# Supplement A: Construction and properties of a reflected diffusion 

Jakub Chorowski

## 1 Construction

Assumption 1. For given constants $0<d<D$ let the pair $(\sigma, b) \in \Theta$, where
$\Theta:=\Theta(d, D)=\left\{(\sigma, b) \in C^{1}([0,1]) \times C^{1}([0,1]):\|b\|_{\infty} \vee\left\|\sigma^{2}\right\|_{\infty} \vee\left\|\sigma^{\prime}\right\|_{\infty}<D, \inf _{x \in[0,1]} \sigma^{2}(x) \geq d\right\}$.
For $(\sigma, b) \in \Theta$ consider the following Skorokhod type stochastic differential equation:

$$
\begin{align*}
d X_{t} & =b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}+d K_{t}  \tag{1}\\
X_{0} & =x_{0} \in[0,1] \text { and } X_{t} \in[0,1] \text { for every } t \geq 0
\end{align*}
$$

where $\left(W_{t}, t \geq 0\right)$ is a standard Brownian motion and ( $K_{t}, t \geq 0$ ) is some adapted continuous process with finite variation, starting form 0 , and such that for every $t \geq 0$ holds $\int_{0}^{t} \mathbf{1}_{(0,1)}\left(X_{s}\right) d K_{s}=0$. By the Engelbert-Schmidt theorem the SDE (1) has a weak solution, see [13, Thm. 4.1]. In this section, we will present an explicit construction of a strong solution. To that end we extend the coefficients $b, \sigma$ to the whole real line.

Definition 2. Define $f: \mathbb{R} \rightarrow[0,1]$ by

$$
f(x)= \begin{cases}x-2 n & : 2 n \leq x<2 n+1 \\ 2(n+1)-x & : 2 n+1 \leq x<2 n+2\end{cases}
$$

and $\widetilde{b}, \widetilde{\sigma}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
\widetilde{b}(x) & =b(f(x)) f_{-}^{\prime}(x) \\
\widetilde{\sigma}(x) & =\sigma(f(x)) .
\end{aligned}
$$

Theorem 3. For every initial condition $x_{0} \in[0,1]$, independent of the driving Brownian motion $W$, the $S D E$

$$
\begin{align*}
d Y_{t} & =\widetilde{b}\left(Y_{t}\right) d t+\widetilde{\sigma}\left(Y_{t}\right) d W_{t}  \tag{2}\\
Y_{0} & =x_{0}
\end{align*}
$$

has a non-exploding unique strong solution. Define

$$
X_{t}=f\left(Y_{t}\right)
$$

The process $\left(X_{t}, t \geq 0\right)$ is a strong solution of the SDE (1).

Proof. The existence of a non-exploding unique strong solution $\left(Y_{t}, t \geq 0\right)$ of the SDE (2) follows from [8, Proposition 5.17]. Process $Y$ is a continuous semimartingale, hence by [12, Chapter VI Theorem 1.2] admits a local time process $\left(L_{t}^{Y}, t \geq 0\right)$. By the Itô-Tanaka formula ([12, Chapter VI Theorem 1.5]) process $X$ satisfies

$$
\begin{aligned}
X_{t} & =x_{0}+\int_{0}^{t} \widetilde{b}\left(Y_{s}\right) f_{-}^{\prime}\left(Y_{s}\right) d s+\int_{0}^{t} \widetilde{\sigma}\left(Y_{s}\right) f_{-}^{\prime}\left(Y_{s}\right) d W_{s}+\sum_{n \in \mathbb{Z}} L_{t}^{Y}(2 n)-\sum_{n \in \mathbb{Z}} L_{t}^{Y}(2 n+1) \\
& =x_{0}+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}+K_{t}
\end{aligned}
$$

where $B_{t}=\int_{0}^{t} f_{-}^{\prime}\left(Y_{s}\right) d W_{s}$ and $K_{t}=\sum_{n \in \mathbb{Z}} L_{t}^{Y}(2 n)-\sum_{n \in \mathbb{Z}} L_{t}^{Y}(2 n+1)$. Note that for any $T>0$ the path $\left(X_{t}, 0 \leq t \leq T\right)$ is bounded, hence $K$ is well defined. Using Lévy's characterization theorem we find that $B$ is a standard Brownian motion. From the properties of the local time $L_{t}^{Y}$ follows that $K$ is an adapted continuous process with finite variation, starting from zero and varying on the set $\bigcup_{n \in \mathbb{Z}}\left\{Y_{t}=2 n\right\} \cup\left\{Y_{t}=2 n+1\right\} \subseteq\left\{X_{t} \in\{0,1\}\right\}$. Consequently, $X$ is a strong solution of the SDE (1).

Notation. We will write $f \lesssim g$ (resp. $g \gtrsim f$ ) when $f \leq C \cdot g$ for some universal constant $C>0 . f \sim g$ is equivalent to $f \lesssim g$ and $g \lesssim f$.

From now on we take the Assumption (1) as granted. We denote by $\mathbb{P}_{\sigma, b}$ the law of the diffusion $X$ on the canonical space $\Omega$ of continuous functions over the positive axis with values in $[0,1]$, equipped with the topology of the uniform convergence on compact sets and endowed with its $\sigma$-field $\mathcal{F}$. We denote by $\mathbb{E}_{\sigma, b}$ the corresponding expectation operator.

## 2 Modulus of continuity

In this Section we want to prove a uniform upper bound on the moments of the modulus of continuity of the reflected diffusion $X$.

Definition 4. Denote by $\omega_{T}$ the modulus of continuity of the path $\left(X_{t}, 0 \leq t \leq T\right)$, i.e.

$$
\omega_{T}(\delta)=\sup _{\substack{0 \leq s, t \leq T \\|t-s| \leq \delta}}\left|X_{t}-X_{s}\right| .
$$

Theorem 5. For every $p \geq 1$ there exists constant $C_{p}>0$ s.t.

$$
\begin{equation*}
\sup _{(\sigma, b) \in \Theta} \mathbb{E}_{\sigma, b}\left[\omega_{T}^{p}(\Delta)\right] \leq C_{p} \Delta^{p / 2}(1 \vee \ln (2 T / \Delta))^{p} \tag{3}
\end{equation*}
$$

Proof. Fischer and Nappo [3 proved the above bound for the standard Brownian motion. We will now generalize their result to diffusions with boundary reflection.

Step 1. Consider a martingale $M$ with $d M_{t}=\sigma\left(X_{t}\right) d W_{t}$. By Dambis, Dubins-Schwarz theorem $M_{t}=B_{\int_{0}^{t} \sigma^{2}\left(X_{u}\right) d u}$ for some Brownian motion $B$. Consequently

$$
\left|M_{t}-M_{s}\right|=\left|B_{\int_{0}^{t} \sigma^{2}\left(X_{u}\right) d u}-B_{\int_{0}^{s} \sigma^{2}\left(X_{u}\right) d u}\right| \leq \omega^{B}\left(|t-s|\left\|\sigma^{2}\right\|_{\infty}\right),
$$

where $\omega^{B}$ is the modulus of continuity of $B$. Thus (3) holds for the martingale $M$, with a constant that depends only on the upper bound on the volatility $\sigma$.

Step 2. Consider a semimartingale $X$ with $d X_{t}=b\left(X_{t}\right) d t+d M_{t}$. Then

$$
\left|X_{t}-X_{s}\right| \leq\left|\int_{0}^{t} b\left(X_{u}\right) d u-\int_{0}^{s} b\left(X_{u}\right) d u\right|+\left|M_{t}-M_{s}\right| \leq|t-s|\|b\|_{\infty}+\omega^{M}(|t-s|)
$$

Consequently (3) holds for semimartingales with a constant that depends only on the upper bounds on $\sigma$ and $b$.

Step 3. For $(\sigma, b) \in \Theta$ consider the reflected diffusion process $X$ satisfying the SDE (1). Let

$$
\begin{aligned}
d Y_{t} & =\widetilde{b}\left(Y_{t}\right) d t+\widetilde{\sigma}\left(Y_{t}\right) d W_{t} \\
X_{t} & =f\left(Y_{t}\right)
\end{aligned}
$$

where $\widetilde{b}, \widetilde{\sigma}$ and $f$ are as in Definition 2. From Step 2 follows that (3) holds for the semimartingale $Y$ with a uniform constant on $\Theta$. Since $\omega^{X} \leq \omega^{Y}$, we conclude that the claim (3) holds for the reflected diffusion $X$.

