Supplement B: Stability of the eigenvalue problems

Jakub Chorowski

1 Compact, positive-definite, self adjoint operator

Theorem 1. [3, Theorem 22] Consider T' a compact, self-adjoint and positive-definite operator
on some Hilbert space H = (H,|| - ||). Denote its eigenpairs by (i, 2;),_q 5 , normalized so
that ||z;|| = 1 and ordered decreasingly with respect to the eigenvalues. Let V. C H bea finite
dimenstonal subspace of H, and m the orthogonal projection on V. Assume that the biggest
etgenvalue A1 is simple and that

Al — A2
6A1

(I =)z <
Consider the projected operator wI'm and denote its normalized, ordered decreasingly, eigen-
pairs by (Avvi’xvvi)i:LQ,...,dim(VJ)' Then A,y — Ao,y > (A1 — A2)/2 and
(AL = Aval + [l —zvall < C (T —m) 2],

where the constant C' depends continuously only on the size of the spectral gap A\ — Ao and the
value of the first eigenvalue \1.

2 Bilinear coercive form

Recall that H', H? denote the L?—Sobolev spaces on [0,1] of order 1 and 2 respectively. For
differentiable, strictly positive functions o and p consider the elliptic operator T on the Hilbert
space L%(]0,1]) with Neumann type domain dom(7) = {v € H? : v'(0) = v'(1) = 0} and for
v € dom(T) given in the divergence form by

(o2 () () () 0
2p(x)
Note that the operator —7" is an infinitesimal generator of the diffusion process on [0, 1] with

instantaneous reflection at the boundaries, volatility function ¢ and invariant measure with
density p. We want to analyze the eigenvalue problem for T, i.e.

Tu(z) = —

Eigenproblem 2. Find (A\,w) € R x dom(7'), with w # 0, such that
Tw = Aw.

Integrating by parts one can check that the eigenpairs of the Eigenproblem [2] solve
Eigenproblem 3. Find (A\,w) € R x H!, with w # 0, such that

1 1
/ w' (2)v (2)o? (z) u(x)dz = 2)\/ w(z)v(z)p(x)dz for all v € H. (2)
0 0



The Eigenproblem [3]is a weak formulation of the Eigenproblem [2] on the equivalent space
L?(u), for the associated Dirichlet form I(u,v) = (T'u,v),. The biggest advantage of the weak
formulation is that the Eigenproblem [3| makes sense for any, not necessarily regular, functions
. When p is not differentiable, the Eigenproblem [2| has no longer probabilistic interpretation
in terms of the infinitesimal generator. Nevertheless, such problems arise naturally when one
considers spectral estimation method with fixed time horizon, when the role of the invariant
measure is taken by the non differentiable occupation density.

In what follows, we want to generalize the results of [4] on the spectral properties of an
infinitesimal generator to the solutions of the Eigenproblem [3| with Hoélder regular function .

Definition 4. For any given 0 < d < D let
O i={(0.11) € C1([0,1]) x C**([0,1]) : |l V ellco < D,

1
inf (o(x) A p(x)) > d,/ p(x)de = 1}
z€[0,1] 0

Eigenproblem [3] is a conforming eigenvalue problem for a bilinear coercive form on the
Hilbert space L?(u). [2] is a standard reference.

Proposition 5. Let (o,p1) € O. The Eigenproblem[3 has countably many solutions (X\;, w;);
with real nonnegative eigenvalues 0 = Ao < A1 < Ay < ... and pu—orthogonal eigenfunctions,
satisfying Neumann boundary conditions w}(0) = w;(1) = 0. The smallest positive eigenvalue
A1 is simple, the corresponding eigenfunction wy € C and is strictly monotone.

Proof. 1t is easy to check that for any (o,pu) Ao = 0 and wy = 1 form an eigenpair. Let
L3(p) = {v € L*(u fo r)dr = 0} and HO( ) = L3(u )mH1 L2( ) with the L?(u)
inner product and H}(u ) Wlth (U, V) iy = (W V)20 + fo Ju(z)dz are Hilbert
spaces. The identity embedding I : Hg (p) — L3(u) is compact.

For u,v € Hi(p) let

1
l(u,v) :/0 o (x)0 (2) 0 (x) p(z)d.

