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Abstract

We study asymptotic growth rates of stochastic flows on R% and their deriva-
tives with respect to the spatial parameter under Lipschitz conditions on the
local characteristics of the generating semimartingales. In a first step these con-
ditions are seen to imply moment inequalities for the flow ¢ of the form
Esupg<i<y |Gt (x) — dot(y)[P < |z — y[P exp(cp?) for all p > 1. In a second step
we deduce the growth rates from an integrated version of these moment inequal-
ities, using the continuity lemma of Garsia, Rodemich and Rumsey. We provide
two examples to show that our results are sharp.

1991 AMS subject classifications: primary 60 H 10, 34 F 05; secondary: 60 G 48,
60 G 17.

Key words and phrases: stochastic differential equation, stochastic flow, spatial
growth rate, modulus of continuity, GRR lemma, semimartingale.

Running head: spatial behaviour of stochastic flows

Introduction

Stochastic differential equations generated by sufficiently smooth vector fields on R?
are known to generate flows of homeomorphisms or diffeomorphisms of R?. For an
account of this and the main facts about stochastic flows see Kunita [5]. In the deter-
ministic setting, any flow generated by vector fields with at most linear growth in the
spatial parameter has sublinear growth as well. This is no more true in the presence of
semimartingale noise driving the stochastic differential equations which generate the
flow.

Their a.s. spatial asymptotic growth rate has been studied in Ocone and Pardoux
[11], Kunita [5], pp. 163, 176, and Mohammed and Scheutzow [10]. In the first two
papers it is shown that for |z| — oo the supremum over s,t in a compact interval of
the modulus of the flow ¢ (z) grows at most like |z|'™¢ and at least like |z|'~¢ for any
¢ > 0, and similar results hold for the derivative of the flow and its inverse in case it



consists of diffeomorphisms. Ocone and Pardoux [11] consider stochastic differential
equations driven by finite-dimensional Brownian motion, whereas Kunita works in a
more general class of driving semimartingales. In Kunita’s general setting, Mohammed
and Scheutzow [10] improve these results by showing that the growth rate of the flow
at infinity can be at most |z|(In |z|), for any positive e.

Our motivation for writing this paper comes from the same source as Mohammed
and Scheutzow’s: the global a.s. rates of spatial growth of flows will play a role in
questions of existence of infinite-dimensional flows associated with quasilinear stochas-
tic hereditary systems and stochastic partial differential equations (see [7], [8], [9]).
Looking at the results of [10], we asked the question: can we obtain exact rates of
growth by applying the lemma of Garsia, Rodemich and Rumsey in its majorizing
measure version to moment inequalities for the flow, while carefully keeping track of
the quality of the constants appearing in the main martingale inequalities of Doob and
Burkholder, Davis and Gundy? It is the main task of this paper to show that the
answer to this question is yes.

The paper is organized as follows. In the first section we review the majorizing
measure form of the GRR lemma. In Theorems 1.1, 1.2 and 1.3 this key lemma is used
to derive moduli of continuity for random fields on R? with values in some metric space
(M, p) which satisfy moment conditions of the form

Elp(p(x), ¢(y))*] < d(z,y)" exp(cp®)

either for some fixed p and the metric d(z,y) = |z — y| (Theorem 1.1), for all p > 1
and the metric d(z,y) = |z — y| (Theorem 1.2), or for all p > 1 and the metric
d(z,y) = |z —y| A1, 2,y € M (Theorem 1.3).

In section 2 we verify the conditions of Theorem 1.2 for the stochastic flow ¢ gen-
erated by a stochastic differential equation driven by a semimartingale F' whose local
characteristics satisfy suitable Lipschitz conditions. Together with a similar estimate
on the inverse of the modulus of the flow (Proposition 2.2) we obtain Theorem 2.1
which shows that the supremum of |¢4(x)| over 0 < s,¢ < T is bounded by a random
variable Y multiplied by || exp(y (Inln|z|)2) as |z| — oo for some constant v > 0,
and moreover that Y is integrable with respect to a certain Young function growing
faster than any polynomial. Example 3.1 of the final section 3 shows that this rate is
optimal — possibly up to the value of the constant 7. The remaining part of section
2 is devoted to corresponding questions on the growth rate of (higher) derivatives of
the flow ¢. The main result is Theorem 2.2 which shows that, under differentiability
conditions on the local characteristics of F', the growth rate of any partial derivative
of order at least 1 is at most Z exp(y (In|z|)2) for some constant y > 0, where Z has
a similar integrability property as Y above. Example 3.2 of section 3 proves that the
rate is optimal — again possibly up to the value of the constant ~.

1 Some estimates of moduli of continuity

In this section we shall provide some estimates of the moduli of continuity of random
fields, derived from various assumptions on the moments of their distance at two points



of the parameter space. Of course, in later applications of these estimates we shall be
interested in quite particular random fields: stochastic flows, where the parameter is
just their spatial variable. The assumptions we start with in the following theorems on
the moments of distances shall be verified for the flows to be discussed in the following
section. The passage from these assumptions to moduli of continuity will be done
via the real variable lemma of Garsia, Rodemich and Rumsey. We use the following
general version of this lemma in which majorizing measures are crucial (see [1]). For
the terminology and the use of majorizing measures see Ledoux, Talagrand [6].

