Supplement A: Construction and properties of a reflected
diffusion

Jakub Chorowski

1 Construction

Assumption 1. For given constants 0 < d < D let the pair (0,b) € ©, where

0 := 0(d,D) = {(0,b) € C*([0,1]) x C*([0,1]) : [|Blloc V [|02]|oc V| 0" |oe < D, il[qof” o?(z) > d}.
xe|0,

For (0,b) € © consider the following Skorokhod type stochastic differential equation:

dXt == b(Xt)dt + O'(Xt)th + th, (].)
Xo = x0€]0,1] and X; € [0, 1] for every ¢t > 0,

where (Wi, t > 0) is a standard Brownian motion and (K¢ > 0) is some adapted con-
tinuous process with finite variation, starting form 0, and such that for every ¢ > 0 holds
f(f 1(0,1)(Xs)dKs = 0. By the Engelbert-Schmidt theorem the SDE has a weak solution,
see [13] Thm. 4.1]. In this section, we will present an explicit construction of a strong solution.
To that end we extend the coefficients b, o to the whole real line.

Definition 2. Define f: R — [0,1] by

(@) T — 2n 2n<zr<2n+1
xr) =
2n+1)—z :2n+1<z<2n+2

and b,5 : R — R by
b(x) = b(f(x))f.(x)
o(z) = o(f(z)).

Theorem 3. For every initial condition zo € [0,1], independent of the driving Brownian
motion W, the SDE

Y, = b(Y)dt +35(Y)dWs, (2)
Yo = o,
has a non-exploding unique strong solution. Define

X = f(Y).

The process (Xi,t > 0) is a strong solution of the SDE (1)).



Proof. The existence of a non-exploding unique strong solution (Y;,¢ > 0) of the SDE
follows from [8, Proposition 5.17]. Process Y is a continuous semimartingale, hence by [12|
Chapter VI Theorem 1.2] admits a local time process (L) ,¢ > 0). By the It6-Tanaka formula
(J12, Chapter VI Theorem 1.5]) process X satisfies

nez neL

X = wo [ B007 (s + [ S0 0+ 3 2 n) - DL (20 1)

¢
= :U0+/ b(XS)ds+/ o0(Xs)dBs + Ky,
0 0

where B, = fg fL(Y)dWand Ky =3, ., LY (2n) =", oz LY (2n+1). Note that for any T > 0
the path (X;,0 <t < T) is bounded, hence K is well defined. Using Lévy’s characterization
theorem we find that B is a standard Brownian motion. From the properties of the local time
L) follows that K is an adapted continuous process with finite variation, starting from zero
and varying on the set J,,c,{Y: = 2n} U{Y; = 2n + 1} C {X; € {0,1}}. Consequently, X is
a strong solution of the SDE . O

Notation. We will write f < g (resp. g 2 f) when f < C - g for some universal constant
C >0. f~gisequivalent to f < g and g < f.

From now on we take the Assumption as granted. We denote by P, the law of the
diffusion X on the canonical space € of continuous functions over the positive axis with values
in [0, 1], equipped with the topology of the uniform convergence on compact sets and endowed
with its o—field F. We denote by E,; the corresponding expectation operator.

2 Modulus of continuity

In this Section we want to prove a uniform upper bound on the moments of the modulus of
continuity of the reflected diffusion X.

Definition 4. Denote by wy the modulus of continuity of the path (X;,0 <t <T), i.e.

wr(d) = sup | Xy — Xl
0<s,t<T
[RNED

Theorem 5. For every p > 1 there exists constant C, > 0 s.t.

sup E,p[wh(A)] < C,AP/2(1V In(2T/A))P (3)
(o,b)€®

Proof. Fischer and Nappo [3] proved the above bound for the standard Brownian motion. We
will now generalize their result to diffusions with boundary reflection.

