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Abstract

Let do = " Az odW’ be alinear SDE in R?, generating the flow
®; of linear isomorphisms. The multiplicative ergodic theorem asserts
that every vector v € R? \ {0} possesses a Lyapunov exponent (expo-
nential growth rate) A(v) under ®; which is a random variable taking its
values from a finite list of canonical exponents A; realized in the invariant
Oseledets spaces E;. We prove that, in the case of simple Lyapunov spec-
trum, every 2-plane p in R? possesses a rotation number p(p) under ®;
which is defined as the linear growth rate of the cumulative infinitesimal
rotations of a vector v; inside ®;(p). Again, p(p) is a random variable tak-
ing its values from a finite list of canonical rotation numbers p;; realized
in span (F;, E;). We give rather explicit Furstenberg-Khasminskii type
formulas for the p;;. This carries over results of Arnold and San Martin
from random to stochastic differential equations which is made possible
by utilizing anticipative calculus.
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1 Introduction. Notations and Preliminaries

Smooth ergodic theory is based on Oseledets’ fundamental Multiplicative Er-
godic Theorem (MET) [10]. It provides us with a random substitute of linear
algebra (spectral theory) and hence is at the basis of local theory of nonlinear de-
terministic and random dynamical systems under an invariant measure (smooth
ergodic theory). See Arnold [1] for a survey, and the forthcoming monograph
[2] for a comprehensive presentation.

The MET establishes the existence of exponential growth rates (Lyapunov
exponents) for every tangent vector under the linearized flow. Lyapunov expo-
nents are the stochastic analogue of the real parts of deterministic eigenvalues,
and reduce to them in the absence of noise.

This paper aims at establishing the existence of a stochastic analogue of the
imaginary parts of deterministic eigenvalues (so-called rotation numbers) for
the case of linear stochastic differential equations. Again, the concept is such
that rotation numbers reduce to imaginary parts of eigenvalues in the absence
of noise.

The infinitesimal concept of rotation number of a 2-plane under a flow gen-
erated by a vector field on a manifold was introduced by San Martin [12]. The
existence of rotation numbers for arbitrary planes was proved by Arnold and San
Martin [5] for random differential equations under an invariant measure. See
also [2, Sect. 6.5] for a systematic presentation. Rotation numbers for stochastic
differential equations were studied by Ruffino [11]. The problem has, however,
defied a thorough analysis due to the appearance of quantities in the MET which
are not adapted to the canonical Wiener filtration. It thus calls for the use of
anticipative calculus — which is what we intend to do here.

Rotation numbers are important in stochastic bifurcation theory (see [2,
Chap. 9]). They also describe the rotation of invariant manifolds (see Ruffino
[11, Sect. 6]).

Our basic probability space is the m-dimensional canonical Wiener space
(Q,F,P), enlarged such as to carry an m-dimensional “Brownian motion” in-
dexed by R. More precisely, 2 = C(R, R™) is the set of continuous functions on
R with values in R™, F is the o-algebra of Borel sets with respect to uniform
convergence on compacts of R, P the probability measure on F for which the
“canonical Wiener process” Wy = (W},...,W/™), t € R, makes both (W});>0
and (W_;)¢>0 usual m-dimensional Brownian motions which are independent.
The natural filtration 3¢ = o(W,, — W, : s <u,v <t), —o0 < s <t < oo, of W
is assumed to be completed by the P-completion of F. Fort € R, let ; : Q2 —
w i w(t+-) —w(t), be the “shift” of w by ¢. It is well-known that 6; preserves
Wiener measure P for any ¢t € R and is even ergodic. Hence (Q,F,P, (6;)scr) is
an ergodic metric dynamical system (see Arnold [2, Appendix A]).

As usual, we use a “o” to denote Stratonovich integrals with respect to the
Wiener process.

We shall have to use some basic results rooting in Malliavin’s calculus of



which we briefly recall the main concepts. For a more detailed treatment see
Nualart [9]. For 1 < j < m we shall denote by D7 the derivative operator which
for a smooth random variable of the form

F:f(th"'ath)ﬂ feego((]Rm)n)’ t,..stn € Ry,

takes the form

DIF =Y ——f(Wy,-. o, Wi, )1, (w).

o Oy
For T' > 0 and each p > 1, DY ([0,7]) will denote the Banach space of random

variables on Wiener space defined as the closure of the set of smooth random
variables with respect to the norm

I1E]

m T
pt = [ Fl + SE(( / D3 F2du)?/2) 7,
0

=1

to which D7 extends in a natural way. Malliavin’s calculus will enter our
treatment of rotation numbers of linear SDE via a well-known formula for
Stratonovich integrals figuring in [9, p. 151]. We shall briefly recall it. Let
1 < j < m and (u¢)¢>0 be a process which is smooth enough so that its Sko-
rokhod integral exists, along with the “traces”

Df+ut :=lim D}uste, D] uy:=lim Dju;_.,
€l0 el0

t > 0, in the usual sense as elements of some LP space. Then

¢ 4 ¢ o1t ,
/ us o dW/] = / usdW7 + 5/ (DI ug + DI~ uy)ds, (1.1)
0 0 0

where the first integral on the right-hand side of (1.1) is a Skorokhod integral
with respect to W7. Skorokhod’s stochastic integral extends It&’s integral to
non-adapted integrands and shares with the latter the property of being cen-
tered. The first trace term on the right-hand side of (1.1) hides the well-known
Ito-Stratonovich conversion term for adapted integrands.