Let in the sequel (X,d), (M, p) be separable metric spaces, m a locally finite measure
on the Borel sets of X. For a function g : X — M denote

P(g(S)vg(t))_ if s ¢,

g(s,t) = d(s,t)

9(s1) { 0, if s =t,
and let @ : [0, co[— [0, o[ be an increasing, right continuous function satisfying ®(0) =
0,®(x) > 0 for z > 0.
Then the extended form of the lemma of Garsia, Rodemich and Rumsey we shall use
can be stated as follows. If g is a continuous function, and

V= )Z )[ B(§(s, 1)) m(ds)m(dt) < oo, (1)

then for any s,t € X

d(s,t)

plg(s). 9(0) < 12 max / o1 [ﬁ] e, @)

where K.(z) denotes the closed ball of radius € around z. For a proof of (2), see [1].
For the rest of this section let X = RY, fix a > 1 and choose the majorizing measure
m defined by

m(dz) = f(|z]) A(dz).

where \ denotes Lebesgue measure on RY and for z > 0

1
J(2) = zd(Int 2)e v 1

We choose this particular density f because it is 'just’ integrable over RY. The fact
that the measure m is finite will be important later on when we establish the finiteness
of moments of random variables (such as Y in the following theorem).

Let (€2, F, P) be an arbitrary probability space. We emphasize that constants appear-
ing in the inequalities of the paper will be consecutively numbered ¢y, co, c3,... The
positive part of the logarithm will be written In* 2 = Inz Vv 0 for > 0.

Theorem 1.1 Let ¢ : Q x R* — M be a measurable map such that for any w € ) the
function ¢p(w,-) is continuous. Assume that for some p > 2d and some constant ¢ > 0
we have

E (p(¢(-, ), 6(y))") < clx —yl?  for @,y € R (3)
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Then there exists a p-integrable random variable Y such that for all z.y € R® such
that |x| > |y| and all w € Q, we have

_2d 2d 2a
p((w, ), d(w,y)) <Y (W)l —y[* 7 ([l 7 (In" |2[) 7] v 1).
In particular, for all x € R, w € Q

2a
p

(B, 2), 6(,0)) < ¥ (@) |(al(tn* ) F) v | =¥ |

Proof:
Set

P

Z(w) = //(p(cb(w,m),cb(w,y))) m(drym(dy)|

EAS [z -yl

w € €. Due to the separability of M, 7 is measurable. Moreover, (3) implies that
E(ZP) < co. To apply the GRR lemma, let ®(x) = 2,2 > 0. Then (1) yields for
weNzyeR?

|z—y|
p(6(w.2). 6(w.)) < Z(w) &1 max | mlEA() 7 de

Assuming |z| > |y|, we obtain

p(P(w, 2), d(w, y))

|z—y|

_2d _2
< 2w [ (el +le—y) e
0

<0 2 B2 (ol 1o - ¥ 0ol o -3 v

: (|:L‘|27d(ln+ |x|)27a> \/1}.

Setting Y = ¢37, we get the first assertion of the theorem. The final one is obtained
by specializing the first one to y = 0. O

<e; Zw) e -y

Remark: Fix y € R%. Note that condition (3) is translation invariant. We therefore
obtain a random variable Y7, which is p-integrable such that

2a
I3

P, ), $(w,y)) < Vi(w) [(|& — yl/(n* |z —y))7) v 1

for all z € R%,w € Q. The random variable Y;, however, depends on y (or z).

If (3) holds for all sufficiently large p and if one is able to control the constant c
appearing in (3) as a function of p, one may, as will be pointed out in the following sec-
tion, obtain an 'integrated’ version of (3). In this inequality, the following exponential
Young function appears. For ¢ > 0, let



. : [0, 00[— [0, 00, T /exp(—ct2)mt dt.

This function was first introduced in [4] to obtain moduli of continuity for the lo-
cal time of one-dimensional diffusions in the spatial parameter, and used in [2] for
establishing conditions under which the multiplicative ergodic theorem holds. The sig-
nificance of the functions ®,. is that solutions of sde’s with Lipschitz coefficients have

finite ®.-moments for some (but usually not all) ¢ > 0. This will be shown in section
2.

We need the following estimates of ®. and its inverse (see also [2]).

Lemma 1.1 Let ¢ > 0, and denote

1

K =exp (—40 In (/ exp(—cp?) dp A 1))

1

Then for t > 0 we have

a) ®71(t) < Kexp (v4cln+ t) ,

b) ®.(t) < \/Texp((lnw)?/dc).

Proof:
A straightforward computation shows that

exp ((ln x)2/4c) exp (—(ln K)2/4c> <P (x) < \/gexp ((ln x)2/4c) , (4)

where the left inequality holds for all x > 1 and the right one for all x > 0. From this,
a) and b) follow immediately. O

Lemma 1.1 enables us to obtain an 'integrated’ version of Theorem 1.1.