Step 1. Consider a martingale M with dM; = o(X;)dW;. By Dambis, Dubins-Schwarz
theorem M, = B 1 o0?(X0)du for some Brownian motion B. Consequently

| My — M| = |Bfggz(xu)du = B2 o2(x,)du] < @8 (It = slll0%]o0),

where w? is the modulus of continuity of B. Thus holds for the martingale M, with a
constant that depends only on the upper bound on the volatility o.



Step 2. Consider a semimartingale X with dX; = b(X;)dt + dM;. Then
X, — X, < \/ du—/ b(Xu)du| + | My — My| < [t — s][[Blloc + ™ (|t — s]).

Consequently . ) holds for semimartingales with a constant that depends only on the upper
bounds on ¢ and b.

Step 3. For (o,b) € © consider the reflected diffusion process X satisfying the SDE ().
Let

Ay, = b(Yy)dt+ & (Y;)dWy,
Xe = f(V),
where b o and f are as in Definition [2 l From Step 2 follows that holds for the semimartin-

gale Y with a uniform constant on ©. Since wX < wY, we conclude that the claim . holds
for the reflected diffusion X. O

3 Local time

In this section we introduce some preliminary results regarding the local time of the reflected
diffusion X. A standard reference is [I12, Chapter VIJ.

Definition 6. Set ¢t > 0. For any Borel set A C [0, 1] we define the occupation measure T;(A)
of the path (Xs,0 < s <t), with respect to the quadratic variation of X, by

T, (A) = /Ot 14(X,)0%(X,)ds.

When T;(A) is absolutely continuous with respect to the Lebesgue measure dx on the interval
[0, 1], we define the local time by the Radon-Nikodym derivative:

dT;

g

Theorem 7 (Ito-Tanaka formula). Let X be the solution of the SDE with (0,b) € O.
Then, the local time L exists and has a continuous version in both t > 0 and x € (0,1). For
every x € [0,1] the process (Li(x),t > 0) is non-decreasing and increases only when X; = x.
Furthermore, if f is the difference of two convex functions, we have

f(Xy) = f(Xo) + / I( s)dWs +/ I ds+;/01 Li(x) f" (dx)+

+ /0 fL(Xs)dKs. (4)

Proof. Reflected diffusion X is a continuous semimartingale. By [12, Chapter VI, Theorem
1.2 and Theorem 1.5] there exists a process (Li(z) : z € (0,1),t > 0), continuous and non-
decreasing in t, cadlag in x and such that holds. Furthermore, by [12, Chapter VI, Theorem
1.7] for every x € (0,1)

Lt(.CC) =

t t
Lt(LU) — Lt(l‘_) = 2/ 1{XS=:E}b(X8)dS + 2/ 1{XS=:B}dKS = 0.
0 0

The concentration of the associated measure dL; on the set {X; = x} follows from [12, Chapter
VI Proposition 1.3]. O



Lemma 8. For every T >0 and p > 1 we have

sup sup Eg,plsup LY (z)] < oo.
(o,b)e© z€(0,1) t<T

Proof. The usual way to bound the moments of the local time is to use the It6-Tanaka formula
for function f,(y) = (y—2z)7, see e.g. [12, Chapter VI Theorem 1.7]. Because of the additional
reflection term dKy, we make a less intuitive choice of the function f that guarantees f/'(0) =
fQ) =
Set T'>0,p>1and z € (0,1/2]. Let fo(y) = 1(z <y < 3/4)(3y — 2y%). By
3 —4x
2

Li(z) = fo(X3) = fo(X0) —/0 1(z < X, < 2)(3 — 4X,)0(X,)dW;
— /t 1(z < X5 < 3)(3 — 4X,)b(X;)ds + 2/t 1(z < X, < 3)0?(X,)ds.
0 0

