¢—- _i<£iﬂ¢”w
ii[i<hlwx<£l><MJwQ¢ﬂ&@@d¢
_ hﬁoi%/é<Ziy&@®m¢_p/é<£%¢@d¢
= /___ <h,’<;[jj}j;]h> (6) p(0) do

Proof:
We argue for A;. Note first that integration by parts and periodicity of the functions
involved imply

/é%wm(qﬁw - /_i[hoiflz:z’;_hg]<¢>p+(¢)d¢ (15)
2 (h,h")

Now as a consequence of the Fokker-Planck equation there is a constant ¢ to be deter-
mined later such that

1
[ho + <h W) e =5 ({hh)py) = e, (16)
equivalently
1
hopy = 5 [(h, 1) i + (R h) ] = e,

which implies

2hy 2 (h,H)
R e

’

Using this in (15) yields

[ St o= [ gispoas =2 [ ta@io. )

m™
2

12



It remains to determine ¢. For this purpose, we use (16) to get

L
2

p= 7 B pe(@)do = c+ L [ ((h ) p)(6)db=c.

(ME}

where the last equation uses the periodicity of the functions again. Hence (17) together
with Theorem 1.1 lead to the formula asserted for A;. The one for A, is obtained by
using L~ instead of LT in (16). This completes the proof. O

The well known trace formula for Lyapunov exponents can finally be applied to
produce the following entirely symmetric representation.

Corollary 1.2 We have

s

ter z / (! [h h
t35/. h h oy @)oo [

. <h,h>d")'
Proof:

Just use Ay + Ay = tr(Ap) in Theorem 1.2. O

/\1/2 99) P+(¢) do

Corollary 1.2 gives us yet another formula expressing the spectral gap Ay — Ay as a
function of p.

Corollary 1.3 We have

=2 s QWWMW—QP/

o
2

>(¢) dep.

wla

In particular,

A=A, > 2,)/ () do.

>

wl::

Proof:
Just note that the first expression in the formula for the gap, which follows directly
from the preceding corollary, is nonnegative. O

In case m =1 our formulas simplify to the following.

Corollary 1.4 Let m = 1. Then

irA T h% , 3 h

M = 2k [ @) ds—p [ 2 (6)ds
2 -z hi -z hi
t?"AO g h2

H , 7 ho ,
= [ p@n@ T, [ 16)d
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and
/\1—/\2_2/__ &) pa (¢ dqb—?p/__ &) do.
In particular,

s h
M=z -2p 7 (0)de.
oy

A final consequence of Theorem 1.2 is the following representation of the rotation
number.

Corollary 1.5 We have

12 [y + 3 R (6) [P (6) — po ()] do
P=3 s ,
2 f_zg (;?(}1)(95) do

’

and in case m = 1

2 The case of two matrices

As applications of some of the formulas of the preceding section we now give some
explicit formulas for Lyapunov exponents and rotation numbers in the case m = 1.
Indeed, in one of three possible types of situations, among which we find the very
relevant one of the noisy damped harmonic oscillator, which is treated in full detail in
Imkeller, Lederer [15], we obtain a simple integral formula which links the eigenvalues
of the drift matrix, and the Lyapunov exponents and rotation number of the stochastic
system.

We start with recalling that a non-singular coordinate transformation does not affect
the Lyapunov exponents of the system. Now there are three possible types of Jordan
normal forms of A; given by the following formulas

typeI: Ay = (E)Y g ] ,
type II. Ay = g _ozﬁ ] ,
type ITI: A, = ? g ] ,

where o, 3 € R, and 3 > a for type I, a* + 3* = 1 for type II. We shall generalize the
analysis of [15], to discuss the type III system thoroughly. We may omit the superscript
70" in the entries of Ay. Our angular vector fields then become

ho(¢) = (aza —aqr) sing cosd — ay sin® ¢ 4 aq5 cos® ¢

14



1 ) .
= 5[—(6121 — a13) + (aze — ayy) sin 2¢ + (a12 + az;) cos 24,

hi(¢) = cos’é= %[1 + cos 24).
Hence the Lie bracket of hg and h; is given by
[ho, h1](6) = —(age — a11) cos*d + 2 ay sin ¢ cos ¢, (18)
¢ € [~Z,Z[. So in case ay = 0 we obtain
[ho, hi] = — (a2 — ai1) hu,

and since ho(g) = hl(g) = 0, this is a degenerate case which does not fulfill (H). So
it will be excluded from further considerations. Solving the Fokker-Planck equation in
the given case is classical (see for example Kozin, Prodromou [18], or Nishioka [25]).
The differential equation with periodic boundary conditions is this:

