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1 Compact, positive-de�nite, self adjoint operator

Theorem 1. [3, Theorem 22] Consider T a compact, self-adjoint and positive-de�nite operator
on some Hilbert space H = (H, ‖ · ‖). Denote its eigenpairs by (λi, xi)i=1,2,..., normalized so
that ‖xi‖ = 1 and ordered decreasingly with respect to the eigenvalues. Let V ⊂ H be a �nite
dimensional subspace of H, and π the orthogonal projection on V . Assume that the biggest
eigenvalue λ1 is simple and that

‖(I − π)x1‖ <
λ1 − λ2

6λ1
.

Consider the projected operator πTπ and denote its normalized, ordered decreasingly, eigen-
pairs by (λV,i, xV,i)i=1,2,...,dim(VJ )

. Then λ1,V − λ2,V ≥ (λ1 − λ2)/2 and

|λ1 − λV,1|+ ‖x1 − xV,1‖ ≤ C ‖(I − π)x1‖ ,

where the constant C depends continuously only on the size of the spectral gap λ1−λ2 and the
value of the �rst eigenvalue λ1.

2 Bilinear coercive form

Recall that H1, H2 denote the L2−Sobolev spaces on [0, 1] of order 1 and 2 respectively. For
di�erentiable, strictly positive functions σ and µ consider the elliptic operator T on the Hilbert
space L2([0, 1]) with Neumann type domain dom(T ) = {v ∈ H2 : v′(0) = v′(1) = 0} and for
v ∈ dom(T ) given in the divergence form by

Tv(x) = −(σ2(x)µ(x)v′(x))′

2µ(x)
. (1)

Note that the operator −T is an in�nitesimal generator of the di�usion process on [0, 1] with
instantaneous re�ection at the boundaries, volatility function σ and invariant measure with
density µ. We want to analyze the eigenvalue problem for T , i.e.

Eigenproblem 2. Find (λ,w) ∈ R× dom(T ), with w 6= 0, such that

Tw = λw.

Integrating by parts one can check that the eigenpairs of the Eigenproblem 2 solve

Eigenproblem 3. Find (λ,w) ∈ R×H1, with w 6= 0, such that

ˆ 1

0
w′(x)v′(x)σ2(x)µ(x)dx = 2λ

ˆ 1

0
w(x)v(x)µ(x)dx for all v ∈ H1. (2)

1



The Eigenproblem 3 is a weak formulation of the Eigenproblem 2, on the equivalent space
L2(µ), for the associated Dirichlet form l(u, v) = 〈Tu, v〉µ. The biggest advantage of the weak
formulation is that the Eigenproblem 3 makes sense for any, not necessarily regular, functions
µ. When µ is not di�erentiable, the Eigenproblem 2 has no longer probabilistic interpretation
in terms of the in�nitesimal generator. Nevertheless, such problems arise naturally when one
considers spectral estimation method with �xed time horizon, when the role of the invariant
measure is taken by the non di�erentiable occupation density.

In what follows, we want to generalize the results of [4] on the spectral properties of an
in�nitesimal generator to the solutions of the Eigenproblem 3 with Hölder regular function µ.

De�nition 4. For any given 0 < d < D let

Θα :=
{

(σ, µ) ∈ C1([0, 1])× C0,α([0, 1]) : ‖σ‖C1 ∨ ‖µ‖C0,α ≤ D,

inf
x∈[0,1]

(σ(x) ∧ µ(x)) ≥ d,
ˆ 1

0
µ(x)dx = 1

}
Eigenproblem 3 is a conforming eigenvalue problem for a bilinear coercive form on the

Hilbert space L2(µ). [2] is a standard reference.

Proposition 5. Let (σ, µ) ∈ Θα. The Eigenproblem 3 has countably many solutions (λi, wi)i
with real nonnegative eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ... and µ−orthogonal eigenfunctions,
satisfying Neumann boundary conditions w′i(0) = w′i(1) = 0. The smallest positive eigenvalue
λ1 is simple, the corresponding eigenfunction w1 ∈ C1,α and is strictly monotone.