Theorem 1.2 Let ¢ : Q x R* — M be a measurable map such that for any w € Q the
function ¢(w,-) is continuous. Assume that there exists ¢ > 0 such that for any p > 1
we have

E(p(¢(-,2), ¢(-y))") < exp(cp®)|z — y|” ()
for all z,y € RY. Then for any b > c there exists a ®,-integrable random variable Y
such that for all z,y € R such that |x| > |y| and all w € Q

:t

p(d(w, z), w, y)) < Y (w) (Jz| V1) exp([8baln® In* |z]2)

1,1
([8bd In(1 + Z)]E) dz.

(6)

O\H



In particular, there exists a ®,-integrable random variable Z such that for any x € R?
and w € 2

p(p(w, ), p(w,0)) < Z(w) (Jz| V1) exp([8baInT In* |x|ﬁ)

Remark: The finiteness of the integral in (6) is easy to check.

Proof:
Let b > a > ¢ and define

U@al{

R? R [z =l

Since a > ¢, it is easy to see using the theorem of Fubini that

E(®,(U)) < 0.

Now apply (2) to ¢ and ¢, to obtain the inequality

lz—yl
1 esPa(U)
Aot ) < 0 s, [0 (e ) e )

We next use a) of Lemma 1.1, the inequality /v + w < /v + /w for v,w > 0, and

the notation
V = exp(y/daln® @,(U)).

For |z| > |y|,w € Q, we then get

p(o(w, ), $(w, 1)) -
< KV(w) max [ exp([4b(In* cs + In* (m(K.(2))2))]2) de

ze{z,y} 0
|z—y

| 1
< ¢ V(w) Of exp([4bln*(e72f(|z] + €)72)]2) de

lz—y

|
< ¢ V(w) exp([8balnt In* |z|]z) - [ exp([8bdIn(1 + MTVI)]%) de.
0

Furthermore,

&

—yl
[vi

lz—y|
/ exp([8bd In(1 +
0

B

|z| vV 1

=

)]2)de = (|2 v 1)

SN

exp([8bd In(1 +

)I2)dz. (9)

S

Part b) of Lemma 1.1 guarantees that V' is ®,-integrable and therefore any constant
multiple of V' is ®,-integrable. So (9) employed in (8) yields the first assertion, while
the second is obtained by setting y = 0. O

We finally consider an application of the real variable lemma to a moment inequality
which is slightly, but essentially different from (5).
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Theorem 1.3 Let ¢ : Q x R* — M be a measurable map such that for any w € ) the
function ¢(w,-) is continuous. Assume that there exists ¢ > 0 such that for any p > 1
we have

E(p(¢(-,x),¢(-,9)") < exp(ep?)[|lz —y[" A1 (10)

for all x,y € RY. Then for any b > c there exists a ®y-integrable random variable Y
such that for all z,y € R such that |z| > |y| and all w € Q

|z—y|Al

p(6(w,2), Blw,y)) < V(w) exp([SbaIn* [2]}) [ exp([sbdIn*(-)]}) de.

A | o=

Proof:

We proceed just as in the preceding proof, except that we now use the metric d(z,y) =
|z —y| A L.

Fix a such that b > a > ¢ and define

7 - ¢! (R/ /(Da <p(¢(.(,12,j)(.,y))> m(dx)m(dy)) .
dRd !

Then (10) implies

E(®,(2)) < cc.
Now we apply (2) with the modified metric, define
V = exp([daln® (®,(2))]7).

to get for z,y € R? such that |z| > |y| and w € Q

p(o(w, x), $(w, y)) (11)

lz—y[Al
< e V(W) exp((Saln*((F(Jal + [z~ y)) ) [ exp((Sadin(:

)]?) de

lz—y|Al
< ¢g V(w) exp([8bd In* |a:|]%) / exp([8bd In* (

0

)]2) de.

a ]

Another appeal to part b) of Lemma 1.1 guarantees the ®,-integrability of V', and
hence the ®,-integrability of cgV. Hence (11) yields the desired inequality. O

2 Spatial estimates for stochastic flows

In this section we shall show that stochastic flows which are generated by stochastic
differential equations driven by continuous semimartingale noise satisfy inequalities of

7



the types on which Theorems 1.1 up to 1.3 were based. Their local characteristics just
have to fulfill suitable Lipschitz and growth conditions. The moment inequalities are
derived in the following propositions. They lead to our main results, stated in Theo-
rems 2.1 and 2.2, on bounds for the asymptotic spatial growth of the flows and their
derivatives.

We will use the set-up and notation of Kunita [5] which we recall for the reader’s
convenience.