%y 2
(o) = (h—f - h—l)(¢)P+(¢) - h—%(qﬁ)
1 hy 2¢

= {[2(a2s — an1) tan ¢ — 2aq; tan® ¢ + 2 ar] pi(P) — h—1p+(q§) — 1

cos? ¢ cos? ¢

where ¢ = p, the rotation number of the system, as remarked in the preceding section.

The homogeneous part of this equation has the solution

, 2 , 1
p0(¢> = exp((a22 — (1111> tan2 ¢ — § a1 tan3 @ + 2(],12 tan QD) m

So by variation of constants the equation is seen to be solved by the probability densities

1 e I .
pe(8) = g [, po(6)53(0) 3 (0)d0, it >0, (19)
pele) = 5 [ ml0) 1 (0) 15 0) . itaas <o (20)

where dy are the respective norming constants. Substituting the formulas obtained
into Corollary 1.1 gives the following expression for A;:

tr

Ao 1 [3 ' '
A= 5 ° 4 5/_2[(6111 — dy3) + 2ay tan @] pi(d) do (21)

= antan [ tandpy(g)dé.

ME]

One might ask at this place what the advantage of an application of Corollary 1.1
as opposed to a direct application of the Furstenberg-Khasminskii formulas (9), (10),
(11) is. (21) describes A; with an integral of the tan-function against the density
of an invariant measure which can as well be given in terms of this trigonnometric
function. A direct appeal to (9) would yield a rather complicated integral in terms of

15



polynomials in the trigonometric functions sin and cos . In fact, the main feature of the
direct calculation presented in [15] and giving the essential simplification leading from
(9) to (21), has now been put in a general framework and produced the main formulas
of section 1, which we could call geometric versions of the formulas of Furstenberg-
Khasminskii.

It remains to further evaluate the integral in (21). To do this, we have to distinguish
the cases ay; > 0 and ay; < 0. Let us concentrate on the former. For the latter,
analogous arguments use (20) instead of (19).

Let us use, just as in [15], the coordinate transformation s = tan ¢, u = tan 6. After
another switch of signs of u, this gives

dy - /_E tan ¢ p4 () do

s
2

= /oo S /s exp((agy — anr)(s* — u?) — ;agl (8% —u®) + 242 (s — u))duds

= / 5/ exp(—Qva21 s+ [2@211)2 + 2v(a22 — an)]s
—00 0
—(ag; — a11)02 —3 Ay v° + 2 aiov)dvds.
Now we can write

Q0 ay $2 — [2@211}2 + 2v(agy — an)]s

(022 - @11) )g)

a1
1 _
= 2’0@21 (S — 5(1_] _I_ M))Q

= 2van (52 — (v +

(6122 - Gu) g Uay
a1 (U + D) ) 2

Moreover, note that
4@2]@]2 + ((122 - CL'|1>2 = (tI‘A0>2 - 4det Ao,

which, by the well known formula for the eigenvalues of Ay, say pi, po, stating

trA 1
Hl/? = 5 0 :t 5\/(1]1‘140)2 - 4det Ao,

may also be described by p; — pz. Therefore

/ s/ exp(—Qvam s? 4 [2@211)2 + 2v(a22 — a”)]s
—00 0
2

—(ag2 — (1,11)1)2 ~3 agy v° + 2 ajpv)duds

1 &0 oo a9 — a1 1 v

= — exp(—2vay; s2)ds [v+ =] exp(——ayv° +
2 A /;oo p( 2 ) [ a1 ] p( 6 2 2&21

(1 = p12)*) dv.

In the same way we see

00 00 1
dy = / / exp(—?vazl.‘;Q)ds exp(——a211)3 + v (p1 — /,62)2>d7). (22)
0 —00

6 2&21

16



So, after an evaluation of the integrals in s, (21) is seen to lead to

(1 + fo 4 15 \/EGXP(—laﬂ v+ (= p2)?) dv
5 a2 .
2 Jo© mexp(—gan v® + 32 (1 — p2)?) dv
A careful inspection of the completely analogous arguments in case az; < 0 finally leads
to the following main result.

