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Abstract. Fix two rectangles A, B in [0,1]". Then the size of the random
set of double points of the N-parameter Brownian motion (Wy)icjo,1jv in

R4, ie. the set of pairs (s,t), where s € A, t € B, and W, = W, can
be measured as usual by a self-intersection local time. If A = B, we show
that the critical dimension below which self-intersection local time does not
explode, is given by d = 2N. If AN B is a p-dimensional rectangle, it is
AN —2p (0 < p < N). If AN B =0, it is infinite. In all cases, we derive the
rate of explosion of canonical approximations of self-intersection local time
for dimensions above the critical one, and determine its smoothness in terms
of the canonical Dirichlet structure on Wiener space.
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1. Introduction

Self intersection local times of Brownian motion in Euclidean space were origi-
nally introduced in order to construct certain continuous Fuclidean quantum fields
(see Varadhan [22], Szymanzik [21], Wolpert [26]). Since then they have been stud-
ied thoroughly in a purely mathematical framework by many authors, and for many
stochastic fields. See for example Rosen [15], Yor [27], Le Gall [11], Dynkin [6], the
latter also for the extensive bibliography.

Since self intersection local times of a field X measure the size of the random sets
of double points (s,t) for which X = X;, they may also be seen as an instrument for
studying geometrical aspects of their level set structure. In this paper we consider
the N-parameter Wiener process W with values in R%, and continue the study begun
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in [8] for the Brownian sheet in RY. It is well known that characteristics of the local
behaviour of the Brownian sheet described for example by level sets, excursions and
the Markov property possess properties much richer and more complex in structure
than Brownian motion. This has been exhibited in a series of beautiful papers by
Dalang and Walsh [4], [5], and Dalang and Mountford [3], Mountford [12].

If A and B are rectangles in the parameter set Rﬂ\_f , we study the dependence of
the size of the set of double points (s,t) such that W, = W, as s is allowed to vary
in A, t in B, on the size of AN B. Though the local property investigated this way is
different from the ones studied in the papers cited, a similar richness of phenomena
to observe is encountered, and may be related to the phenomenon of propagation of
singularities along axial parallel lines in parameter space studied by Walsh (see [23])
for the Brownian sheet. To underline this, we briefly summarize the findings of [8]. We
proved that - roughly - self intersection local times exist in all dimensions, if considered
as Watanabe distributions with respect to the canonical Dirichlet structure on Wiener
space generated by the Malliavin gradient. They are functions, i.e. distributions of
positive order of smoothness below a certain dimension which only depends on N and
d, and not on AN B. According to a well described pattern, above a certain critical
dimension depending on the dimension of AN B, self intersection local time explodes
in a very controlled way. After renormalizing the explosions in statements similar to
the law of large numbers and the central limit theorem one obtains objects which are
functions if d < 8, and distributions of some negative order for d > 8. If AN B is
2-dimensional, the critical dimension is 4, if it is 1-dimensional, it is 6, and if it is
0-dimensional, 8.

In this paper we use the same technique to obtain similar results for the N-
parameter Wiener process in R%. The technique is based on series expansions of the
self intersection local time o and local functionals o, approximating it by formally
replacing the integral of 6o(Ws — W) with p.(Ws — W;), where p. is the probability
density of W, in terms of the spectral decomposition of the Ornstein-Uhlenbeck oper-
ator of the underlying Gaussian Dirichlet structure. In fact, the results we find exhibit
more clearly than in the special case of the Brownian sheet a pattern of relationships
between the dimension N of the parameter space, the dimension p of the intersection
of the rectangles A and B, and the critical dimension d below which self intersection
local time does not explode. They also yield a clear description of the explosion rates
f(e) above the critical dimension with which a. has to be ”"renormalized”, so that
a strong law of large numbers type behaviour expressed as convergence of 7= and

f(e)
of the type of the central limit theorem, expressing convergence of %\/%e), become
€

visible.