Proof. It is easy to check that for any (σ, µ) λ0 = 0 and w0 ≡ 1 form an eigenpair. Let
L2
0(µ) = {v ∈ L2(µ) :

´ 1
0 v(x)µ(x)dx = 0} and H1

0 (µ) = L2
0(µ) ∩ H1. L2

0(µ) with the L2(µ)

inner product and H1
0 (µ) with 〈u, v〉H1(µ) = 〈u, v〉L2

0(µ)
+
´ 1
0 u
′(x)v′(x)µ(x)dx are Hilbert

spaces. The identity embedding I : H1
0 (µ)→ L2

0(µ) is compact.
For u, v ∈ H1

0 (µ) let

l(u, v) =

ˆ 1

0
u′(x)v′(x)σ2(x)µ(x)dx.

l is a symmetric positive-de�nite bilinear form on H1
0 (µ) ×H1

0 (µ). Furthermore, for any u ∈
H1

0 (µ) holds
c‖u‖2H1

0 (µ)
≤ l(u, u) ≤ C‖u‖2H1

0 (µ)
(3)

for some constants 0 < c < C that depend only on d,D. Indeed, since σ and µ are uniformly
bounded, we only have to show that

´ 1
0 u

2(x)dx ≤
´ 1
0 (u′(x))2dx. Consider u ∈ C1([0, 1]) ∩

H1
0 (µ). Since u is continuous and integrates to zero, there exists x0 ∈ [0, 1] s.t. u(x0) = 0.

Since u(x) =
´ x
x0
u′(y)dy, the inequality ‖u‖L2 ≤ ‖u′‖L2 easily follows from the Cauchy-

Schwarz inequality. Since continuous functions are dense in H1 we conclude that (3) holds.
l is the Dirichlet form of an unbounded operator T on L2

0(µ). De�ne D = dom(T ) as these
u ∈ H1

0 (µ) that the functional v 7→ l(u, v) is continuous on H1
0 (µ) with norm ‖ · ‖L2(µ). By the

de�nition of the weak di�erentiabilityD = {u : H1
0 (µ) : u′σ2µ ∈ H1}. Furthermore, D is dense

in L2
0(µ) (see [2, Exercise 4.51]). For u ∈ D we de�ne Tu via Riesz representation theorem

by l(u, v) = 〈Tu, v〉L2(µ). Such de�ned T is an elliptic, densely de�ned, self-adjoint operator
with compact resolvent (see [2, Proposition 4.17]). Consequently, T has a discrete spectrum
(λi)i=1,..., with all eigenvalues positive and corresponding eigenfunctions µ−orthogonal.
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Integrating by parts the right hand side of (2), we obtain

ˆ 1

0
w′i(x)σ2(x)µ(x)v′(x)dx = −2λi

ˆ 1

0

ˆ x

0
wi(y)µ(y)dyv′(x)dx for all v ∈ H1.

Since {v′ : v ∈ H1} is dense in L2, it follows that

w′i(x) =
2λi
´ x
0 wi(y)µ(y)dy

σ2(x)µ(x)
∈ C0,α. (4)

Since the eigenfunctions µ−integrate to zero, we deduce w′i(0) = w′i(1) = 0.
Finally, we need to show that λ1 is simple and the corresponding eigenfunction is strictly

monotone. By the variational formula for the eigenpairs of a self-adjoint operator

2λ1 = inf
u∈H1

0 (µ)

´ 1
0 (u′(x))2σ2(x)µ(x)dx´ 1

0 u
2(x)µ(x)dx

. (5)

Arguing as in [4, Lemma 6.1], we obtain that
´ 1
0 u

2(x)µ(x)dx =
´ 1
0

´ 1
0 m(y, z)u′(y)u′(z)dydz

with m(y, z) =
´ y∧z
0 µ(x)dx

´ 1
y∨z µ(x)dx. We deduce, that the eigenfunction w1 must have the

derivative of a constant sign, otherwise we could reduce the ratio in (5) by considering

w̃1 = w11(w′1 ≥ 0)− w11(w′1 ≤ 0).

Hence, the set {x : w′1(x) = 0} has zero Lebesgue measure. From (4) follows that w′1(x) = 0
only for x = 0, 1, meaning that w1 is strictly monotone on (0, 1). Consequently. for any two
eigenfunctions w1 and w̄1, that correspond to λ1, the scalar product

ˆ 1

0
w1(x)w̄1(x)µ(x)dx =

ˆ 1

0

ˆ 1

0
m(y, z)w′1(y)w̄′1(z)dydz 6= 0,

hence the eigenspace corresponding to λ1 is one dimensional.