We shall deal with matrices and operators on R¢, equipped with the standard
basis and standard scalar product, mainly. By I we denote the d-dimensional
unit matrix (identity operator).

2 The Description of Rotation

We will now present the main ingredients for the explicit description of rotation
numbers of 2-planes of d-dimensional linear stochastic systems. Since rotation



is an infinitesimal concept, i.e. is described in terms of the generator of the flow,
we have to keep track of the structure of the vector fields involved. These are
essentially the following: the vector fields generating the flow induced by the
linear flow on the unit sphere in R?, and the vector fields generating rotation
by +90° inside a plane transported by the linear flow.

The resulting concept of rotation number of a plane coincides with the one
presented in Arnold and San Martin [5] and Arnold [2, Sect. 6.5] for random
differential equations, working with the Stiefel manifold of orthonormal 2-frames
in RY. We have, however, chosen a more “user-friendly”, elementary language
here as we shall express all quantities involved in terms of d X d matrices.

Let A;, 0 < i < m, be d x d matrices. We consider the linear stochastic
differential equation (SDE)

dxy = ZAiact o dW}, (2.1)

=0

where we use the convention dW = dt for abbreviation.

Let (®¢)¢cr be the flow of linear isomorphisms generated by (2.1). We want
to describe the rotation of a vector moved by the flow with respect to a plane
which is moved by the flow as well. For this purpose we start out by observing
how the linear flow moves planes and lines. As has been pointed out above, we
are mainly interested in the vector fields generating this transport on certain
Grassmannian manifolds. We briefly recall some facts from Imkeller [7]. For
1<k<dand A€ R¥>*? et

hE(p) :== (I —p)Ap+pA*(I —p), p€ G(d),

where we identify the Grassmannian manifold of k-dimensional linear subspaces
of R? with their orthogonal projectors, i.e.

Gr(d)={pe€ R : p? = p, p* = p,rankp = k}.

If we consider the SDE on G (d) given by

dpf =" 1k, (pf) o dW}, (2.2)
=0

we obtain as solution exactly the transport of k-dimensional linear subspaces
generated by (®;);cr. More precisely, if p* € Gi(d), then the solution pf of
(2.2) such that p§ = p* is the projector on ®;p*(R?), t € R.

We will use (2.2) for k = 1 and k = 2 only, and denote by (¢);cr the solution
of (2.2) for k = 1 satisfying go = ¢, and by (p¢)er the solution of (2.2) for k = 2
satisfying po = p. More generally, we denote by (¢:(q) : t € R ¢ € G1(d)),
respectively (p:(p) : t € R,p € G2(d)), the corresponding flows (cocycles) on



G1(d), respectively Ga(d). These are the flows (cocycles) generated by (®;):cr
on G1(d), respectively Ga(d) (see [7]).

Since we aim at obtaining rotation as a scalar, we need to know two more
objects. First of all, we have to describe how vectors of length 1 are moved by
the flow. This is an easy task once one knows (¢:(q) : t € R,q € G1(d)).

2.1. Lemma. Letq€ G1(d) and v € gN S L. Then the solution of the SDE

m
dvy =) (I — @)Aivy 0 dW}, wo =, (2.3)
=0
satisfies
’UteqnSdil, teR

Proof. By definition

d((I —q)vi) = dvy — qdvg — dggvy (2.4)

m

= Z((I —qi)Aivg — (I — q1) Asqrvs — @ A7 (T — qi)vy) o thi
i=0

= (T — @) A — g AU = gi)vy 0 AW
1=0

Since (I — q)v = 0, strong uniqueness implies that (2.4) has solution 0, i.e. we
have q;v; = vy, thus v; € ;. Moreover, obviously d(vjv;) = 0, i.e. v; € ;NS¢ 1
for all t € R. o

We next want to describe rotations of planes by +90°. For this purpose, we
consider the covering manifold of G2(d) with two leaves defined by

Go(d) == {p € R : —p? € Go(d), —p*p = p,p* = —b},

and assume that G (d) has been oriented (without making this explicit in sym-
bols).

2.2. Lemma. For p € Gy(d) there exist exactly two p*, p~ € Ga(d) such that

pt = —p~, —(p1)?2 = —(p7)? = p, and such that for any positively oriented

orthonormal basis (e1,es) of p we have pte; = ez, ptes = —ey.

Proof. Let (e1,e2) be a positively oriented basis of p. Then the conditions
prer=e, prea=—e, pt(I—-p)=0=(I-pp*

uniquely determine an operator in R¢X¢. Tt satisfies —(pT)%e; = e1, —(pt)%es =
es, and —(pt)2(I —p) = 0 = (I — p)(—pT)?%, hence —(pT)? = p. Moreover,



ppt = ptp = pt and (pt)* = —p*, and so p+ € Go(d). We take p~ = —p*.
Hence existence with the required properties is proved.
Now suppose p € Go(d) satisfies pe; = ez, pes = —e; and —p? = p. Then

(I-p)p=p+p=0=5p-p).
Hence

kerp =im (I —p), imp =imp.
It is thus clear that p = pt. This proves uniqueness. o
We remark that G (d) is indeed a covering manifold with projection 7 : G (d) —
G (d) given by p — —p?.