[ is a symmetric positive-definite bilinear form on H}(u) x H} (). Furthermore, for any u €
H}(p) holds
CH“H%{(}(M) < u,u) < CH“H?{(}(M) (3)

for some constants 0 < ¢ < C' that depend only ond,D. Indeed since o and p are uniformly
bounded, we only have to show that fo x)dr < fo 2da: Consider u € C([0,1]) N
Hg(p). Since u is continuous and mtegrates to zero, there ex1sts zo € [0,1] s.t. u(zg) = 0.
Since u(x) = f;o o (y)dy, the inequality ||ul|z2 < Hu’HL2 easily follows from the Cauchy-
Schwarz inequality. Since continuous functions are dense in H' we conclude that holds.

l is the Dirichlet form of an unbounded operator T on L3(u). Define D = dom(T') as these
u € H}(p) that the functional v — [(u, v) is continuous on H} () with norm || - lz2(u)- By the
definition of the weak differentiability D = {u : Hi () : w'o?u € H'}. Furthermore, D is dense
in L3(u) (see [2, Exercise 4.51]). For u € D we define T'u via Riesz representation theorem
by I(u,v) = (T, v)12(,)- Such defined T is an elliptic, densely defined, self-adjoint operator
with compact resolvent (see [2, Proposition 4.17]). Consequently, T" has a discrete spectrum
(Ai)i=1,..., with all eigenvalues positive and corresponding eigenfunctions p—orthogonal.



Integrating by parts the right hand side of , we obtain

1 1 rz
/ wi(2)o? (z)u(x)v (z)dx = —2)\i/ / w; (y) p(y)dyv' (z)dz for all v € H.
0 0o Jo
Since {v': v € H'} is dense in L?, it follows that
_ 2 Jy wiy)u(y)d
o?(x)u(x)

Since the eigenfunctions p—integrate to zero, we deduce w}(0) = wj(1) = 0.
Finally, we need to show that A\ is simple and the corresponding eigenfunction is strictly
monotone. By the variational formula for the eigenpairs of a self-adjoint operator

1,
o BRI
ueH(p) [y u?(z)p(z)de

Y e coa, (4)

wi ()

(5)

Arguing as in [4, Lemma 6.1], we obtain that fol u?(z)p(z)dz = fol fol m(y, z)u'(y)u'(z)dydz
= OyAZ w(x)dz fyle p(x)dx. We deduce, that the eigenfunction w; must have the
derivative of a constant sign, otherwise we could reduce the ratio in by considering

with m(y, 2)

w1 = w1 1(w] > 0) —wi1(w] <0).

Hence, the set {x : w)(z) = 0} has zero Lebesgue measure. From (4) follows that w}(z) =0
only for z = 0,1, meaning that w; is strictly monotone on (0,1). Consequently. for any two
eigenfunctions w; and wy, that correspond to A1, the scalar product

1 1,1
[ w@o@us = [ [ mi. 20wy £ 0
0 0o Jo
hence the eigenspace corresponding to A; is one dimensional. O

Proposition 6. The eigenvalues A1, A2 and |[wil|cra/||wil2(. are uniformly bounded for
all (o, 1) € On. Furthermore, for every 0 < a < b < 1, inf ¢ |w) ()| and the spectral gap
Ao — A1 have uniform lower bounds on 6.

Proof. We adapt the notation from the proof of Proposition[5 Choose wy normalized [|w1 |12,
= 1. We will first argue that A1, A2 and ||wi|/c1.e are uniformly bounded on ©,. From ({3,
follows that

A= lwi,w) > ellwi |3,y > e

with ¢ > 0 depending only on the bounds on ¢ and u. It follows that the eigenvalues are
uniformly separated from zero. By the variational formula

Lo t0,))2 52 3 (Lead(2))2 3
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scut wes [y u?(z)p(r)de scat  uwes d [y u?(z)ds d
dim(S)=3 dim(S)=3

since 472 is the third eigenvalue of the negative Laplace operator on L?([0,1]) with Neumann
boundary conditions. We conclude that the eigenvalues A\; and Ay are uniformly bounded.
The uniform bound on ||wi]|c1,e follows from the representation (4) and ||o||c1 V ||1]|co.e < D.