A =

(23)

a 0
) a],fm some o € R.

Assume further that Ay is such thal ayy # 0 and possesses eigenvalues py, pg with
Rur > Ryq. Then the Lyapunov exponents A1, Xy of (1) satisfy

Theorem 2.1 Suppose Ay is of Jordan type III, i.e. Ay =

it |a | Joo Vvexp(—glan| v’ + g (py — p2)?) dv
2 R r exp(—=glazi|v® + g (i — p2)?) dv”

A1/2 — (24)
On the basis of Theorem 2.1, global properties of Ay /5 as functions of p;/, may now bhe
discussed as in [15].

We finally include the rotation number into the discussion of the case under consid-
eration. Recall the constant p = ¢ from the differential equation for py, and compare
with the norming constants dy to obtain

1

pP = —E, ifagl > 0, (25)
1 .
p= 5 ifas < 0. (26)

So, the formulas obtained for the norming constants in the derivation of Theorem 2.1
lead to the following formulas.

a 0
) a],fm some a € R.

Assume further that Ao is such thalt ayn # 0 and possesses eigenvalues iy, o with
Ry > Rug. Then the rotation number of (1) satisfies

Theorem 2.2 Suppose Ay is of Jordan type Il i.e. A; =

|(lg]| 1

21 J57 = exp(—glan|v® + g (i — p2)?) dv’

p = —sgn(az) (27)

Theorem 2.2 finally allows us to give an explicit formula linking Lyapunov exponents,

rotation number and eigenvalues of the drift matrix.

Corollary 2.1 Let Ay, Ay be as in Theorem 2.2. Then we have the following rela-
tionship between the eigenvalues py, e of Ao, the Lyapunov exponents Ay, Ay and the
rotation number p of (1)

+ 1 a 0o 1 v
A2 = Hu T pe F = sgn(az) 4/ 2| p / Vvexp(—=lag|v® + ——(p1 — p2)?) dv,
2 2 2T 0 6 2|(I,21|

and

M — Xy = ——sgn ag] \/27r|a21| p / ﬁexp —|a21| 2| |( M2>2)dv.
agy

17



3 Applications: the damped harmonic oscillator and
the inverted pendulum

The physical system perturbed by white noise W we consider is given by the following
second order stochastic differential equation

yj—2ﬁy)+ay+ayW:0.

Here (8 1s the damping constant, a the parameter controlling the strength of the restor-
ing force. Positive a corresponds to the noisy damped harmonic oscillator, negative «
appears in the case of the inverted pendulum. Introducing two-dimensional coordinates

in the usual way © = l z ] , and setting

0 1 0 0
Aozl—a 2/3]’ Al:[a 0]’

we obtain the 2-dimensional stochastic differential equation
d.'L't = AO Ty dit + Al Ty O th, (28)

where W is a one-dimensional Brownian motion. Using the explicit formulas of the
preceding section and results from [15], we shall derive exact asymptotic expansions
of Lyapunov exponents and rotation numbers. These and moment equations will then
yield a complete description of global properties of the Lyapunov exponents and ro-
tation numbers as functions of the three parameters a, 3, o. In particular, our results
give a rather precise description of the stability diagram of the inverted pendulum and
the damped harmonic oscillator.

In case o > 0 we shall complement the results of [15]. We shall consider the biggest
Lyapunov exponent A{, and show that for fixed «, the roots of the function are located
on exactly one strictly decreasing line which is based at the point 3 = 0,0 = 0. Hence
for negative 3, the case of normal damping, there is exactly one noise value at which the
stability of the system is lost. Below this value, the system is stable. In fact, maximal
stability is achieved on another strictly decreasing line, which has a relatively simple
equation, and is based in the point = —/a, o = 0. For positive 3, the non-physical
case of negative damping, the system is always unstable.

In case a < 0 the results are more interesting. Here we have to argue for the case of
normal damping, i.e. for § < 0. We see that there is again a strictly decreasing line of
maximal stability with the same simple equation as in the previous case, which, this
time, is based at the point a = (32,0 = 0. The null line, at which stability changes,
is more complex this time. It is based at the point @ = 0,0 = 0. Its slope at this
point is given by —2|3|. There is a value ag depending on 3, such that stability as a
function of noise strength changes twice for a €]ayg, 0], first from instability to stability,
and at some higher value of o back to instability again. Hence in this regime, noise
first stabilizes the system, and increasing it further eventually destabilizes it again. If
a < ap, the system is always unstable.

