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Abstract. For the Brownian sheet W with values in R9 the set of double
points (s,t) € A x B, i.e. points for which Wy = W, is investigated, in
terms of the corresponding self intersection local time. Its existence is seen
to depend sensitively upon the geometric constellation of the compact sets

A, B in [0,1]2. We suppose that A and B intersect at exactly one point p,
and can be separated locally by an axial parallel line. We further assume
that their boundaries in a vicinity of p are given by power type functions.
We compute the critical dimension below which self intersection local time
exists and describe it in terms of the powers of the boundary curves of A
and B.
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Introduction

To investigate the local behaviour of stochastic processes or random fields X, €
T, with values in R%, local time has proved to be an appropriate instrument. For
z € R% it is given by the differentiated occupation measure

L(z) = lim m /T 1k, (z)(Xs) ds,

where K.(z) denotes the ball of radius e centered at x. For instance, if L(z) exists,
the level set of z, i. e. the set of time points ¢t € T for which X; = x, has Lebesgue
measure 0.

More generally, also the size of the random set of double points, i. e. pairs
(s,t) € T? of points for which X, = X; may be investigated by a local time type
functional, the self intersection local time

1
*= 50 )‘(Ke(o))/T/T K. () (Xt )dsdt
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If a exists, at least in a reasonable distributional sense, this means that the Lebesgue
measure of the set of points (s,t) for which X, and X; are within a ball of radius € of
each other, remains of controllable size in proportion to the (of course d-dependent)
Lebesgue measure of this ball. In a way this says that the set of double points remains
small.

In particular, if X consists of d independent copies of one-dimensional processes,
increasing d will mean to increase the proportional size of the set of double points.
Consequently, there will be a critical dimension dy below which a exists, and above
which the proportional size of the set of double points is beyond bounds.

Of course, this critical dimension will also sensitively depend on the degree of
autocorrelation of the process X. It will be smaller, the closer the cumulative corre-
lation between X, and X; as s and ¢ run through 7. The stochastic field we shall
consider in this paper is the Brownian sheet W in R?. W has independent increments
over disjoint rectangles of [0,1]?, and is well known to have an essentially more com-
plicated local structure than the Brownian motion in R¢ (see for example Dalang,
Walsh [4], [5], or Dalang, Mountford [3]).

Now suppose that instead of the whole parameter space, s and t are allowed to
vary in A and B respectively, where A and B are compact sets in [0,1]2. Then the
critical dimension for the existence of self intersection local time will be a sensitive
function of the geometric constellation of A and B. Increasing closeness of A and B
will be expressed in higher cumulative correlation of the process running in the two
sets, and consequently in lower critical dimension.

How this relationship between closeness and critical dimension may be expressed
in geometrical terms more quantitatively, emerged in Imkeller, Weisz [8]. In this paper
we considered axial parallel rectangles for A and B, and exhibited the following critical
dimensions d. If AN B = (), then d = oo, if AN B is one point, then d = 8, if it is a
line segment, d = 6, and if it contains a rectangle, d = 4.

The present paper is devoted to clarify further this crucial dependence of critical
dimensions on the geometry of A and B. In particular, we are interested in an
interpolation in geometrical terms between the cases in which A and B are disjoint,
intersect in a point and in a line segment. We therefore suppose that A N B = {p},
and that they can be separated by an axial parallel line through p. We take this line
to be horizontal, thereby taking into account the crucial dependence of the covariance
structure of W on the axes, which has been encountered in many properties of the
Brownian sheet. But we emphasize at this point that for rectangles intersecting in
one point and with boundaries taking an angle of 45 degrees with the axes, our results
will provide the critical dimension 8 as well. As in the Maltese cross condition for
the sharp Markov property of W in space dimension 1 (see Dalang, Walsh [5]), it
turns out that the critical dimension sensitively depends on the way in which the
boundary curves tend away from the common intersection point. To measure this
more quantitatively, we suppose throughout the paper that in a vicinity of p the
boundary curves are of power type, as in the following sketch:

2



f+

The exponents of the power functions g*, g~ are denoted by p*,u~, those of
fT,f~ by v, v~. Our main results, given in Theorem 8, may be summarized in the

following way.

If all four exponents are less than one, i. e. the curves tend away fast from the
point and the dividing line, the self intersection local time exists for d < 4+2( e \1/ =T

1 .
1/+\/u*) :

Note that depending on the size of the exponents, this critical dimension inter-
polates the dimensions oo (for disjoint A and B) and 8 (for rectangles intersecting in

one point):

If 3 exponents are less than one, whereas the remaining one (say uorp™) exceeds
Lorif ut,p= > 1,vT, v~ <lor put,u” < 1,vT, v~ > 1, the critical dimension is

given by 6 + V+\2/V_ ,6+ u+\2/u‘ respectively:
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futAv >1,p" Vvt <lorut Ve <1,u” Avt > 1, the critical dimension
is 8:

If at least u™ A vt > 1 or v© A v~ > 1, the critical dimension is given by

2 .
6+ ptAp—AvtAL—"

Note that this value interpolates the critical dimensions 8 (for rectangles with a
common point) and 6 (for rectangles with a common line segment).

Our method of investigation is - as in Imkeller, Weisz [8] - a series decomposition
of functionals approximating the self intersection local time by multiple Wiener-1t6
integrals in the framework of the spectral decomposition of the infinite dimensional
Ornstein-Uhlenbeck operator. This leads us to establish finiteness (for existence) or
infiniteness (for divergence) of characteristic integrals of different types. The estima-
tion of these integrals is in most cases rather straightforward, but complicated. So as
a rule we only give the complete set of arguments in the most involved cases.

Already at this place we add a remark concerning the convergence (divergence)
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results natural for our setting. Smoothness being defined by the infinite dimensional
Ornstein-Uhlenbeck operator, statements on convergence (divergence) appear in the
sense of appropriate Sobolev norms. We could improve for example divergence results
in this sense to divergence results in the a.s. sense in the following way. After renor-
malizing the approximate self intersection local times appropriately, we could show
in many cases convergence of the renormalized quantities in statements of the type
of laws of large numbers to constants. Using independence by cutting the parameter
space into sequences of disjoint sets and Borel-Cantelli arguments these convergence
results could slightly be improved to statements about a.s. convergence, and con-
sequently a.s. divergence of the non renormalized quantities. We however refrain
from making these steps precise, because a reasonable treatment of renormalization
questions would inflate this already long paper beyond bounds.

The paper is organized as follows. In section 1 we recall the details of the spectral
decomposition of self intersection local times. Section 2 is entirely devoted to the
estimations of the various characteristic integrals, for functionals related to pairs of
opposite regions bounded by power type curves. The particular results for different
pairs of regions are presented in Theorems 2 - 7, and are finally combined to yield the
main result (Theorem 8).

Preliminaries and notations

In this paper we consider the canonical Brownian sheet indexed by [0,1]? with
values in R? on the canonical Wiener space (£, F, P). P is the probability measure
under which W; possesses the probability density

|

1
] exp(—
\/27Tt1t2d 2t1t2

The ordering of the parameter space is supposed to be coordinatewise linear ordering
on R, . Intervals with respect to this partial ordering are defined in the usual way,
and s < t means s; < t;, 1 =1,2.

For d = 1 it is well known that L2(£2, F, P) possesses an orthogonal decomposi-
tion by the eigenspaces of the Ornstein-Uhlenbeck operator on Wiener space, which
are generated by the multiple Wiener-Ito integrals I,, defined on L?(([0,1]?>)"), n > 0
(see for example Bouleau, Hirsch [2], pp. 78-80). The multiple integrals possess the
orthogonality property

p:‘,iltg (Jf) = )7 T E Rd7 t= (t17t2) € [07 1]2

0, if n #m,
E(L(f)In(9)) = { n! foapye F9AN, ifn=m,

where A denotes Lebesgue measure without reference to the dimension of the space
on which it is defined. If H,, is the n*® Hermite polynomial defined by

(@) = O exp(2) (L yrfexp(- 2]

re€ R, n>0,and if



denotes the Gaussian stochastic integral of a function h € L2([0, 1]?), the relation

Ho (W (h)) = ﬁu(h@n)

holds true whenever ||h|| = 1. Here h®" denotes the n-fold tensor product of h with
itself, while ||| is the norm in L*([0,1]®). We write W (D) = W (1p) for D € B(R?),
so Wy = W(Ry) for Ry = [0,t]. For p € R we may define the Sobolev space of order p
on Wiener space by introducing the norm

IFll2,p = (340 ITa(fa) 1)

on the space

{F =Y L(fn): foeL’([0,1)™), 0<n<m, meN}

n=0

which is dense in L?(2, F, P) and completing with respect to || - ||2,,. We denote this
space by D ,. In case p = 1 we just recover the domain of the gradient operator of the
canonical Dirichlet form on Wiener space, for p < 0 we obtain a space of distributions
over Wiener space (see Watanabe [26], Bouleau, Hirsch [2], Nualart [14]).