Let F'(x,t),t > 0, be a family of R%valued continuous semimartingales on a filtered
probability space (Q, F, (F;)i>0, P) indexed by x € R®. Let F(x,t) = M(z,t)+ V(z,t)
be the canonical decomposition into a local martingale M and a process V of locally
bounded variation. We will assume throughout that both M and V' are jointly contin-
uous in (z,t). Furthermore we assume that there exist
a: RTx R x [0,00[xQ2 — R™ and b : R? x [0,00[xQ — R - called the local

characteristics of F' - such that
t t
(M, ) My, ) @) = [ ale,y.w)du, Vil t) = [ bi(e,u) du
0 0

Let A = {(x,z) : * € R} For a = (ay,...,04),0; € Ng,i = 1,...d, we write
la] == X% | ; as usual.

We shall say that F has local characteristics of class B3 for m € Np,0 < § < 1
(or just F' € B%"S) if bis in C"™, and all derivatives of a up to order m with respect to
x and y (simultaneously) are continuous and if for all 77> 0

ess sup sup (|la(®)lmes + 1H(0) i) < o0,
weQ  0<t<T

where
P la(z,y,1)]
a(t)|lmes = sup + sup |DyDra(x,y,t
oo = S T TN o) | o2, o, PE Pyl v.1)
+ Y IDEDya(z,y, )]s,
|a|=m
[b(z, t)|
b(t)||mes = sup ————— + sup |Dyb(z,t
|| ( )H + +eRd (1 + |I’|) 1<az|<mmeRd| ( )|
+ Z sup |ng(l',t) - ng(yvt”
oo (Bp)eAe |z —yl?
m |f(ZL',y)—f(l'l,y)—f(l',y/)+f($/,y/)| c
17T = s { L) fw) (@), (19 € ).

8



Throughout the rest of the paper we will consider the stochastic differential equation

dX(t) = F(X(t), dt). (12)

on R? where F is a spatial semimartingale as above. If F' € B%! (in fact even under a
slightly weaker condition) Kunita proved the existence of a stochastic flow of homeo-
morphisms (or diffeomorphisms if F' € B%® for some k > 1) associated with (12) i.e. a
map ¢ : [0, 0o[x[0, co[xR? x Q — R? such that

o ¢u(x,-), t > s solves (12) with initial condition X(s) = x for each s> 0,z €
R4,

e ¢q(-,w) is a homeomorphism for each 0 < s <t, w € (),

o (-, w) =o' (,w) foreach s,t>0,w €,

o Oy, w) = Py w) 0 oy w) forall s,t,u >0, w e Q,

o (s,1) d|—> bst(+,w) is continuous from [0, 00)? to the (group of ) homeomorphisms
on R%.

[[5], p. 155].

In the following, ¢ will always denote the flow associated with (12). We remark that
all moments of the flow and its derivatives appearing in the sequel are finite, according
to Kunita [5].

Proposition 2.1 Assume F' € ng)l. Fiz 'T'> 0. Then there exists ¢ > 0 such that for
all z,y € R and all p > 1 we have

a) E sup (|oo(x) — dor(y)|P) < exp(ep?)|z —y?
0<t<T

b) E sup (|pot(0)[P) < exp(cp?).
0<t<T

Proof:
It is enough to prove a) and b) for p > 4.

a) Since F' € Bg;} there exists c;p > 0 such that for all z,7,y,7 € R4, 0 < t <
Tandw €

la(z,y.t) —a(Z,y,t) — a(z,7,t) + a(Z, 7, 1) < crolz — Z[ |y — Y|
and
|b(x,t) = by, t)| < cro]z —yl.
Fix z,y € R? and define

d

Y (t) = |por(r) — ¢0t(y)|2 = Z(%t(x) — ¢0t(y))?.

1=1



Then It0’s formula implies

aY(t) = £ 20u(®) - duly)) (Mi(ou(o), dt) - Mi(du(y). d0)
+ 5 2(0u(2) = duuw): (0i(Gou(2), ) — il ely), )t
+ £ d(Mi(Gu(z),) = MilGn(y). D

Therefore we obtain for p > 2 and t < T

7 s oy

0<s<t
<3l —y”
d s P
B sup | 572 [ (00u(2) = dou0)i(Mi(Goulz), du) — Mi(buu(y), du)
0<s<t | ;—1 0

B[ 26101 0u(@) = 60u(p)  + 3 (o (2), (2. )
(o), B0 (0) ) = 0 (4), 60 (0),10) + 0o (0). o (0), ) )

p
2

< 3P—1(| y|2p + C /4010|¢0u ¢0u(y)|4 du)

B([ 2+ d)ewoldou(w) — douly) [ du)?)

where C(p) = (c11p?)? is an upper bound for the constant in Burkholder’s inequality
for continuous martingales for all p > 2 and ¢;; is some universal constant [Barlow and

Yor [3], p. 207].

=

0<s<t

Abbreviating f(t) := (E sup Y(s)p> we get

1
2

+ 010(2 + d) / f(u) du)

f(t) <3 (x —yl* + C(p)z]? 2y/c1o (/fQ(u) du)

and hence

¢ ¢
2t <27(|z —y|* +C(p)%4clo/f2(u) du+cf0(2+d)2T/f2(u) du.
0 0

Using Gronwall’s inequality we obtain

27pT 2
B sup [ou(z) = ou(w)[* < o = yf27F exp (Z4=(C0) e + cho(2+ d)°T) ).