18



In the last subsection, we shall investigate the rotation numbers of the system.
We give exact asymptotic expansions at ¢ = oo and ¢ = 0. In case a > (3% we
shall in particular see that the rotation number, which is 0 for noise turned off, is
infinitely flat near the deterministic boundary. In particular, only after an exponential
renormalization, it admits a formal asymptotic expansion.

Let us first transform (28) into a system fitting exactly into the framework of the
preceding section. This is done by scaling the Wiener process. Indeed, if o # 0, then
we use the fact that W, = O'WL?,t € R, is a Wiener process. We obtain an integral

equation in terms of W of the following form

to?

to? 1 ~
-Tt:-To‘l'/ By wu —Zdu-l— Byxw odW,, (29)
0 o 0 -

0 0 0
e[ 8] ne (1]

Setting y; = 1,1 €R, we obtain the stochastic differential equation

where

MRV~

dy; = Byy; dt + By y; o dW,. (30)
The Lyapunov exponents A; of (28) and \; of (30) are obviously related by the equation
/\2'20'2/\2', Z: 1,2 (31)

The eigenvalues of By are given by

fie = %(5 + \/52 — a),

hence Theorem 2.1 gives the formula

I} " 1 fooo\/gexp(—#v‘g—l—Qvﬁz;a)dv

5\1/2 =

o2 202 fooo ﬁ exp(—#vtq’ + QUﬁi—;o‘)dv
B I Pexp(= e+ o(8 — )i
a? 2 [ % exp(—%’u‘o’ v+ o(B? — a))d’u’

where v = % Setting

(o B} — TP (6~ )
a? Y 7U = o0
AT T R exp( i u(B — a)du

Y a7/6€R77>07U207

we therefore obtain the equation

A2 =/3:|:%/0 vqla,3,7,v)dv. (32)
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In case a > 0, if we rescale the parameters o, 3, we may regain formulas for Lyapunov
exponents with the normalization a = 1. Indeed, set

s B 7
B = ﬁa T = a_%’ (33)
to get

)\1/2 = \/55\1/27 (34)
where

5\1/2 :ﬁA:I: %/ 7)(](],/?,’3/,7))(1’{)
0

are the Lyapunov exponents belonging to the parameters & = —1,@,’}, which were
extensively investigated in [15]. We first state a few results on asymptotic expansions
of the Lyapunov exponents, before we discuss their global properties as functions of
the three parameters separately for the cases o > 0 of the harmonic oscillator, and
a < 0 of the inverted pendulum. As (32) indicates, we may subsequently confine our
attention mostly to the top exponent A;.

3.1 Asymptotic expansions of the Lyapunov exponents

Following [15], with only slight modifications we can first give an explicit description
of the top exponent in terms of hypergeometric functions. For k,[ € N,

Aty ... ap, by, ... by € R\ Z™ we first recall the following type of hypergeometric func-
tions

2 (ar)n .. (ag), =
F e agpy by, b)) = — 1
ebilar, s aisby, o bii @) HZ::O (b1)n .. (b)n n!’ red
where (a), = [175) (a + 1), n > 0, and T C R is an interval centered at 0. We do not
discuss their radius of convergence, but remark that the types we shall be using here
converge on R. In these terms, (32) and (33) allow us to apply Theorem 2 of [15], and
we obtain the following result.

Theorem 3.1 Assume v = 2 > 0 and define § = 4([9:;&)3. Then for |B| £ V/«,

2 y
setting
Gla,8,9) = | 47232 T()? 1 Fa( 5, 2;6)
VB =) 23V T(=)T(3) 1F2( 5, 55 9)
+ (3 = ) 2BT(T(E) 1 Fa(5:4.5:0) |/
[ 2 2B T(IT(L) 1Fa(L: 3, 250)
+90(3 = a) - 230 TN P35, 5:9)
+ (82 = a)? 6*T(I)T(3) 1 Fa(3: 4, 5:0) |,
we have

1/3

Moo= B Ga, ),
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Gla, B,7).