Applying the uniform (on ©) bounds on b and o, together with the Burkholder-Davies-Gundy
inequality, we conclude that for t < T

sup  sup E,p[Li(2)P] < Cpr,
(0,b)€O© £€(0,1/2)

holds with some positive constant Cy, 7. For « € (1/2,1) we consider function f,(y) = 1(1/4 <
y < 2)(y — 2y?) and proceed similarly. O]

Theorem 9. For any T >0, p > 1 and z,y € (0,1) we have

supEos[suplLe(o) ~ L)) < Corle — i 5
(o,b)e®

In particular, the family L of the local times can be chosen such that functions © — Ly(x)
are almost surely Hoélder continuous of order « for every o < 1/2 and uniformly in t < T.
Moreover, for every p > 1 and t <T we have

sup E,p[ sup LY (2)] < oo. (6)
(o,b)€® z€[0,1]

Proof. The proof goes along the same lines as [12, Chapter VI Theorem 1.7]. We will first
show the inequality (B]). For z € (0,1), by the It6-Tanaka formula

%Lt(:c) =(Xy—2)t - (Xo—2)" - /t 1(Xs > x)o(Xs)dWs+
0

— /t 1(Xs > x)b(Xs)ds — /t 1(Xs = 1)dK,.
0 0

Since the function z — (X; — )T — (X — ) fo = 1)dKj is uniformly Lipschitz on
©, we need only to consider the martingale term M} = fo (Xs > x)o(Xs)dWs and the finite
variation term DY = 0 1(Xs > 2)b(X,)ds. For z,y € (0,1) Holder’s inequality and Lemma
yield

Yy 2p
Ea,b[82¥|Df — D§/|2p} < Ea,b[(/ LT(z)dz> }
t<

x



Y
Sy =71 [ EaslL¥ ()] S Cply - o
xT

for some constant 5p7T > 0. To bound the increments of the martingale M?* we use the
Burkholder-Davies-Gundy inequality together with Hélder’s inequality, obtaining

Yy p ~
oo sup M7 M) S C B ( [ (=)' < Coirly P
t< x

We finished the proof of the bound (5). From the Kolmogorov continuity criterion (see [12]
Chapter I, Theorem 2.1]) follows that there exists a modification L of the family of local times
L, such that functions x — L;(z) are almost surely Holder continuous of order « for every
a < 1/2 and uniformly in ¢t < T'. Furthermore, for any o < 1/2 and p > 2 we have

L(z)—L
sup Eg,stup —‘ (2) ;(y)\y’} < 0.
(0,b)€® |

Fix xo € (0,1). By the bound above and Lemma |8 we conclude that

~ L .y ~
sup E,p[ sup LY(z)] < sup E(,,b{( sup | Le(z) t£m0)| + Lt(x0)>p} < 00. O
(0b)e®  zel0,1] (0,b)€® etey T — ol

Theorem 10. Set T' > 0 and define the (chronological) occupation density pr by

MT(J") = 111152((3;)) :

Then, for any bounded Borel measurable function f, the following occupation formula holds:

1 T 1
= /0 F(X,)ds = /0 F(@)r(z)d.

Furthermore, the occupation density ur inherits the reqularity properties of the local time L.
In particular, for every p > 1 and T > 0 we have

sup Eqp[ sup plh(z)] < oo (7)
(o,b)€O z€[0,1]
sup Eop[lpr(z) — pr(y)[*] < Cprle—yl”. (8)

(o,b)e®

Proof. The existence and form of the occupation density follow from Theorem [7]and Definition

@ Given that ¢? > 1 inequality follows directly from @ Finally, and the uniform
Lipschitz property of o2 imply . O