To denote multiple Wiener-Ito integrals with respect to the independent com-
ponents W* of W in R, we use the symbol I, 1 < i < d, n > 0. Corresponding
Sobolev spaces are defined for functionals of the d-dimensional Brownian sheet (see
Watanabe [26]).

1. Two series representations and the characteristic integrals

In this section we consider approximations of self-intersection local times and
give two different chaos decompositions for them.They will serve later to get upper
and lower limits for stating convergence or non-convergence in Sobolev spaces of the
canonical Dirichlet structure, i.e. the existence or non-existence of self-intersection
local time, where intersection times are allowed to vary in two compact sets A, B of
parameter space. Taking therefore Sobolev norms of the approximations will make
appear ”characteristic integrals” of degree k for k£ € Ny. These integrals are in general
rather complicated to evaluate. For this reason we shall give a few decompositions
which will then be seen in the following sections to make the estimates more trans-
parent and tractable.

We now fix two compact sets A and B off the boundary of Ri. We shall consider a
canonical approximation a.(z, -), € = 0, of self-intersection local time of the Brownian
sheet in R? corresponding to these sets.

For € > 0, z € R? let

ae(a:,-):/ /pf(Wt—Ws—x)dsdt
BJA
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where
d 1 |z |? d
pe(x)zidexp(_T)’ zeR , €>0,
2me €
is the density function of the d-dimensional Wiener process at time e.

We proved in [8] that for z € R? and € > 0 we have

1r, —1r, n
HZ_O//H\/_ \/e+)\RtAR)]® )
i )pe+/\(RtARs)($) ds dt,

i Ve+ AR:ARy)

where QAR = (Q \ R) U (R \ Q) denotes the symmetric difference of the sets Q, R
Choose n > 0 such that = (n,7) < x for each x € A, B. To simplify the

computations we introduce the sets
Cy == Ry \ [, t], Dy = [n, ] (t € [n,1]).

Thus R; = Cy U D;. Then we have

Z//H\/_' ”’([\/ +)\ CtAC)]®n)

n;=0
( 5('37 ta .’17)1
" e+ ACAC)
for z € R? and € > 0 (see Imkeller, Weisz [8]), where
5(53 t7x) =T — (W(Dt) - W(DS))

-) in the two representations

)pg-l-/\(C’tAC’s) (z)dsdt

Let us now fix p € R and compute the norm of a.(z,
with respect to the quadratic Sobolev space of order p. For z € R%, ¢ > 0 we have

lee(z, )13, (1)
1r,)(1gr, — 1g,) dA]*

> Joo.ap (1,
:ZHk ////A[[e[-l—)\;}:AR )) (e + MRy AR5

Z H \/H_)\ RtAR )Hni(\/e-i-)\(RUARu)

ni+---+nqg==k i1=1
pg—i—)\(RtARs) (33)296+>\(RU AR,) () ds dt dudv

and

e (=, )13,

o0
< CZ (1+ k)PE4/21

/ / / / (c+ A Cfﬁ*c;))(ef)\(éigk))] ds db dudv
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(see Imkeller, Weisz [8]). In the following section, the convergence of a.(z,-) as e — 0
will be investigated. We have seen in [8] that a.(z, -) converges to the self-intersection
local time for all z € R? (in particular for 0),

w92 30 [ [ @

Z;

Hni(m)pA(RtARs)( z) ds dt
in Dy, if
I(k) <cp and ch(l + k)”kd/2_1 < 00 (3)
k=0
where

I(k) / / / / Ciic o ((C?AACC);]) ds dt du dv,

k € Ny, denote the characteristic integrals.
Let us first discuss characteristic integrals needed to state convergence. Observe
that
MCACs) = n([tr — s1] + [t2 — s2)

and

)\((CtACS) N (CUACU)) = 77[)\([81 N tl, S1 V tl] N [Ul A V1, U1 V ’Ul])
+ )\([82 A tz, S92 V tz] N [’U,2 A Vg, U V ’02])].

Denote
== [Si/\ti,si\/ti], Ti = [ui/\vi,uini], ?:=1,2.

We will investigate special sets A and B for which Sy N T5 # 0. Hence up to an
irrelevant factor n(*=9/2 I (k) is equal to the sum of the following two integrals

to Avg — 59 V ug)¥
I(k, 1) :=/ .../1{510'111:@} (2 v2 52 U2) ktd dS...d’U,
B A [(|t1

—31|+t2—82)(|’01—U1|+U2_U2)]T
:/ .../1{510’1"1?50}
B A

[(81 V tl) A (u1 V ’Ul) — (81 A tl) V (U1 N ’Ul) +to Avg —S9V ’U,2]k
ktd

[(|t1 — s1| +t2 — s2)(Jv1 — ur| + v2 —u2)] =

ds...dv.

Since these integrals will be used for upper estimates, we sometimes may replace
them by good upper estimates, such as the following ones. We verified in [8] that

[A(S1 NT1) + A(S2 N To)][A(SL U Ty) + A(S2 U T3)] < 2[A(S1) + A(S2)][A(TL) + A(Th)).
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Using this we can see that I(k,i) < J(k,i) (i =1,2), where

k—d

tg/\’Uz—Sg\/Uz)T
J(k,l) ::/ .../1{510711:@} ( *id ds...d’U,
B A ("Ul—’ul‘+‘t1—5‘1|+t2\/’02—82/\U2) 2

and

J(k,2) ::/ .../1{510'111#@}
B A

[(51 V1) A (ur Vor) — (51 AE)V (ug Awy) + ta Ava — 83 V up) "5
[(s1 ViE1)V (ur Vor) — (st At1) A(ur Avy) +t2 Vg — 82/\U2]k2ﬂ

ds...dv.

The case k£ = 0 is much simpler, since

1
IO://lS s ds dt)?.
() (B A {s1<t1, 2<t2}(t1—81—}—t2—$2)% )

Finally, let us state by means of which characteristic integrals we will obtain
divergence of a.(z,-), e — 0, for all z € R%. To get divergence it is enough to show
that, at least for one k € Ny, the characteristic integral

B [Jj0.12 (1R, — 1r.)(1R, — 1R,) dAJ*
Kik) = /B /A /B /A ORAR) MR AR) T ey

appearing in (1), is infinite.

In [8] we investigated the case when A and B are rectangles and proved that the
critical dimension below which self-intersection local time exists, is given by d = 4 if
A = B. If AN B consists of an axial parallel line, it is 6, if it consists of a point, 8,
and if it is empty, infinity, i.e., in this case the self-intersection local time exists for
all dimensions (at least as a well behaved distribution).

In the next section we characterize the critical dimension of the self-intersection
local time for more general compact sets A and B. In fact, we shall mainly be
concerned with the case in which A and B touch at one point, and the boundaries
containing this common point are given by graphs of power functions. We shall see
that the behaviour of the corresponding self-intersection local time sensitively depends
on the geometry of these boundaries.

2. Self-intersections of the Brownian sheet in different compact sets

Now suppose that the sets A and B are compact and A, B C Ri \ (9R%r. If
AN B = () then the critical dimension of the self-intersection local time is infinity, as
for rectangles.

Theorem 1. Suppose that AN B =0 and d is arbitrary. Then

a(z, ) = lim a(z,-) (z € RY) (4)

e—0



ezists in Dy , for any p < 4—d/2 and is given by (2). Moreover, a(x,-) is a function
iff d < 8.

Proof. We can find pairwise disjoint, closed rectangles R;, i+ = 1,...,n and §j,
j=1,...,m, the vertices of which are parallel to the axis, such that

ACORi, Bc GSJ-.
j=1

=1

Then we apply Theorem 9 of Imkeller, Weisz [8] for each pair (R;, S;) of rectangles
and obtain that the critical dimension of the self-intersection local time is infinite.
This proves the theorem. [ |

In what follows we suppose that A and B have one common point, {p} = AN B.
We shall further suppose that the boundaries of A and B containing the common
point p are given by graphs of power functions. We shall essentially be concerned
throughout the section with exhibiting the extremly fine and sensitive dependence of
the behaviour of the self-intersection local time on the structure of these boundaries.
Of course, one should expect that the closer the boundaries are, the rougher the
behaviour of a. Our calculations allow us to state this more quantitatively. Let us
now state more precisely the geometrical setting of our investigations.

Suppose that there is a rectangle K := I x J, I = [p; — 02,01 + 1], J =
[p2 — 12, p2 +m1], such that 9AN K and BN K are graphs of functions, more exactly,

IANK ={(z, f(z)) : pr =02 <z < p1 + 61},
OBNK ={(z,9(z)) :p1 — 02 <x <p1+ 1}

B

patm|~ T
B~ Bt
g+
0
I
+
7=
A~ At
P2—mn2 |77 i
A
pL— 62 j21 1+ 6
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Here 0 < 01, 02,m1,m2 < 1. Let f < g. We can suppose that g(p; +61) = g(p1 — d2) =
p2 +m and f(p1 +91) = f(p1 — 62) = p2 — 2. Denote

f+ = fl[Pl,p1+51]a fm= fl[Pl_‘S?’pl]’
g+ = gl[Pl,p1+51]7 g = gl[pl_‘s%pl]’
and

AT = ANKO{(z,y):x>p}, AT =ANKN{(z,y):z<p},
Bt :=BNKN{(y):z>m}, B :=BNKN{(xy):z<m}

To get the self-intersection local time over A and B, it is obviously enough to consider
the self-intersection local time over the sets A* and B*. This leads us to the investi-
gation of characteristic integrals Iy 4 (k,%) and Jy 4 (k, ) instead of I(k, ) and J(k, 1)
(i = 1,2), if A and B are replaced by A* and B*. Similar notations are introduced
for I(k) and K(k), k € Ny.