Now given our flow of planes (p:(p) : t € R,p € Ga(d)), generated by the
linear flow, there is exactly one lifting onto G2(d) to a flow of rotations of +90°.

2.3. Lemma. Let pT be the positive rotation by 90° inside p € G2(d). Then
the solution of the SDE

dpy =Y (I +9})Aipe + peA] (T +57)) 0 dW, o = p*,
1=0

has the following property: (—p?)icr is a solution of (2.2) with k = 2 and
Po = Pp-

Proof. Since G(d) is compact and the vector fields involved are smooth, the

SDE considered has a unique strong solution. Let for t € R, r; := —p?. Then
dry = —dppr — prdpe
m
= = ((T+p)Aire + 1 A7 (T + p7) 0 W}
i=0
m .
= Y B (r) odW{, 1o=p,
i=0
which is the desired SDE. o

We call (py)icr the positive lift of (pt)ier. Of course, the positive lift of the
flow (cocycle) (pi(p) : t € R,p € Ga(d)) is a uniquely defined flow (cocycle)
(p+(p) : t € R,p € G2(d)) on the leaf G (d) of positive rotations in Go(d).
To simplify matters, we introduce one more notation. For ¢t € R and v; the
solution of (2.3) let
Wy = Pyvy,

and, to express the dependence on ¢ € G1(d) and p € G2(d) or, alternatively,
on v € S¥! and p € Ga(d), we write wy(q,p) or wy(v,p) for p;(p)vi(q) or



Dt(P)ve(v), t € R Note that (v, w;) is a positively oriented orthonormal 2-frame
in p¢, which connects our approach to the Stiefel manifold approach mentioned
above.

After these preliminaries we are in a position to define the rotation number
of a plane. It is evident that the infinitesimal angle da; by which the vector v,
is rotated inside p; should be measured by the length of the projection of dv,
onto wy, i.e. by day = wj o dvy. The cumulative rotation in the interval [0,T]
is hence ar = fOT wy o dvy, and the rotation number of the plane should be the
linear growth rate of this quantity. This leads to the following definition.

2.4. Definition (Rotation number of a plane). Let P be a random vari-
able with values in G2(d), and let Q and V' be random variables with values in
G1(d) and S9!, respectively, such that V € @ C P. Then, in case the following
limit exists in probability, we call

T T
p(P) := lim l/o w; odvy = lim %/0 w; (@, P) o du(Q) (2.5)

T— o0 T— oo
the rotation number of P. n

The random variable defined by (2.5), if it exists, is independent of @ and V,
as is shown by Ruffino [11, Proposition 2.1] (see also [2, Subsect. 6.5.3]).

2.5. Lemma. We have (in case of existence of the limit)
1 T :
p(P) = lim = / > wi A o dW. (2.6)
0 =0

Proof. This is a direct consequence of Lemma 2.1 and the fact that w; (I —
gt) = wy, t € R, which is due to the definition of p;, t € R. o

2.6. Remark. Due to the substitution formula for Stratonovich integrals (see
for example Arnold and Imkeller [4]), which in our case is simple since G1(d)
and G2 (d) are compact, the definition of p(P) as well as the formula (2.6) make
indeed sense, even if P and () are nothing but measurable. m

Our task will consist in proving that the limit in (2.6) indeed exists for any
random plane (Sect. 4). Moreover, it turns out that the random variable p(P)
can take on only finitely many possible values p;; which are realized as rotation
numbers of canonical planes spanned by the invariant spaces of the MET (Sect.
3).

3 Rotation Numbers for Canonical Planes

The linear cocycle (®;),cr generated by (2.1) automatically satisfies the in-
tegrability conditions of the MET, and the underlying metric dynamical sys-
tem generated by the shift on Wiener space is ergodic. Hence the MET holds



and provides us with a set of r, 1 < r < d, non-random Lyapunov exponents
A1 > ... > A, and an I, _-measurable splitting of R? into Oseledets spaces,

R'=FEi()@...® B.(),

(the multiplicities of ;) are non-random with

where the d; = dim E;(+)
( EZ(Ht) and

2221 d; =d, q’t(')Ez ) =

o1 .
v € E,()\ {0} = t_lgtnoo ;10g||<I>t(-)v|| =X, 1<i<r

For all further investigations concerning rotation numbers we need to assume
that the Lyapunov spectrum is simple, i.e. that r = d. The reason for this is
that we do not have enough information about how the linear flow ®; behaves
inside a higher-dimensional Oseledets space E; to conclude existence of rotation
numbers. As examples show [2, Example 6.5.4], there can be continuously many
different rotation numbers in one higher-dimensional Oseledets space.

The assumption of simple spectrum is, however, generically true in our case,
more precisely, on an open and dense set of matrices (Ao, ..., Ay,) € (R¥*4)m+1
[2, Remark 6.2.15]. We will soon introduce a sufficient condition for simplicity.

Note also that, in contrast to the deterministic case, simple Lyapunov spec-
trum does not preclude the existence of non-zero rotation numbers.