For || = v/a we have

1/3 I
/\1 — 5+ 72 121/'3 (

[ S

)

—

M= O~

(
(
(

—

Ay = 5—72 12/

—

=
~—

For «, 3 arbitrary, we can give a series expansion of the exponents which is in fact
. . 1 . . . .
a Laurent series at v = oo in 7. This is the obvious extension of Theorem 3 of [15].

Theorem 3.2 Let v > 0. Then we have

21/3 00 121/3 n
AMjpp = B DY ((%32 —a)- W) Cn;

where
T
L'(g)’
T TG [N d) TG

Remark:
For @ = # = 0 Theorem 3.2 gives the formula

128 T(3) 1/3
RN ON

6

An asymptotic expansion near v = 0 of the form

21/2F(%> 1/3
2 T(L)

12 = [ao(a, B) + ar(a, B) 7 + az(a, B) 4" + -+ ] (35)

does not hold, however. This is indicated by Theorem 3.2, and follows precisely from
the representation

(36)




In case a, 3 are such that a < %, the quotient of integrals in (36) diverges along a

1
sequence of parameters v, for which n = ﬂﬁ;—_al, n € N, since
Vis
o oexplno — ) do [ Jrexp(ni[o - v?) do
o0 =n
Jo7 gz exp(nv = v?) dv I g exp(nifo — v¥]) dv

and the latter quotient of integrals converges to a nontrivial finite limit as n — oo, as
is shown in the proof of Theorem 5 of [15], or Theorem 3.4 below. In case a > (32,
the correct asymptotic expansion is given by the following Theorem, which also clearly
shows that (35) cannot hold. It is the obvious extension of Theorem 4 of [15] to the
case of general restoring force.

Theorem 3.3 Suppose |3| < /a. Let

Cop = 2,
- m+1 m (6l )'
o= 123 (=1) > 11 (n>1).
|
L+...410,=

Then the formal (but not convergent) asymptotic expansion of Ay, Ay iny = % aty =0

is given by , .
g Z“ g
A = _ "
1/2 ﬁi8(a—ﬁ2) — ¢ (3.28(52_a>3>

n=0

Our final asymptotic expansion is for the case |3| > y/a, and extends Theorem 5 of
[15].

Theorem 3.4 Assume (| > Va. Then the formal (but not convergent) asymptotic

expansion of Ay, Ay in v = %

at v = 0 is given by

)\1/2 B+ Z en(B ~ e/ 7" (37)

where the ¢, can be computed as follows:
There exist a C° function ¢ defined on a neighborhood of xy = /2 whose derivatives

at xy can be computed via the recursion

o) = VE ) = o= S —4g4¢j(§‘f;ﬁ4> (33)
and C* functions f,q: RT — R satisfying
O0) = G (0), 9D(0) = 56w (39)
such thal -
. (%> %z "0
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3.2 Global properties of the top Lyapunov exponent of the
harmonic oscillator and inverted pendulum as a function
of noise, damping and restoring force

Let us now concentrate on Ay = Aj(a, 3,7) and study its global behavior as the pa-
rameters vary. We shall state our results in two Theorems, the first one for the case of
positive restoring force, the second one for the inverted pendulum. In both Theorems,
we will pay special attention to the eventual change of stability of the described system,
which appears as the null line is crossed. In the result for the harmonic oscillator, we
shall formulate the null line in the (3,v)—plane, as a > 0 is fixed.

Theorem 3.5 i) For v > 0, > 0 the function 3 — X (a,3,7) is increasing on
R, and we have limg_y_oo Mi(a, 3,7) =0, limge Mi(a, 8,7) =

i) If |8] < V/a the function v — M\ (o, 3,7) is increasing, and we have
hm’y—)oo /\l(aaﬁ77) = 00, hm’y—>0 /\1(057/377) = /3+ \/ﬁ2 - Zf|ﬁ| S \/a and 257
if 8] = Ve

iii) For 8 € R,y > 0 the function o — X (e, (3,7) is decreasing and we have
lim, o0 A (e, 3,7) = 5.

iv) For each a > 0 there exisls a smooth strictly decreasing function f : R_ —

R, with limg,_, f(3) = oo, limg,o f(B) = 0, such that {(B,7) € R x
R: | Mi(a,8,v) = 0} = graph(f). In particular, for each o > 0,7 > 0 the
Junction 3+ (e, 3,7) possesses a unique root.