As announced above, we shall assume that the boundaries of A and B are given
by power-type functions. More precisely, assume that

+ ot
gt (x) =p2 + bt (z —p1)*, ff(@)=p2—at(z—p)",
g (@) =p2+b (pr— )", f (@) =p2s—a (p1 —2)",
9= g+1[P1,P1+51] +g_1[P1—52,P1] f = f [p1,p1+61] + f 1[P1 d2,p1]»

for some 0 < p*,v* < 00, 0 < a*, b+ < 0.

K

f+

Note that the case a™ = 0 is covered by u™ = co etc. We shall use also the notation
B*=Bf  and AT=AS. (5)

We can suppose that a* = b* = 1 (see the computations below). The symme-
try of the integrals I(k) and J(k) allows us to make the following general
assumption which is valid throughout the paper: p* < v* and =~ < v*. If
AT and BT are both rectangles, then the problem is solved in Imkeller and Weisz [8].
So we suppose that u* < .

The constant C' appearing in estimations below may vary from line to line and
does not depend on k.
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2.1. The case AT = B~ =) and max(p*,v7) <1

Bt

We first consider the case in which A and B are contained in two opposite quad-
rants and in which the boundary curves ”"tend away” fast from the separating line,
i.e. both exponents of the power-type functions are smaller than one. In this case,
it turns out that the critical dimension depends on both exponents. It is given by
4+ %+ 2

In the following calculations we shall always verify the finiteness of an integral of
the form fol % dz by comparing the exponent o with —1. The exponents o appear-
ing will always be more or less complicated functions a(u*,v*) of u* and v* and
a(p*,vT) > —1 will be a consequence of the hypothesis d < dy, where dg is given in
the corresponding propositions.

In estimates of integrals of the form fol (z + y)® dy the exponent o may be —1.
In order to avoid having to work with log-terms in consequence of this, we estimate
tacitly by fol (x + y)* ¢dy (for upper bounds) resp. by fol (x + y)*Tedy (for lower
bounds). Obviously, this does not affect the generality of the results.

Proposition 1. Suppose that p= < v~ <1 and

2 2
d<4+—+ =,
<A+ (6)

Then there exists a constant C such that k*J_ (k) < C for all k € No.
Proof.
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For I_ 1 (0) we have (see sketch)

1
\/I- (0 :/ / 1gg s dsdt
7+( ) Bt Ja- {s1<t1,52<t2} (tl i+t — 82)%

1
R 1y, dsy dty,
// { 1<p1<t1}(t1 s +g(t1) — f(81))%_2 1001

where ~ means asymptotic equivalence. It is easy to see that the transformation

r1 =p1 — S1, o =t1 — 1 (7)

implies

1 1 1
Viso= [ ]  dndn
0o Jo (.’171+$2+.732 +aj’1’ )2
1 1 1
~ d:L‘l d:L‘g
/0 /0 (" + v )52
1 1 1
= 1 _ drid
/0 /(; {$g+<$,1, }($l21'+_|_$11’_)%—2 Ir1 AT

1,1
1

+ 1 _ dxidxs.

e = R

+ - + -
On the set x5 < z¥ we use the substitution x5 = z¥ z to derive that the first
term is equivalent to

1 1 ~
/ / (24 z+a¥ )22y /Bt it -1 dzqdz < oo 9)
0o Jo

if and only if (6) is true. The second term can be handled similarly.

.(/(tl \ Ul)

g(ts Avy)

f(s1Vur)
f(s1 Awy)




Let us investigate the integrals J_ (k). Observe that J_ 4 (k,1) = 0. The part
of the integral J_ 4 (k,2) over the set {g(t1V v1) <tz Ava} N {saVua < f(s1 Au1)}
(see sketch) is denoted by J_ 4 (k,2,1). More precisely,

J_ +(k 2 ]. / / 1{g(t1Vv1)<t2/\U2782Vu2<f(31/\u1)}
B+

k—d (10)
[tl/\’U1—51VU1+t2/\’U2—82\/Uz] 2
—ds...dv.

[tl\/v1—81/\U1+t2\/’l)2—82/\u2]k%

Similarly, we define the integrals J_ y(k,2,2), J_ 1(k,2,3) and J_ 4(k,2,4) using
the sets

{g(t1 V) <taAva} N{f(s1 Auyp) < s2Vus < f(s1Vug)l,
{g(t1 A1) <ta Ava < g(tiVur)}N{saVus < f(s1 Au1)}, (11)
{g(t1 A ’U1) <tag Ay < g(t1 V ’Ul)} N {f(Sl A Ul) < 893 Vug < f(81 V Ul)},

respectively. Then, obviously,
J—,-i—(ka 2) = J—,—I—(ka 2, 1) + J—,—I—(ka 2, 2) + J—,—I—(ka 2, 3) + J—,—I—(ka 2, 4)

Integrating in t3 V vg and sg A uy we have

C
J_,+(k7 27 1) Sﬁ / .- / 1{g(t1V111)<t2/\'02,32Vu2<f(31/\u1)}
B+ A—

[tl/\vl—sl\/ul-i-tz/\vz—S2VU2]1€2;d

ra— ds...dv.
htd 9
[tl\/’Ul —81/\U1+t2/\’U2 —82\/’11,2] 2
By the definition of f and g and the transformation
T1=p1 — s1Vu, Tg =p1 — S1 A\ uq, x3 =11 ANv1 — p1, (12)
Tg =11 VU1 —p1, =p2 — S2 V ug, Y2 = ta N va — p2,
C
J_ k 2 1 k_/ / {$1<$2<y1 ,z3<w4<y2/ }
T3+ w1+ Y1+ y2) T
(z3 1+ 4+ 92) . dxy...dys.
(374 +x2+y1+ y2)T_
Then the coordinate change
1/v~ 1/v~ 1 1/pt
xg = 311/ 1, r1 = 1U1/ l1ta, xTq = y2/u ui, x3 = yz/“ U1 U2
gives
1/v™ k=d
U1U2 +y;" tita+y1 +y2) 2
u1+y1 ti+y1+y2) 2

v +
y%/ ?J;/N tiur dty ... dyo.
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On the set {y1 < y2} let y; = y22. Then the contribution of this set to the integral is
estimated by

+ v v k—d
/1 /1 (y21/u UL + y;/ 21V bty + Y2z + yY2) 2
I + y;/"le/”’tl + Yoz + yg)@_2

2/v~ v— 2/pt41
112/ 2 yz/“+dt1...dy2§0

with a constant C independent of k, provided that (6) holds. This is seen by comparing
numerator and denominator, extracting yo and integrating in yo. On the set {ys < y1}
we can argue similarly.

The integral J_ 4 (k,2,3) is more complicated than J_ 4 (k,2,2). So we concen-
trate on the former. We integrate in t3 V vy and sg A ug, use the transform (12)
and

1 1/v™ 1/pt
To = y1/y tq, T, = y1/y t1ta, yz/ﬂ = T4uq, T3 = TaUi1U
to get
J_ +(k,2,3) /B+ / L{g(tsAvr)<taAva<g(tiVor),saVus < f(s1Au1)}

[tl/\’l)l—81VU1+t2/\’Ug—82\/’U,2]T

[t1 Vo1 —s1 Aug +g(t1VU1)—82VU2]k§d =

- k2/ / {w1<za<y)’’ w3<ys L/t <4}

(x3+ 21+ y1 +y2) =R
+)k+d

ds...dv

d.’L‘1 .. .dy2

B

x4+$2+y1+az

vo + + k=d
/ / (xauqug + yl/ tita +y1 + xZ uf )2
k+d

a:4+y1/” t1+y1+a: )T—

yf/" xl tul dti...dyr

1/pt

+
On the set {y%/ #' < x4} the transformation y;"* = z42 yields the estimate

pt oyt k=d

/ (:c4u1uz + Tt t1t2+$4 2" 7

= + .\ k+d
$4+$“/ ut /v t1+:1:4 zu++$u)2 -2

2pt -
g2 v ta:“ +u’f xf,f Lty dz

7t + v — - Ty Ee
< g/1 /1 (33411 P uug + oY /v u Z”+/V t1t2+zp++ulf )k2d
= k2 B A (lei wt +xg+/'/_—l‘+zu+/u*tl+zﬂ+ +1)k2ﬂ_
+ — + /- v - +
. (=d)+2ut /vT 41 2p* fu™ 4t Yl dty ... dz.
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The integral of the z4-factor after the fraction is finite by hypothesis. If £ > d then we
can see immediately that the other integral is also finite and has a bound independent
of k. For k < d we have to investigate the integral

1 1
+ + k—d +mayt— +
/ / (2% k)T 2R LR Gy d
0o Jo
o T e T AR W Tl
= Locup(2F +uf )7 2 uf duidz
0o Jo

1 g1
+ / / 1{z>ul}(z”’+ + u’f+)¥zz“+/”_+“+_1u’f+ duy dz.
o Jo

On the set {z < u1} let z = uyv. So for the first term we get the estimate

//(ul o’ +u“) 7 2”+/” +2ut duy dv

and this is finite if d < k+4+2/u™ 4+ 2/v~. The second term is treated analogously.
To finish the treatment of J_ 1 (k,2,3), we still have to consider the contribution

of the set {zy < yl/ #"}, on which we use the transform z, = yl/ W However, this
is much simpler than the contribution above and is left to the reader.
For J_ 4 (k,2,4) after integrating in ¢3 V vy and sy Aug as above, we use (12) and

1/v~ 1/pt
Y1 = Tatq, r1 = Zatqlo, Ys = T4U1, T3 = T4U1U2.