We shall now examine rotation numbers p;; := p(P;;) of “canonical planes”
P,; := span(E;,E;), 1 < 4,5 < d, i # j. Stationarity of the size of the in-
finitesimal rotations will lead via the Birkhoff ergodic theorem to formulas for
the p;; of the type of Furstenberg-Khasminskii. A key role in the derivation of
these formulas is played by the decomposition of general Stratonovich integrals
into Skorokhod integrals and trace terms featuring Malliavin gradients of the
invariant spaces. To this end we need some knowledge of the smoothness of
Oseledets spaces in the sense of Malliavin calculus which we briefly recall from
Arnold and Imkeller [3].

Suppose from now on that the following Hérmander condition (H) is satisfied
(where [f, g] denotes the Lie bracket of the vector fields f and g):

(H) For each k, 1 < k < d, the vector fields A%, 1 < i < m, [Bf ,Rhf ],
0<i,j <m, [hk, [h’j‘j,hf;l]], 0 <1i,j,l <m, ...span the whole tangent space
at every point p* € Gi(d).

Under this condition the Lyapunov spectrum is simple and the law of the
vector (Ey, ..., Ey) of Oseledets spaces has a C* density with respect to Rie-
mannian volume on (G1(d))? [7, Theorem 4.2]. We shall make use of the latter
fact below.

The MET also yields a family (Qi)lgigd of orthogonal projectors of rank 1

7



such that the spectral decomposition formula

d
(<I>;‘<I>t)1/2‘t| — Zeﬂ:)\iQ?:

=1

lim
t—+to0

is valid. The Q:r are J§°-measurable, and the ), are F0 -measurable. Let

d i
Pr:=>"QF, P =) Q,, 1<i<d
k=1

k=1

The intersection of the spaces onto which PZ-Jr and P, project are the Oseledets
spaces F;. We denote the rank 1 orthogonal projector on E; by R; and obtain
from Arnold and Imkeller [3, Theorem 4] for 1 < kK < m and 1 < ¢ < d the
formulas

DR, = —(I-R)(I-T)™'SfS;7(I-S7)A}R; (3.1)
~Ri(Ap)"(I = 87)S7 S (I = To)™ (I = Ry),

where A} := D, AP 5> 0, S;" = PZ-+ — R, T; := STS;S;F. We also know
that, under (H), R; € DY ([0,7]) for all T > 0 and 1 < p < 2 [3, Theorem 6.

We now investigate the smoothness properties of P := span (R;, R;) (iden-

tifying, as always, E; with R; and P with the orthogonal projector onto P and

omitting subscripts) by passing to the exterior product A’R? (for details see

Arnold [2, Subsect. 3.2.3]). In this space we may identify P with R; A R;. To

see this, let us show that R; A R; is an orthogonal projector in A?R?%. Indeed,
for z,y € R we have

(Ri A Rj)*(x Ay) = Rlx A R}y = Riz A Rjy = (Ri A R;j)(z Ay),
and
(Ri/\Rj)*(:v/\y) :fo/\R;y:Ria:/\Rjy: (Ri/\Rj)(x/\y).

Moreover, the space onto which R; A R; projects is the (1-dimensional) span of
the vectors u; Au; where u;, u; are nontrivial vectors in R; and R;, respectively.
This easily implies the following lemma.

3.1. Lemma. Assume (H). Then for any T > 0 and 1 < p < 2 we have
P e (0,T).

Proof. Clearly, multilinearity allows us to apply Leibniz’ rule to get the Malli-
avin gradients. More precisely, for s >0 and 1 < k <m

DEP =D*R,AR; + R, AD*R;. (3.2)
Now use the integrability properties of D*R;, D¥R; and the simple relation
Ayl = (lz|y|* — (z,9)"/*, @,y €RY,
to obtain the desired integrability property. ]



The formula we would obtain for the gradient of P by using (3.2) and (3.1) is
not explicit enough. So we give another derivation, and with the same method
a somewhat different and slightly simpler version of (3.1).

3.2. Lemma. Forl1<:<d,1<k<m and s> 0 we have

D{R; = —(I-R)(Ri+(I-P")+(I-F))""(I-FHAR (33)
~Ri(4})"(I = PF)(Ri+ (I - P}) + (I - P))"'(I - Ry).

Proof. By definition of R; we have
R,PT =R,P” =R,.
As the gradient of these expressions exists, Leibniz’ rule yields
(DER;)P" + Ri(D"P;") = (D*R;)P; + R;(D*P;") = D*R,.

Hence
(DER:))(I - P}) = Ri(DSP") = =R B (47)" (I - B}') (3.4)

(see [3, Theorem 3]). Since P, is 2 __-measurable, we have

(D;Ri)(I—F7) =0. (3.5)
By adding (3.4) and (3.5) we have
(DER)(I - R)(Bi + (I - PY)+ (I = 7)) = —Ri(A) U= PF).  (3.6)

Now observe that R; + (I — P;") + (I — P;") is invertible and commutes with
(I — R;), and finally add the adjoint of the left-hand side of (3.6) to obtain the
desired formula. o

3.3. Lemma. Assume (H). Then for 1 <k <m and s > 0 we have
DtP = (I -P)X:P - PX,(I - P),
where

X, = (I-P)+Ri+Rj) '"R(A)* I -PHRi+(I-PH+(I-P]))
+R;(A5)"(I = PFY(R; + (I - P+ (I - P)))l.