Proof:
i), ii), and iv) are immediate from Theorem 6 of [15] and the rescaling properties of
the Lyapunov exponents for a > 0 given by (33) and (34). To show iii), note first that
we may confine our attention to v > 0. Define the moments of the law with density ¢

by
mk:/ UkQ(a7ﬁ777U)dv
0
k > 0. Then M (a,3,v) = B+ Jm, and therefore

8)\1_8m1_ v )
Ba = e = g m-mh <0

Hence A; as a function of « is decreasing. Now recall the equation

M0 8,9) = B+ o= [ vl 5,0 do,

withﬁ:%,?y:fg. But
oo 1,379 B2
= 3 A _ S Vvexp(—130° 5+ o(T —1))du
/0 UQ(17ﬁ777v>dU - 00 1 1 37?+




as a — 0o. This implies the limiting equation claimed. O

We now treat the case of the inverted pendulum. In this case, it will be more
informative to describe the null line in the (a,~)—plane, for fixed 5. In this setting,
it will clearly exhibit the range of possible restoring forces for which stabilization by
noise takes place. In fact, as far as stabilization is concerned, the preceding Theorem
already tells us that the range where 8 > 0 is not very interesting. We know that
a— M(a,3,7) is decreasing for any # and v, and its limit as @ — oo equals 8. Hence
for 3 > 0 the system is unstable, and remains unstable with increasing noise, whatever
strength « of the restoring force is chosen.

Theorem 3.6 i) For v > 0, < 0 the function 3 — Ai(a,3,7) is increasing on
R, and we have limg_,o, A (e, 3,7) = occ.

ii) For 8 € R,y >0 the function o — Xi(a, 8,7) is decreasing, and we have
lims—y—o A1 (e, B,7) = 0.

iii) For each 8 < 0 there exists a smooth function f: Ry — R with lim,_¢ f(v) =
0, lim,ge f(7) = o0, and such that {(v,a) € Ry x R | A(a,8,7) = 0} =
graph(f). [ has a local mazimum f(0) = 0, and a global minimum the value
of which is given by 3*(1 — c%), if ¢ is the minimal value of —L—my as o, 3,

VAo
vary over their respective domains. Then for each a < 3*(1 — C%), the function
v+ M(a, B,7) possesses no roots, for a €]3*(1 — C%),O], it possesses two roots,
and changes sign from positive to negative at the first one, and from negative to
posilive at the second one, for o > 0 it has one root, where il changes sign from
1

negative to positive. The slope of f al v =0 is given by 387

Proof:
i) can be proved analogously as the first statement of the preceding Theorem.
To prove ii), according to the preceding Theorem, it remains to show that
lim,—y—co A1 (v, B,7) = co. To show this, recall

2 o
/\1<a7%357>:%3+1m1a mi :th
2 Y
where
00 1 N d
e L B (40
Jo mexp(—=gliz —v])dv (B —a)?

(see Theorem 5 of [15]). Now note that for 3, fixed, @ — —oo means ¢ — 0. Since
according to Theorem 3.4 (alternatively, compare the proof of Theorem 5 of [15]) ny
has a positive limit as ¢ — 0, we obtain the desired limiting behavior as o — —oc.
Let us now prove iii). ii) and iii) of Theorem 3.5 imply that for v > 0,3 € R the
function a — Ai(a, 3,7) is strictly decreasing with limit 3 for @ — co. By choice of 3,
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this means that the function has exactly one root for each v > 0, and in fact for vy =0
as well, since we have

2—qa, for « 2
O B A N

Hence the null line can be described by the graph of a function f : Ry — R which
takes the value 0 for v = 0. Let us investigate further properties of f.

We begin with studying the behavior of f near o = v = 0. To do this, we compute
the partial derivatives of A; with respect to the variables o and 7. We obtain using
moment equations discussed in Theorem 6 of [15]

X 1 #—a
P e Lm0, i ()
9\ | 1
3—71 N 6m1—§(52—a)[m2—mﬂ
pR— 2 _ )2
= 6677”1—%[77/2_”/%]7

where ,
_ Jo° ﬁs exp(—+[%5 — v]) dv.
o7 mexp(—iliz —v])dv

ng

We will now use (41) and the asymptotic expansion of ny of Theorem 3.4 and n
analogously as in the proof of Theorem 6 of [15] in ¢ near ¢ = 0 to study the behavior

of % and % near and on the null line for v = 0. In fact, we have

ny = a0+a1t+a2t2 +O(t3),
ngy = b0+b1t+bzt2 +O(t3>

Let us briefly describe how to compute the coefficients in these asymptotic expansions.
For ny, it is just a reminder of the statement of Theorem 3.4, for ny a straightforward
extension of it. There exist a C* function ¢ defined on a neighborhood of zy = V2
whose derivatives at zy can be computed via the recursion