We will now prove a uniform lower bound on the spectral gap Ao — A;. Assume by contra-
diction that for some sequence of coefficients (o, un) € @4 the corresponding spectral gaps
()\mg — )\n,l) converge to zero. Since @, is compact in the uniform convergence metric, we
can assume that (op, itn) converges uniformly to some (o, u) € ©,. We will argue that the
uniform convergence of coefficients leads to convergence of the eigenvalues, hence contradicts
Proposition 5| (cf. [4l proof of Proposition 6.5]). However, since the function p is embedded
in the definition of spaces LZ(x) and H¢ (1), we need first to reduce the Eigenproblem [3[ to a
universal function space

Let U(x fo y)dy be the antiderivative of u. Since p is a probability function, U is the
distrlbutlon functlon hence an increasing map of the interval [0, 1] into itself. Substituting
U(z) =y, we find that the Eigenproblem [3|is equivalent to

1 1
/ @' ()0 (z)d2de = 2)\/ @' ()7 (x)dzx for all v € H?
0 0
W = wolU™!,

with & = (o) o U~ L. Consider (G,), and & corresponding to (o, it,) and (o, p) respectively.
Note that &, converges to & in C1[(0,1)]. Denote L3 = L3(1) and Hj := H}(1). For u,v € H}
denote

1
ln(u,v) :/0 u () (2)5 () da

and by T the corresponding operators on LZ. Recall that the operators T are unbounded and
self-adjoint on L3, with dense domains D,,. Since D,, do not have to possess a common core,

which is needed to study convergence of the sequence (Tn)n, we introduce inverse operators
R, = T 1. Using the divergence formula for T),, we check that for u € L3

Rou(z) = —2 /O 52y /0 Y u(2)dz + en(u), (6)

where ¢, (u) € R is such that fol Ryu(z)dz = 0. The convergence &, — & in C1[(0,1)] implies
that operators R, converge to R in the operator norm on L3. By [2, Proposition 5.28] this
entails regular convergence, which by [2, Theorem 5.20] is equivalent to the strongly stable
convergence. Finally [2, Proposition 5.6] ensures the convergence of the eigenvalues with
preservation of their multiplicities.

Set 0 < a < b < 1. We finally have to prove the uniform lower bound on inf ¢,y |w] (2)]-
We will use the same indirect arguments as when bounding the spectral gap. Assume that for
some sequence (op, fn) € Oq, with (o, 11n) converging in the uniform norm to (o, u) € G4,
the corresponding eigenfunctions wy ,, satisfy inf, inf (4 [w) ,(z)| = 0. Arguing as for the
spectral gap, we reduce the problem to bounded operators (R )n and R. From formula @ we
deduce that the uniform convergence of coeflicients corresponds to convergence of R, to R in
the operator norm on C([0,1]). We conclude, that the eigenfunctions converge in the uniform
norm, which contradicts Proposition |5 for the limit eigenproblem for (o, u). O

Eigenproblem 7. Let V; be a finite dimensional subspace of L?. Find (Aj,wy) € R x Vj,
with wjy #£ 0 such that

/01 W' (2)0 ()0 (2)pu(z)de = )\/ (z)dz for any v € V.



Proposition 8. Let (V) =1, be a sequence of approximation spaces satisfying the following
Jackson’s type inequality:

(I = 7mp)vllgr < CT|v|lcra forve CHe,

where 7y is the L?>—orthogonal projection on Vj and C > 0 some universal constant . Fur-
thermore, assume that every Vj contains constant functions.

For (0, 1) € Oq the Eigenproblem[] has dim(Vy) solutions (X4, wy;)s with real eigenvalues
0 =2~ <A1 <Ajz2 < ... < Ajdim(vy)—1- For J big enough, the eigenvalue \j1 and the
spectral gap Xjo — Aj1 are uniformly bounded on O,.

Proof. We adapt the notation from the proof of Proposition 5] By the Lax-Milgram theorem,
there exists an isomorphism S; : H} (1) — H{ () such that

[(Siv,u) = (v, u) g1y, for all v,u € HE ().

Note that since for any v € LZ(u) the functional H{(p) 3 u — (v, u)r2(,) € R is continuous
on H¢ (1), by the Riesz representation theorem there exists a continuous operator J : L3(u) —
H} () such that

<U, U>L2(M) = <JU, U>H1(M)'

Define operator B; = SjoJ oI, where I is the identity embedding of Hg (1) into L3(u). By ,
the form [ defines an equivalent norm on H{ (). Note that Bj is a self-adjoint and compact
operator on the Hilbert space Hj(u) with (—induced inner product. Consider (\;,w;), a
solution of the Eigenproblem (3| For any v € Hg (1) we have

l(wi,v) = )‘i<wi>U>L2(u) = )‘i<Jwiav>H1(,u) = )\il(SlJ’wi,’U) = l()\iBl’wi,’U),

hence (A;l,wi) is an eigenpair of the operator B;. In particular, Proposition [5| implies that
the biggest eigenvalue )\1_1 is simple.