We conclude that

C
J-, +(k,2,4) < k_/ / {1 <yy’ <xz,ms<y;/”+<z4}

$3+$1+y1+y2) 7
ktd _
.’1)'4—}—.’1’}2—}—.’E4 +$2 ) 2

d.’El .. .dyg

d

v pt, ptyk=d
/ / x4u1uQ+x2t1t2+x2 ty +af uf )

ktd _
$4+x2+x4 +axy )z

- +41 +
oy Yk T dty L day

_ + _ +
On the set {4 < a4 },let 25 =z 2. Then the integral has the estimate
- + o + o ke
/ / (Tquius + 24 T A 1ty —l—:vff 2t 4+ uf )¥
(g + 277 21 g T )

R L Gt s Y N N

k—d

v —pt _ _
/ / B u1u2+x4 Wt Ay tite + 2t¥ —|—u’1‘+)T
37411 “++a:ﬁf+/”__“+z1/’f +1+z)%_2
pt(4— tvm v v
374 (4—d)+2u™/ +122/ t u]_ dt]_ dz.
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The integral of the z4-factor alone is finite if (6) holds. If k¥ > d then the integral of
the fraction is finite, too, as is seen by estimating the numerator by the denominator,
with a bound independent of k. The case k < d is not quite simple. We may estimate

by
L 1 - + k-d o/, ,— .+
/ / (20 +ub )T 22w dty . de.
0 0

— —+ _ +
On {t¥ <uf } weuset! =ul v toobtain the estimate

1 1
+ k—d
/ / (zuff v—l—u’l” )z “1 BT Gy Lz < oo
0 0

provided that d < k+4+ 2/t +2/v™.
On {uf "< tY }, putting u’f+ =t¥ v yields the estimate

/ / z+'u g v (k—d)/2+2v" +v™ /T 2/1/ 1/;[" dty ...dz.

The integral in ¢, is finite. For the integral in the remaining variables we need another
transformation. On {z < v} we get from z = vz the estimate

11
/ / (vz +v) BT AL gy iy < 0.
o Jo

On the set {v < z} the argument is analogous.

+ _

Finally, the contribution of the integral J_ i (k,2,4) over the set {zf < 2§ }

can be estimated in a completely analogous way. This finishes the proof of Proposition
1. =

Proposition 2. Suppose that p™ <v— < 1. Ifd > 4+ ;%L + -2 then K_ 4 (0) = oo.
Proof. Since

<t1 — 81 + 1ty — 89,

13
>ty — s1 + ta — 2, (13)

t1tg — 8189 = (tl — S1)t2 + S1(t2 — 82) {

with 7 as chosen in Section 1, we can conclude that K_ (0) is equivalent to I_ (0).
Hence the assertion follows from (8) and (9). =

The next theorem is a consequence of Propositions 1 and 2.

Theorem 2. Suppose that u™ < v~ < 1. The self-intersection local time in (4) exists
in the Sobolev space Dy , for any p <2 —d/2 if and only if d < 4+ ul* + V%

Proof. The order of smoothness follows from (3) with ¢ = ck~2 and from the fact
that

(&)
> (14 k)PEYPTET? < o0
k=1

17



ifp<2-d/2. =
2.2. The case At = B~ = and min(p,v~) <1 < max(p*,v™)

Bt

@

We consider a similar case to the preceding one, just with one of the two bound-
aries given by a power function with exponent bigger than 1. Here the result depends
only on the smaller exponent. We show that the critical dimension is given by 6+ u%

Proposition 3. Suppose that p= <1< v~ and

2
d<6+/1,_+ (14)

Then there exists a constant C such that k3J_ (k) < C for all k € Ny.
Proof. Similarly to (8) we have

\/I_ / / M +x1 %_2 d:ﬂld.’L'Q. (15)

)

Applying (9) for v~ =1 we get I_ ;(0) < oo if and only if (14) holds.
For k > 0 we have again J_ 1 (k,1) = 0. To estimate J_ 1 (k,2), we replace A~
by the rectangle A, where A is defined in (5). Obviously,

J—,-i-(k’ 2) < J—,-i-(ka 2, 1) + J—,+(ka 2, 2)

where (by integration in tg V ve, s A ug and s1 A uq)

J_7+(k, 2,1) ::/ / Lig(t1vur)<taAva}
B+ A
[

151/\1)1—31\/’11,1-i-?fQ/\1J2—32\/U2]u
%iid

[tl\/’l)1—81/\’ul+t2\/’l)2—82/\11,2] 2

C'
k_ 1{31Vu1<p1<t1/\1)1<t1Vv1<g—1(t2/\112)}

k—d

[tl/\’Ul—81\/’U,1+t2/\’02—82V’U,2:|T

[t1V’U1—31\/U1+t2/\1}2—52\/u2]k+d -3

ds...dv

ds...dv

18



and

J_7+(k7 27 2) = / . ‘/_ 1{g(t1/\1}1)<t2/\1}2<g(t1V’U1)}
B+ AL

[tl/\vl—81VU1+t2/\’U2_32vu2]¥

wig 4s-..dv
[t1Vvl—31/\u1+t2\/v2—32/\U2] 2

C
< E/"'/1{S1Vu1<p1<t1/\v1<g_1(t2/\112)<t1vm}

[tl/\vl—31Vu1+t2/\v2—32VU2]%

E5a ds...dv.
[tl\/’Ul—81\/U1+Q(t1\/’01)—82\/ﬂ2] —3
By the transformations
r1 =p1— S1Vui, To =t1 ANv1 — p1, (16)
r3 =11 Vv —pi, Y1 = p2 — S2 V us, Yo = ta A\ Vo — pa,
and . .
1 1
T3 = yz/“ U, o = yz/u Ui U2
we obtain

k—d
(xe+z1+y1+y2) =
J_7+(k,2,1) S / / {z2<z3<y 1/pt } Etd 5 dIl...dyg
2 (T3 +21+y1+y2) 2

k—d
U1U2+g;1+y1+y2 2 o/t
N kS/ / kJ)rd 3y2/u Ui dul...d’y2.
U1+$1+y1—l—y2) 2

We argue only for the contribution of the set {7 < y1 < y2}. The arguments for the
other sets are similar. Let y; = yot1 and 1 = yot1t2. Then the estimate is

1 1, 1/t k=d

/ / (Y2 Uluz + yatita + Yat1 + ya) 2 y2/”++2 du d

. 2 1...0Y2 S C
(ys'" U1 + yotita + yat1 + y2) 2 R

with a constant independent of £, as is seen by extracting y, from numerator and
denominator. .
For the second integral (16) and y;/“ = T3U1, T9 = T3UiUs IMply

k—d

C rot+x1+y + 2
J_7_|_(k,2,2) S ﬁ/ / 1{ < 1/M+< } ( 2 ! yl yz)i_g d.’lf]_dy2
0 0 T2 <Yy T3 (1133—}—.731—{—.’173 ‘I‘Z/l) 3

TauiUg + T1 + Y1 + “+)k5d
3U1U2 1 yl zh u t41 out
/ / 3 1 a:“+u’f duy .

k+d 3

(3 + 21 -l-arg +y1)72
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+
Here we compute only the contribution of the set {1 < y1 < z§ }, the other sets

+ +
being treated similarly. With the help of y; = x4 ¢; and z1 = z%§ t1t2 we estimate
the contribution by

+ . k—d
a U1U2+t1t2+t1+u“ Tt (6—d n
/ / et k_idz'g T3 © )HU’f tiduy...dzs.
Z3 +lito+1+1t) 2

The integral of the x3-factor alone is obviously finite. For the rest, we may estimate
in the following way by an expression not containing z3. If £ > d, we may estimate
the numerator of the fraction by the denominator, hence lose dependence on k and see
the integral is bounded by a finite constant independent of k. For k < d we integrate
in t5 and t; to get the estimate

C 1 1 _
—3/ / (tltg+t1+’u,llll+)k2—dullll+t1d’u,1...dt2

_k3// t1+u d+1u’1‘+du1...dt1

+kd2
gkg ul( +)“du < 00,
0

if d <k+6+2/ut. The proof of Proposition 3 is complete. m
The next result follows from the estimates in (8) and (15).