Proposition 6. The eigenvalues λ1, λ2 and ‖w1‖C1,α/‖w1‖L2(µ) are uniformly bounded for
all (σ, µ) ∈ Θα. Furthermore, for every 0 < a < b < 1, infx∈[a,b] |w′1(x)| and the spectral gap
λ2 − λ1 have uniform lower bounds on Θα.

Proof. We adapt the notation from the proof of Proposition 5. Choose w1 normalized ‖w1‖L2(µ)

= 1. We will �rst argue that λ1, λ2 and ‖w1‖C1,α are uniformly bounded on Θα. From (3),
follows that

λ1 = l(w1, w1) ≥ c‖w1‖2H1(µ) ≥ c,

with c > 0 depending only on the bounds on σ and µ. It follows that the eigenvalues are
uniformly separated from zero. By the variational formula

2λ2 = inf
S⊂H1

dim(S)=3

sup
u∈S

´ 1
0 (u′(x))2σ2(x)µ(x)dx´ 1

0 u
2(x)µ(x)dx

≤ inf
S⊂H1

dim(S)=3

sup
u∈S

D3
´ 1
0 (u′(x))2dx

d
´ 1
0 u

2(x)dx
≤ 4π2

D3

d
,

since 4π2 is the third eigenvalue of the negative Laplace operator on L2([0, 1]) with Neumann
boundary conditions. We conclude that the eigenvalues λ1 and λ2 are uniformly bounded.
The uniform bound on ‖w1‖C1,α follows from the representation (4) and ‖σ‖C1 ∨‖µ‖C0,α ≤ D.
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We will now prove a uniform lower bound on the spectral gap λ2−λ1. Assume by contra-
diction that for some sequence of coe�cients (σn, µn) ∈ Θα the corresponding spectral gaps
(λn,2 − λn,1) converge to zero. Since Θα is compact in the uniform convergence metric, we
can assume that (σn, µn) converges uniformly to some (σ, µ) ∈ Θα. We will argue that the
uniform convergence of coe�cients leads to convergence of the eigenvalues, hence contradicts
Proposition 5 (cf. [4, proof of Proposition 6.5]). However, since the function µ is embedded
in the de�nition of spaces L2

0(µ) and H1
0 (µ), we need �rst to reduce the Eigenproblem 3 to a

universal function space.
Let U(x) =

´ x
0 µ(y)dy be the antiderivative of µ. Since µ is a probability function, U is the

distribution function, hence an increasing map of the interval [0, 1] into itself. Substituting
U(x) = y, we �nd that the Eigenproblem 3 is equivalent to

ˆ 1

0
w̃′(x)ṽ′(x)σ̃2dx = 2λ

ˆ 1

0
w̃′(x)ṽ′(x)dx for all ṽ ∈ H1

w̃ = w ◦ U−1,

with σ̃ = (σµ) ◦U−1. Consider (σ̃n)n and σ̃ corresponding to (σn, µn) and (σ, µ) respectively.
Note that σ̃n converges to σ̃ in C1[(0, 1)]. Denote L2

0 = L2
0(1) and H1

0 := H1
0 (1). For u, v ∈ H1

0

denote

l̃n(u, v) =

ˆ 1

0
u′(x)v′(x)σ̃n(x)2dx

and by T̃n the corresponding operators on L
2
0. Recall that the operators T̃n are unbounded and

self-adjoint on L2
0, with dense domains D̃n. Since D̃n do not have to possess a common core,

which is needed to study convergence of the sequence (T̃n)n, we introduce inverse operators
R̃n = T̃−1n . Using the divergence formula (1) for T̃n, we check that for u ∈ L2

0

R̃nu(x) = −2

ˆ x

0
σ̃−2n (y)

ˆ y

0
u(z)dz + cn(u), (6)

where cn(u) ∈ R is such that
´ 1
0 R̃nu(x)dx = 0. The convergence σ̃n → σ̃ in C1[(0, 1)] implies

that operators R̃n converge to R̃ in the operator norm on L2
0. By [2, Proposition 5.28] this

entails regular convergence, which by [2, Theorem 5.20] is equivalent to the strongly stable
convergence. Finally [2, Proposition 5.6] ensures the convergence of the eigenvalues with
preservation of their multiplicities.