4 Estimation of the occupation time of an interval

Estimation of the local time from finite data observations has been extensively studied and
is nowadays well established, see e.g. [0, [7]. Nevertheless, until recently, much less was
known about the estimation of the occupation time of a given Borel set. In the breakthrough
paper Ngo and Ogawa [10] authors considered Riemann sum approximations of the occupation



time of a half-line. [10, Theorem 2.2] stated a convergence rate A1 for diffusion processes
with bounded coefficients, which was defined as normahzatlon required for tightness of the
estimation errors. It is important to note that A1 is a better rate than could be obtained
using only the regularity properties of the local time. In the special case of the Brownian
occupation time of the positive half-line, A1 was shown to be the upper bound of the root
mean squared error (see [10, Theorem 2.3]) and to be optimal. Further development was done
in Kohatsu-Higa et al. [9]. By means of the Malliavin calculus [9, Theorem 2.3] proved that for
any sufficiently regular scalar diffusion X and an exponentially bounded function h inequality

1 T 1 N—-1 p .
1 1 /2
Ea,bHT /0 P(Xs)ds — ~ ;o: h(XnA)‘ } < Crxp AP 9)

holds with constant Cr x, > 0 depending on the time horizon T', diffusion X and function h.
In what follows, we extend @, for h being characteristic function, to reflected diffusions with
coefficients in ©.

Theorem 11. For any T > 0 and « € (0,1) we have

N-1

1 T 24 L
sup E;p 1(Xpn < a) — T/ 1(Xs < oz)ds‘ }2 < C’TAg,
0

(0,b)€® HN o
with some positive constant Crp.

Remark 12. As the right hand side of @D does not scale linearly in p, it is not optimal to use the
Girsanov theorem to generalize the Brownian bound to diffusions with bounded coefficients.
Nevertheless, we proceed with this approach, as the suboptimal rate A2/3 is sufficient for our
purposes.

Proof. Fix T > 0. The proof is divided in several steps, generalizing the result from a standard
Brownian motion process to reflected diffusions.

Step 1. Let Wy be a standard Brownian motion. We will show that there exists a constant
C7 > 0 such that for any o € R we have

N 1

H N 4 1(W"A <a)- % /OT 1(W; < a)dS‘%} < CrAartl/2, (10)

Set av € R and hq(x) = 1(x < ). Following [9, proof of Proposition 2.1|, for M € N, denote

pym(T) = CMe(MI 1 )(T),
hant(z) = /R ha(@ — y)par(y)dy,

1

~1
where the constant c, = (fl evi-1 dy) is such that pjs integrates to 1. Direct calculations

1

show that
A1) : han — ho in L
AGii): by D [ha ()] + o (2)] < 2
22 1 (aty/M)?
A(ii) : Sup s supuzof |h/a7M(x)|e_ vdr = cp f_ll evi-le” U dy < 1.



Let

1 1 [T
Sxa = MMWM—T/'MMQ%
n=0 0
1 = 1 /7
Snam = 55 D han(Waa) = /0 hay (Ws)ds.
n=0

Arguing as in [9, proof of Eq. 3.10], we obtain that for any «

. 2 2
]\/}gnoo Ea’b[SNpiaaM] - Eavb[sf\?,a] :

Hence, it is sufficient to show that
Eo,b[SJQ\?,a,M] < CpN~—(PF1/2), (11)

for some constant Cr independent of M and a. But, given uniform bounds A(i7) and .A(i1),
inequality follows by the same calculations as in [9, proof of Theorem 3.2].

Step 2. Consider diffusion Y satisfying dY; = h(Y;)dt +dW;, with uniformly bounded drift
h. We will show that

N 1

1 T 24 L
H 1(Yoa < a) — / 1(Y; < a)ds‘ } f<Op ||h||ooA17/24. (12)
N = T /o '

Denote

Zy = exp ( - /Ot h(Yy)dW, — ;/Ot hz(Ys)ds).

Since h is bounded, by Novikov’s condition Z is a martingale. Define the probability measure
Q by the Radon-Nikodym derivative:

dQ

W ‘]'—t: Zy.