Proof. By the definition of P
R,P=R;, R;P=R;.
Since by Lemma 3.1 the Malliavin gradient of P exists, we may again write

(D!R,)P + R;(DkP) = D!R;,

10



hence
(DER)(I — P) = Ry(DtP),

and also
Ri(D{R;)(I — R))(I - P) = R;P(D}P)(I - P). (3.7)

(3.7) and an analogous expression for j instead of ¢ may be added to give

P(DP)(I-P) = (3.8)
(I-P)+R;+R;)" (R:D*R,(I - R;) + R;D*R;(I — Ry)).

We finally have to substitute (3.3) into (3.8) to obtain the desired result. o

Let us now come back to the task of describing the rotation number of P =
span (R;, R;). For this purpose we choose Q = R; in Definition 2.4 and recall
that any other choice would yield the same result. According to what we just
proved both P and @ are in D} ([0,7]) for T > 0 and 1 < p < 2. But to
describe the spatial averages figuring in the Furstenberg-Khasminskii formulas,
we also need smoothness properties of our flows (v;(v) : t € Rv € §¢71) and
(p¢(p) : t € R,p € GF(d)). These are stated in the next lemma, together with
the perfect cocycle property.

3.4. Lemma. The flows (vi(v) : t € Rov € S 1) and (pu(p) : t € R,p €
G7 (d)) possess versions which fulfill the following properties:
(i) The functions v — v;(v) and p — P¢(P) are C, with derivatives which
are p-integrable for any p > 1. .
(ii) Perfect cocycle property: Fort,s € R, w € Q, v € S, p € GF (d) we
have
Vst (0) (w) = v(0s(0)(W))(Osw),  vo(v)(w) =,
PeseP)©) = DB D@)0),  RP)w) =
Proof. As the corresponding quantities are generated by SDE on compact
manifolds with C* vector fields, (i) follows from the well-known results of Ku-

nita [8], whereas (ii) is a consequence of the perfection result of Arnold and
Scheutzow [6]. m

We shall henceforth assume that versions as in Lemma 3.4 are given. In our
main result we are about to formulate, the Furstenberg-Khasminskii formulas
will emerge in terms of spatial averages of Malliavin gradients. Therefore, we
first have to discuss these gradients.

3.5. Lemma. Letv e ST, pe G (d), p=—p?. Then we have for 1 < k <
m and s > 0 (with the notation ws = ws(v,p) and vs = vs(v))

D§+(w:AkUS) =
wi[AR(I — ps) A + Ar(I — ps)Aplus + wi Apvs[w; Ayws — v, Apvs].

11



Proof. Set for abbreviation for 4 € R?*¢
falw) =1 - @)4Av, ve S,
where ¢ denotes the orthogonal projection on span (v), and
94(p) = (I +9°)Ap+pA*(I+5°), peGF(d).

Then we have

Vs :v+2/ fa,(v) 0 dW,
i=0 70

ﬁs:ﬁ+2/ gAi(ﬁT)odWri
i=0 "0

and hence by the rules of Fréchet differentiation on Wiener space (see Nualart
[91)
D¥ v, = fa, (vs) = (I = g5) Agvs,
D§+ﬁs =94, (Bs) = (I — ps) ArPs +ﬁsAZ(I — Ds).
Thus

DM wy = (DM p)us + ps(D¥Fvy) = (I = ps) Apws + ps(I — gs) Arvs.
So we obtain

DM (wiAgws) = (D¥w?)Apv, + wiAL(D¥oy)
= (wyAL(I — ps) —vs AT — gs)Ps) Arvs + wi Ag (I — gs) Arvs
= wiAp(I —ps)Arvs —viAL(I — qs)Psvsvs Apvs
+w? Ap(I — ps)Agvs + wi Apwswi Apvs
= wi(Ag(I —ps)Ar + Ar(I — ps) Ar)vs
+wi Apvs(wi Apws — vl Agvg),

which is the desired result. O

We are now in a position to formulate and prove our main result by which rota-
tion numbers of canonical planes are shown to exist and are explicitly described.

3.6. Theorem (Rotation numbers for canonical planes). Consider the
linear SDE (2.1) and assume that condition (H) is satisfied. Then the linear
cocycle (B;);cr generated by (2.1) has a simple Lyapunov spectrum. Denote for
1<i<d by R; the rank 1 orthogonal projectors on the Oseledets space E; and
consider for some 1 < i,j < d, i # j, the canonical plane P = span (R;, R;).
Then the rotation number of P exists and is given by the non-random scalar

m

p(P) = pi; = E(W* AoV + % > Ch(W, V) + > Dp(W, V), (3.9)
k=1 k=1

12



where

Cv(W, V) = W'[AL(I - P)Ay + Ax(I — P)A;]V
+W*ALVIW AW — V* ALV (3.10)
and 5
Dy(W,V) :== (W*(a,0) AV (@)l (4.9)=(@.P) (D5 Q, DS P),

d(q,p)

where V(q) = vo(q), W(g,p) = wo(g,p) = po(P)vo(q), @ = Ri, V =V (Q) and
W =W(Q,P).