## 3 Local time

In this section we introduce some preliminary results regarding the local time of the reflected diffusion $X$. A standard reference is [12, Chapter VI].
Definition 6. Set $t>0$. For any Borel set $A \subseteq[0,1]$ we define the occupation measure $T_{t}(A)$ of the path ( $X_{s}, 0 \leq s \leq t$ ), with respect to the quadratic variation of $X$, by

$$
T_{t}(A)=\int_{0}^{t} \mathbf{1}_{A}\left(X_{s}\right) \sigma^{2}\left(X_{s}\right) d s
$$

When $T_{t}(A)$ is absolutely continuous with respect to the Lebesgue measure $d x$ on the interval $[0,1]$, we define the local time by the Radon-Nikodym derivative:

$$
L_{t}(x)=\frac{d T_{t}}{d x}
$$

Theorem 7 (Itô-Tanaka formula). Let $X$ be the solution of the SDE (1) with $(\sigma, b) \in \Theta$. Then, the local time $L$ exists and has a continuous version in both $t>0$ and $x \in(0,1)$. For every $x \in[0,1]$ the process $\left(L_{t}(x), t \geq 0\right)$ is non-decreasing and increases only when $X_{t}=x$. Furthermore, if $f$ is the difference of two convex functions, we have

$$
\begin{align*}
f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} f_{-}^{\prime}\left(X_{s}\right) \sigma\left(X_{s}\right) d W_{s} & +\int_{0}^{t} f_{-}^{\prime}\left(X_{s}\right) b\left(X_{s}\right) d s+\frac{1}{2} \int_{0}^{1} L_{t}(x) f^{\prime \prime}(d x)+ \\
& +\int_{0}^{t} f_{-}^{\prime}\left(X_{s}\right) d K_{s} \tag{4}
\end{align*}
$$

Proof. Reflected diffusion $X$ is a continuous semimartingale. By [12, Chapter VI, Theorem 1.2 and Theorem 1.5] there exists a process $\left(L_{t}(x): x \in(0,1), t \geq 0\right)$, continuous and nondecreasing in $t$, cadlag in $x$ and such that (4) holds. Furthermore, by [12, Chapter VI, Theorem 1.7] for every $x \in(0,1)$

$$
L_{t}(x)-L_{t}\left(x_{-}\right)=2 \int_{0}^{t} \mathbf{1}_{\left\{X_{s}=x\right\}} b\left(X_{s}\right) d s+2 \int_{0}^{t} \mathbf{1}_{\left\{X_{s}=x\right\}} d K_{s}=0
$$

The concentration of the associated measure $d L_{t}$ on the set $\left\{X_{t}=x\right\}$ follows from [12, Chapter VI Proposition 1.3].

Lemma 8. For every $T>0$ and $p \geq 1$ we have

$$
\sup _{(\sigma, b) \in \Theta} \sup _{x \in(0,1)} \mathbb{E}_{\sigma, b}\left[\sup _{t \leq T} L_{t}^{p}(x)\right]<\infty .
$$

Proof. The usual way to bound the moments of the local time is to use the Itô-Tanaka formula for function $f_{x}(y)=(y-x)^{+}$, see e.g. [12, Chapter VI Theorem 1.7]. Because of the additional reflection term $d K_{t}$, we make a less intuitive choice of the function $f$ that guarantees $f^{\prime}(0)=$ $f^{\prime}(1)=0$.

Set $T>0, p \geq 1$ and $x \in(0,1 / 2]$. Let $f_{x}(y)=\mathbf{1}(x \leq y \leq 3 / 4)\left(3 y-2 y^{2}\right)$. By (4)

$$
\begin{aligned}
\frac{3-4 x}{2} L_{t}(x)= & f_{x}\left(X_{t}\right)-f_{x}\left(X_{0}\right)-\int_{0}^{t} \mathbf{1}\left(x<X_{s} \leq \frac{3}{4}\right)\left(3-4 X_{s}\right) \sigma\left(X_{s}\right) d W_{s} \\
& -\int_{0}^{t} \mathbf{1}\left(x<X_{s} \leq \frac{3}{4}\right)\left(3-4 X_{s}\right) b\left(X_{s}\right) d s+2 \int_{0}^{t} \mathbf{1}\left(x<X_{s} \leq \frac{3}{4}\right) \sigma^{2}\left(X_{s}\right) d s
\end{aligned}
$$

Applying the uniform (on $\Theta$ ) bounds on $b$ and $\sigma$, together with the Burkholder-Davies-Gundy inequality, we conclude that for $t \leq T$

$$
\sup _{(\sigma, b) \in \Theta} \sup _{x \in(0,1 / 2)} \mathbb{E}_{\sigma, b}\left[L_{t}(x)^{p}\right] \leq C_{p, T}
$$

holds with some positive constant $C_{p, T}$. For $x \in(1 / 2,1)$ we consider function $f_{x}(y)=\mathbf{1}(1 / 4 \leq$ $y \leq x)\left(y-2 y^{2}\right)$ and proceed similarly.

Theorem 9. For any $T>0, p \geq 1$ and $x, y \in(0,1)$ we have

$$
\begin{equation*}
\sup _{(\sigma, b) \in \Theta} \mathbb{E}_{\sigma, b}\left[\sup _{t \leq T}\left|L_{t}(x)-L_{t}(y)\right|^{2 p}\right] \leq C_{p, T}|x-y|^{p} . \tag{5}
\end{equation*}
$$

In particular, the family $L$ of the local times can be chosen such that functions $x \longmapsto L_{t}(x)$ are almost surely Hölder continuous of order $\alpha$ for every $\alpha<1 / 2$ and uniformly in $t \leq T$. Moreover, for every $p \geq 1$ and $t \leq T$ we have

$$
\begin{equation*}
\sup _{(\sigma, b) \in \Theta} \mathbb{E}_{\sigma, b}\left[\sup _{x \in[0,1]} L_{t}^{p}(x)\right]<\infty . \tag{6}
\end{equation*}
$$

Proof. The proof goes along the same lines as [12, Chapter VI Theorem 1.7]. We will first show the inequality (5). For $x \in(0,1)$, by the Itô-Tanaka formula (4)

$$
\begin{array}{r}
\frac{1}{2} L_{t}(x)=\left(X_{t}-x\right)^{+}-\left(X_{0}-x\right)^{+}-\int_{0}^{t} \mathbf{1}\left(X_{s}>x\right) \sigma\left(X_{s}\right) d W_{s}+ \\
-\int_{0}^{t} \mathbf{1}\left(X_{s}>x\right) b\left(X_{s}\right) d s-\int_{0}^{t} \mathbf{1}\left(X_{s}=1\right) d K_{s} .
\end{array}
$$

Since the function $x \longmapsto\left(X_{t}-x\right)^{+}-\left(X_{0}-x\right)^{+}-\int_{0}^{t} \mathbf{1}\left(X_{s}=1\right) d K_{s}$ is uniformly Lipschitz on $\Theta$, we need only to consider the martingale term $M_{t}^{x}=\int_{0}^{t} \mathbf{1}\left(X_{s}>x\right) \sigma\left(X_{s}\right) d W_{s}$ and the finite variation term $D_{t}^{x}=\int_{0}^{t} \mathbf{1}\left(X_{s}>x\right) b\left(X_{s}\right) d s$. For $x, y \in(0,1)$ Hölder's inequality and Lemma 8 yield

$$
\mathbb{E}_{\sigma, b}\left[\sup _{t \leq T}\left|D_{t}^{x}-D_{t}^{y}\right|^{2 p}\right] \lesssim \mathbb{E}_{\sigma, b}\left[\left(\int_{x}^{y} L_{T}(z) d z\right)^{2 p}\right]
$$

$$
\lesssim|y-x|^{2 p-1}\left|\int_{x}^{y} \mathbb{E}_{\sigma, b}\left[L_{T}^{2 p}(z)\right] d z\right| \lesssim C_{p, T}|y-x|^{2 p}
$$

for some constant $\widetilde{C}_{p, T}>0$. To bound the increments of the martingale $M^{x}$ we use the Burkholder-Davies-Gundy inequality together with Hölder's inequality, obtaining

$$
\mathbb{E}_{\sigma, b}\left[\sup _{t \leq T}\left|M_{t}^{x}-M_{t}^{y}\right|^{2 p}\right] \lesssim C_{p} \mathbb{E}_{\sigma, b}\left[\left(\int_{x}^{y} L_{T}(z) d z\right)^{p}\right] \leq \widetilde{C}_{p, T}|y-x|^{p} .
$$