10



Since C(p )% — ¢11p?, the assertion follows.

b) Let Y (¢) = |¢o:(0)[2. Then
4y (1)

2¢0¢(0); M;(o¢(0), dt) ‘I’ZQ%t bi(Po(0), 1) dt

||M&

Ed: M;i(¢ot(0),1)).

Using the fact that there exists cio > 0 such that
|a(z, 2, t)| < cra(1 + |zf)
and
b(z, )] < cr2(1 + |z)
for all z € R4,0 <t < T, and w € , the assertion follows as in part a). O

Remark: The good estimate C(p) = (c11p2)? of the best constant in Burkholder’s
inequality which showed up in the preceding proof is crucial for our estimates and will
appear in subsequent proofs repeatedly.

Proposition 2.1 combined with Theorem 1.2 provide spatial estimates for
SUPg<;<p |Go¢(7)]. Together with the following proposition we shall be able to extend
this estimate even to supy<, ;<7 |¢s¢()| in Theorem 2.1.

Proposition 2.2 Assume F € B%' and define

() jzf?
)= ——
' 1+ [¢oi ()]
For every T > 0 there exists ¢ > 0 such that for all p > 1 and x,y € R?

tZO,IERd.

a) E sup (14 |poy(x)?) 77 < exp(ep?)(1 + |z]*) 7P

0<t<T

b) E sup (|W(x) — Wy(y)|P) < exp(cp?) |z — ylP.

0<t<T

Proof:
It suffices to prove the assertions for p > 2.

Fix z € R, T > 0 and define

X (t) :== doe(), Y(t) = (1+ X(t)*)™*

11



[to6’s formula implies

dy (1)
S 2X() B 2X,(t)
; 1+|X M X (0). db) ;(1+|X(t)|2)2bz(X(t),t)dt
1 d
D) ; W(Iii(){(w, X(t),t)dt
*% Z WXY;MX@),X(W) dt.

Since F € BY' there exists ¢13 > 0 such that
la(z, 2, )] < ci3(1+ |z[?) and  |b(z,t)]* < E5(1+ |2]?).
Proceeding as in the proof of Proposition 2.1, and denoting
1/p
t):=(E(sup Y(s)? 0<t<T p>2 weobtain
p ) 7p b
0<s<t

f(#)
<3[(1+ o)+ Cp)r2v/ers ( / f(8)2d8)

1
2

t
2+d+4 613/f
0

The assertion now follows by applying Gronwall’s lemma to f? as in the proof of

Proposition 2.1.
To prove b), note that for z,y € R?, |y| > |z|, and 0 < ¢t < T, we have

Wy (z) — Wy(y)|

9 1 _ 1 1 > 2
< @~ 5 @] T Ty |
] v ) R
S 1 + |¢Ot(x)| 1+ |¢Ot(y)| |¢0t(x) ¢0t(y)| + |$ y| 1 + |¢Ot(y)| .

Now the assertion follows from Proposition 2.1 and part a). O

We are ready to state and prove our main result on asymptotic growth rates for
stochastic flows.

12



Theorem 2.1 Assume F € B%'. Then for all T > 0 there exist ¢,y > 0 such that

L+ sup |¢g(z)
0<s,t<T

Y := sup exp(—v(In" In* |a/:|)%)

zcRd |'I| +1

and

1
Y':= sup sup 2] + exp(—y(In* In* |z])2)

zeRd 0<s.i<T 1+ |hst ()]

are P.-integrable.

Proof:

Fix z € R% For 0 < s < T define y, := ¢, (z, .). Propositions 2.1 and 2.2 together with
Theorem 1.2 show that there exist ci4,c15 > 0 and a &, ,-integrable random variable

Z (not depending on z), such that for all 0 <¢ < T

1
1+ |0t (ys)] < Z (|ys] + 1) exp(cis(In™ In™ |ys|)2),

L Jor(y)] = 27 (Js| + 1) exp(—eus(n* In* [y]) 7).
To obtain (13), first apply b) in Proposition 2.1 to get the ®.,,-integrability of

SUpy<i<r |G0¢(0)], then use a). (13) and (14) imply

L+ [a(@)] = 1+ [gor(ys)] < 2% (1+ |a]) exp(2ess(In* In* [y])?).

(14) implies that there exists & > 0 (depending on ¢;5) such that
lys| +1 < a?Z%(1 + |z|)?, so — assuming w.l.o.g. InT(a?Z?%) > 1 -

(In* In* |y, )2 |
< (In(In(a*2?) + In(3(1 + [2[)*)))2
< (Inln(a?2%) + Inln(3(1 + [2])*) + In2)
< (Inln(a2%)% + (Inn(3(1 + [[)*))? + (In2)2.