44+ 69 4 ¢)
3¢3(2 + (p’2)3

P(zo) = V2, ¢(z0) = ¢ = (42)

1
22’
and C* functions f,g,h: Rt — R satisfying

1 / n
JP0) = 52(6%6) ) (o), (43)
1 / n
§I0) = (') ao),
1

L) (0) — 2_n¢(2n+1)($0)
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such that

o = L (L) 1O L fdy e
n! \dt) h(t)|,_, n! \dt) h(l)|,_,
After some algebra one obtains
1 5
= 2——1——1?
ny 5 16 + O(t )
ny = 4—1— %t2+0(t2),
ny = 4-2t—1"4+0(*).
Substituting this into (41) gives
o\ 1 (8*—a) ) 1 1
e 2 9 PR 3 S t 44
o =3y memml= g gy HO0), (44)
oM B — (8% — a)? ) 1
— - L [py—n?=—- O(t). 45
ap}/ 6")/ n1 372 [TLQ nl] 4 BQ —a —I_ ( ) ( )

(44) and (45) immediately allow us to compute the slope of the null line at o = v = 0.

We have ”
0y AL

lim — = — lim 885“

a7=0 Ja o740 S

= —2|p.

Hence it is clear that for small positive v the slope is negative, and consequently that
f takes the local maximum 0 at v = 0.

Using the scaling property of A and Theorem 6 of [15] we conclude that for each
a > 0 the function v — A(e, 3,7) has a unique root. In particular f(v) must be
nonnegative for large v, hence f is bounded below. Let us next find its global minimum.

We know that ny = nq(t),t > 0, fulfills the equations
d 1

=0 =g fmm(t) = e
Hence n; must have a global minimum, which is taken for some ¢ty > 0. Let ¢ = ny(1o).
The minimal line will accordingly be given by the equation v = ¢y (8% — oz)% for B2 > a.
This line is characterized by the condition ml = 0. For (a,7) on the null line, we must

have - 23
Therefore by choice of ¢,
2 J—
O<C§T11:—2ﬂ(ﬂ a3>

3 —a)2
This evidently implies

4

a> 1= ). (47)
c



Let us next show that this lower bound is in fact taken by the function f. Since the
null line must be a smooth curve and is bounded below, it must cross the minimum
line, say for the pair (ag,70). So we have the equation

123
B — ag g o %7
which implies
00 = 5(1 - 5). (43)

Let us next investigate the behavior of the null line for a > 0. Recall the Lyapunov
exponent A of the rescaled equation with & = 1 /3 = \/—, = I, and denote by
o2

M1, My, ... the respective quantities. Let f R_ — R, be the function whose graph
gives the null line of A1 in the (ﬁ, )—plane. Then (33) shows that for 8 < 0 fixed, the

mapping
B

\/a)

gives the portion of the graph of the null line for which @ > 0. To investigate its
behavior as a@ — oo, we therefore may study the asymptotics of f for ﬁA small. Tt
will in fact be sufficient to find the slope of f at 3 = 0. To do this, we shall use the
asymptotic expansion for m; given in Theorem 3.3 for & = 1 and an analogous one for
my. We have

a— a f(

A

my =

11 15  A?
—— —+
21_&2 32(1_&2)4
To get an expansion for mg, note first that
00 342 X

/ \/;3 exp(—v T o(1 — %)) dv
0

1 5 A2 5

- m[r(_) mr(3+§)+0(‘ﬁ)h

1 15 42

- ﬁAQ)Q 3_2(1 _ 32)5+O('A73)- (49)

3 Az_l
0(7)7 m1_4(1

/Om % exp(—vlz —o(1 = %) do
S S A S S WA WS G/ VO
T (- B?)%[F(Q) 121 _/@2)3“3 +35)+ 03]
Therefore
y = 0 Vo exp (1)) dv (50)
v eXp(—“S12 —u(1— 3?)dv
_ 1 TG 8 TBHHTEH -TE+YTE) | e
= (1 - 32)2[1‘(%) 12(1 — 32)3 (1) + O(%7)]

13 42
—|+0
T 00
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So we finally obtain

) T0GY,  (31)

O\ 15 42 45 s
= - — : 2

The consequence of (51) and (52) we are most interested in is the following statement

on the slopes of level lines in the (3,4)—plane

aﬁ/ 6 "2 N
—=—=(1- + O0#). 53
=S -A+o0) (53
;From (53) we obtain
6
5

Hence we conclude

lim f(v) = lim a%f(ﬁ) = 00.