Proposition 4. Suppose that p= <1<v~. Ifd> 6 + 7 then K_| +(0) = c0.
From Propositions 3 and 4 we obtain

Theorem 3. Suppose that u™ < 1 < v~. The self-intersection local time in () exists
in the Sobolev space Do, for any p < 3 —d/2 if and only if d < 6 + u%

2.3. The case At =B~ =0 and 1 < min(p*,v™)

Bt

In this section we consider the case in which both boundaries approach the hor-
izontal through p rather fast, i.e. where the exponents are both bigger than 1. Here
the result is the same as for rectangles.

20



Proposition 5. Suppose that 1 < u™ < v~ and d < 8. Then there exists a constant
C such that k*J_ (k) < C for all k € N.

Proof. If we replace A~ by A3 and BT by Bl then the proposition follows from

Theorem 6 in Imkeller and Weisz [8]. m
Proposition 6. Suppose that 1 < pt <v~. Ifd > 8 then K_ ,(0) = oc.

Proof. Similarly to (8) we have

VE- / / a5 dr1ds.

(xg +21)2

Applying (9) for ut =v~ =1 we get that K_ ; (0) =occ ifand only if d > 8. m

Theorem 4. Suppose that 1 < u™ < v—. The self-intersection local time exists
in some Sobolev space if and only if d < 8. In this case (4) holds in Dy, for any
p<4—d/2. In particular, a(z,-) is a function.

2.4. The case A~ = B~ = () and max(p*,vT) <1

Bt

At

We study the case of two power-type functions opposite to each other for which
both exponents are less than 1. We prove that in this case the critical dimension is
given by 4 + u% + ,%L

Proposition 7. Suppose that p* < vt <1 and

2 2
d<d+ =+~ 17
e (17)

Then there exists a constant C such that k*J (k) < C for all k € Ny.
Proof.
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For I 4 (0) we have (see sketch)
/ 1
I_|_,+(0) = / / dS dt
At |t1—81|+t2—82)

/B+ /A+ ([tr =1+ g(tl) (81))3_2

d81 dtl

18)
1 s1<t d81 dtl (
e T o) CUES
1 s d31 dtl
L+/ { 1>t1} 1 _t]_ +g(t1) f( ))%_2
t=1I44+(0,1) + 11 4 (0, 2)-
It is easy to see that the transformations
1 = 81 At1 — p1, r2=81Vii—pm (19)
and 1 = zz imply
! 1
I_|_7_|_(0,1) :/ / 1 d.’l?l d.’l?z
0o Jo {rr<ea} (x2 — 21 +x’;+ +zvt)E—2
1,1 -
:/ / T — —dzadz (20)
(w21 — 2) + 2 + 2y 2v")2 2
/ / ’2‘ z”+)2_d/2m2 dzodz < 0o
ifd<4+ +(>4+ + Z).
For I+ +(0,2) We obtain
I, .4(0,2) / / 1 ! d d
+,+( 21 <z L1 a4%2
{ 1< 2}( 2_$1+$1 +:L_V+)%_2
)
e d.'L'g dZ (2]‘)
/0 /0 (z2(1 — 2) + b 2p* + gyt)E-2

1 41
+(9_
z/ / (z“+ +x§+_“+)2_d/2x§ (2-d/2)+1 dxs dz.
o Jo
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+_ .+ +_ 4
On the set {z#" < #% ~* } the transformation z# = % " { yiclds the estimate

vt

/ / Ty gy Y2 AL, B TR T g dt < 00 (22)

if and only if d < 4 4+ % + 2. The contribution of the set {z" > a:l2'+_“+} can be
treated analogously.

g(t1V v1)

f(Sl \% ’Llrl)

Now suppose k > 0. We define J; 4 (k,4,7), ¢ = 1,2, j = 1,2,3,4, in the same
way as in Section 1.2 J_ ; (k,2,j) (cf. (10) and (11)). Then we have again

J+,+(k7 2) = J—I—,-l'(k? i, 1) + J+,+(k7 i, 2) + J+,+(k7 i, 3) + J+,+(k7 (3 4) (Z =1, 2)7
where J_ 1 (k,2,7), j =1,2,3,4, are defined by using the sets (see sketch)
{g(t1 Vvr) <ta Ava}N{s2Vus < f(s1Vur)}
{g(t1 V1) <ta Awva}N{f(s1Vur) <s2Vuy < f(s1Aur)},
{g(t1 Av1) <tz Awz < g(tiVor)} N{saVua < f(s1Vu)},
{g(t1 Av1) <taAwvp < gt Vo) N{f(s1Vur) <szVup < f(s1Au)}

Integrating in 5 V vy and s2 A uy we can see that

J+ +(k71a1 /B+ / 1{SmT1 (0}1{g(t1\/111)<t2/\v2,S2Vu2<f(sl\/u1)}

k—d
(t2 N\ Vg — 89 VUZ)T
k+d

("Ul—’U,1|+|t1—$1|+t2\/’02—82/\ﬂ2) 2

ds...dv

>~ k2/13+ / l{g(vl)<t2/\v2’32VU2<f(u1)}I{SIVt1<U1/\1}1}

(tz A Vg2 — S92 V UQ)T
ktd _o

ds...dv,
(|’U1—U1|+|t1—81|+t2/\’02—32\/U2) 2
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the latter by symmetry. It is easy to see that the transformation

r1 = $1 ANt — p1, T9 = 81 Vi1 — p1, T3 = u1 AN v1 — p1,

T4 = U1V —p1, Y1 = p2 — S2 V ug, Y2 =ty A\ Vg — Do
implies

C
< — e
Ter b1 1) < k2/o /0 Qe anct?*y T Laacl/* gy

k—d

(y1+y2) =

1{$1<$2<$3<$4} rd dxy...dys.
(T4 — 23+ 22 — 21+ Y1 +y2) 2
Similarly,
Jy, +(k,1,2) /B+ / L¢s,nTi= }1{g(t1VU1)<t2/\1}2,f(81Vu1)<s2Vu2<_f(31/\ul)}
(tz/\’l)g—Sg\/Uz)% d d
T S...dv
(lor — ua| + [t1 — s1] +t2 Ava — f(s1 Vo))" 2
o k2 / / {$1<x2<xs<w4,m4<y2/ T <yi/” <zs}
k—d
+an) T
(yl y2) kit d.’L’1 cee dy2
(T4 — 23+ 72 — 71 + Y2 + 74 )—_2
/ / {w1<wa<ws <wa,za <y a1<yy’* <wa)
(y1 + y2)T dzy .. dys
($4—$3+$2—$1+y2+m”+)#—2 ’
J4,+(k,1,3) /B+ / Lis:nT1 =0} L{g(t1 Av1 ) <ta Ava<g(t1Vr),s2Vaua < f(51Vu1)}
(t2/\’l)2—82V’U,2)k2;d d d
s...dv
(lvg —ur| + [t1 — s1| + g(t1 Vv1) —s2 V u2)#—2
C 1
< = e
— k2 /0 /0 1{$1<a:2<a:3<w4,$1<y It g za<y!/ Ty
k—d
(y1+y2) 7

dSL‘l .. .dyg
(.CL'4 — I3 + 20— I +£U§+ +y1)k2id_2

— . 1 + ot
2 /0 /() {w1<w2<w3<z4,m1<y;/” <a:4,a:3<yi/ }
k—d
(y1+y2) 2
¥ ktd d.Z'l .
173 ===_-2
(T4 —z3+T2 —T1+TY +91)2

..dy2
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and

It +(k,1,4)

- k2 /B+ / LisinTy =03 L {g(t:1 Av1)<taAva <g(t1Vor),f(s1 Va1 )<saVaus < f(s1Au1)}

(t2 Ava — 52V up) = ds...dv

d
o1 — wr| + [t1 — 51|+ g(t1 Vor) = fs1V ug)) 5 2

C 1
< — .. 1 + o+ +1 + ot
N kz/; /O ( {:1:1<y;/” <w4,z2<y;/ <z3} {$2<y;/u <z4,:1:1<y;/ <$3})
k—d
(Y1 +y2) 2
1{$1<$2<$3<z4} e i kEd dxy...dys
(Ta—T3+ T2 —T1 + 7] +a5 )2

— ... 1 A ot
k2/0 »/0 ( {w1<y;/“ <$3,$2<yi/ <$4} {35 <y1/” <m3,z1<yi/ <m4})
k—d
1 (yl + y2) 2 d d
{z1<z2<x3<24} ot S kEd Z1...0Y3.
($4—$3+$2—$1+$3 +ay")