The limits - renormalized or not - exist as functions (distributions of positive
order of smoothness) in case d < 4N, generally as Watanabe distributions of order
p<2N — g.

In Theorems 1 and 2 the case of A = B (or equivalently p = N) is considered. We
prove that the critical dimension is 2N. The renormalizing functions for the strong
law type result and the central limit type result are curiously related in the expected
way, but with a dimension shift of 1. More precisely, for the strong law type the
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renormalizing function is given by f(e) = Ini if d = 2NV and by f(e) = eN=d)/2 for
d > 2N, for the central limit law type by 1 if d = 2N, ln% if d =2N + 1, and by
e2N+1-dif ¢ > 2N + 1.

In Theorems 3, 4 and 5 we treat the case AN B has dimension p with 0 < p < N.
Here the critical dimension turns out to be given by 4 N —2p, and the curious dimension
shift between behaviour of the strong law type and the central limit law type is not
observed. The renormalizing function is as follows: in case d = 4N — 2p, it is given
by f(e) =1In %, in case d > 4N — 2p by e#N—d=2)/2 pegpy AN—d=2p ip the two types
of laws.

Finally, in Theorem 6 the case A N B = () is considered. Here explosions are
impossible in all dimensions, i.e. the critical dimension is infinite.

2. Preliminaries and notations

Throughout this paper we shall work with the canonical N-parameter Wiener
process W = (W1, ...,W?) indexed by [0,1]" with values in R? on the canonical
Wiener space (2, F, P). P is the probability measure under which W; possesses the
probability density

1 x|?
p;—i(x): —~ exp(—%), zeRY telo, 1]V,
2t L
where t =ty ---ty for t = (t,...,tx) € [0,1]". The ordering of the parameter space

is supposed to be coordinatewise linear ordering on R,.. Intervals with respect to this
partial ordering are defined in the usual way, and s < t means s; < t;, 1 <7 < N.
Suppose now d = 1. Tt is well known that L?(£2, F, P) possesses an orthogonal de-
composition by the eigenspaces of the Ornstein-Uhlenbeck operator on Wiener space,
which are generated by the multiple Wiener-Ito integrals I,,, defined on L2(([0, 1]V)"),
n > 0 (see for example Bouleau, Hirsch [2], pp. 78-80). The multiple integrals possess
the orthogonality property
BL(Dn(o) = { S
n m\9)) = nl f([o,l]N)n fgdX, if n=m,

where \ denotes Lebesgue measure without reference to the dimension of the space
on which it is defined. If H,, is the nt" Hermite polynomial defined by

EDY (D) esp(~ 2,

x€R,n >0, and if



denotes the Gaussian stochastic integral of a function h € L?([0,1]"), the relation

H, (W (h)) = T%In<h®">

holds true whenever ||h|| = 1. Here h®» denotes the n-fold tensor product of h with
itself, while || -|| is the norm in L?([0,1]"). We write W(D) = W(1p) for D € B(RY),
so Wy = W(Ry) for Ry = [0,t]. For p € R we may define the Sobolev space of order p
on Wiener space by introducing the norm

oo

1Fll20 = (OO (1+m)P Ll fa)3)?

n=0
on the space

n

{F=> L(fi): fi e L*(([0,1])"), 0<i<n, neN}
=0

which is dense in L?(Q, F, P) and completing with respect to || - ||2,,. We denote this
space by D5 ,. In case p = 1 we just recover the domain of the gradient operator of the
canonical Dirichlet form on Wiener space, for p < 0 we obtain a space of distributions
over Wiener space (see Watanabe [25], Bouleau, Hirsch [2], Nualart [13]).

To denote multiple Wiener-Ito integrals with respect to the independent com-
ponents W of W in R%, we use the symbol I:, 1 < i < d, n > 0. Corresponding
Sobolev spaces are defined for functionals of the N-parameter Wiener process with
values in R? (see Watanabe [25]).

We finally remark that AAB = (A\ B)U(B\ A) denotes the symmetric difference
of the sets A and B.