Therefore

1+ sup |¢s(x)
0<s,t<T

< Z% exp(2c15(InIn(a?Z?)) %) exp(2¢y5(In 2) %)
(1 + |z|) exp(2c15(InIn 3(1 + |])?)2).

Now the first assertion follows with v = 2¢y5.

Further,

L+ ()] = 1+ [Sor(ys)] = Z72(1 + [ar]) exp(—2es5(In* In* [y])2).

13
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Using (15) the second assertion follows with v = 2¢y5. O

Remarks: 1. Suppose we use the moment inequalities of Propositions 2.1 and 2.2
just for one individual p > 2d instead of the "integrated version” hidden behind the
appearance of ®. employed in Theorem 2.1. Then, as Theorem 1.1 shows, our analysis
just leads to |z|(In|z|)¢ for arbitrary € > 0 as estimates of growth rates, which is the
bound derived in Mohammed and Scheutzow [10]. This is another confirmation of the
power of methods involving the real variable lemma of GRR.

2. It will be shown in section 3 that the growth rates appearing in Theorem 2.1 are
sharp. This result is also nearly optimal in another respect. The random variable Y is
proved to be ®.integrable for some ¢ > 0. As the example of the flow ¢ in dimension
1 associated with the SDE

dr; = x:dW,

shows, this integrability statement cannot be improved by much. For fixed ¢ > 0 and
x # 0 the random variable ¢u () is not ®.-integrable for ¢ small enough. This is a
fortiori true for Y.

We next consider spatial estimates of derivatives of a stochastic flow.

Proposition 2.3 Assume that ' € BY! for some k € N. Then for all T > 0 there
exists ¢ > 0 such that for all 1 < |a| <k, p > 1 and x,y € R? we have

E(OiggT |D%Gor(x) — Dbou(y)[”) < exp(ep®) (Jz —y|P A1) (16)
and
B( sup |D"(2)I") < exp(cp?). (17)
Proof:

Theorem 4.6.5 in [5] shows that ¢ is a flow of C*-diffeomorphisms. We denote by
Doy (x) the Jacobian of ¢y, with respect to x and similarly for F'. Abusing notation
we shall often write D? for the derivative w.r.t. the ith variable. We shall use upper
indices to denote the components of ¢. For 1 < |a| < k and j € {1,---,d} we have the
equation

: d
D) = mag+ > | Df(x) D"Fy(ou.(), ds) (18)
n=1

b5 [ Prals) D), ds),

2<|BI< e

where 7,; = 1 if [a| = 1 and a; = 1 and 7,,; = 0 otherwise, and where Pg, ;(s) is a
finite sum of products of the form [T,_, D¢y (z) with 1 < |v;| < |a| and YI_; |vi| = |¢]
(see [5], p. 95). Observe that the second sum in (18) is zero in case |a| = 1.
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We first prove (17) by induction on |a|. For 1 <j <d,0<t<T, p>1let

I\JM—‘

() = Dha). Y(O) = D"ou(o)] = [V

Zi(t) = sup [Y;(s)],  Z(t) = sup Y(s),

L) = [E(Z{)")7,

where we suppress = and « for ease of notation. We rewrite (18) to get

Y;(t) = na]—l—Z/Y Fj(os(z). ds)
+ /Pﬁwj )DF(¢05() s).

2<[B|<lal

With the help of Kunita [5], Theorem 3.1.2, which allows us to interchange spatial
derivatives and the quadratic variation, we get for p > 2

=

[E(Z;()")]
< (14 CE) B[ 2(s7ds)8 + [ f()ds

0

) SB[ B3, () 4985 + X [ (B Pras(9))? ds)

j7ﬁ ]7ﬁ

Therefore, for 0 <t <'T" we obtain the estimate
F2(t) < e (C(p)7 +1) /f2 )ds + (C(p)7 +1) Z/ (|Ps.es(s)P)]7 ds).  (19)

For |a] = 1 the last sum is empty and consequently we get (17). For 1 < |a| < k we
use the induction hypothesis and Holder’s inequality to show that for some constant
c1g > 0 and all p > 1 we have

E(|Ps.a(5)I) < exp(e1sp”).

Now Gronwall’s lemma applied to f2 implies (17).

It remains to prove (16). Due to (17) it is enough to prove the inequality with
|z — y[P A1 replaced by |z —y[P. Let 1 < |a| < k,z,y € R4 1 <j <d, p>1,and,
again suppressing «a, x,y, define

V;(t) = Dafb{)t(x) - Da‘bg)t(y)a Z V2 %
Wj(t) = sup |Vj(s)|,  W(t) = sup V(s),
0<s<t 0<s<t

gu(t) = [E(W (t)")]7.
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Now we have

0
= S.() D"6hule) D Ey(oun(w),ds) = [ D705 (0) D" 6o (0) )]

£ 50 ([ Poass) DFy60(2).ds) = [ Paysls) D*Fy(0us(v), )

2<|BI< e

d t

— 2_:1[/0 V}(S) DnFj((bOs(x)?dS)
+ [ DG ) (D" (ns(). ds) — D" Ey(us (), d5))]
+ Y A&“> Ps.(8)) D° Fy(os(x). ds)

2<|BI< e
4 [ Paals) (DO (gus(a). ds) = DEy(60y). )]

Again, the proof goes by induction on |a|. For |a] = 1 the last sum drops out, and we
get for 0 <t < T, and p > 2

G < as(CO)P +1) [ gils)ds
+ O+ D) [ D 0] [Edun(x) — oals) ¥]5ds).