For the integrals J 4 (k,2,7) we use the transformation

r1 = (81 /\tl) N (Ul A ’Ul) — P1, Tro = (81 A tl) V (’U,l A ’Ul) — P1,
I3 = (81 th)/\(ul\/vl) — P1, T4 = (Slvtl)\/(ul\/’l}l) — P1, (23)
Y1 = p2 — S2 V Uy, Y2 =1la ANvg — p2
to get
J_|_ +(k, 2, 1 /B+ / 1{SlﬂT1;£(Z)}1{g(t1\/111)<t2/\112,82Vu2<f(81Vu1)}

k—d

((81 V tl) (u1 V ’Ul) (81 A tl) (Ul A ’1)1) -+ tg A V2 — S92 V UQ)T
((31 \% t1) \/ ’U,1 V ’U1 81 A tl) A (’U,l N ’Ul) +ilaAvg — 89V UQ)T_2

ds...dv

Ay, 1 o
_kz/ / {wa<yt/ " wa<yl/""} {ea<yt/"" wa<yl/ })

k—d
(3 —zo+y1+y2) =
1{$1<$2<$3<z4}( T+ 11+ )M—z d.fC]_...dy2,
T4 —T1 1 2) 2
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J+ +(k 2, 2 /B+ / ]-{SlﬂTlgé@}1{g(t1V1}1)<t2/\U2,f(81Vu1)<32Vu2<f(31/\u1)}

k—d
(s1VE)A (Vo) = (s At) V(s Avi) +Ea Avs—s3Vug) >
((s1V t1 (u1 \/ v1) — (s At1) A (ur Avy) + b2 Avg — f(s1V 1)) 52
C
k {w4<y2 ,w1<y /vt <zs}
k—d
r3— 22+ Y1 +y 2
1{w1<w2<w3<m4} ( 2 2 ! 2) 5 dry ... dy2
(x4 — 1+ y2 + 24 )T—
C 1 1 .
+ ) AR A (2a<yl/" oy <yt <o)
r3— T2 +Y1 +y 3
1{m1<x2<z3<m4} ( 2 2 ! 2)i_2 dzi .. .dy2
(Ta—z1+y2+ 25 ) 2
* ﬁ /0‘ o /0 (1{w3<y;/”+ ,$1<yi/u+ <wq} + 1{$2<y;/”+,w3<yi/y+ <w4})
T3 — T+ y1+y2) 7
1{w1<:1:2<w3<a:4} ( o )M_2 d.’I?l...dyz,
(x4 —z1+y2 +ay )2
J+ +(k 2, 3 /;3+ / 1{510T1?5®}1{9(t1/\’01)<t2/\1)2<g(t1Vv1) saVua < f(s1Vui)}
k—d
((Slvtl) (’U,l\/’Ul) — (81/\t1) (Ul /\’1)1) + 19 A g _SQVUQ)T ds dv
k+d cee
((51Vit1) V(ur Vo) — (st At1) A(ur Av) +g(t1 Vo) —saVug) 2 2
o k2/ / {:1:1<y2/” <x3,w4<yi/"+}
kE—d
(z 3—$2+y1+y2) 2
Lz <za<ws<aa} KT, dzy...dys
(374_371+373 + 1) 2
C 1 1
—2/0 /0 1{m1<y21/”+<x2 $4<y1/u+}
($3—$2+Z/1+Z/2) 5
g <zs<zs<za} pET dzy...dys
($4_$1+$2 +y1) 2
_2/0 N /; (1{m1<y;/”+<x4,m3<yi/”+} +1 {z3 <y1/u <z4 x2<y1/u+})
d
T3 — To + y1 +y2) 2
1{$1<w2<$3<:ﬂ4} ( )L_ dﬂfl e dy2
(@a—z1+ a2l +y1)5
(25)
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and
Ji+(k,2,4)

= k2 /B+ / Lsyngu#0} Lig(tiAv1) <tz Ava<g(t1vor), f(s1Var) <s2Vus < f(s1Au1)}

((slvtl)/\(ul\/vl)—(51/\t1)\/(u1/\1}1)+t2/\v2—SQVU2)Tds...dU

k+d o

((s1 V1)V (ur Vi) = (st At1) A(ur Avr) + gt Vor) = f(s1Vur))

- kz/ / {w1<y1/” <w4,x2<y1/" <w3} {90 <y1/“ <$47w1<’y1/u <$3})

(3 —x2+y1 + ’yz) dﬂ?l .dys
1{$1<w2<z3<$4} ktd _
(.T4 —x1+ 584 + SE3 ) 2

— 1 + 1
2/0 /0 {zs<yl/*" <zs,a <yt <ap} {T1<T2<E3<24}

k—d
(x3 —z2 +y1 + yz)_ dzy...dys

+ k+d
.114—331+1L‘4 +a¥ )2

+1 + +
/ / {$1<y2/” <$3,w2<y1/u <$} {za<yy’*" <as,@1<yy’” <a:4})

(r3 —z2 + 41 + ’yz) “dry ... dy,
1{w1<w2<$3<$4} ktd
(.734 — T + 1133 + 5174 ) 2

/ / {$1<y1/u <$2’m3<y}/v+<m4}1{$1<m2<m3<m4}

T3 — T2+ Y1+ y2) dml . dys

1/*‘)#—2

Here we compute only one of the integrals, because the computations are quite

long and we use always the same idea. The third terms of the integrals J, 1 (k,1,4)
and J; y(k,2,4) are the most complicated ones. Therefore we consider one type of

+ +
these integrals, say, Jy 4 (k,2,4) over the set {1 < y;/“ < x9 < y}/y < x3 < x4}
All other integrals can be handled with the same method. If £ < d then

(3 —z2 + 31 + y2) L dzy ... dys
{m1<y2/” <oa<uy/"" <op<aa) (r4 — @1 + o +ayt) -

k—d
< 1 (y1+y2) 2 dzy...dys
= T {w1<y;/”+ <alc2<yi/”+ <z3<wa} ( wt + xu‘*‘)%id—?

Z3
k—d

(yl +y2) 7 1/ut 1/vt
vt dxs . ..dys.
/ / i/t <yt <m3<m4}( a o) id_ 592 Y 3 Y2

(26)
By the transformation
ot +
T3 = T4l1, yi/ = Z4l1la, y;/“ = T4tilats
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+ R
which has the Jacobian z Ty gyt Lpt -1

3, we get the estimate
vt— vt — >4
-t tl pt th pt _I_t“‘ ) P)
Fia + +k: dy,,+,+ thod ot +
372 (3—d)+v +3t1 +pt v +2t§ +ut vt +1t“ dzy . ..dts.

+_
On the set {z}
estimate

+y2(3_ FoFiaut
/ / (e ot +t“+)_k_dt(” R e R AR TR A
yrizg )2

+ +_ gt +
B <4 } we use the transformation 2, ~* =1t} y. So we get the

' (28)

_ +(3— +
“+ k2d+”++y++1tﬂ+ pT(E—d)+vT +4

t2 3 y v —pt -1 dtl - dy.
+ +
Using the transformation y = t§ z on the set {y < t§ } we have the estimate

+y2(3_ +.,+ +
B (AR <i)+ﬂ+" +4p +3N++V++2_l/'+d
tu V wh z+ 1) tl VTR

+y2(3— +otpapt
t“+ kgd+u++y++1t(ﬂ )73 ,jk)tZJru AT Lt ked gyt pte-dtvtia

F T
2 3 z vk

-1 dtl...dz.

In consequence of u™ < v one can now see that this integral is finite if d < 4+l+yl+

+ +
On the set {y > t§ } let t§ = yz. Then this contribution can be estimated by

+y2 +o,+
ottt k=d (e ) (S—ditn v VAR W E
t 4 ) »

k—d t@E-—d)+vt44a
tg+T+M++V++1y%

+M+L 1
2 et zet dty ... dz.

Since the integral in y is finite by hypothesis, it remains to consider the integral

+12(3_ +ot pa,t
/ /(t" AL dt(u B e A AR
z
2 1

ptidppt oty L

2 zrt dtl...dz.

ot ) +_ it
On the set {t5 ~* < z} we use the transformation t5 ~—*
last integral by

92 5 d) bt ot paut
/ / +1) 3 dt(” e R 3ttt 2—ptd
T
1

ptEod it ot g a4 ptEod it ot o
z ER vi—ut wt Tut—uty vi—ut dty...dv

= zv to estimate the
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which is finite by hypothesis.
. vi—pt . . vt—pt :
With z =t v the contribution of the set {t > z} can be estimated by

+ +,+
(» ) (8—=d)+p +apt +3M++V++2_l1'+d

/ /(t” to) Ty e

vthsd g tpvt
wFywt dty...dv.

tz
Thg integral in 5 is finite. The remaining integral can be estimated on the set
{ty" <wv} by

1 1 +12(5_ +ot pant taptao_,+
k—d k—=d_  (@T)*@B-—d)tpTvT+dp 3pt+vT+2—p*d , 1, 1
/ . ./ ($+ 1)T,U 2 + u+(y+—”,+) + vt +‘l,++u+
wh?@—dtutvttapt | sutotpopta 1
T vt —ut) vt vt T dud.

where we used that t"+ = wvz. This integral is finite by hypothesis, as is seen by

comparing the exponents with —1.
For the contribution of the set {t” > v} we use v = t” x to get the estimate

+)2 +o+
l/+k d+(” ) (83— d)+l»'/ +4H +3N++2V++2 N‘+d+u

Kod g+ 1
1+:L‘ i wt T out dty dz < oo.