3. Two series representations and the characteristic integrals

We now fix two rectangles A and B off the boundary of Rﬂ\_f in which the time
points s and ¢ for which intersections are counted, are allowed to vary. We shall
consider a canonical approximation a.(z,-), € — 0, of self-intersection local time of
the N-parameter Brownian motion in R? corresponding to these rectangles.

To be more precise, let A = [, 8], B = [v, 6] C [0,1]" be such that o, > 0. For
e>0,z R et

ac(z, ) = /B/Apf(m — W5 —x)dsdt

where

plla) = —gexp(— ). TER! >0,



is the density function of the d-dimensional Wiener process.
The derivation of the first representation of this approximation of self-intersection
local time can be obtained as in the two-parameter case (cf. Imkeller, Weisz [8]).

Proposition 1. For x € R%, € > 0, we have

) Hr N

€T;

\/e-l-)\ (R:ARy)

)pe—{—)\(RtARS) (z) ds dt.

Analyzing just the representation of Proposition 1 would imply that we have to
distinguish too many cases, due to the many different possible configurations R; and
R may take. The following decomposition of R; provides an essential simplification
of this task.

Choose 1 > 0 such that n = (n,...,1) < a,7. For t € [n,1] let

Rt == Ct U Dt,
where
Co:={rxecl0,]N:x<t, |{i:z; >n} <1}
N
= [ JI0,7] x ... x [0, 7] x [0, ;] x [0,7] x ... x [0,7]
=1
and

={zec0, )Nz <t, |[{i:z; >n} > 1}

Then we have
W, = W(Cy) + W(Dy).

For s € A, t € B, x € R%, let now
&(s,t,2) = o — (W(Dy) — W(Dy)).
Due to the fact that the families
(&(s,t,x):s € A,t€e B,z € RY) and (W(Cy) —W(C,):s€ At € B)

are independent, an alternative representation of a.(x,-) can again be obtained as in
the two-parameter case (see Imkeller, Weisz [8]).

Proposition 2. For z € R?, € > 0, we have

le, — ¢, .y

51//va ¢qummp)
5(33 ta w)z

H“%&+mq¢a)

)Pirx(ctacs) (z) ds dt.
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Let us now fix p € R and compute the norm of a.(z,-) in the two representations
with respect to the quadratic Sobolev space of order p. We have

1) a3,
& Vo (Lr, = 18,)(Lr, — 1r,) dA]"
_Z LR / // / (e + AM(R:AR)) (€ + AM(Ry,ARy))| 5

Zg

)Hy, (

: \/e—l-)\(RvARu))

Z H \/€+AétAR

ni+---+ng=k i=1
pg—|—)\(RtARS) (ﬂf)p€+,\(RUARu) (x) ds dt dudv.
As in Tmkeller, Weisz [8], we can show that for z € R%, € > 0,

2

[love ()2,
0o

<c 2(1 + k)Pk/2

L eoncecy o

In the following section, the convergence behaviour of a(x,-) as € — 0 will be
investigated. The red thread though our arguments is the following. If we want to
establish convergence of a.(z,-) to

")

@ 1= 5 [Tt i

n;=0
X;
Hy,( -

_— ds dt
NRAR,) )pA(RtA.RS)( )

in Dy ,, due to dominated convergence all we need to prove is

(3) I(k,0) < ¢, and ch(l + k)R < 0
k=0

I(k,€) / / / / (c+ X cfﬁ*c;;(eﬁ(ﬁigk))] ot dv.

k € Ny, € > 0, denote the characteristic integrals.

where
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If, on the other hand, in case a.(z,-) does not converge as ¢ — 0, we want to find
its rate of explosion, we shall argue in two steps. We first determine a deterministic
function f(e) such that

I(k, -
(4) sup ——— ( 6) < ¢ and Z cr(14 k)PEY? ! < 0.