We finished the proof of the bound (5). From the Kolmogorov continuity criterion (see [12, Chapter I, Theorem 2.1]) follows that there exists a modification $\widetilde{L}$ of the family of local times $L$, such that functions $x \longmapsto \widetilde{L}_{t}(x)$ are almost surely Hölder continuous of order $\alpha$ for every $\alpha<1 / 2$ and uniformly in $t \leq T$. Furthermore, for any $\alpha<1 / 2$ and $p \geq 2$ we have

$$
\sup _{(\sigma, b) \in \Theta} \mathbb{E}_{\sigma, b}\left[\left(\sup _{x \neq y} \frac{\left|\widetilde{L}_{t}(x)-\widetilde{L}_{t}(y)\right|}{|x-y|^{\alpha}}\right)^{p}\right]<\infty .
$$

Fix $x_{0} \in(0,1)$. By the bound above and Lemma 8 we conclude that

$$
\sup _{(\sigma, b) \in \Theta} \mathbb{E}_{\sigma, b}\left[\sup _{x \in[0,1]} \widetilde{L}_{t}^{p}(x)\right] \leq \sup _{(\sigma, b) \in \Theta} \mathbb{E}_{\sigma, b}\left[\left(\sup _{x \neq x_{0}} \frac{\left|\widetilde{L}_{t}(x)-\widetilde{L}_{t}\left(x_{0}\right)\right|}{\left|x-x_{0}\right|^{\alpha}}+\widetilde{L}_{t}\left(x_{0}\right)\right)^{p}\right]<\infty .
$$

Theorem 10. Set $T>0$ and define the (chronological) occupation density $\mu_{T}$ by

$$
\mu_{T}(x)=\frac{L_{T}(x)}{T \sigma^{2}(x)} .
$$

Then, for any bounded Borel measurable function $f$, the following occupation formula holds:

$$
\frac{1}{T} \int_{0}^{T} f\left(X_{s}\right) d s=\int_{0}^{1} f(x) \mu_{T}(x) d x
$$

Furthermore, the occupation density $\mu_{T}$ inherits the regularity properties of the local time $L_{T}$. In particular, for every $p \geq 1$ and $T>0$ we have

$$
\begin{align*}
\sup _{(\sigma, b) \in \Theta} \mathbb{E}_{\sigma, b}\left[\sup _{x \in[0,1]} \mu_{T}^{p}(x)\right] & <\infty .  \tag{7}\\
\sup _{(\sigma, b) \in \Theta} \mathbb{E}_{\sigma, b}\left[\left|\mu_{T}(x)-\mu_{T}(y)\right|^{2 p}\right] & \leq C_{p, T}|x-y|^{p} . \tag{8}
\end{align*}
$$

Proof. The existence and form of the occupation density follow from Theorem 7 and Definition 6. Given that $\sigma^{2} \gtrsim 1$ inequality (7) follows directly from (6). Finally, (5) and the uniform Lipschitz property of $\sigma^{2}$ imply (8).

## 4 Estimation of the occupation time of an interval

Estimation of the local time from finite data observations has been extensively studied and is nowadays well established, see e.g. [6, 7]. Nevertheless, until recently, much less was known about the estimation of the occupation time of a given Borel set. In the breakthrough paper Ngo and Ogawa [10] authors considered Riemann sum approximations of the occupation
time of a half-line. [10, Theorem 2.2] stated a convergence rate $\Delta^{\frac{3}{4}}$ for diffusion processes with bounded coefficients, which was defined as normalization required for tightness of the estimation errors. It is important to note that $\Delta^{\frac{3}{4}}$ is a better rate than could be obtained using only the regularity properties of the local time. In the special case of the Brownian occupation time of the positive half-line, $\Delta^{\frac{3}{4}}$ was shown to be the upper bound of the root mean squared error (see [10, Theorem 2.3]) and to be optimal. Further development was done in Kohatsu-Higa et al. [9. By means of the Malliavin calculus [9, Theorem 2.3] proved that for any sufficiently regular scalar diffusion $X$ and an exponentially bounded function $h$ inequality

$$
\begin{equation*}
\mathbb{E}_{\sigma, b}\left[\left|\frac{1}{T} \int_{0}^{T} h\left(X_{s}\right) d s-\frac{1}{N} \sum_{n=0}^{N-1} h\left(X_{n \Delta}\right)\right|^{p}\right] \leq C_{T, X, h} \Delta^{p+1 / 2} \tag{9}
\end{equation*}
$$

holds with constant $C_{T, X, h}>0$ depending on the time horizon $T$, diffusion $X$ and function $h$. In what follows, we extend (9), for $h$ being characteristic function, to reflected diffusions with coefficients in $\Theta$.

Theorem 11. For any $T>0$ and $\alpha \in(0,1)$ we have

$$
\sup _{(\sigma, b) \in \Theta} \mathbb{E}_{\sigma, b}\left[\left|\frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}\left(X_{n \Delta}<\alpha\right)-\frac{1}{T} \int_{0}^{T} \mathbf{1}\left(X_{s}<\alpha\right) d s\right|^{2}\right]^{\frac{1}{2}} \leq C_{T} \Delta^{\frac{2}{3}}
$$

with some positive constant $C_{T}$.
Remark 12. As the right hand side of (9) does not scale linearly in $p$, it is not optimal to use the Girsanov theorem to generalize the Brownian bound to diffusions with bounded coefficients. Nevertheless, we proceed with this approach, as the suboptimal rate $\Delta^{2 / 3}$ is sufficient for our purposes.

Proof. Fix $T>0$. The proof is divided in several steps, generalizing the result from a standard Brownian motion process to reflected diffusions.

Step 1. Let $W_{t}$ be a standard Brownian motion. We will show that there exists a constant $C_{T}>0$ such that for any $\alpha \in \mathbb{R}$ we have

$$
\begin{equation*}
\mathbb{E}\left[\left|\frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}\left(W_{n \Delta}<\alpha\right)-\frac{1}{T} \int_{0}^{T} \mathbf{1}\left(W_{s}<\alpha\right) d s\right|^{2 p}\right] \leq C_{T} \Delta^{p+1 / 2} . \tag{10}
\end{equation*}
$$

Set $\alpha \in \mathbb{R}$ and $h_{\alpha}(x)=\mathbf{1}(x<\alpha)$. Following [9, proof of Proposition 2.1], for $M \in \mathbb{N}$, denote

$$
\begin{aligned}
\rho_{M}(x) & =c_{\rho} M e^{\frac{1}{(M x)^{2}-1}} \mathbf{1}_{(-1,1)}(x), \\
h_{\alpha, M}(x) & =\int_{\mathbb{R}} h_{\alpha}(x-y) \rho_{M}(y) d y
\end{aligned}
$$

where the constant $c_{\rho}=\left(\int_{-1}^{1} e^{\frac{1}{y^{2}-1}} d y\right)^{-1}$ is such that $\rho_{M}$ integrates to 1 . Direct calculations show that

$$
\begin{cases}\mathcal{A}(i): & h_{\alpha, M} \rightarrow h_{\alpha} \text { in } L^{1} \\ \mathcal{A}(i i): & \sup _{M} \sup _{x \in \mathbb{R}}\left|h_{\alpha}(x)\right|+\left|h_{\alpha, M}(x)\right| \leq 2 \\ \mathcal{A}(i i i): & \sup _{M} \sup _{u \geq 0} \int\left|h_{\alpha, M}^{\prime}(x)\right| e^{-\frac{x^{2}}{u}} d x=c_{\rho} \int_{-1}^{1} e^{\frac{1}{y^{2}-1}} e^{-\frac{(\alpha+y / M)^{2}}{u}} d y \leq 1\end{cases}
$$