By Girsanov’s theorem the process Y is a standard Brownian motion under the probability
measure Q. From Holder’s inequality, for % + % =1, follows that

N-1
EH%Zl(YnA <a)—;/T1(}Q <oc)ds‘2]; =
n=0
N—
H%Z (Yoa < @) ;/T (Y<ads’Z ]é
0

1 1 (7 2p
SE@HN 1(YnA<a)—T/ 1(Y, < a)ds
0

1

1
| ¥ Ea[ 2797

Since the drift function h is uniformly bounded,

Eo[2"] =E[Z; V] =E|exp ((¢— 1) /0 "By, 1 ek ' B (Y,)ds ) |

0



9(g—1) 2
< exp < 5 THhHgo) - C’q,qllhlloo

Hence, by (10)), with p = 6/5, inequality . ) holds.

Step 3. Con81der diffusion Y satisfying dYt = b(Yt)dt + 5(Y;)dW;, with bounded drift b
and positive, Lipschitz continuous . Let S(z) = [ 6 (y)dy, dZ; = S(Y;). Tt follows from
[to’s formula that

dZ; = g(Yy)dt + dW4,
where g(x) Q—%& (x). Since ¢ is a strictly positive function, S is increasing and invertible.

O]
Denote h(z) = g(S~!(z)). We have

dZ; = h(Z,)dt + dW,

with

Blloe 1,
hlloo < = oo
hlloe < 342 + 5171

From follows, that there exists a constant C'7, depending only on the bounds on the
diffusion coeflicients, such that
2:| %
N—

H Z (Zna < S(a)) — ;/()T1(ZS<S(a))ds‘2] < OpAE. (13)

N-1 1 T
1(Yoa < a) — / 1(Y; < a)ds
T 0

Bl 3
n=0

[N

Step 4. Fix (0,b) € O. Let
Ay, = b(Yp)dt +(Y;)dW,,
Xt = f(YVt)a

where 5, o and f are as in Definition . Recall that by Theorem |3| process X is the reflected
diffusion with coefficients (o, b). By definition of the function f, for any a € (0,1) and s > 0,
we have

{Xs <a} = U {Ys € (2m — a,2m + «)}. (14)
meZ
Denote
N T
I'y(m) = iz AE(ZmanqLoz))l/ 1(Y; € (2m — a,2m + «))ds
N N n T . s , .

By there exists a uniform on © constant C7 > 0, such that for any m € Z, we have
i 17
Ea,b [P?\;(m)} : < CrAzs,

Let Y;* = supg<; |Ys|. From follows that

N-1 T

1

~ D 1(Xpa <a) —/0 (X, <a)ds =Y Ty(m)= Y Tn(m)L(Y7>2/m| - 1).
n=0 mEeZ MEZ

8



Since I'y(m) < 2, for any M, using we obtain
2
Eou || D Tn(m)1(vz = 2lml + 1)| | 5
mEZL

SME[ 3 TRom)] + B 3 105 2 2m - 1)f]
Im|<M m>M
SOrM2ATE + N Pyy(V > 2(m vV k) —1).
m,k>M

By the Burkholder-Davies-Gundy inequality, together with uniform on © bounds on diffusion
coefficients, for any p > 1,

o
2

T _
Enal(5)) S Baa[( [ 3009 *] + (Tl S Cor

Consequently, by the Markov inequality

Z Pop(Y7 >2(mVEk)—1)<2 Z Cpr(2m —1)7P
m,k>M M<k<m
< 20p7T Z (2m _ 1)*(1071) g M*(pfz).
m>M

We conclude that

2
Egva 3 Ca(m)1(Ys = 2|m| + 1)‘ | s m2a® 4 p-e-2,
meZ

Hence the claim follows for M ~ A5 and any p > 4. O

5 Upper bounds on the transition kernel

In this section we prove a uniform Gaussian upper bound on the transition kernel of the
reflected diffusion X with coefficients in ©. Under the assumption of smooth coefficients, ex-
istence of Gaussian off-diagonal bounds follows from the general theory of partial differential
equations, see [4, @] c.f. [5, Chapter 9]. Sharp upper bounds are also established for diffusion
processes in the divergence form [2, Chapter VII| and more recently were derived for multi-
variate diffusions with the infinitesimal generator satisfying Neumann boundary conditions,
see [14]. Nevertheless, as demonstrated by [II, Theorem 2| Gaussian upper bounds do not
hold in general for scalar diffusions with bounded measurable drift.