Proof. Let us remark first that in order to give the notation “%” in the

above formula for Dy a precise meaning in the sense of differential calculus
in Euclidean space, one may as usual extend our functions from the compact
manifolds on which they are defined to a tubular neighborhood of an embedding
Euclidean space.

The invariance properties of our spaces P and @) yield the following equations
fort e R:

v(Q) = vo(Q) 0 i,  Pi(P) = po(P) 00y, wi(Q, P) = wo(Q, P) o by.

Hence the stochastic integrands in our definition of the rotation number become
stationary processes with respect to the canonical shift on Wiener space, and
are given by (w§(Q,P)Arvo(Q)) 06, 0 < k < m, t € R. Hence Birkhoff’s
ergodic theorem applies and yields

p(P) = lim 1 / ZO(WS(Q;P)AWO(Q))Oes°dWsk)-

We shall now compute this limit. The essential observation is that a
Stratonovich integral can be decomposed according to a formula given by Nu-
alart [9, p. 151] into a Skorokhod integral and trace terms. The term for k = 0 is

eagsier, however. Continuity and boundedness of the integrand yield via bounded
convergence

lim %IE( /O (w6(Q, P) Agvo(Q)) o 6:ds = E(W* AgV). (3.11)

For 1 < k < m we have
t t
/0 [(w5(Q, P) Axvo(Q)) 0 0] o dWE = /0 (w3(Q, P) Axuo(Q)) o 0., dW* (3.12)
i / DI (w3 (Q, P) Ao(Q)) o Bads

/ DM~ (w3 (Q, P) Avvo(Q)) o Osds,
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where the stochastic integral on the right-hand side is a Skorokhod integral.
(3.12) makes sense since we know that by smoothness of the flows and of @) and
P, the trace terms exist. We are even allowed to take expectations in (3.12)
and pass to the limit ¢ | 0. This is due to Lemmas 3.1 and 3.2, a correspond-
ing smoothness result for @), and Lemma 3.4. Since Skorokhod integrals have
vanishing expectation we arrive at

t
im 7B [ [(05(Q. P)Axeo(@) 0] o dW = (3.13)

SE(DEY (w5 (Q, P)Axen(@))) + 5E (D (w(Q, P)Akvo(Q).

To compute the trace terms in (3.13) we apply Lemma 3.5 and the chain rule
(see Nualart [9, p. 47]) to get

DEY (w}(Q, P)Apvo(Q)) = (3.14)
D§+ (wg (g, p) Arvo (Q))|(q,p):(Q,P)

8 *
+m(wo (qap)AkUO(Q))|(q,p):(Q,P) (D(’)“Q, Dgp)‘

The second term is simpler. It reads

Dg_ (wS(QJP)AkUO(Q)) = (wS(QJp)AkUO(Q))k%P):(Q,P) (DgQ,DSP)

_9
d(q,p)
(3.15)

An appeal to Lemma 3.5 finally gives the first term on the right-hand side of
(3.14) explicitly. Now combine (3.11) to (3.15) to obtain the asserted formula.
[}

We now discuss several particular cases of formula (3.9).
First of all, we may take P = span (R, R2). Then due to the above defini-
tions we have P = P, , () = P; and obtain

3.7. Corollary. Let P = span (Ry,Ry). Then the “top” rotation number pia
is given by
1 m
p(P) = pra =E(W" AoV + = > C(W, V), (3.16)
k=1
where Cyp(W,V) is given by (3.10) with V = vo(Q), W = wo(Q, P), Q = P
and P=P; .

Proof. Since Q and P are 3° __-measurable, we have D§Q = DEP = 0. Hence
(3.9) simplifies to (3.16). o

When reversing time, we observe that the roles of P, and P; are taken by
P} | and Pf, respectively.

14



3.8. Corollary. Let P = span (R4—1,Rq). Then
p(P) = pi-1,a =E(W* AV — 3 > (W, V), (3.17)
k=1

where C,(W,V) is given by (3.10) with V = vo(Q), W = wo(Q, P), Q = P
and P =P} .

Proof. Since this time P and () are Fg°-measurable, by definition of Dt the
expression in (3.14) has to vanish. This implies

DEF (w (4, 0) Akvo (@) (g.p)=(@,P) = (3.18)

(wg (¢, 2) Akvo(9) (g, = (@, P) (D5 Q, D5 P),

B
d(q,p)

1 < k < m. The left-hand side of (3.18) is, however, just given by Lemma, 3.5
and yields a term which corresponds to the second term in (3.9). This gives the
desired result. o

If we specialize the results obtained in the above corollaries to the case d = 2,
we obtain two different formulas for one and the same rotation number p(R?).
This yields additional information on the laws of Oseledets spaces.

3.9. Corollary. Let d = 2. Then the rotation number of R? exists and

1 m
p=p(R2) =E(W* AV + 5 S WAV (W AW -V AV)),  (3.19)
k=1

where W = ptV, V = vo(Q) with Q = Ry = P, and p* is rotation by +90° of
R2.
Alternatively,

NE

p=E(W*A,V — W* ARV (W* AW — V*AV)), (3.20)

1
2

x>
Il

1
where W = ptV, V = vo(Q) with Q = Ry = Py

Proof. This is a simplification of Corollaries 3.7 and 3.8, due to the fact that
P=1. ]

Formula (3.20) could also be obtained by time reversal of our linear SDE.