Denote by 7rf] the [—orthogonal projection on the subspace V;. Define the operator
By = Wf]Bnrf]. Since By is a self-adjoint operator on V;, with the [—induced inner product,
it has dim(Vy) — 1 solutions ()\jj,wJ,i)i, with eigenvalues )\j} > )\jé > > )\iéim(vj)_l.
Analogously as for the operator B;, we check that (\j;, w;;) are solutions of the finite dimen-
sional Eigenproblem [7] From (3)) and the uniform bound on pu, follows that

(I = mb)wrl; < (T = wb)(I = mp)willy < 2(/(1 — mp)willi < C|(I = mp)wi g,

for some, uniform on 6,, constant C. Using Jackson’s inequality, the uniform bound on
|lw1||c1.e and uniform bounds on the eigenvalues A1, A2, we conclude that for J large enough
A=

I — 7wl <
(1 — mp)wi 3%

The claim follows from Theorem O



3 Generalized eigenvalue problem for positive definite symmet-
ric matrix pairs

In this section, we briefly state the error bounds for the perturbed generalized eigenproblem
for real symmetric matrices. For the general theory of generalized matrix eigenproblems we
refer to [7, Chapter VI|. For an overview of the a posteriori methods for the matrix eigenvalue
problems we refer to [2, Chapter 1] or [7, Chapter V]|.

Let A,B € R™™ be real, symmetric matrices with B positive definite. Consider the
following generalized symmetric eigenvalue problem:

Eigenproblem 9. Find (A, z) € R x R", with = # 0, such that
Ax = A\Bz.

Using Cholesky decomposition of the matrix B = DD*, one can reduce the generalized
Eigenproblem @] to a standard eigenvalue problem for the matrix D' AD~*. It follows, that
the Eigenproblem @] has n solutions (A, z;)i=1,. n, all its eigenvalues are real with A\; > Ag >
... > A, and the corresponding eigenvectors (z;)i—1,., are B—orthogonal.

Consider now the perturbed matrices ;{, B with B positive definite, and the corresponding
perturbed eigenproblem:

Eigenproblem 10. Find (X, z) € R x R", with x # 0, such that
Az = \B7.
Let || - ||;z denote the Euclidean norm on R"™. First we state the standard a posteriori

error bound for eigenvalues and the eigenvectors (cf. [1, Generalized Hermitian Eigenvalue
Problems, Stability and Accuracy Assessments|)

Theorem 11. Let (\;, x;); and (Xz, Z;)i be solutions of the Eigenpmblems@ and respectively,
ordered decreasingly with respect to the eigenvalues. Choose the eigenvectors normalized in
Il - [l;2. There exists an eigenpair (Niy, Ti,), with 1 < ig < n and ||xi,||;2 = 1 such that

Nig — A1 < |1B7|,2 (A = A7 + (B — B)7 e,

- 24/2k(B) | _ ~ o~ ~ -

|2ip — 212 < SO | B~ |2 1A = A)Z1 + A (B — B)a e,
(i)

where k(B) = ||Bj2|| B2 is the condition number of the matriz B and (i) is the so

called localizing distance, i.e. 6(N\;,) = minjz;, [A; — A1

The disadvantage of the above result is that it provides no information about the index g
of the best approximation of (A1, x1). This is a typical downside for a posteriori methods that
are supposed to provide information how far the calculated solution is from the nearest exact
solution, but are not intended to compare ordered eigenpairs. A helpful result is the absolute
Weyl theorem for generalized hermitian definite pairs, established by Y. Nakatsukasa [5]. For
readers convenience, we state the theorem below in the form presented in [6, Theorem 8.3|.

Theorem 12. ([5])Let (\;,z;); and (XZ,@)Z be solutions of the Eigenproblems@ and re-
spectively, ordered decreasingly with respect to the eigenvalues. Denote AA = A — A and
AB =B — B. Then

A= X < B |AA = NABp,



A= N < BT |AA = NABp,

foralli=1,....n.
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