Set 0 < a < b < 1. We �nally have to prove the uniform lower bound on infx∈[a,b] |w′1(x)|.
We will use the same indirect arguments as when bounding the spectral gap. Assume that for
some sequence (σn, µn) ∈ Θα, with (σn, µn) converging in the uniform norm to (σ, µ) ∈ Θα,
the corresponding eigenfunctions w1,n satisfy infn infx∈[a,b] |w′1,n(x)| = 0. Arguing as for the

spectral gap, we reduce the problem to bounded operators (R̃n)n and R̃. From formula (6) we
deduce that the uniform convergence of coe�cients corresponds to convergence of R̃n to R̃ in
the operator norm on C([0, 1]). We conclude, that the eigenfunctions converge in the uniform
norm, which contradicts Proposition 5 for the limit eigenproblem for (σ, µ).

Eigenproblem 7. Let VJ be a �nite dimensional subspace of L2. Find (λJ , wJ) ∈ R × VJ ,
with wJ 6= 0 such that

ˆ 1

0
w′(x)v′(x)σ2(x)µ(x)dx = λ

ˆ 1

0
w(x)v(x)µ(x)dx for any v ∈ VJ .
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Proposition 8. Let (VJ)J=1,... be a sequence of approximation spaces satisfying the following
Jackson's type inequality:

‖(I − πJ)v‖H1 ≤ CJ−α‖v‖C1,α for v ∈ C1,α,

where πJ is the L2−orthogonal projection on VJ and C > 0 some universal constant . Fur-
thermore, assume that every VJ contains constant functions.

For (σ, µ) ∈ Θα the Eigenproblem 7 has dim(VJ) solutions (λJ,i, wJ,i)i with real eigenvalues
0 = λJ,0 < λJ,1 < λJ,2 ≤ ... ≤ λJ,dim(VJ )−1. For J big enough, the eigenvalue λJ,1 and the
spectral gap λJ,2 − λJ,1 are uniformly bounded on Θα.

Proof. We adapt the notation from the proof of Proposition 5. By the Lax-Milgram theorem,
there exists an isomorphism Sl : H1

0 (µ)→ H1
0 (µ) such that

l(Slv, u) = 〈v, u〉H1(µ), for all v, u ∈ H1
0 (µ).

Note that since for any v ∈ L2
0(µ) the functional H1

0 (µ) 3 u 7−→ 〈v, u〉L2(µ) ∈ R is continuous
on H1

0 (µ), by the Riesz representation theorem there exists a continuous operator J : L2
0(µ)→

H1
0 (µ) such that

〈v, u〉L2(µ) = 〈Jv, u〉H1(µ).

De�ne operator Bl = Sl ◦J ◦I, where I is the identity embedding of H1
0 (µ) into L2

0(µ). By (3),
the form l de�nes an equivalent norm on H1

0 (µ). Note that Bl is a self-adjoint and compact
operator on the Hilbert space H1

0 (µ) with l−induced inner product. Consider (λi, wi), a
solution of the Eigenproblem 3. For any v ∈ H1

0 (µ) we have

l(wi, v) = λi〈wi, v〉L2(µ) = λi〈Jwi, v〉H1(µ) = λil(SlJwi, v) = l(λiBlwi, v),

hence (λ−1i , wi) is an eigenpair of the operator Bl. In particular, Proposition 5 implies that
the biggest eigenvalue λ−11 is simple.

Denote by πlJ the l−orthogonal projection on the subspace VJ . De�ne the operator
Bl,J = πlJBlπ

l
J . Since Bl,J is a self-adjoint operator on VJ , with the l−induced inner product,

it has dim(VJ) − 1 solutions (λ−1J,i , wJ,i)i, with eigenvalues λ−1J,1 ≥ λ−1J,2 ≥ ... ≥ λ−1J,dim(VJ )−1.