Let

$$
\begin{aligned}
S_{N, \alpha} & =\frac{1}{N} \sum_{n=0}^{N-1} h_{\alpha}\left(W_{n \Delta}\right)-\frac{1}{T} \int_{0}^{T} h_{\alpha}\left(W_{s}\right) d s \\
S_{N, \alpha, M} & =\frac{1}{N} \sum_{n=0}^{N-1} h_{\alpha, M}\left(W_{n \Delta}\right)-\frac{1}{T} \int_{0}^{T} h_{\alpha, M}\left(W_{s}\right) d s .
\end{aligned}
$$

Arguing as in [9, proof of Eq. 3.10], we obtain that for any $\alpha$

$$
\lim _{M \rightarrow \infty} \mathbb{E}_{\sigma, b}\left[S_{N, \alpha, M}^{2 p}\right]=\mathbb{E}_{\sigma, b}\left[S_{N, \alpha}^{2 p}\right] .
$$

Hence, it is sufficient to show that

$$
\begin{equation*}
\mathbb{E}_{\sigma, b}\left[S_{N, \alpha, M}^{2 p}\right] \leq C_{T} N^{-(p+1 / 2)}, \tag{11}
\end{equation*}
$$

for some constant $C_{T}$ independent of $M$ and $\alpha$. But, given uniform bounds $\mathcal{A}(i i)$ and $\mathcal{A}(i i i)$, inequality (11) follows by the same calculations as in [9, proof of Theorem 3.2].

Step 2. Consider diffusion $Y$ satisfying $d Y_{t}=h\left(Y_{t}\right) d t+d W_{t}$, with uniformly bounded drift $h$. We will show that

$$
\begin{equation*}
\mathbb{E}\left[\left|\frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}\left(Y_{n \Delta}<\alpha\right)-\frac{1}{T} \int_{0}^{T} \mathbf{1}\left(Y_{s}<\alpha\right) d s\right|^{2}\right]^{\frac{1}{2}} \leq C_{T,\|h\|_{\infty}} \Delta^{17 / 24} \tag{12}
\end{equation*}
$$

Denote

$$
Z_{t}=\exp \left(-\int_{0}^{t} h\left(Y_{s}\right) d W_{s}-\frac{1}{2} \int_{0}^{t} h^{2}\left(Y_{s}\right) d s\right)
$$

Since $h$ is bounded, by Novikov's condition $Z$ is a martingale. Define the probability measure $\mathbb{Q}$ by the Radon-Nikodym derivative:

$$
\left.\frac{d \mathbb{Q}}{d \mathbb{P}}\right|_{\mathcal{F}_{t}}=Z_{t} .
$$

By Girsanov's theorem the process $Y$ is a standard Brownian motion under the probability measure $\mathbb{Q}$. From Hölder's inequality, for $\frac{1}{p}+\frac{1}{q}=1$, follows that

$$
\begin{aligned}
& \mathbb{E}\left[\left\lvert\, \frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}\right.\right.\left.\left(Y_{n \Delta}<\alpha\right)-\left.\frac{1}{T} \int_{0}^{T} \mathbf{1}\left(Y_{s}<\alpha\right) d s\right|^{2}\right]^{\frac{1}{2}}= \\
& \quad=\mathbb{E}_{\mathbb{Q}}\left[\left|\frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}\left(Y_{n \Delta}<\alpha\right)-\frac{1}{T} \int_{0}^{T} \mathbf{1}\left(Y_{s}<\alpha\right) d s\right|^{2} Z_{T}^{-1}\right]^{\frac{1}{2}} \\
& \quad \leq \mathbb{E}_{\mathbb{Q}}\left[\left|\frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}\left(Y_{n \Delta}<\alpha\right)-\frac{1}{T} \int_{0}^{T} \mathbf{1}\left(Y_{s}<\alpha\right) d s\right|^{2 p}\right]^{\frac{1}{2 p}} \mathbb{E}_{\mathbb{Q}}\left[Z_{T}^{-q}\right]^{\frac{1}{2 q}}
\end{aligned}
$$

Since the drift function $h$ is uniformly bounded,

$$
\mathbb{E}_{\mathbb{Q}}\left[Z_{T}^{-q}\right]=\mathbb{E}\left[Z_{T}^{-(q-1)}\right]=\mathbb{E}\left[\exp \left((q-1) \int_{0}^{T} h\left(Y_{s}\right) d W_{s}+\frac{q-1}{2} \int_{0}^{T} h^{2}\left(Y_{s}\right) d s\right)\right]
$$

$$
\leq \exp \left(\frac{q(q-1)}{2} T\|h\|_{\infty}^{2}\right)=C_{q,\|h\|_{\infty}}^{2 q} .
$$

Hence, by (10), with $p=6 / 5$, inequality (12) holds.
Step 3. Consider diffusion $Y$ satisfying $d Y_{t}=\widetilde{b}\left(Y_{t}\right) d t+\widetilde{\sigma}\left(Y_{t}\right) d W_{t}$, with bounded drift $\widetilde{b}$ and positive, Lipschitz continuous $\widetilde{\sigma}$. Let $S(x)=\int_{0}^{x} \widetilde{\sigma}^{-1}(y) d y, d Z_{t}=S\left(Y_{t}\right)$. It follows from Itô's formula that

$$
d Z_{t}=g\left(Y_{t}\right) d t+d W_{t}
$$

where $g(x)=\frac{\widetilde{b}(x)}{\widetilde{\sigma}(x)}-\frac{1}{2} \widetilde{\sigma}^{\prime}(x)$. Since $\widetilde{\sigma}$ is a strictly positive function, $S$ is increasing and invertible. Denote $h(x)=g\left(S^{-1}(x)\right)$. We have

$$
d Z_{t}=h\left(Z_{t}\right) d t+d W_{t},
$$

with

$$
\|h\|_{\infty} \leq \frac{\|\widetilde{b}\|_{\infty}}{\inf \widetilde{\sigma}}+\frac{1}{2}\left\|\widetilde{\sigma}^{\prime}\right\|_{\infty}
$$

From (12) follows, that there exists a constant $C_{T}$, depending only on the bounds on the diffusion coefficients, such that

$$
\begin{align*}
& \mathbb{E}\left[\left|\frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}\left(Y_{n \Delta}<\alpha\right)-\frac{1}{T} \int_{0}^{T} \mathbf{1}\left(Y_{s}<\alpha\right) d s\right|^{2}\right]^{\frac{1}{2}}= \\
& \quad=\mathbb{E}\left[\left|\frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}\left(Z_{n \Delta}<S(\alpha)\right)-\frac{1}{T} \int_{0}^{T} \mathbf{1}\left(Z_{s}<S(\alpha)\right) d s\right|^{2}\right]^{\frac{1}{2}} \leq C_{T} \Delta^{\frac{17}{24}} \tag{13}
\end{align*}
$$

Step 4. Fix $(\sigma, b) \in \Theta$. Let

$$
\begin{aligned}
d Y_{t} & =\widetilde{b}\left(Y_{t}\right) d t+\widetilde{\sigma}\left(Y_{t}\right) d W_{t} \\
X_{t} & =f\left(Y_{t}\right)
\end{aligned}
$$

where $\widetilde{b}, \widetilde{\sigma}$ and $f$ are as in Definition 2 Recall that by Theorem 3 process $X$ is the reflected diffusion with coefficients $(\sigma, b)$. By definition of the function $f$, for any $\alpha \in(0,1)$ and $s>0$, we have

$$
\begin{equation*}
\left\{X_{s}<\alpha\right\}=\bigcup_{m \in \mathbb{Z}}\left\{Y_{s} \in(2 m-\alpha, 2 m+\alpha)\right\} \tag{14}
\end{equation*}
$$

Denote

$$
\Gamma_{N}(m)=\frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}\left(Y_{n \Delta} \in(2 m-\alpha, 2 m+\alpha)\right)-\frac{1}{T} \int_{0}^{T} \mathbf{1}\left(Y_{s} \in(2 m-\alpha, 2 m+\alpha)\right) d s
$$