Using (17), Proposition 2.1 and applying Gronwall’s lemma we get (16) for |a| = 1.

For general 2 < |a| < k observe that Ps, ;(s) — Ps, ;(s) can be expressed as a finite
sum of terms of the form [DV¢f,(z) — D¢k (y)] II'=, DY ¢gi(z) where z € {z,y}, 1 <
7] < ay |y > 1, and v+ >0 || = |e|. Using this fact the induction proof follows
along the familiar lines. O

We next extend the considerations of Proposition 2.3 to the inverse of the Jacobian
of a stochastic flow.

Proposition 2.4 Assume that F' € B\, Let Ty(z) = [Doy(z)]™, 0 < s < t. Then
for all T > 0 there exists ¢ > 0 such that for all p > 1 and z,y € R we have

E( sup |Zoi(z) — Zon(y)I") < exp(cp?) (| —y[? A1), (20)
0<t<T
and
E( sup |Zoi()[P) < exp(cp?). (21)
0<t<T
Proof:
The following well known identity is easily checked with Itd’s formula:

IOt (JJ)
= 1~ [ Zos(w) DF(us(a).ds) + [ Tou(w)al00s(2), 0 (2), ) ds,
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where @ (z,y,s) = Yp_, D¥ DI a(x,y,s), i,j € {1,---,d}. Using the fact that a is
bounded, the arguments of the preceding propositions easily yield (21), taking the pth
moment of the supremum of |Zgl(z)| in s between 0 and t.

To show (20), we write

Zor(z) — Zor(y)
= —/ I()S IOS )) DF(¢03($)7d8)

n / Zos(y) (DF(¢os(y), ds) — DF (¢os(), ds))
+ / (Zos() — Tos(y)) @los (), dos (), 5)ds
+/ I()S ¢Os )a gbOs(I)a S) - &(¢Os(y)a gbOs(y)’ S))ds'

We will be able to show (20) by the arguments of the second part of the proof of
Proposition 2.3 for |a| = 1, once we know that for @/*(z,y,t) = D} D} an(z,y,t),
i,7, k., le{l,---.d}, we have
|aljkl(xa z, t) - aijkl(ya Y, t)| S Cop |'T - y|
for all 0 <t < T, z,y € R? with some constant cy. Since F € Biél we know that
there exists a constant cy; such that for all 7, j and all z,y € R? we have
|aijij(x> z, t) - Qdiﬂj<x7 Y, t) + aijij(ya Y, t>| < ca |x - y|2
and N
|a7" (z, x,t)| < co1.

Fix 4,4, k, 1 and write M (z,t) = D' My(x,t), N(x,t) = D’ My(z,t). Then, the in-
equality of Kunita-Watanabe yields

@ . 2,1) ~ 7y, 1)
= | (W (2, N, ) — (M (,.), Ny, ))o)
< |50 @,) = My, ), Nz, )
LM, ). N )~ Ny )

The estimates of the preceding propositions combined with the results of the first
section lead to the following main theorem about the asymptotic growth of the deriva-
tives of a stochastic flow.
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Theorem 2.2 Assume F € BS' for some k € N. Then for all T > 0 there exist
¢,y > 0 such that for all 1 < |a| < k the random variables

Y = sup sup |(Déy(z)) exp(—y(In* [z])?7), (22)

zeR® 0<s,t<T

1 1
Y' = sup sup ———— exp(—y(In"|z|)2), 23
SUD U D) p(—(In™ [z])2) (23)

and

1
Yo =sup sup |D%y(x)| exp(—y(In"[z])?) (24)
z€RA 0<s,t<T

are P.-integrable.

Proof:
(23) is an easy consequence of (22) since for any matrix norm submultiplicativity gives
|A||AY| > |I| for matrices A.

Let us first show (22). Fix T'> 0 and x € R%. For 0 < s < T define

Ys = ¢pa(z) as in the proof of Theorem 2.1. The equation

D%t(ys) = D%t(@ D¢os(ys)

implies the estimate

|(Dst()) | < [Débos(ys)| | Dbor (ys)) -

Now Propositions 2.3, 2.4 and Theorem 1.3 imply that there exist coo > 0, o3 > 0 and
a &, -integrable random variable Z not depending on = such that for all 0 <¢ <T

[Dse(2)] 7Y < Z2 expl(cas (In™ Jyg])2).

As in the proof of Theorem 2.1 we use the fact that there exists x > 0 such that
lys| < k*Z? (1 + |z[?). Hence

[De(2)] 7Y < 22 exp(eas (In* (82 2))7) - exp(ca(2In(1 + |2]))2)  (25)

for all 0 < s,¢ <7 and all z € R% (25) immediately implies (22).