Analogously as for the operator Bl, we check that (λJ,i, wJ,i) are solutions of the �nite dimen-
sional Eigenproblem 7. From (3) and the uniform bound on µ, follows that

‖(I − πln)w1‖l ≤ ‖(I − πln)(I − πJ)w1‖l ≤ 2‖(I − πJ)w1‖l ≤ C‖(I − πJ)w1‖H1 ,

for some, uniform on Θα, constant C. Using Jackson's inequality, the uniform bound on
‖w1‖C1,α and uniform bounds on the eigenvalues λ1, λ2, we conclude that for J large enough

‖(I − πln)w1‖l <
λ−11 − λ

−1
2

6λ−11

.

The claim follows from Theorem 1.
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3 Generalized eigenvalue problem for positive de�nite symmet-

ric matrix pairs

In this section, we brie�y state the error bounds for the perturbed generalized eigenproblem
for real symmetric matrices. For the general theory of generalized matrix eigenproblems we
refer to [7, Chapter VI]. For an overview of the a posteriori methods for the matrix eigenvalue
problems we refer to [2, Chapter 1] or [7, Chapter V].

Let A,B ∈ Rn×n be real, symmetric matrices with B positive de�nite. Consider the
following generalized symmetric eigenvalue problem:

Eigenproblem 9. Find (λ, x) ∈ R× Rn, with x 6= 0, such that

Ax = λBx.

Using Cholesky decomposition of the matrix B = DD∗, one can reduce the generalized
Eigenproblem 9 to a standard eigenvalue problem for the matrix D−1AD−∗. It follows, that
the Eigenproblem 9 has n solutions (λi, xi)i=1,..,n, all its eigenvalues are real with λ1 ≥ λ2 ≥
... ≥ λn and the corresponding eigenvectors (xi)i=1,..,n are B−orthogonal.

Consider now the perturbed matrices Ã, B̃ with B̃ positive de�nite, and the corresponding
perturbed eigenproblem:

Eigenproblem 10. Find (λ̃, x̃) ∈ R× Rn, with x 6= 0, such that

Ãx̃ = λ̃B̃x̃.

Let ‖ · ‖l2 denote the Euclidean norm on Rn. First we state the standard a posteriori
error bound for eigenvalues and the eigenvectors (cf. [1, Generalized Hermitian Eigenvalue
Problems, Stability and Accuracy Assessments])

Theorem 11. Let (λi, xi)i and (λ̃i, x̃i)i be solutions of the Eigenproblems 9 and 10 respectively,
ordered decreasingly with respect to the eigenvalues. Choose the eigenvectors normalized in
‖ · ‖l2. There exists an eigenpair (λi0 , xi0), with 1 ≤ i0 ≤ n and ‖xi0‖l2 = 1 such that

|λi0 − λ̃1| ≤
∥∥B−1∥∥

l2
‖(A− Ã)x̃1 + λ̃1(B − B̃)x̃1‖l2 ,

‖xi0 − x̃1‖l2 ≤
2
√

2κ(B)

δ(λi0)

∥∥B−1∥∥
l2
‖(A− Ã)x̃1 + λ̃1(B − B̃)x̃1‖l2 ,

where κ(B) = ‖B‖l2‖B−1‖l2 is the condition number of the matrix B and δ(λi0) is the so
called localizing distance, i.e. δ(λi0) = minj 6=i0 |λj − λ̃1|.

The disadvantage of the above result is that it provides no information about the index i0
of the best approximation of (λ1, x1). This is a typical downside for a posteriori methods that
are supposed to provide information how far the calculated solution is from the nearest exact
solution, but are not intended to compare ordered eigenpairs. A helpful result is the absolute
Weyl theorem for generalized hermitian de�nite pairs, established by Y. Nakatsukasa [5]. For
readers convenience, we state the theorem below in the form presented in [6, Theorem 8.3].

Theorem 12. ([5])Let (λi, xi)i and (λ̃i, x̃i)i be solutions of the Eigenproblems 9 and 10 re-
spectively, ordered decreasingly with respect to the eigenvalues. Denote ∆A = A − Ã and
∆B = B − B̃. Then

|λi − λ̃i| ≤ ‖B̃−1‖l2‖∆A− λi∆B‖l2 ,
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|λi − λ̃i| ≤ ‖B−1‖l2‖∆A− λ̃i∆B‖l2 ,

for all i = 1, ..., n.
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