With (4) we will have proved that {af((f)) : € > 0} is bounded in Dy ,. To prove

next that f(e) gives the correct order of explosion, we then consider the other type
of characteristic integrals given by

. . k
o= [ [ [ Joae b 2 n ) ZAe) DLy g,
(e + MR AR,)) (e + MRyAR)) =

k € Ny, € > 0, which appear in (1). If we can establish

J(k
lim J(k, )

7@ 7P

for some k, then this implies that

i e, ) la,

27

(cf. Imkeller, Weisz [8]). Consequently f(e) is the correct rate of divergence.
Observe that by choice of 7, for s € A, t € B we have

>0

MO AC,) =Nt Z It; —

and for u,s € A, t,v € B

N
A(CrACS) N (CoACY)) =N 71 " A([si Aty i V3] 0 [ Aviyug Vo)),

1=1

Symmetry gives

(5) k €) 22N/ /1{5 <t;u;<v;,1<i<N}

[N A(si t] 0 Jug, v]))
(i + iy (f — ) (s + oy (v — wa))]

€ > 0, k € Ng. Denote now

S =[si,ti], Ui =[u;v], 1<i<N.
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The following estimate has a similar proof as in Imkeller, Weisz [8].

Lemma 1. We have

e+ > NS NUI[e+ D> MS;UT)] < 2[e+ > A(S)][e + Z AU

=1 =1 1=1

This lemma implies that instead of the ones appearing in (5) it is enough to
estimate the integrals

I(k7 E) :/ / / / 1{si<ti,u¢<vi,1§i§]\]}
BJAJBJA

N NS N )P

~ ~ ds dt du dv.
[(e+ 2o AMSiNU))(e+ 22, NS UUy)) =

~ We remark at this place that constants appearing in the subsequent estimates of
I(k,€e) and I(k,€) may vary from line to line, but do not depend on € and k.

4. Self-intersections of the N-parameter Wiener process in different rect-
angles

Essentially two cases of configurations of A and B will be investigated. In case
1, AN B is a p-dimensional rectangle with 0 < p < N fixed. Note that if p = N then
A = B and if p = 0 then A and B have a common edge, only. In case 2 we suppose that
A and B are disjoint. We remark that this way we have indeed covered all interesting
cases. By cutting of rectangles, switching the axes of [0,1]" or reversing time in one
time direction we shall always end up with one of the configurations considered. We
shall quantify how an increase of “disjointness” of A and B leads to an increase of
the “independence” of Wy and W; since s runs in A, t in B and consequently to a
stepwise increase of the critical dimension below which self-intersection local times
cannot explode.

In case 1 we can therefore suppose that for A = [a, 5], B = [, 6] and for 0 < p <
N we have

051:’)/1,...,Cvp:’)/p
(6) Bi="01,...,8p = bp
Bp+1 = Vp+1s-- -+ BN = IN-

To estimate I(k, €) we investigate separately for every ¢ the cases

{i:S;NU; =0}

q.
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Note that 0 < g < p because S; NU; # () for i > p as a consequence of our hypotheses
on the relative position of A and B. By symmetry we can suppose that

S;NU; =0, i=1,...,q, 0<q<np.

So for 0 < ¢ < p we have to estimate

( kEC] ////1{az<b <c;<di,1<i<N}

Z’L q+1( - bz)] H’L 1 daz db dCZ dd
k+4d o

e+ S i (e —b)] 7 le+ 00 (b — ai +di — ¢5) + 300 4y (di —a))] 5

In case k = 0 things are much simpler. So here we shall consider occasionally

1
8 1(0,¢) = //1 1<i dsdt)?, €>0.
() ( ) (B 1 { <t;,1< SN}[E-’-Z?LI(Z‘;IL—S%)]% )

Obviously,

(9) I(k,e) = Y I(k€q),

where ~ means asymptotic equivalence.

Proposition 3.
(1) We have 1(0,0) < oo for d < 4N —2p in case 1 and all d € N in case 2.
(2) Moreover there is a constant ¢ such that for e > 0

1(0,¢)
flo =°
where f(€) = (In1)? for d = AN —2p and f(e) = e*N =274 for d > 4N —2p.