By (13) there exists a uniform on $\Theta$ constant $C_{T}>0$, such that for any $m \in \mathbb{Z}$, we have

$$
\mathbb{E}_{\sigma, b}\left[\Gamma_{N}^{2}(m)\right]^{\frac{1}{2}} \leq C_{T} \Delta^{\frac{17}{24}}
$$

Let $Y_{t}^{*}=\sup _{s \leq t}\left|Y_{s}\right|$. From (14) follows that

$$
\frac{1}{N} \sum_{n=0}^{N-1} \mathbf{1}\left(X_{n \Delta}<\alpha\right)-\int_{0}^{T} \mathbf{1}\left(X_{s}<\alpha\right) d s=\sum_{m \in \mathbb{Z}} \Gamma_{N}(m)=\sum_{m \in \mathbb{Z}} \Gamma_{N}(m) \mathbf{1}\left(Y_{T}^{*} \geq 2|m|-1\right)
$$

Since $\Gamma_{N}(m) \leq 2$, for any $M$, using (14) we obtain

$$
\begin{aligned}
& \mathbb{E}_{\sigma, b}\left[\left|\sum_{m \in \mathbb{Z}} \Gamma_{N}(m) \mathbf{1}\left(Y_{T}^{*} \geq 2|m|+1\right)\right|^{2}\right] \lesssim \\
& \lesssim M \mathbb{E}_{\sigma, b}\left[\sum_{|m| \leq M} \Gamma_{N}^{2}(m)\right]+\mathbb{E}_{\sigma, b}\left[\left|\sum_{m>M} \mathbf{1}\left(Y_{T}^{*} \geq 2 m-1\right)\right|^{2}\right] \\
& \lesssim C_{T} M^{2} \Delta^{\frac{17}{12}}+\sum_{m, k>M} \mathbb{P}_{\sigma, b}\left(Y_{T}^{*} \geq 2(m \vee k)-1\right)
\end{aligned}
$$

By the Burkholder-Davies-Gundy inequality, together with uniform on $\Theta$ bounds on diffusion coefficients, for any $p \geq 1$,

$$
\mathbb{E}_{\sigma, b}\left[\left(Y_{T}^{*}\right)^{p}\right] \lesssim \mathbb{E}_{\sigma, b}\left[\left(\int_{0}^{T} \widetilde{\sigma}^{2}\left(Y_{s}\right) d s\right)^{\frac{p}{2}}\right]+\left(T\|\widetilde{b}\|_{\infty}\right)^{p} \lesssim C_{p, T}
$$

Consequently, by the Markov inequality

$$
\begin{aligned}
\sum_{m, k>M} \mathbb{P}_{\sigma, b}\left(Y_{T}^{*} \geq 2(m \vee k)-1\right) & \leq 2 \sum_{M<k \leq m} C_{p, T}(2 m-1)^{-p} \\
& \leq 2 C_{p, T} \sum_{m>M}(2 m-1)^{-(p-1)} \lesssim M^{-(p-2)}
\end{aligned}
$$

We conclude that

$$
\mathbb{E}_{\sigma, b}\left[\left|\sum_{m \in \mathbb{Z}} \Gamma_{N}(m) \mathbf{1}\left(Y_{s}^{*} \geq 2|m|+1\right)\right|^{2}\right] \lesssim M^{2} \Delta^{\frac{17}{12}}+M^{-(p-2)} .
$$

Hence the claim follows for $M \sim \Delta^{-\frac{3}{8}}$ and any $p \geq 4$.

## 5 Upper bounds on the transition kernel

In this section we prove a uniform Gaussian upper bound on the transition kernel of the reflected diffusion $X$ with coefficients in $\Theta$. Under the assumption of smooth coefficients, existence of Gaussian off-diagonal bounds follows from the general theory of partial differential equations, see [4, 9] c.f. [5, Chapter 9]. Sharp upper bounds are also established for diffusion processes in the divergence form [2, Chapter VII] and more recently were derived for multivariate diffusions with the infinitesimal generator satisfying Neumann boundary conditions, see [14]. Nevertheless, as demonstrated by [11, Theorem 2] Gaussian upper bounds do not hold in general for scalar diffusions with bounded measurable drift.

Theorem 13. The transition kernel $p_{t}$ of the reflected diffusion $X$ satisfies

$$
\sup _{(\sigma, b) \in \Theta} p_{t}(x, y) \lesssim \frac{C_{T}}{\sqrt{t}} e^{-\frac{(x-y)^{2}}{c t}},
$$

for all $x, y \in[0,1], 0 \leq t \leq T$ and $c, C_{T}>0$.

Proof. We will generalize the bound on the transition kernel from diffusions with bounded drift and unit volatility to reflected processes with coefficients $(\sigma, b) \in \Theta$.

Step 1. Consider diffusion $Z$ satisfying $d Z_{t}=g\left(Z_{t}\right) d t+d W_{t}$, where $g$ is a bounded measurable function. Then by [11, Theorem 1] the transition kernel $p^{Z}$ of the process $Z$ satisfies

$$
p_{t}^{Z}(x, y) \lesssim \frac{1}{\sqrt{t}} \int_{|x-y| / \sqrt{t}}^{\infty} z e^{-\left(z-\|g\|_{\infty} \sqrt{t}\right)^{2} / 2} d z
$$

Using the inequality [1, Formula 7.1.13]:

$$
\begin{equation*}
\int_{x}^{\infty} e^{-z^{2}} d z \leq \frac{e^{-x^{2}}}{x+\sqrt{x^{2}+4 / \pi}} \leq \frac{\sqrt{\pi}}{2} e^{-x^{2}} \tag{15}
\end{equation*}
$$

we obtain that

$$
\int_{a / \sqrt{t}}^{\infty} z e^{-(z-b \sqrt{t})^{2} / 2} d z=\int_{\frac{a}{\sqrt{t}}-b \sqrt{t}}^{\infty}(w+b \sqrt{t}) e^{-w^{2} / 2} d w \leq e^{-\frac{(a-b t)^{2}}{2 t}}\left(1+b \frac{\sqrt{\pi t}}{\sqrt{2}}\right) .
$$

Thus

$$
\begin{equation*}
p_{t}^{Z}(x, y) \leq C_{T,\|g\|_{\infty}} \frac{1}{\sqrt{t}} e^{-\frac{(x-y)^{2}}{2 t}+\|g\|_{\infty}|x-y|} . \tag{16}
\end{equation*}
$$

Step 2. Consider diffusion $Y$ satisfying $d Y_{t}=\widetilde{b}\left(Y_{t}\right) d t+\widetilde{\sigma}\left(Y_{t}\right) d W_{t}$. Let $S(x)=\int_{0}^{x} \widetilde{\sigma}^{-1}(y) d y$ and $Z_{t}=S\left(Y_{t}\right)$. It follows from Itô's formula that

$$
d Z_{t}=g\left(Y_{t}\right) d t+d W_{t}
$$

where $g(x)=\frac{\widetilde{b}(x)}{\widetilde{\sigma}(x)}-\frac{1}{2} \widetilde{\sigma}^{\prime}(x)$. For any $x, y$ we have

$$
\left\|\widetilde{\sigma}^{-1}\right\|_{\infty}^{-1}|x-y| \leq\left|S^{-1}(x)-S^{-1}(y)\right| \leq\|\widetilde{\sigma}\|_{\infty}|x-y| .
$$

Hence, from (16) follows that

$$
\begin{align*}
p_{t}^{Y}(x, y) & =p_{t}^{Z}\left(S^{-1}(x), S^{-1}(y)\right) \lesssim \frac{C_{T,\|g\|_{\infty}}}{\sqrt{t}} \exp \left(-\frac{\left(S^{-1}(x)-S^{-1}(y)\right)^{2}}{2 t}+\|g\|_{\infty}\left|S^{-1}(x)-S^{-1}(y)\right|\right) \\
& \lesssim \frac{C_{T,\|g\|_{\infty}}}{\sqrt{t}} \exp \left(-\frac{(x-y)^{2}}{2 t\left\|\widetilde{\sigma}^{-1}\right\|_{\infty}}+\|g\|_{\infty}\|\widetilde{\sigma}\|_{\infty}|x-y|\right) . \tag{17}
\end{align*}
$$