Theorem 13. The transition kernel p; of the reflected diffusion X satisfies

C (z—y)?
sup iz, y) S —ee” e,
(o,b)€© \/E

forall z,y € [0,1], 0 <t <T and ¢,Cp > 0.



Proof. We will generalize the bound on the transition kernel from diffusions with bounded
drift and unit volatility to reflected processes with coefficients (o,b) € ©.

Step 1. Consider diffusion Z satisfying dZy = ¢g(Zy)dt + dW;, where g is a bounded
measurable function. Then by [II, Theorem 1] the transition kernel p? of the process Z

satisfies
o

Z il —(z=llglleoVt)?/2
P (7,y) S ze dz.
Vit Syl /vi
Using the inequality [I, Formula 7.1.13]:
0o —z2
[Tt < VT2, (15)
x T+ /22 +4/mr T 2

we obtain that

00 0o abt)2
/ ze~ (VD /2, / (w+ b\/%)e_wz/de < e‘< 2t (1 + b\/ﬁ>
a/\/i

&bV V2
Thus
7 L e gl oyl
Py (z,y) < CT,HgHoo%e 2t : (16)

Step 2. Consider diffusion Y satistying dY; = b(Y;)dt +&(V;)dW;. Let S(z) = [ 5~ (y)dy
and Z; = S(Y;). It follows from It6’s formula that

dZy = g(Yy)dt + dWy,

where g(x) = % — 26/(z). For any z,y we have
I 5 e =yl < 1S7Hz) = ST )| < 1[5]lsolz — yl.
Hence, from follows that

(S~ ') - S71(y)?

o (@,9) = P57 (2), 57 3) T2 e +lgllelS @) - 57 ()]

Vi o

Crg (z —y)? .
S e exp (= STt + gl [F ool — 1) 17
S T exp (= gyt + lollel@lcl — o) (7)

Step 3. For (o,b) € O let b, and f be as in Definition [2 and Y as in Step 2. Note first,
that by there exist uniform on © constants cp, ¢, co > 0 such that

(z —y)?

— el —y). (18)

Yy cr (
r,Y) < —exp| —
Pt (2,9) P

By Theorem [3| X; = f(Y}) is the reflected diffusion process corresponding to the coefficients
(0,b). For y € [0,1] let (ym)mez be such that y,, € [m,m + 1] and f(ym) =y. Then

pf((ﬂc,y) = pr(l‘aym)

mez
Since for any m € Z we have |z —y| + (|m| — 2)+ < |z — ym| < |m|+ 2, from follows that

2
X cr ( (T — Ym) )
z,y) < — exp| — —— +colx —
pr (z,9) i §€Z p pon 2T — Y|
o —(a=w? [(jm] —2)4]?
< —e at ex (—74-6 m+2). O
7 mEGZ p o7 2(lm| +2)

10



6 Mean crossings bounds

Throughout this section we consider fixed time horizon, for simplicity we assume 7" = 1.