+_,t + . . .
On the set {z;, ~* >4 } we estimate the integral in (27) by

o+ +_ + vt (ot
(u w™) +—+M+ et uty kd vt(3—d)+ %~ (u++3)

y oty +ig )7 g

+h=d 4+
tk=d_ oty o+ KT o THTAVIAS
tg 7 tu T th y ut dzy .. .dy,
+ +_ .+
where we put t§ =z] " y.

At St N
On the set {y »* A< t”’ }let y = =t& z. Then we can estimate by

+(" —ut) + +(u++3>
o+t k—d v (3—d)+~ ptEsdppt ot
/ / ty z+1) 72 x, to
k—d
H+ k;d+u++(u+)ZT+(i+)2_:—u+u++3u+ ut k;d+u++,,++3_1
3 viTH z v —pt dzy...dz < oo.
+ vt -
Using the coordinate change t5 = y #T 2z on the set {y »* > th } we

obtain the estimate
vtt43)

ot ,,+_ +
LANCART'AD] vt k—d v (3—d)+% pe:
ty +2) 7 2y

vt k— d+2u++3+u+—u+

+k—d + 1
hod ot sa viowl 1 1
t'; = yl“r ? Wh2 Tzet dry ... dz.
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Since the integral in y is finite we have to investigate the integral
+(u+—u+>

o+t
vt_pt k—a v (3— d)—i—%
ty +2) 7 xy

ptEsd gt gt 1
e
2 # ”+ d.’L‘4-..dZ.

gt ) gt .
On the set {t5 ~* < z}, setting t5 ~"* = zv we estimate by

+(V+—u+) . d y+(3_d)+u+<ui+s>
v+1)72 z, o

a pthod tutaotiz ph gt prtee
z 5 A ) vh—pt dxrs dz dv < oo.

o o+ .
On the set {t5 * >z} (z=1t; " v) we may estimate by

vt (ot -t vt
( ) u V+(3—d)+ (u++3) + k— d+2u++u +
+v) 7z, ty vt dxy dis dv.

vt —ut)

The integral in ¢ is finite. The remaining integral on the set {z, wr
vt —pt)

be estimated by (z, *“*

1 1 + +(t
k—d ptvte—a+vtet+)+ut 1
/ / (u_}_l)—z 4+ vt —pt) +oF
0 0

ptovte-d+vtt4s)4ut

< v} can

= vu)

U vt —pt) T dvudu < o0.
vt —pt) vt —pt)
pt pt

Finally, on the set {z, u. The contribution can

be estimated by

>wv}letv=ux,

+(,,+ +) +(l,+ “+)

vttt vt _ v _
_ vT (T —pT) CARCARS. S8 nt) k— d+u+(3 d)+ ( +3)+ ( +)2u + .
].+’LL 2 T, 7 pt 7 W

ﬂ+ dzs du < 0.

If k > d then we estimate the first line of (26) by

+ +
i vT\2—d
T4 —2T3+ x5 +x dry...d
/ / {m1<y2/” <$2<y/ <$3<x4}( 4 3 3 4 ) 1 Y2

+ +
< ... 2 2— d 1/u 1/vt o .
N /O /() l{y;/”—'— <yi/u+ <w3<m4}($3 + ”B4 ) Y1 d.’173 dy2

Using the methods above (after (26)) we can show in the same way that this integral
is finite, too. [ |
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To get a lower bound for the critical dimension, we now investigate the integral
K(0).

Proposition 8. Suppose that p* < vt <1. Ifd > 4+ u% + % then K4 1(0) = oo.
Proof. The proof follows from (13), (21) and (22). =

Theorem 5. Suppose that p= < vt < 1. The self-intersection local time exists in
some Sobolev space if and only if d < 4 + u% + l% In this case (4) holds in D , for
any p < 2—d/2.

The proof follows from Propositions 7 and 8.

2.5. The case A~ = B~ ={ and min(p™,v~) <1 < max(p*,v™)

Bt

At

We consider the case where the boundaries consist of one convex and one concave
power-type curves opposite to each other. We prove that in this case the critical
dimension is given by 6 + u%’ if u* is the smaller of the two powers.

Proposition 9. Suppose that p+ <1 < vt and

2
d<6+u—+. (29)

Then there exists a constant C such that k31, (k) < C for all k € Ny.

Proof. First we consider I 1.(0). Similarly to (20) T4 1.(0,1) is finite if d < 4+ % (>
6 + M%) From the second integral in (21) we derive that

1 1
I, +(0,2) < / / (ar;_’fr (1-2)+ z“+)2_d/2x’;+(2_d/2)+1 dzs dz.
o Jo

On the set {z > 1/2} this integral is finite for d < 4 + uji*' On the set {z < 1/2} we
can continue as in (21) (with v* = 1) to see that the integral is finite if (29) holds.
If £ > 0 then we replace AT by AL . We compute now the integrals I ;(k,1)
and J; y(k,2). It is enough to estimate the integrals I y(k,1,7) and J 4 (k,1,7),
J = 1,2, where these integrals are defined like J_  (k, 2, j) in the proof of Proposition
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3. Again by integration in t5 V vg, S2 A ug, s1 and t; we have, with ¢ = 0 if t5 < v,
82>U2,i:1ift2>’l)2, S2 > Ug O t9 < Vg, 82<U2,i:2ift2>’l)2, S9 < Ug,

I+7+(k7 L, 1) = / .- / 1{51ﬂT1=@,g(t1V111)<t2/\U2}
B+ Ao

to A vy — So V ug)k
(f2 A va = 52 uz) ds...dv

[([ty — s1]| + t2 — s2)(Jv1r — uy| + vo — U2)]#

o k2 /B+ / L{sinTi=0,g(t:1 Vi) <taAva}
(ta Avg — 89V ug)*ds...dv

(‘tl — 81| +ioANvg — 89V Uz)%ﬂ_i("vl - ul\ + 13 ANvg — 89V uﬂ@—@—i)
= k4 /+ / 1{SlmT1 ,g(t1Vv1)<t2/\v2}(t2 Nvg — 82V U2)4 dds...dv.
B
Using the transformation
x1 =t1 ANvy — p1, To =11 VU1 — p1,
Y1 = p2 — S2 V ug, Y2 =12 N Vg — P2,
we conclude
< C 4—d
Iy 4+ (k,1,1) ﬁ {$1<$2<y1/u+}(y1+y2) dzy...dy:
C
S F / / {$1<m2<y1/”+}y2 d.’L’l ... dyg (30)
C / pt @)t g
which is finite by hypothesis. Similarly,
Iy (K, 1,2) 1 = [B+---[4 L8y N7y =0,g(t1 Avi )<tz Ava<g(t1Vui)}
ta A vy — Sg V ug)k
(b Avs = 55 V up) g ds .. .dv
[(Jt1 — s1]| +t2 — s2)(Jv1 — u1| + v2 —u2)] 2
C
= F L+ . ‘A I{SlﬂTlZﬂ,g(tll\’ul)<tz/\’(}2<g(t1\/’l}1)} (31)

(tz A vy — S9 V uz)k2;d+i ds...dv

tl \% ’U1 — SV ’U,2)__(4 0)

(11 -I—y2) 77+
< / / ut dzry ... dya,
k4 {$1<y2/ <w2}( l; +y1) +d _(4—4)
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where 7 is equal to 1 or 2. If .24 4§+ 1 < 0 then

mll‘ + 5 +i+1
Lo (k,1,2) / / 1{$1<$2} L yl)ﬂ_@_ Sdoydoydy. (32)
h +yl) 2

Substituting 1 = z2t we conclude

x“ t“‘ +oyp) T AL,
I +(k,1,2) < / / 2 gy drdy.
T4 Y1) 2
ut et 1/t . .
On the set {zf < y1} put z2 =y;’" 2z'/#  and estimate the integral by
k—d_ . 1/u+ 1/ut
20T 4 5o i+l Z1/m ut
(y1z+y1) = 479
< 5 i’ d+2/ut dy < o0.
0
On the set {y; < :1:’2‘+} we use y; = $§+z to get the estimation
tu d i1 ut
Iy 4 (k,1,2) < / / +Zk)+d2 Th E=D+1 it day da.
(142)z —(4=9)

Since the xo-integral is finite, it remains to estimate

1 1 1
/ / (t”+ + Z)%HH dtdz < / (B 4it2) g o oo
o Jo 0

whenever d < k+ 2i +4+2/u™.
For ’“2;‘1 +i+1 = 0 the estimation is similar. If k—gd +i+1> 0 then (31) implies

Iy +(k,1,2) < = / / Lig,<zy} (T ” +y1)5_d dxq1dze dy; < 0.