The expectations in formulas (3.19) and (3.20) can be written as a mean
over S! with respect to the distribution of V' which can be found by solving a
corresponding Fokker-Planck equation.
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Let us also mention that it can be easily seen that for d = 2 the rotation
number always exists, i.e. condition (H) is not needed in this case.

Since Lemmas 3.2 and 3.3 give explicit descriptions of Malliavin gradients
of invariant lines and planes, Theorem 3.6 gives an explicit description of the
whole set of rotation numbers of canonical planes. In the following section we
shall discuss rotation numbers for non-canonical planes.

4 Rotation Numbers for General Planes

We now consider general random planes P. One very important particular case
is, of course, the case of a deterministic plane p € G2(d) which we treat first. It
turns out that, under (H), all deterministic planes rotate asymptotically as fast
as the canonical plane P = span(R;, R2) = P, , i.e. with the “top” rotation
number p12 P-a.s. This is analogous to the fact that, under a Hérmander con-
dition on G1(d), non-random vectors v # 0 always grow with the top Lyapunov
exponent A, A(v) = A\; P-a.s. [2, Theorem 6.2.16].

4.1. Theorem (Rotation number for non-random plane). Consider the
linear SDE (2.1) and assume that condition (H) is satisfied. Let p € G2(d) be
a fized plane. Then its rotation number p(p) exists and satisfies

p(p) = p12 P-a.s., (4.1)

where p1a = p(span (Ry, Rz)) is the “top” rotation number of (2.1) defined by
(3.16).

Proof. The condition (H) guarantees, as was shown in [7], that (the Lyapunov
spectrum is simple and) the law of (Ry, ..., Rq) is smooth. Consequently, a fixed
deterministic plane p can coincide with an Oseledets space only with probability
0.

Now choose ¢ C p arbitrary. According to Lemmas 6.5.11, 6.5.12 and 6.5.13
of Arnold [2], we have, by the above smoothness argument, that the indices g
and jo defined by (4.8) and (4.9) satisfy ic = 1 and jp = 2 P-a.s. and hence

p(p)ob;' > P=P;, qlgob'—>Q=PF,
both exponentially fast. This immediately implies that P-a.s.
Pe(p) 00,1 = Po(P), vi() 0 ;" = vo(Q),

both exponentially fast.
Moreover, P and @ are F° __-measurable. Hence the exponential convergence
just stated implies

T
Jim [ 0.0) Auvn(a) = wi (@, P e (Q) 0 W =0,
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0 < k < 'm, at least in probability. Therefore, it suffices to invoke Corollary 3.7
to obtain the desired result. m]

We shall now consider a general random plane P and show that its rotation
number exists and is given by a random variable the possible values of which
are the finitely many canonical rotation numbers p;; described by Theorem 3.6.
The main difficulty consists in proving that a process which possesses a flow
property and converges to 0 exponentially fast as ¢ — oo possesses stochastic
integrals whose time averages converge to 0 as well. We shall establish this
result in the following lemma.

4.2. Lemma. Let (S,p) be a separable metric space and (X (y))yes be a con-
tinuous random field with values in R%. Suppose F C S is a closed set such that
X|r = 0 and, introducing K,(F) := {y € S : d(y, F) < n}, such that for any
n>0
E( sup [X(y)[") <en
yEKu (F)

with some constants ¢ > 0 and p,q > 1. Let (Y,)nen be a sequence of random
variables with values in S and

Ape ={weN:dY,,F)<me ",neN}, meN >0,
By = {|X(Y2)(6,)| > e "}, neN, §>0.
Then we have
P(Am.e N B,) < em@e™P9)  m neN, e>0.
If § < eq/p, we have
P(A,,c Nlimsup B,) = 0.

n—oQ

Proof. By definition, we have on A, . the inequality

|X (Yn)] < sup X (y)]-
YE Ko exp(—en) (F)

Hence for m,n € N, ¢,0 > 0, using that 6, is measure preserving

P(Ap,e N{|X(Y,) 06,] > e™"}) (4.2)
< P(Apmen{ sup X (y)| > e}
YEK oy cxp(—en) (F)
< ePmE( sup X (y)IP)

YEKm exp(—en) (F)
ep&ncmqe—qsn

= emie™Po—ge)
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If, moreover, § < gq/p, (4.2) yields

> P(Ape N By) < o,
neN

so the Borel-Cantelli lemma applies to yield
P(Ap,c Nlimsup By,) = 0.
n—oo

O

Lemma 4.2 will be helpful in the following situation: Let K be a compact
manifold in R% for some d; € N, and assume that (us(z) : s € Rz € K) is a
cocycle on the manifold K which is generated by an SDE with C'*° vector fields.
Assume further that Z;, Z, are random variables with values in K such that
us(Z1) —us(Z2) — 0 as s — oo exponentially fast, i.e. there exist a random
variable C' and a number ¢ > 0 such that

lus(Z1) —us(Z2)| < Ce™%, s2>0. (4.3)