Definition 14. For a € (0,1) and n =0,..., N — 1 denote

X(n, @) = 1jg.0) (Xnt1)a) = L,a)(Xna)-

Theorem 15. For every o € (0,1) we have

N-—1 o 1
Ens| (D2 e(m: 0)[(Xpuina = Xaa)?) |7 S A2
n=0

Proof. Fix a € (0,1). Since|x(n,a)| = 1 if and only if the increment (X,a, X(n41)a) crosses
the level «, the claim is equivalent to the inequalities:

N-1

1
Eo,b[< Z 1(XnA < a)]_(X(nJrl)A > a)(X(n+1)A _ XnA)2>2] 2 S Al/Q,
v N
Eo,b[( Z 1(XnA > a)]'(X(n-l-l)A < a)(X(n+1)A _ XnA)2) ] 2 5 AI/Z.
n=0

Below, we only prove the first inequality. The second one can be obtained in a similar way
or by a time reversal argument. Denote

M = 1(Xna < a)l(X(n+1)A > a)(X(n+1)A - XnA)Q-

We have
N-1 0, N-1 N-1

Ea,b[( D 1(Xna < )UK (pr1)a > a)(X(n+1)A_XnA)2) } = Eopil+2 Y Eoplnmiml-
n=0 n=0 0<n<m

Denote by p; the transition kernel of the diffusion X. From Theorem [13] and the inequality
follows that

a rl a rl 1 2 a 1—zc
/ / palz,y)(y — z)dyde < / / Y (y — z)*dydz < AQ/ /K e % Adzde
0 Ja 0 Ja \/Z 0 3;%

a 1"“2 .2 « )2
< AQ/ /\/F e 2dzdr < AQ/ e A da < A2, (19)
0 Jezz 0
Similarly
« 1
| [ patety - oidyds s 4 (20)
0 «

For simplicity we will use the stationarity of X, which is granted by the assumption xg 4
1. Using more elaborated arguments the result could be obtained for an arbitrary initial con-
dition. By stationarity, for any ¢, the one dimensional margin X; is distributed with respect

11



to the invariant measure pu(x)dz. Conditioning on X, from (19)) and uniform bounds on the
density u follows

« 1
Eop[r2] = /0 / pa(@,y)(y — 2)'dyu(z)de < A2,

Hence

N—-1 i )
D Eoplni] S NAZ = Al
n=0

The Cauchy-Schwarz inequality implies

N-2 N—-2

1 1 5 3
> Eoplminit] SO Bop[ni)2Eoplnnii]2 S NAZ S A2
n=0 n=0

Finally, using , for m > n 4+ 1, we obtain

o 1 o 1
B pliinthn] = /0 / /0 /pA<x,y><y—$>2p<m_n_m<z,x><z—w)gpr,z)u(w)dydxdzdw

N /Oa /alm(l‘,y)(y - fE)2dydfﬂ\/(m_ln—_1)A /Oa /;(Z — w)?pa(w, 2)dzdw

<:Z&&Q 1 .
Consequently
N-3 N-1 N-3N-n-2 N3
D, D Eaabnm] SAYPY > 2 SAMEY VN -2
n=0 m=n+2 n=0 k=1 V@; n=0
N—-2
= A5/2 \/ﬁ 5 A5/2N3/2 A -
n=1

Definition 16. Define the event
Ri = {w1 ()]l < AY M0},
Using Markov’s inequality together with Theorem [5(and @ we obtain that
Pyp(R\ R1) S A3,
Theorem 17. For any o € [%,1 — 1] holds

N-1 271
Eop [1721 : ‘ Y (o)X nrna) = 1ow(Xna)) (Xpina — @)* = (Xoa - 04)2)‘ } NG

n=0

Proof. Fix o € [%, 1-— %] On the event R1, whenever 1(g o)(X(n41)a) = Ljo,0)(Xna) # 0 we
must have [X,a —al, [X(p4na —a Sw(A) < A*/9. Consider function d : [0,1] — R given by

d(z) = (x — a)?1(|z — a| < AY?).
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We have

(Ljo,0) X (nr1ya) = Lo,0) (Xna)) (Xnsnya — @)® = (Xna — @)?) =
= (1j0,0)(X(nt1)a) = L0,0)(Xna)) (d(X(g1)a) — d(Xna))-