Step 3. For $(\sigma, b) \in \Theta$ let $\widetilde{b}, \widetilde{\sigma}$ and $f$ be as in Definition 2 and $Y$ as in Step 2. Note first, that by (17) there exist uniform on $\Theta$ constants $c_{T}, c_{1}, c_{2}>0$ such that

$$
\begin{equation*}
p_{t}^{Y}(x, y) \leq \frac{c_{T}}{\sqrt{t}} \exp \left(-\frac{(x-y)^{2}}{c_{1} t}+c_{2}|x-y|\right) \tag{18}
\end{equation*}
$$

By Theorem $3 X_{t}=f\left(Y_{t}\right)$ is the reflected diffusion process corresponding to the coefficients $(\sigma, b)$. For $y \in[0,1]$ let $\left(y_{m}\right)_{m \in \mathbb{Z}}$ be such that $y_{m} \in[m, m+1]$ and $f\left(y_{m}\right)=y$. Then

$$
p_{t}^{X}(x, y)=\sum_{m \in \mathbb{Z}} p_{t}^{Y}\left(x, y_{m}\right) .
$$

Since for any $m \in \mathbb{Z}$ we have $|x-y|+(|m|-2)_{+} \leq\left|x-y_{m}\right| \leq|m|+2$, from (18) follows that

$$
\begin{aligned}
p_{t}^{X}(x, y) & \leq \frac{c_{T}}{\sqrt{t}} \sum_{m \in \mathbb{Z}} \exp \left(-\frac{\left(x-y_{m}\right)^{2}}{c_{1} t}+c_{2}\left|x-y_{m}\right|\right) \\
& \leq \frac{c_{T}}{\sqrt{t}} e^{-\frac{(x-y)^{2}}{c_{1} t}} \sum_{m \in \mathbb{Z}} \exp \left(-\frac{\left[(|m|-2)_{+}\right]^{2}}{c_{1} T}+c_{2}(|m|+2)\right) .
\end{aligned}
$$

## 6 Mean crossings bounds

Throughout this section we consider fixed time horizon, for simplicity we assume $T=1$.
Definition 14. For $\alpha \in(0,1)$ and $n=0, \ldots, N-1$ denote

$$
\chi(n, \alpha)=\mathbf{1}_{[0, \alpha)}\left(X_{(n+1) \Delta}\right)-\mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right) .
$$

Theorem 15. For every $\alpha \in(0,1)$ we have

$$
\mathbb{E}_{\sigma, b}\left[\left(\sum_{n=0}^{N-1}|\chi(n, \alpha)|\left(X_{(n+1) \Delta}-X_{n \Delta}\right)^{2}\right)^{2}\right]^{\frac{1}{2}} \lesssim \Delta^{1 / 2}
$$

Proof. Fix $\alpha \in(0,1)$. Since $|\chi(n, \alpha)|=1$ if and only if the increment $\left(X_{n \Delta}, X_{(n+1) \Delta}\right)$ crosses the level $\alpha$, the claim is equivalent to the inequalities:

$$
\begin{aligned}
& \mathbb{E}_{\sigma, b}\left[\left(\sum_{n=0}^{N-1} \mathbf{1}\left(X_{n \Delta}<\alpha\right) \mathbf{1}\left(X_{(n+1) \Delta}>\alpha\right)\left(X_{(n+1) \Delta}-X_{n \Delta}\right)^{2}\right)^{2}\right]^{\frac{1}{2}} \lesssim \Delta^{1 / 2} \\
& \mathbb{E}_{\sigma, b}\left[\left(\sum_{n=0}^{N-1} \mathbf{1}\left(X_{n \Delta}>\alpha\right) \mathbf{1}\left(X_{(n+1) \Delta}<\alpha\right)\left(X_{(n+1) \Delta}-X_{n \Delta}\right)^{2}\right)^{2}\right]^{\frac{1}{2}} \lesssim \Delta^{1 / 2}
\end{aligned}
$$

Below, we only prove the first inequality. The second one can be obtained in a similar way or by a time reversal argument. Denote

$$
\eta_{n}=\mathbf{1}\left(X_{n \Delta}<\alpha\right) \mathbf{1}\left(X_{(n+1) \Delta}>\alpha\right)\left(X_{(n+1) \Delta}-X_{n \Delta}\right)^{2} .
$$

We have
$\mathbb{E}_{\sigma, b}\left[\left(\sum_{n=0}^{N-1} \mathbf{1}\left(X_{n \Delta}<\alpha\right) \mathbf{1}\left(X_{(n+1) \Delta}>\alpha\right)\left(X_{(n+1) \Delta}-X_{n \Delta}\right)^{2}\right)^{2}\right]=\sum_{n=0}^{N-1} \mathbb{E}_{\sigma, b}\left[\eta_{n}^{2}\right]+2 \sum_{0 \leq n<m}^{N-1} \mathbb{E}_{\sigma, b}\left[\eta_{n} \eta_{m}\right]$.
Denote by $p_{t}$ the transition kernel of the diffusion $X$. From Theorem 13 and the inequality (15) follows that

$$
\begin{align*}
\int_{0}^{\alpha} \int_{\alpha}^{1} p_{\Delta}(x, y)(y-x)^{4} d y d x & \lesssim \int_{0}^{\alpha} \int_{\alpha}^{1} \frac{1}{\sqrt{\Delta}} e^{-\frac{(y-x)^{2}}{c \Delta}}(y-x)^{4} d y d x \lesssim \Delta^{2} \int_{0}^{\alpha} \int_{\frac{\alpha-x}{\sqrt{\Delta c}}}^{\frac{1-x}{\sqrt{\Delta c}}} e^{-z^{2}} z^{4} d z d x \\
& \lesssim \Delta^{2} \int_{0}^{\alpha} \int_{\frac{\alpha-x}{\sqrt{\Delta c}}}^{\frac{1-x}{\sqrt{c c}}} e^{-\frac{z^{2}}{2}} d z d x \lesssim \Delta^{2} \int_{0}^{\alpha} e^{-\frac{(\alpha-x)^{2}}{2 c \Delta}} d x \lesssim \Delta^{5 / 2} \tag{19}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\int_{0}^{\alpha} \int_{\alpha}^{1} p_{\Delta}(x, y)(y-x)^{2} d y d x \lesssim \Delta^{3 / 2} \tag{20}
\end{equation*}
$$

For simplicity we will use the stationarity of $X$, which is granted by the assumption $x_{0} \stackrel{d}{=}$ $\mu$.Using more elaborated arguments the result could be obtained for an arbitrary initial condition. By stationarity, for any $t$, the one dimensional margin $X_{t}$ is distributed with respect
to the invariant measure $\mu(x) d x$. Conditioning on $X_{n \Delta}$, from 19 and uniform bounds on the density $\mu$ follows

$$
\mathbb{E}_{\sigma, b}\left[\eta_{n}^{2}\right]=\int_{0}^{\alpha} \int_{\alpha}^{1} p_{\Delta}(x, y)(y-x)^{4} d y \mu(x) d x \lesssim \Delta^{5 / 2}
$$

Hence

$$
\sum_{n=0}^{N-1} \mathbb{E}_{\sigma, b}\left[\eta_{n}^{2}\right] \lesssim N \Delta^{\frac{5}{2}}=\Delta^{\frac{3}{2}}
$$

The Cauchy-Schwarz inequality implies

$$
\sum_{n=0}^{N-2} \mathbb{E}_{\sigma, b}\left[\eta_{n} \eta_{n+1}\right] \lesssim \sum_{n=0}^{N-2} \mathbb{E}_{\sigma, b}\left[\eta_{n}^{2}\right]^{\frac{1}{2}} \mathbb{E}_{\sigma, b}\left[\eta_{n+1}^{2}\right]^{\frac{1}{2}} \lesssim N \Delta^{\frac{5}{2}} \lesssim \Delta^{\frac{3}{2}}
$$