Proof. We concentrate on the more difficult argument needed to prove (2). Indeed,
whenever d > 4N — 2p,

dsdt
\/I(va)://l 55 <ts 1<i<pisi<Bi<t;p+1<i<N
5J)a {8:<t4,1<i<p;5: <P <ti,p+1<i< }[E_I_Zf\r:l(ti_si)]%

/ /1 dtl...dt]\] 1d$1. dSN 1
X | Msictia<i<pisi<Bi<ti p+1<i<N-1}
e+ 3000t — )] 52

1 Ldt,dsy ... dsp
{si <tu1<1<p}[ +Z (t s )]——2(N p)

N ) dty . dt —1dsy . dsp 1
] {si<ti,1§i§p—1}[ N Zp 11(t _ s ) __2(N p)—1

1 dtl d81
{81<t1} tl_sl)] —2(N—p)—(p— 1)




This is further asymptotically equivalent with In % if d = 4N —2p and with ¢2V—r—d/2
if d > 4N — 2p as € — 0. The proof of Proposition 3 is complete. e

We now consider the higher degree integrals I(k,¢), k € N.

Proposition 4.
(1) There exists a constant ¢ such that, for all k € N, I(k,0)k*N < ¢ for
d<2N+1ifp=N, ford <4N —2p if 0 < p < N and for all d € N in
case 2.
(2) Moreover, there erists a constant ¢ such that for all k € N, e > 0

I(k, e)k2N
fleg  —

where f(e€) =Inl ford=2N+1ifp=N, ford=4N —2p if 0<p < N,
fle) =eNt1=d ford > 2N+1 ifp= N and f(¢) = *N=2r=4 ford > 4AN—2p
if 0 <p<N.

¢,

Proof. Again we concentrate on proving the more difficult second statement. We
investigate I(k,e¢,q) for each 0 < ¢ < p and suppose that % > 2N. Remark
that the remaining integrals are similar to deal with, except for the appearance of a
logarithm in the process of integration. Note that if ¢ = N then I(k,€,q) = 0. So we
can assume that ¢ < N. We integrate first with respect to ay,...,any and then with
respect to dy,...,dy. The result is

I(kveaQ)S////1{az—<bi<ci<di,1s¢§p;ai<bi<ﬁi<ci<di,p+1gz‘5N}
BJAJBJA

[E + Zf\]:q_yl(cz' - bz)]% da1 e ddN
N ktd
e+t (b —ai+di — ¢i) + Y gy (di — a5)] 2

%Ck’_N/// 1{b¢<ci<di,1§i§p;bi<ﬁi<ci<di’p+1§i§N}
BJAJB
k—d
e+ 3 (e — b)) 7" dby ... ddy
k+d
e+ 3% (di — i) + 0 gy (di — b)) 5N
%CkQN/ / Libi<ei1<i<pbi<Bi<er pri<isNy
BJA

e+ SN i (e —0:)] 2" dby ... dey
N k+d
e+ 300y (i — by)] 5 2N

_ k72N 1 ) )
= {bi<ci,1<i<p;b; <Bi<ci,p+1<i<N}
BJA
N

e+ Y (ci— b))V 4dby ... dey.
1=q+1
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We next integrate in c,41,...,cn to obtain

(10) I(k, €, q)

—2N
< ck /"'/1{bi<cia1§i§p;bi<Bi:p+1§i§N}

p N
[E + Z (Ci — bl) + Z (ﬂl — bi)]QN_d_'—N_p dby...dbydcy ... de.
1=q+1 1=p+1
For ¢ < p we can now integrate first in b,,1,...,bx and then in c4i9,...,cp:

(].].) I(l{?, €, q) S Ck_2N / e / 1{bi<ci,q+1§i§p}
P

e+ D (ci— b))V RN db L dby degy . dep

1=q+1
— 12N
~ ck //1{bq+1<0q+1}

e + (cg41 — bq+1)]4N_d_2p+p_q_1 dbg+1 dcg+1
and this is approximately equivalent with In % if d = 4N — p — ¢ and with e*N—pP—a-d
ifd>4N —p—q.
For ¢ = p we integrate in (10) with respect to byyo,...,bx to get

I(k,€,q) < ck™>N / Lbpis<Bpatl€+ (Bpyr — bpyn )PPV P74 P70 ap,

which is approximately equivalent with ln% if d = 4N — 2p and with e*N—2p=4 if
d> 4N — 2p.

