Exercise sheet, Theme "Convex Optimization"

Aufgabe 1 (Properties of convex functions)

Let f be a real-valued function defined on a convex set $\mathcal{X} \subset \mathbb{R}^{d}$.
a) Prove: a convex function f is always continuous on $\operatorname{Int}(\mathcal{X})$ (and upper semi-continuous on $\partial \mathcal{X}$)
b) For this question only, f is not assumed convex. Prove: if for all $x \in \mathcal{X}, \partial f(x) \neq \emptyset$, then f is a convex function.
c) Prove: if f is convex, then for all $x \in \operatorname{Int}(\mathcal{X}), \partial f(x) \neq \emptyset$. Hint: one can use without justification the "supporting hyperplane" theorem: if \mathcal{C} is a convex set and $x_{0} \in \partial C$, then there exists a vector $w \neq 0$ such that for all $x \in \mathcal{C},\left\langle x-x_{0}, w\right\rangle \geq 0$. Use the fact that the epigraph of f is convex.
d) Prove: if f is convex and differentiable at x, then $\nabla f(x) \in \partial f(x)$ and is even its unique element if $x \in \operatorname{Int}(\mathcal{X})$.
e) Prove: $f\left(x^{*}\right)$ is a local minimimum of f iff $f\left(x^{*}\right)$ is a global minimum, iff $0 \in \partial f\left(x^{*}\right)$.
f) Prove: if f is convex and differentiable, then $f\left(x^{*}\right)$ is minimum of f iff for all $y \in \mathcal{X}$ it holds $\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0$.

Aufgabe 2 (Brunn-Minkowski inequality)

In this exercise we will prove a fundamental theorem which will be used in the next one. Let the ambient space be \mathbb{R}^{d} and denote for to measurable sets A, B the "Minkowski sum" of A and B as

$$
A+B=\{a+b, a \in A, b \in B\}
$$

The Brunn-Minkowski inequality states the following: for any measurable A, B of finite volume and $\lambda \in[0,1]$ such that $(1-\lambda) A+\lambda B$ is measurable, it holds

$$
\mathcal{V}_{d}((1-\lambda) A+\lambda B)^{\frac{1}{d}} \geq(1-\lambda) \mathcal{V}_{d}(A)^{\frac{1}{d}}+\lambda \mathcal{V}_{d}(B)^{\frac{1}{d}}
$$

where \mathcal{V}_{d} denotes volume (d-dimensional Lebesgue measure). In this sense the function $A \mapsto \mathcal{V}_{d}(A)^{\frac{1}{d}}$ is "concave".
Below we call "cuboid" a d-dimensional rectangular (axis-aligned) box (=cartesian product of intervals along each coordinate).
a) Prove the inequality when both A and B are cuboids. Hint: assume w.l.o.g. that $\mathcal{V}_{d}((1-\lambda) A+$ $\lambda B)=1$ and use the inequality between geometric and arithmetic mean.
b) We now establish the inequality when A and B are disjoint finite unions of cuboids, by recursion on the total number of cuboids.

- Assume w.l.o.g. that A is a disjoint union of at least two cuboids and prove that there exists at least an axis-aligned hyperplane H that separates two cuboids of A.
- Denote H^{+}one of the half-spaces defined by H and $A_{+}:=H_{+} \cap A$ and similarly for other sets. Justify that w.l.o.g. we can by translation of B assume that $\frac{\mathcal{V}_{d}(A)}{\mathcal{V}_{d}(B)}=\frac{\mathcal{V}_{d}\left(A_{+}\right)}{\mathcal{V}_{d}\left(B_{+}\right)}=\frac{\mathcal{V}_{d}\left(A_{-}\right)}{\mathcal{V}_{d}\left(B_{-}\right)}$.
- Justify the inequality $\mathcal{V}_{d}((1-\lambda) A+\lambda B) \leq \mathcal{V}_{d}\left((1-\lambda) A_{+}+\lambda B_{+}\right)+\mathcal{V}_{d}\left((1-\lambda) A_{-}+\lambda B_{-}\right)$.
- Apply the induction hypothesis on the quantities on the right-hand-side of the above inequality, and use the assumption on the volume ratios to conclude.
c) Conclude by approximating arbitrary measurable sets by finite union of cuboids.