Finally, using 20, for $m>n+1$, we obtain

$$
\begin{aligned}
\mathbb{E}_{\sigma, b}\left[\eta_{n} \eta_{m}\right] & =\int_{0}^{\alpha} \int_{\alpha}^{1} \int_{0}^{\alpha} \int_{\alpha}^{1} p_{\Delta}(x, y)(y-x)^{2} p_{(m-n-1) \Delta}(z, x)(z-w)^{2} p_{\Delta}(w, z) \mu(w) d y d x d z d w \\
& \lesssim \int_{0}^{\alpha} \int_{\alpha}^{1} p_{\Delta}(x, y)(y-x)^{2} d y d x \frac{1}{\sqrt{(m-n-1) \Delta}} \int_{0}^{\alpha} \int_{\alpha}^{1}(z-w)^{2} p_{\Delta}(w, z) d z d w \\
& \lesssim \Delta^{5 / 2} \frac{1}{\sqrt{m-n-1}}
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\sum_{n=0}^{N-3} \sum_{m=n+2}^{N-1} \mathbb{E}_{\sigma, b}\left[\eta_{n} \eta_{m}\right] & \lesssim \Delta^{5 / 2} \sum_{n=0}^{N-3} \sum_{k=1}^{N-n-2} \frac{1}{\sqrt{k}} \lesssim \Delta^{5 / 2} \sum_{n=0}^{N-3} \sqrt{N-n-2} \\
& =\Delta^{5 / 2} \sum_{n=1}^{N-2} \sqrt{n} \lesssim \Delta^{5 / 2} N^{3 / 2}=\Delta
\end{aligned}
$$

Definition 16. Define the event

$$
\mathcal{R}_{1}:=\left\{\omega_{1}(\Delta)\left\|\mu_{1}\right\|_{\infty} \leq \Delta^{5 / 11} v\right\} .
$$

Using Markov's inequality together with Theorem 5 and (6) we obtain that

$$
\mathbb{P}_{\sigma, b}\left(\Omega \backslash \mathcal{R}_{1}\right) \lesssim \Delta^{2 / 3}
$$

Theorem 17. For any $\alpha \in\left[\frac{1}{J}, 1-\frac{1}{J}\right]$ holds

$$
\mathbb{E}_{\sigma, b}\left[\mathbf{1}_{\mathcal{R}_{1}} \cdot\left|\sum_{n=0}^{N-1}\left(\mathbf{1}_{[0, \alpha)}\left(X_{(n+1) \Delta}\right)-\mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right)\right)\left(\left(X_{(n+1) \Delta}-\alpha\right)^{2}-\left(X_{n \Delta}-\alpha\right)^{2}\right)\right|^{2}\right]^{\frac{1}{2}} \lesssim \Delta^{2 / 3}
$$

Proof. Fix $\alpha \in\left[\frac{1}{J}, 1-\frac{1}{J}\right]$. On the event $\mathcal{R}_{1}$, whenever $\mathbf{1}_{[0, \alpha)}\left(X_{(n+1) \Delta}\right)-\mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right) \neq 0$ we must have $\left|X_{n \Delta}-\alpha\right|,\left|X_{(n+1) \Delta}-\alpha\right| \leq \omega(\Delta)<\Delta^{4 / 9}$. Consider function $d:[0,1] \rightarrow \mathbb{R}$ given by

$$
d(x)=(x-\alpha)^{2} \mathbf{1}\left(|x-\alpha| \leq \Delta^{4 / 9}\right)
$$

We have

$$
\begin{aligned}
\left(\mathbf{1}_{[0, \alpha)}\left(X_{(n+1) \Delta}\right)-\right. & \left.\mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right)\right)\left(\left(X_{(n+1) \Delta}-\alpha\right)^{2}-\left(X_{n \Delta}-\alpha\right)^{2}\right)= \\
& =\left(\mathbf{1}_{[0, \alpha)}\left(X_{(n+1) \Delta}\right)-\mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right)\right)\left(d\left(X_{(n+1) \Delta}\right)-d\left(X_{n \Delta}\right)\right) .
\end{aligned}
$$

Step 1. We will first show that

$$
\begin{equation*}
\mathbb{E}_{\sigma, b}\left[\mathbf{1}_{\mathcal{R}_{1}} \cdot\left|\sum_{n=0}^{N-1} \mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right)\left(d\left(X_{(n+1) \Delta}\right)-d\left(X_{n \Delta}\right)\right)\right|^{2}\right]^{\frac{1}{2}} \lesssim \Delta^{2 / 3} \tag{21}
\end{equation*}
$$

Note that

$$
\begin{aligned}
d^{\prime}(x) & =2(x-\alpha) \mathbf{1}\left(|x-\alpha| \leq \Delta^{4 / 9}\right) \\
\frac{1}{2} d^{\prime \prime}(x) & =-\Delta^{4 / 9} \delta_{\left\{\alpha-\Delta^{4 / 9}\right\}}+\mathbf{1}\left(|x-\alpha| \leq \Delta^{4 / 9}\right)-\Delta^{4 / 9} \delta_{\left\{\alpha+\Delta^{4 / 9}\right\}}
\end{aligned}
$$

where the second derivative must be understood in the distributional sense. Since we fixed $\alpha$ separated from the boundaries, $d^{\prime}(0)=d^{\prime}(1)=0$ for $\Delta$ small enough. Denote by

$$
L_{s, t}(x):=L_{t}(x)-L_{s}(x),
$$

the local time of the path fragment $\left(X_{u}, s \leq u \leq t\right)$. From the Itô-Tanaka formula (4) follows that

$$
\begin{gathered}
d\left(X_{(n+1) \Delta}\right)-d\left(X_{n \Delta}\right)=\int_{n \Delta}^{(n+1) \Delta} d^{\prime}\left(X_{s}\right) \sigma\left(X_{s}\right) d W_{t}+\int_{n \Delta}^{(n+1) \Delta} d^{\prime}\left(X_{s}\right) b\left(X_{s}\right) d s+ \\
\quad+\int_{n \Delta}^{(n+1) \Delta} \sigma^{2}\left(X_{s}\right) \mathbf{1}\left(\left|X_{s}-\alpha\right| \leq \Delta^{4 / 9}\right) d s-\Delta^{4 / 9} L_{n \Delta,(n+1) \Delta}\left(\alpha-\Delta^{4 / 9}\right) \\
-\Delta^{4 / 9} L_{n \Delta,(n+1) \Delta}\left(\alpha+\Delta^{4 / 9}\right):=\int_{n \Delta}^{(n+1) \Delta} d^{\prime}\left(X_{s}\right) \sigma\left(X_{s}\right) d W_{t}+D_{n}
\end{gathered}
$$

First, we will bound the sum of the martingale terms. Since martingale increments are uncorrelated, using Itô isometry, we obtain that

$$
\begin{aligned}
& \mathbb{E}_{\sigma, b}\left[\left|\sum_{n=0}^{N-1} \mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right) \int_{n \Delta}^{(n+1) \Delta} d^{\prime}\left(X_{s}\right) \sigma\left(X_{s}\right) d W_{t}\right|^{2}\right]= \\
& \quad=\sum_{n=0}^{N-1} \mathbb{E}_{\sigma, b}\left[\mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right) \int_{n \Delta}^{(n+1) \Delta}\left(d^{\prime}\left(X_{s}\right)\right)^{2} \sigma^{2}\left(X_{s}\right) d s\right] \lesssim \Delta^{\frac{8}{9}} \mathbb{E}_{\sigma, b}\left[\int_{0}^{1} \mathbf{1}\left(\left|X_{s}-\alpha\right| \leq \Delta^{\frac{4}{9}}\right) d s\right] \\
& \quad=\Delta^{\frac{8}{9}} \int_{\alpha-\Delta^{\frac{4}{9}}}^{\alpha+\Delta^{\frac{4}{9}}} \mathbb{E}_{\sigma, b}\left[\mu_{1}(x)\right] d x \lesssim \Delta^{\frac{4}{3}},
\end{aligned}
$$

where the last inequality follows from Theorem 10. Now, we will bound the sum of the finite variation terms: $\sum_{n=0}^{N-1} \mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right) D_{n}$. Note first, that since $b$ is uniformly bounded, we have $\sum_{n=0}^{N-1} \mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right)\left|\int_{n \Delta}^{(n+1) \Delta} d^{\prime}\left(X_{s}\right) b\left(X_{s}\right) d s\right| \lesssim \Delta^{4 / 9} \int_{0}^{1} \mathbf{1}\left(|x-\alpha| \leq \Delta^{4 / 9}\right) \mu_{1}(x) d x \lesssim \Delta^{8 / 9}\left\|\mu_{1}\right\|_{\infty}$.