Suppose now that p = N. We proved in (11) that if d = 2N 41 then I(k,€,q) <
I(k,0,q) < oo for 0 < g < N — 1. Since I(k,e, N) = 0, we have I(k,¢e) < ck_len%
If d > 2N + 1 then I(k,0,q) < oo for 0 < ¢ < 3N — d. Hence

N—1
I(kye)<c > I(keq)<ck?NeNt=d,
q=3N—d

The cases 0 < p < N can be treated similarly, using (9). e

As mentioned earlier, we also have to verify that the orders of divergence obtained
in the preceding propositions are correct. We therefore investigate the integrals J (k,e€)
for particular k£, and on particular domains D of integration contained in Bx Ax B x A.
If we call these integrals J(k,¢€), then

1. J(k7 6) > O

0 f(e)

11



will imply .
lim Ik €)
T

and we will have proved that \/f(e) is the correct order of divergence.

> 0,

Proposition 5. Fore >0 let

0 E / / 1{s<t} = )d/2 ds dt)z.

lim J(0.¢)

e—0 f(e)
where f(€) = (In1)? for d = 4N — 2p and f(e) = e*N2P~4 for d > 4N — 2p.
Proof. We have

N N

t—3 E < STt — sp)

(12) t—s= (t'—3‘)81---8-_1t-+1...tN {— i=1\"2 t)s
o i i i i ZnN—l §;£V:1(ti—si)-

Hence 1(0,¢€) and J(0, €) are asymptotically equivalent and the desired result follows
from Proposition 3. e

Then we have

> 0,

Proposition 6. Suppose that p < N. Fore >0, k € N let

J(k7€):////1{Si<ti<ui<vi,1SiSp;Si<ui<vi<ti,p+1§’i§N}
BJAJBJA

ioav LR, — 1r.) (1R, — 1r,) AN

i ds dt du dv.
[(e + M(R:ARy)) (e + A(RyARy))| 2

Then

I
e— €
for 254 > max(2N — p,p), where f(e) =Inl for d = 4N — 2p and f(e) = e*N 24
ford > 4N — 2p.

>0

Proof. Using (12) we can see that

k 6 / / / / 1{5 <t;<u;<v;,1<i<p;s; <u; <v;<t;,p+1<i<N}

(T 0 v — Ty wi) TTE-y 8"

k+d

[(e+t—3)(e+v—1)| =

////1{3 <t <u; <v;,1<i<p;s; <u; <PB; <v;<t;,p+1<i<N}

(41 (0 — uy)]F

e+ Nt — 5] Lle + 2N (v — w)] >

12

ds dt du dv

ds dt du dv.




Now integrate in s, ¢, u1,...,u, and v1,...,v, to obtain

(13) J(kv 6) ~ /"'/1{Ui<ﬁi<v¢,p+1§i§N}
[(Zivpﬂ( = u)]Fdupsy ... duy dvpyy ... doy

Eid N Erd
e+ >is pr1 (Vi = )] PNEPe 4 37T (0 =) 2 P

/ / 1{u1</67.<'U'L P+1<Z<N}

(i1 (v — )]

e + Zi:p+1(“i — u;)[Frd=2N

k

[e + Z i — U] 2N = ddup+1 ... duny dvpyy ... doy.
i=p+1

Up+1 - - duN dUp+1 dUN

o~

Integrating finally in up41,...,un and vp41, ..., vN We can conclude that this integral
is asymptotically equivalent with In % if d = 4N —2p and with e*N=2P=4 if d > 4N —2p.
The proof of the proposition is complete. e

Proposition 7. Suppose that p= N. For e >0, k € N let

J(k7€):/ / / / 1{Si<ti<ui<vi,1§i§N*1;SN<uN<vN<tN}
BJAJBJA

[f[o’l]N(lRt - 1R )(1R — 1R )d)\]

i ds dt du dv.
[(e + M(R:ARy)) (e + A(RyAR,))| 2

Then
lim J(k,€)

=0 f(e)

for E£% > max(2N — p,p), where f(€) =Int ford =2N +1 and f(e) = N1 for
d>2N +1.