It remains to prove (24).

Suppose first that f : RY — R? is a C*-diffeomorphism for some k& € N. Then for
each o with 1 < |a| <k,i=1,---,d and for all z € R?

PN ),
PO = aap (e

where n, € N. In (26) p,i(y) is a polynomial in the partial derivatives of the compo-
nents of f up to order |a| evaluated at y € R%. Tt is easy to verify (26) via induction
on |a| using the chain rule and Cramer’s rule.

For 0 < 5,t < T and =z € R¢ we have

bst(7) = dou(g, (7).

(26)
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Using the chain rule and (26) we see that for any j € {1,---,d} we can write D”qﬁgt(:v)
as a finite sum of a product of partial derivatives up to order |a| of components of ¢,
and ¢ evaluated at ¢ (x) multiplied by | det[Degs(dos (2))]|~™ for some m € N. The
fact that for any d x d matrix A we have

| det A|™™ = | det A™Y™ < cpy |A7T|4m,

combines with Propositions 2.3, 2.4 and Theorem 1.3 to show that there exist co5 >
0,7 > 0 such that forall 0 < s,t <T,allz € R% and all 1 < j <d

DGl (x)| <V exp(y(In* |¢5(2)])?)

for some ®,,.-integrable random variable Y. Arguing as in the derivation of (22), we
now obtain (24). O

3 Examples

We present two examples which show that the rates obtained in the first part of Theo-
rem 2.1, and for the first derivative in Theorem 2.2, are optimal, up to the constant ~.
In fact we shall show slightly more, namely that even if we fix t > 0 and s = 0, without
taking the sup over s and ¢, the rates specified in the theorems are still optimal up to
the constant ~.

Since the first example is only a slight modification of Example 1 in [10], we shall
only sketch it.

Example 3.1
Letd =1,and fix 7T > 0and 0 < € < 2. For 2 < n € N define 6,, = exp(n,/(2 —€) T Inn)
and v, = w. Let 0 : R — R satisfy

e 0 € C*°(R) and all derivatives of o are bounded,
e o(x)=x—06, forx € [6,,7, — 1],2 < n €N,
e o(y—z) =0y +x) forz € [0,vy, —06,],2<n €N,
e o(z)=0forz €641 — 2. 6,41—3),2<neN.
For 2 < n € N let W,, be independent standard Brownian motions and define

0(1‘) Wn(t)v T e [571 - %,(5n+1 - %]7
Fla,t) = { o(2) Walt), & <8 — L.

2

It is easy to see that F' € B for any k € N,0 <6 < 1. If € [6,, 7, — 1] and 7 is the
first time for which ¢g(x) hits 4, — 1, then

bon(x) = (2 — 6,) exp(W(t) — ;) s
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0 <t < 1. There exists ny such that for n > ng we have z,, = (e + 1) 6, € [0, Y0 — 1]
A simple estimate shows that the sum over P(sup<i<p ¢oi(2n) > 7 — 1) for n > ng
diverges. Hence by the second Borel-Cantelli lemma we get

I SUDPg<t<T ¢0t(iﬂn)
im sup

>1

P-a.s.. Furthermore,

. ’Yn_l
lim =00

", exp(\/(2 —6)T Inlnzx,)

for any 6 > e. Hence, for any ¢ €]0, 2] we have

ot ()

sup sup =00
x>1 0<t<T g exp(\/(Z —6)T IntIn*t x)

P-a.s.. Since ¢ is symmetric around 7, on [6,, 6,11 — 1] we also have

|por ()|

sup = 00

z>1 g exp(\/(2 —6)T InTIn" z)

P-a.s..

Example 3.2
Let d =1. Let 0 : R — R be a C*-function with the following properties:

e o is periodic with period 1,
e o(z)=zfor —; <z <1,
e o(x)=0for<az<?2
Let W,,n € Z, be independent standard Brownian motions and define
F(z,t) =o(x) W,(t)

for n — % <z<n+ %,t > 0. Clearly F € le’f for arbitrary k € N,0 < 6 < 1.
By Theorem 4.6.5 in [5] the associated flow ¢ is a flow of C'°- diffeomorphisms. Its
spatial derivative satisfies for n € Z,t > 0

Debon(n) — exp(Wi(t) — %t),

since the SDE based on F' is linear in a neighborhood of n € Z. Fix T" > 0 and
2> ¢€> 0. For n € N define a,, = /T'(2 — ¢) Inn. Then

P(exp(Wal(T) = 3T) > explan)) = P(Wo(T) > 0y + 57).
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Due to the fact that W, (7) is Gaussian with mean zero and variance T' there exists
¢ =c(T,¢) such that for alln € N

Using the Borel-Cantelli lemma we see that for every 0 < 6 <

1
P(Wa(T) 2 an + 5T) 2 ¢ exp(—Inn) = ©
n
1

sup Dogr(n) exp(—/T'(2 —6) Inn) = oo

nelN
P-as..
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