Aufgabe 3 (Grünbaum's Lemma)

We proceed to proving the following property which was used in the lecture: if K is a compact convex set of \mathbb{R}^{d}, and H a hyperplane going through the center of gravity of K, then the intersection of K with either half-space defined by H has volume at least $\frac{1}{e} \mathcal{V}_{d}(K)$.
Without loss of generality, we assume K has center of gravity at the origin and $H=\left\{x: x_{1}=0\right\}$. For any set A, we denote $A_{t}:=A \cap\left\{x: x_{1}=t\right\} ; A_{+}:=A \cap\left\{x: x_{1} \geq 0\right\}$ and $A_{-}:=A \cap\left\{x: x_{1} \leq 0\right\}$.
a) Construct a "symmetrized" version K^{\prime} of K ("Schwarzsche Abrundung") as follows. For any $t \in \mathbb{R}$, K_{t}^{\prime} is the $(d-1)$-dimensional ball $B\left(0, r_{t}\right)$ with r_{t} chosen so that $\mathcal{V}_{d-1}\left(B\left(0, r_{t}\right)\right)=\mathcal{V}_{d-1}\left(K_{t}\right)$.
Prove that K^{\prime} is convex. (Hint: use the Brunn-Minkowski inequality to establish that $t \mapsto r_{t}$ is concave.) Prove that $\mathcal{V}_{d}\left(K_{+}^{\prime}\right)=\mathcal{V}_{d}\left(K_{+}\right)$and $\mathcal{V}_{d}\left(K_{-}^{\prime}\right)=\mathcal{V}_{d}\left(K_{-}\right)$.
b) Now consider a second transformation by "conification" of K^{\prime}. Consider a cone C defined as follows: C_{t} is the $(d-1)$-dimensional ball $B\left(0, r_{t}^{\prime}\right)$ with $r_{t}^{\prime}=\left(r_{0}-\alpha t\right) \mathbf{1}\left\{r_{0} \alpha^{-1} \geq t \geq t_{-}\right\}$, with α chosen so that $\mathcal{V}_{d}\left(C_{+}\right)=\mathcal{V}_{d}\left(K_{+}^{\prime}\right)$ and t_{-}chosen so that $\mathcal{V}_{d}\left(C_{-}\right)=\mathcal{V}_{d}\left(K_{-}^{\prime}\right)$ (note that $C_{0}=K_{0}^{\prime}$ by construction).
Prove that the center of gravity of C must have nonnegative first coordinate g_{C} (and zero other coordinates)
Hint: let $F(t)=\mathcal{V}_{d}\left(K_{[0, t]}^{\prime}\right)$ and $G(t)=\mathcal{V}_{d}\left(C_{[0, t]}\right)$. Then $F(0)=G(0)=0$ and $F(\infty)=G(\infty)$. Furthermore $F^{\prime}(t)=C_{d} r_{t}^{d-1}$ and $G^{\prime}(t)=C_{d}\left(r_{t}^{\prime}\right)^{d-1}$. By concavity of r_{t} and linearity of r_{t}^{\prime}, we have $r_{t}^{\prime} \geq r_{t}$ for $t \in\left[0, T_{0}\right]$ then $r_{t}^{\prime} \leq r_{t}$ for $t \in\left[T_{0}, \infty\right]$ for some T_{0}. Hence $H=F-G$ is such that $H(0)=H(\infty)=0$, and H nondecreasing on $\left[0, T_{0}\right]$ then nonincreasing on $\left[T_{0}, \infty\right]$, hence $H(t) \geq 0$ for all $t \geq 0$.
c) Deduce from the previous question that the cone is a worst-case situation. Compute the position of g_{C} of the center of gravity of a cone of height h and its volume, and conclude.