Since by the inequality (7) $\left\|\mu_{1}\right\|_{\infty}$ has all moments finite, the root mean squared value of this sum is of smaller order than $\Delta^{2 / 3}$. Now, note that since on the event $\mathcal{R}_{1} \omega(\Delta)<$ $\Delta^{4 / 9}$, condition $X_{n \Delta}<\alpha$ implies $L_{n \Delta,(n+1) \Delta}\left(\alpha+\Delta^{4 / 9}\right)=0$. On the other hand, whenever $L_{n \Delta,(n+1) \Delta}\left(\alpha-\Delta^{4 / 9}\right) \neq 0$ we must have $X_{n \Delta}<\alpha$. Hence

$$
\sum_{n=0}^{N-1} \mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right)\left(\Delta^{4 / 9} L_{n \Delta,(n+1) \Delta}\left(\alpha-\Delta^{4 / 9}\right)+\Delta^{4 / 9} L_{n \Delta,(n+1) \Delta}\left(\alpha+\Delta^{4 / 9}\right)\right)=\Delta^{4 / 9} L_{1}\left(\alpha-\Delta^{4 / 9}\right)
$$

Using first the Cauchy-Schwarz inequality and then Theorem 9 we obtain

$$
\begin{aligned}
\mathbb{E}_{\sigma, b}\left[\left|\Delta^{4 / 9} L_{1}\left(\alpha-\Delta^{4 / 9}\right)-\int_{\alpha-\Delta^{4 / 9}}^{\alpha} L_{1}(x) d x\right|^{2}\right] & \lesssim \Delta^{4 / 9} \int_{\alpha-\Delta^{4 / 9}}^{\alpha} \mathbb{E}_{\sigma, b}\left[\left|L_{1}(x)-L_{1}\left(\alpha-\Delta^{4 / 9}\right)\right|^{2}\right] d x \\
& \lesssim \Delta^{4 / 3}
\end{aligned}
$$

Consequently, to prove (21) we just have to argue that the root mean squared error of

$$
\begin{align*}
\int_{\alpha-\Delta^{4 / 9}}^{\alpha} & L_{1}(x) d x-\sum_{n=0}^{N-1} \mathbf{1}_{[0, \alpha)}\left(X_{n \Delta}\right) \int_{n \Delta}^{(n+1) \Delta} \sigma^{2}\left(X_{s}\right) \mathbf{1}\left(\left|X_{s}-\alpha\right| \leq \Delta^{4 / 9}\right) d s \\
\quad= & \sum_{n=0}^{N-1} \int_{n \Delta}^{(n+1) \Delta}\left(\mathbf{1}\left(X_{s}<\alpha\right)-\mathbf{1}\left(X_{n \Delta}<\alpha\right)\right) \sigma^{2}\left(X_{s}\right) \mathbf{1}\left(\left|X_{s}-\alpha\right| \leq \Delta^{4 / 9}\right) d s \\
= & \sum_{n=0}^{N-1} \int_{n \Delta}^{(n+1) \Delta}\left(\mathbf{1}\left(X_{s}<\alpha\right)-\mathbf{1}\left(X_{n \Delta}<\alpha\right)\right) \sigma^{2}\left(X_{s}\right) d s \tag{22}
\end{align*}
$$

is of order $\Delta^{2 / 3}$. From the Lipschitz property of $\sigma^{2}$ follows that

$$
\begin{aligned}
& \left|\sum_{n=0}^{N-1} \int_{n \Delta}^{(n+1) \Delta}\left(\mathbf{1}\left(X_{s}<\alpha\right)-\mathbf{1}\left(X_{n \Delta}<\alpha\right)\right)\left(\sigma^{2}\left(X_{s}\right)-\sigma^{2}(\alpha)\right) d s\right| \lesssim \\
& \quad \lesssim \sum_{n=0}^{N-1} \int_{n \Delta}^{(n+1) \Delta} \mathbf{1}\left(\left|X_{s}-\alpha\right| \leq \Delta^{\frac{4}{9}}\right) \Delta^{\frac{4}{9}} d s \lesssim \Delta^{\frac{4}{9}} \int_{\alpha-\Delta^{4 / 9}}^{\alpha+\Delta^{4 / 9}} \mu_{1}(d x) \lesssim \Delta^{\frac{8}{9}}\left\|\mu_{1}\right\|_{\infty} .
\end{aligned}
$$

Thus, by (7), we reduced (22) to

$$
\int_{0}^{1} \mathbf{1}\left(X_{s}<\alpha\right) d s-\frac{1}{N} \sum_{n=0}^{N-1}\left(\mathbf{1}\left(X_{n \Delta}<\alpha\right),\right.
$$

which is of the right order by Theorem 11. We conclude that (21) holds.
Step 2. Consider the time reversed process $Y_{t}=X_{1-t}$. Since $X$ is reversible, the process $Y$, under the measure $\mathbb{P}_{\sigma, b}$, has the same law as $X$. Furthermore, the occupation density and the modulus of continuity of processes $Y$ and $X$ are identical, hence $\mathcal{R}_{1}$ is a "good" event also for $Y$. Inequality 21 is equivalent to

$$
\mathbb{E}_{\sigma, b}\left[\mathbf{1}_{\mathcal{R}_{1}} \cdot\left|\sum_{m=0}^{N-1} \mathbf{1}_{[0, \alpha)}\left(Y_{m \Delta}\right)\left(d\left(Y_{(m+1) \Delta}\right)-d\left(Y_{m \Delta}\right)\right)\right|^{2}\right]^{\frac{1}{2}} \lesssim \Delta^{\frac{2}{3}}
$$

Substituting $n=N-m$ we obtain

$$
\sum_{m=0}^{N-1} \mathbf{1}_{[0, \alpha)}\left(Y_{m \Delta}\right)\left(d\left(Y_{(m+1) \Delta}\right)-d\left(Y_{m \Delta}\right)\right)=-\sum_{n=0}^{N-1} \mathbf{1}_{[0, \alpha)}\left(X_{(n+1) \Delta}\right)\left(d\left(X_{(n+1) \Delta}\right)-d\left(X_{n \Delta}\right)\right) .
$$

## References

[1] Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 9th edition.
[2] Bass, R. (1997). Diffusions and Elliptic Operators. Springer-Verlag, New York.
[3] Fischer, M. and Nappo, G. (2010). On the moments of the modulus of continuity of Itô processes. Stochastic Analysis and Applications, 28(1).
[4] Florens-Zmirou, D. (1993). On estimating the diffusion coefficient from discrete observations. J. Appl. Prob., 30.
[5] Friedman, A. (1964). Partial differential equations of parabolic type. Prentice-Hall Inc., Englewood Cliffs, N.J., 2nd edition.
[6] J. M. Azaïs (1989). Approximation des trajectoires et temps local des diffusions. Ann. Inst. Henri Poincaré Probab. Statist., 25(2):175-194.
[7] Jacod, J. (1998). Rates of convergence of the local time of a diffusion. Anns. Inst. Henri Poincaré Probab. Statist., 34(4):505-544.
[8] Karatzas, I. and Shreve, S. E. (1991). Brownian motion and stochastic calculus. SpringerVerlag, New York.
[9] Kohatsu-Higa, A., Makhlouf, A., and Ngo, H. L. (2014). Approximations of non-smooth integral type functionals of one dimensional diffusion processes. Stochastic Processes and their Applications, 124:1881-1909.
[10] Ngo, H.-L. and Ogawa, S. (2011). On the discrete approximation of occupation time of diffusion processes. Electronic Journal of Statistics, 5:1374-1393.
[11] Qian, Z. and Zheng, W. (2002). Sharp bounds for transition probability densities of a class of diffusions. C. R. Acad. Sci. Paris, I 335:953-957.
[12] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, volume I, II. Springer, New York, 3 edition.
[13] Rozkosz, A. and Słomiński, L. (1997). On stability and existence of solutions of SDEs with reflection at the boundary. Stochastic processes and their applications, 68:285-302.
[14] Yang, X. and Zhang, T. (2013). Estimates of Heat Kernels with Neumann Boundary Conditions. Potential Analysis, 38:549-572.