>0

Proof. Tt is easy to see that the estimate (13) may be replaced by

k

~ Z(—e)l(l;) //1{UN<UN}[6+ (vny — un)N T duy doy.

=0

which is asymptotically equivalent with Inl if d = 2N + 1 and with e2VT1=4 if
d>2N+1. e

We are finally in a position to formulate our main results. In each case we first
treat the existence of self-intersection local times, then the rates of explosion in case
of non-existence.
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4.1. The case A= B (i.e. p= N).

Theorem 1.
(1) Let d < 2N. Then for any x € R4

a(z, ) = 113(1) ae(x,-)

exists in Do, for any p < 2N — d/2 and is given by (2). Hence it is a
function if d < 4N.
(2) Let d < 2N + 1. Then for any x € R¢

V(@) = limlac(z, ) — E(ac(z, )]

e—0

exists in Do , for p < 2N —d/2, hence is a function if d < 4N.

Proof. Consult part (1) of Propositions 3 and 4 and remember that E(a.(z,-)) is the
first term in the development of a(z,-). The order of smoothness follows from these
propositions as well together with the fact that in (3) we can take ¢ = ck=2V, and

> d
(1+ k)PEY? 12N < o = ptg5-2N<0,
k=1

le. iff p<2N —d/2. e

Theorem 2.
(1) Let d > 2N. Then for any x € R? there is a constant ¢, > 0 such that

lim ae(xa )

0 f(e)
in Dy, for p < 2N —d/2, where

_fInl/e for d=2N,
10 = {50 g a5,

(2) Let d > 2N + 1. Then for any x € R?

(oo Bl )

is bounded in Dy , for any p < 2N — d/2, where

f(e):{\/lnl/e for d=2N +1,
¢@N+I=d)/2 for d>2N +1.

Moreover, the limit of the (2, p)-norms of these random variables as ¢ — 0
18 non-trivial.
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Proof. This time, we make appeal to the second statements of Propositions 3 and 4.
To see that the rates are sharp, consult Propositions 5 and 7. e

4.2. The case AN B is a p-dimensional rectangle (0 <p < N).

The following theorems are reduced to the preceding propositions in much the
same way.

Theorem 3. Let d < 4N —2p and 0 < p < N. Then for any x € R?

a(z, ) = llg(l) a(z,-)

exists in Dy , for any p < 2N —d/2 and is given by (2). Hence it is a function if
d < 4N.

Theorem 4. Let d = 4N — 2p with 0 < p < N.
(1) Then for any x € R? there exists a constant c, > 0 such that

hm —QE(x’ ) = Cy
e—0 In 1/6

in Do, for p <2N —d/2.
(2) For any x € R? the set

fodle:) InElicEve(x, Lieso)

is bounded in Dy , for p < 2N —d/2. Moreover, the limit of the (2, p)-norms
of these random variables as € — 0 is non-trivial.

Theorem 5. Let d > 4N — 2p with 0 < p < N. Then for any x € R? the set
{eld+2P=AN)/20 (2..) 1 e > 0}

is bounded in Dq , for any p < 2N — d/2. The limit of the (2, p)-norms of these
random vartables as € — 0 is non-trivial.

4.3. The case A and B are disjoint.
Theorem 6. If A and B are disjoint then for any x € R* we have

a(z, ) = lim a.(z,-)

e—0

exists in Do , for any p < 2N — d/2, hence is a function if d < 4N.
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