Y00 a—r00 \/a

In fact, we even know that f becomes asymptotically linear as v — oo and the slope

of the line is g This completes the proof. O

Remark:
Numerical values for the minimum of n; are available. We have t, = 1.69461, and
¢ = 1.45677. This gives a numerical estimate for the critical restoring force below

which there is no more stabilization by noise. It is given by ay = —0.88486 3.

3.3 The rotation number
Using the notation of the preceding section, we see that Theorem 2.2 implies

1 1
o2 5T s exp(— v + 3552 — a)) d

B _\/51 1
h Ty [ exp( v +v(6%—a))dv

12

B~}
|

hence

2 1
p=0’p= —2\/j . (54)
7 T e EE 4 o5 ) do

An expansion of p in terms of hypergeometric functions is given by the following The-
orem, the proof of which uses the idea of the proof of Theorem 2 of [15].
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Theorem 3.7 Assume v = "2—2 > 0 and define § = &2 Then for 1Bl # Ve,

setting o
H(o,B,y) = [ 4"° 28 T(L) 1 Fa(3:5,2:6)
FAB —a) 230 T Fy(35 5, 530)
+ (3% = a)? 6¥°T(2) 1 (33, 3:9) |,
we have

- f2atp ]
g w0 T H(a,8,7)

2 1
— Gy A1/3
PV T Ty !

We next obtain an asymptotic expansion of the rotation number in v near v = oo.

For |B| = v/a we have

Theorem 3.8 Let v > 0. Then we have

2 3 &, . 1213\ "
P = ‘2\[;'12—1/67;(93 —) o) o

where
1
Cy =
r(g)’
(1 D+ )
Cp, = Zﬁ Z H%’ n>1
m=1 6 ly,... L, >1 =1
Proof:

We have to apply Lemma 1 of [15] with by = 1,b, = 0,n > 1, and a,, = F(%H"_) ,n>0.0

n!

Here is an asymptotic expansion for the rotation number in v near v = 0 for the

case |3] < \/a.
Theorem 3.9 Suppose || < \J/a. Let

Coy =

Cn = Z(—l)m Z H
m=l byl 21 1

'l" n > 1.

[

Then the formal (but not convergent) asymplotic expansion of p in v = 72 at v =0 is
given by
2
VP E o ()
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Proof:
Apply Lemma 1 of [15] with by = 1,b, = 0,n > 1, and a, = %,n >0.0

We finally turn to the case |3| > y/a. In this case we obviously have p = 0 on the
axis v = 0.

Theorem 3.10 Assume |3| > \/a. Then the formal (bul not convergent) asymptotic
4(52_(1)3/2

3 )-piny:%at’yz()isgivenby

expansion of the quantity exp(
4([32 _ a)3/2

exp(—

2 & —(3n— n
Jop = =22 eI (s5)
n=0

where the ¢, can be computed as follows:
There exist a C* function ¢ defined on a neighborhood of xo = /2 whose derivatives
at xo are given via the recursion

L, (44661 )

oheo) = V2 = g = Sy o

and a C* function f: Rt — R satisfying

1
FP0) = =g (ao) (57)
such that .
1 (d\" 1 -
o T w\a) T, "7
Proof:

Setting as before ¢ = W we may write

/2 1
= == 2 3 .
P L ﬁ exp(—L- 4+ v(3? — a))dv

12

with ¢, as described. The derivation of the recursion formulas for the coeflicients was
given in Theorem 5 of [15]. O
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Plots

0.75, = —2

0.5¢

0. 25¢

-0.25;
-0.5¢

-0.75¢

-1

Figure 2: A as a function of v for fixed («, 3)
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Figure 3: Ay as a function of o and ~ for fixed 3

= —0.5

Figure 4: Dependency of the stability diagram on 3
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