4.3. Lemma. Let f: K — R be a Lipschitz-continuous function, and assume
that (4.3) holds. Then for any 1 <k <m
t
lim [ (f(us(Z1)) — f(us(Zs))) 0 dWF  exists P-a.s.

t—o00 0

In particular, if limy_, oo %fg flus(Zy1)) o dWF exists, we have

t—o00 t—o00

I I
lim ;/ f(us(Zy1)) o dWF = lim ¥/ fus(Zs)) o dWE.
0 0
Proof. First of all, the Stratonovich integrals appearing in the statements

exist, due e.g. to the results of Arnold and Imkeller [4]. The cocycle property
of (us(z):seRz e K)yieldsforne N n<t<n+1l,weQ,j=12

t t
/f(us(Zj))ode(w) = /f(us—n(un(Zj)(w)OdWs'in(@nW)

- / F(s(un(Z) ) 0 AWE (B).

Hence we may set for (z,y) € K x K

X(z,y) == sup
0<t<1

/0 (Flus(@)) — Flus(y))) o dE

and for n € N
Y, = (un(21), un(Z2))
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to obtain

X(Yn) of, = sup
n<t<n+1

/ Fus(20)) = flus(Z))) 0 dWE|.  (4.4)

Let us now verify the hypotheses of Lemma 4.2 for X. Of course, we take
S = K x K and p the metric induced by the Euclidean norm of R . Let F be
the diagonal in S. Then F is closed and X |r = 0. By our hypotheses about the
cocycle (us(z) : s € R,z € K) and standard results of Kunita [8] there are for
p > 1 constants ¢, such that

E|X(z,y)|” <cplz —y|?, z,y€K. (4.5)

Hence the lemma of Garsia, Rodemich and Rumsey applies and yields for p > 1
and some appropriate ¢ = ¢(p) a constant ¢ such that for any n > 0

E(  sup |X(z,9)[") < enf. (4.6)
(2.) €Ky (F)

So we may apply Lemma 4.2. Let § < eq¢/p, w € Ap, .. Then there exists
N(w) € N such that for n > N(w)

| X (Yy) 0 6p|(w) < e,

Thus for s,t > N(w), s € [n,n+ 1], t € [m, m + 1] we have

t
/ (Fur (20)) = Fur(Z2))) 0 AW}

(w)

< 3 swp / (F(ur(22)) = F(ur(22))) 0 dWE| ()
j:n]StSJ-i-l j

- ZX(Yj)ooj(w)gZe—éj

< e*‘?"l_le_é. (4.7)

(4.7) clearly implies that

t
lim [ (f(us(Z1)) = f(us(Z2))) o dWE

t—o0 0

exists P-a.s. on A, ., m € N, with ¢ according to (4.3). But (4.3) also gives
Am,e T Q as m — oo. Hence the limit exists P-a.s. on 2. The remaining
assertions now follow readily from this. ]
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We are now ready to prove our final multiplicative ergodic theorem for rotation
numbers.

For this purpose, let P be an arbitrary random plane. Recalling the Os-
eledets splitting and following Arnold [2, p. 361] we define for w €

to(w) :=min{l <i < d: R;(w)P(w) # 0}, (4.8)
Jo(w) :==min{i > io(w) : R;i(w)P(w)(I — Riy(w)(w)) # 0} (4.9)

and
C(P)(w) = span (R, (v) (W), Rjg(w)(w))- (4.10)

Then evidently C(P) is a random plane which takes its values in the set of
canonical planes dealt with in Theorem 3.6.

4.4. Theorem (Rotation number for random plane). Consider the lin-
ear SDE (2.1) and assume that condition (H) is satisfied. Then for any random
plane P in R? the rotation number p(P) exists and satisfies

p(P) = p(C(P)) = pio,jos
where p;; is given by (3.9) and ig, jo and C(P) are defined by (4.8), (4.9) and
(4-10), respectively.

Proof. First of all, p(C'(P)) exists according to Theorem 3.6 (pathwise limit),
and takes on the finitely many values described there. Now let U be a random
unit vector in R;, and let V := %. Moreover, let P be the unique element of

G (d) over P, and let C(P) be defined analogously. Then Arnold [2, Lemma
6.5.11] yields the following convergence results.

pi(P) = p(C(P)) =0, pu(P)—p:(C(P)) =0, (V) =y (U) =0, (4.11)
as t — 0o, exponentially fast. Define
ui(v,9) = (Pe(P), v (v)),  fr(v,p) = v"P" Apv,
where (v,p) € S x G§ (d), 0 < k < m. Then (4.11) implies
ui(V, P) — uy (U, C(P)) = 0 (4.12)
as t — o0, exponentially fast as well, and the f; are Lipschitz functions.

Thus for 1 < k < m Lemma 4.3 implies

o1
lim —
t—oo

t t
/ Fe(us(V, P)) 0 dWE — / Fe(us(U, C(P))) 0 dW¥| = 0.
0 0

For k = 0 the corresponding convergence is trivial. Since

t m
HCP) = lim ~ [ 3 fuus(U, C(P)) 0 W
k=0

t—oo 0
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exists by Theorem 3.6, Lemma 4.3 yields moreover that

p(P) = lim ! tifk(us(V, P)) odW}
k=0

t—oo ¢t 0

exists as well and equals p(C'(P)). This completes the proof. =
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