Step 1. We will first show that

oo 1r, \Z o) (508) (X irya) — d(X,))| ] 5 22 @

Note that
dz) = 2x—a)l(lz—al <AY?),
1

5d"(gc) = —AY950, avey +1(jw —al < AY) = A5 ey,
where the second derivative must be understood in the distributional sense. Since we fixed «
separated from the boundaries, d’'(0) = d’(1) = 0 for A small enough. Denote by

Ls¢(x) :== Li(z) — Ls(x),

the local time of the path fragment (X,,s < u <t). From the It6-Tanaka formula (4] follows
that

(n+1)A (n+1)A
A(Xni1)a) — d(Xna) = / &' (X,)o (X )dW; + / 4 (X )b(X,)ds+
nA nA

(n+1)A
s [ X — ol < AY)ds — ALy gyl - AY)
nA
(n+1)A
- A4/9LnA,(n+1)A(a + A4/9) = / d/(Xs>a(Xs>th + Dy,
nA
First, we will bound the sum of the martingale terms. Since martingale increments are uncor-
related, using [t6 isometry, we obtain that

N-1
Ea,bH > 1[o,a)(XnA)/
=0 n

(n+1)A 2
d’(Xs)a(Xs)th‘ ] -
A

g [OTA? 4
_ A9/ | Byl (@) < A,

where the last inequality follows from Theorem Now, we will bound the sum of the finite
variation terms: Zg:_ol 1(0,a)(Xna)Dy. Note first, that since b is uniformly bounded, we have

N-1 (n+1)A
RRTEONIY X)as| £ 5 [ 1ol < A )i S Ao
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Since by the inequality lt1]|co has all moments finite, the root mean squared value of
this sum is of smaller order than A3, Now, note that since on the event R; w(A) <
AY9 condition X,a < a implies Lya (nenyala + A*9) = 0. On the other hand, whenever

LA (nnyala — A*9) £ 0 we must have X,o < a . Hence

Z 1j0,0)(Xna)(AY Lo ninya (= AY) + AYO LA rinya(a+AY9)) = AYIL (=A%)

Using first the Cauchy-Schwarz inequality and then Theorem [9] we obtain
Eop|[AYLy (o - AY?) — / Li(2)dz|’| A4/9/ Eop[|L1(2) — Li(a — AY?)2)de
a—A%/9 a—A4/9
5 A4/3.

Consequently, to prove we just have to argue that the root mean squared error of

a N-1 (n+1)A
[ b= Y e (Xa) [ FXILUIX. - af < AYds
a—AY/9 n=0

nA

N-1 ,(n+1)A
— / (1(Xs <a)—1(X,a < a))02(X3)1(|X5 —a| < A4/9)ds

n=0 A
N-1 .(n+1)A

= / (1(Xs < @) —1(Xpa < ))o?(Xs)ds (22)
n=0 /1A

is of order A2/3. From the Lipschitz property of o2 follows that

N-1 ,(n+1)A
> [ < @)~ 10 < )(0(X) — (a))ds] 5
n=0 7 1A

N-1 ,(n+1)A 4 4 4 a+A%/9 s
> / 1(X, — af < Ah)ABds < A / 1(dz) < A3 .
n=0 " «

Thus, by , we reduced to

! 1
/0 (X < a)ds — n;(l(X"A < a),
which is of the right order by Theorem . We conclude that holds.
Step 2. Consider the time reversed process Y; = X1_; . Since X is reversible, the process
Y, under the measure P, 5, has the same law as X. Furthermore, the occupation density and
the modulus of continuity of processes Y and X are identical, hence R is a “good” event also
for Y. Inequality is equivalent to

N|=
Wi

Epp |1, - \Nzll[o,a)<ymm<dmmﬂm>—d(YmA»(Q} S A,
m=0

Substituting n = N — m we obtain

N-1
L10,0) (Yma)(d(Yima1)a) — Zl[Oa) (n+1)A) (A X(ngpna) —d(Xna)). O

m=0
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