For J; 1 (k,2) we integrate twice and use the transformation (23) (cf. (24)). Then

in the integral J; y(k,2,1) we get the indicator function of the set {z2 < y, L/nt 1

{z3 < y2/“ }or {z4 < y2/” }. We estimate these by 1 1ty If in the integral

{$2<y2
+

J+,+(k,2,2) the preceding sets appear, we estimate them again by {zs < y;/” } and

thus the integral J; y(k,2,2) by J4 4(k,2,1). It remains to investigate J4 1 (k,2,2)

on the set {z; < y;/ W %2 }. This means that it is enough to consider the following
two integrals (cf. (24) and (25))

k—d
- 3z
O C ks y22+d Aoy .. dys,  (33)
{x1<w2<a:3<a:4,cc2<y2 } (.734 — T+ Yy + y2) -2

33



c [t R
—2/ / 1 e (T3 = 22 + 41+ ) dpy ... dys. (34)
k 0 0 {z1<y, <za<w3<T4} (CU4—.’E1—|—.’132 +y1)T_2

In the first integral we integrate in x4 and use that 3 — z3 < £3 — z;. Then (33) can
be estimated by

¢ [’ ' (3 — @2 + Y1+ 92) 2
— 1 dxq...dys,
k3 / / {w1<z2<x3,w2<y;/u+} (333 — x4y + y2)k2id_3 1 Y2

d
S ]{J_ / / {z1 <w2<w3,$2<yg/“+}(aj3 e + y1 * y2)3 dajl dy27

C
S _/ / {$1<x2<y1/”+}(y1 + y2) ddxl dy2 < 00,

as above in (30).
If 224 1 1 < 0 then we integrate in (34) with respect to x5 to get the estimate

c o (g1 + y) 7" H1
E/O /(; 1{x1<y;/“+<x2<m4}($4_x1+x12£+ +y1)%d—2 dﬂfldyQ (35)

If X241+ 2 < 0 then this can be estimated by

+ k—d
g /1 /1 1 (y1 + xlf )T+2 dry...dxy
k4 . o {r1<z2<24} ($4—x1+$g+ +y1)¥_2

+ k—d
. /1 /1 (@} +y) = P2
< lig, <z dry...dy; < o0
k5 /g 0 {=1< }(m,21,+ yl)k;d 3 411 Y1

because of (32). If 224 4+ 2 > 0 then we estimate (35) by
2

C [t 1 (y1+x“+)k2;d+2
F/ / 1{w1<$2<a:4}( 2+ kid dxl...da:4

Ta—x1+xh +y1) 2
< k5/ / 1{z1<m2}(5'3z +y1)° 4dzy .. dyr < o

If 224 1 1 > 0 then we estimate (34) by

c /11 (za =z top +y) 24
kB Jo o {“1<y;/”+<w2<$4}(ﬂv4—x1 +x’2‘++y1)#‘ et

1 1

+ k—d
c Ty—To+y +abh )T T2
< ﬁ/ / 1{:I:1<:1:2<m4}( 2 ! )m_ dxq...dyp
0 0 ($4—$1+x2 +y1) 2
C 1 1 N ~
= F/ / 1{$1<$2<$4}("E4_$2+$g’ +y1)4 dd.’L'l...dyl
0 0
C 1 1 n B
= F/ / Vai<an} (25 +31)° 4 doy dus dy: < .
0 0
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The proof of Proposition 9 is complete. [ |

Now we give lower estimates, i.e. we consider the integrals K (k).
Proposition 10. Suppose that p* <1 <v*t. Ifd> 6 + .5 then K, +(0) = 0.
Proof. Using (13) and (21) we can see that

T2
K+,+(0) > / / dZUQ dz.
o Jo (:L"Q‘Jr 2t 4 332)%_2

We can finish the proof as in Proposition 7. [ |

Theorem 6. Suppose that p= < 1 < vT. The self-intersection local time exists in
some Sobolev space if and only if d < 6 + u% In this case (4) holds in Dy , for any
p < 3—d/2. Moreover, a(x,-) is a function.

The proof follows from Propositions 9 and 10.

2.6. The case A~ =B~ =0 and 1 < min(p™,v7)

Bt

At

We consider the case where the boundaries consist of two convex power-type
curves opposite to each other. We prove that in this case the critical dimension is
again given by 6 + u%’ if uT is the smaller exponent. Remember that if both AT and

BT are rectangles, then the self-intersection local time exists if and only if d < 6 (see
Theorem 3 of Imkeller and Weisz [8]).

Proposition 11. Suppose that 1 < p+ < vt and d < 6 + u% Then there exists a
constant C such that k*I, (k) < C for all k € Ny.

Proof. We replace AT again by AT . Similarly to (18) we have

1
Iy +(0,1) < //151 ) dsy dtq
trr<ed (tr— 51+ g(t1) — p2) 22

< / g(tl) p2) 2 dtl < 0.

I, 1(0,2) can be handled similarly.
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Notice that in case k > 0 the proof of Proposition 9 works also for 1 < pu+ < vT.
The problem is only, that in the estimate of (33) we have k3 instead of k~%. Let us
consider this integral again. Of course, we can suppose that k > d. Integrating in z3
and z; we estimate (33) by

k—d
g 1 11 ($4—$2+y1 +y2)T+1 " p
3 {z1<z2<24,22<y L/ut } . ktd 1...0Y2
2 (rg—z14+y1+y2) 2

< 4—d
= _4/ /0 1{m2<$4,$2<y;/”+}(x4_x2+y1+y2) dxy...dys
© 1 5—d
= k4 1wt (yl + y2)° " ¢ dxy dyy dyo
0 {CC <y
¢ —d
S _4/ / {22 <y1/u+}yg dSCQ dy2

This integral is finite if d < 7+ M%(z 6+ M%) which finishes the proof of Proposition
11. [ |

Remark. In case p™ > 1 the integral J y(k,1,2) can be infinite even if (29)
holds. More exactly, one can show that Jy (k,1,2) = oo for d = 7, k = 1 and
(14++5)/2 < pt < 2, which contradicts (29). On the other hand, J; | (k,4,2) is
finite for k > 1 and d < 6 +2/put.

Proposition 12. Suppose that 1 <yt <v*. Ifd > 6 + .5 then K 4 (0) = oco.

Proof. In the lower estimates we replace A + by A++, i.e. wereplace f by fo :=2p2—g
on the interval [p1,p1 + 1. By (13) and by mtegratlon in s and t2 we get

1
K+7+(0) 2/'/1 s51<t1 dsy dt
v Bt 4 s g(t) — fo(sr)E 2
1 p1 1
- | dzq dzs
/0 /0 {z1< 2}($2—$1+$g+ +$If+)%_2

1 1 1
Z/ / 1 diL'l diL'z
o Jo {$1<w2}($2 —xq + 204 )32

where 21 = s1 — p1 and 3 = t; — p;. Let us integrate in x;1 to obtain

1
1 1
\/ Ky, (0)2/ - dxs. (36)
o 0 (2u4)E3 (wp+20hT)E3

The first integral is infinite if d > 6+ - and the second is finite if d < 8. This means

that for u™ > 2, K, 1 (0) = oo for d = 7 By monotonity, K ;(0) = oo for all d > 7.
If 1 < p* < 2 then it is enough to show that K ;(0) = oo for d = 8. For d = 8 (36)

implies that
A/ K+ + / d.’lfg =00
(x2 + 23:2+)

23:2
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whenever ™ > 1. This completes the proof of Proposition 12. [ |
Proposition 11 and 12 imply

Theorem 7. Suppose that 1 < u™ < vT. The self-intersection local time exists in
some Sobolev space if and only if d < 6 + u% In this case (4) holds in Dy , for any

p <4—d/2. Moreover, a(x,-) is a function.
Theorem 8. Let A, B C R \ OR2 be compact such that AN B = {p}. Suppose that

there is a rectangle K := I x J, I = [p1 — 02,p1 + 1], J = [p2 — 12, p2 + m1] such that
0A N K is given by graphs of functions

+
gt (x) =pa+ bt (x—p)* p1 <z <p+ 61,
g_(x):p2+b_(p1_$)u_a p1_52S~II;Sp17

0B N K by graphs of functions

+
f+($):p2_a+($—p1)u ) p1 <z < pj+ 01,
f_($)=p2—a_(p1—x)”_, p1 — 02 < x < py.

Then self-intersection local time (as a function or distribution) exists below the fol-
lowing critical dimensions:
a) if utopm, vt v <1, ford <4+ 2(11'*\1/#* + o))
b) fvtver >1landput vy~ <1, ford <6+ ﬁ, analogously if vt vv— <1
and pt vV um >1,
c) ifut Avc>1landp Vvt <lorputVvv- <1landp Avt >1, ford <8,
d) ifvtAvt>1landp~ Vv <1, ford <6+ ﬁ, analogously if p= Av— > 1
and pt vt <1,

e) if um Avt > 1 orl/+/\1/_>1,f07"d<6+m).

Proof. This is a combination of Theorems 2-7 and versions of Theorems 2-4 for
A~ = Bt = () instead of AT = B~ = (), versions of Theorems 5-7 for AT = B™ =)
instead of A~ = B~ = (), the compactness of A, B and the fact that for disjoint
rectangles the critical dimension is infinite (see Imkeller and Weisz [8]). =
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