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1 Introduction

Many learning algorithms and statistical procedures rely on the spectral decomposi-
tion of some empiricalmatrix or operator. Leading examples are principal component
analysis (PCA) and its extensions to kernel PCA or manifold learning. In modern
statistics and data science, such methods are typically studied in a high-dimensional
or infinite-dimensional setting; see e.g. [13, 29, 25] for an overview. Moreover, a
major focus is on results that are non-asymptotic, that is, one seeks results that de-
pend optimally on the underlying parameters (e.g. sample size and dimension); see
e.g. [17, 20] for two more recent developments.
In this paper, we are concerned with non-asymptotic lower bounds for the esti-

mation of principal subspaces, e.g. the eigenspace of the, say 𝑑, leading eigenvalues.
As stated in [5], it is highly nontrivial to obtain such lower bounds which depends
optimally on all underlying parameters, in particular the eigenvalues and 𝑑. In fact,
in contrast to asymptotic settings in which one can e.g. apply the local asymptotic
minimax theorem due to Hájek [12], it seems unavoidable to use some more specific
(resp. deeper) facts on the underlying parameter space of all orthonormal bases in
order to obtain non-asymptotic lower bounds. A state-of-the-art result, obtained in
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[5] and [26], provides a non-asymptotic lower bound for a spiked covariance model
with two groups of eigenvalues. To state their result, consider the statistical model
defined by

(P𝑈 )𝑈 ∈𝑂 (𝑝) , P𝑈 = N(0,𝑈Λ𝑈𝑇 )⊗𝑛, (1)

where 𝑂 (𝑝) denotes the orthogonal group, Λ = diag(𝜆1, . . . , 𝜆𝑝) is a diagonal ma-
trix with 𝜆1 ≥ · · · ≥ 𝜆𝑝 > 0 and N(0,𝑈Λ𝑈𝑇 ) denotes a Gaussian distribution
with expectation zero and covariance matrix 𝑈Λ𝑈𝑇 . This statistical model pro-
vides a decision-theoretic framework for principal component analysis (PCA). It
corresponds to observing 𝑛 independentN(0,𝑈Λ𝑈𝑇 )-distributed random variables
𝑋1, . . . , 𝑋𝑛, and we will write E𝑈 to denote expectation with respect to 𝑋1, . . . , 𝑋𝑛

having law P𝑈 . Moreover, in this model, the 𝑑-th principal subspace (resp. its corre-
sponding orthogonal projection) is given by 𝑃≤𝑑 (𝑈) = ∑

𝑖≤𝑑 𝑢𝑖𝑢
𝑇
𝑖
, where 𝑢1, . . . , 𝑢𝑝

are the columns of𝑈 ∈ 𝑂 (𝑝).

Theorem 1 ([5]) Consider the statistical model (1) with 𝜆1 = · · · = 𝜆𝑑 > 𝜆𝑑+1 =

· · · = 𝜆𝑝 > 0. Then there is an absolute constant 𝑐 > 0 such that

inf
�̂�

sup
𝑈 ∈𝑂 (𝑝)

E𝑈 ‖�̂� − 𝑃≤𝑑 (𝑈)‖22 ≥ 𝑐 ·min
( 𝑑 (𝑝 − 𝑑)

𝑛

𝜆𝑑𝜆𝑑+1
(𝜆𝑑 − 𝜆𝑑+1)2

, 𝑑, 𝑝 − 𝑑

)
,

where the infimum is taken over all estimators �̂� = �̂�(𝑋1, . . . , 𝑋𝑛) with values in
the class of all orthogonal projections on R𝑝 of rank 𝑑 and ‖ · ‖2 denotes the
Hilbert-Schmidt norm.

The proof is based on applying lower bounds under metric entropy conditions [30,
3, 19] combined with the metric entropy of the Grassmann manifold [21]. This
so-called Grassmann approach has been applied to many other principal subspaces
estimation problems and spiked structures; see e.g. [6, 4, 10, 18]. In principle, this
approach can also be applied to the infinite-dimensional case by considering finite-
dimensional (spiked) submodels. Yet, since this leads to lower bounds of a specific
multiplicative form, it seems difficult to recover the optimal weighted eigenvalue
expressions 2

∑
𝑖≤𝑑

∑
𝑗>𝑑 𝜆𝑖𝜆 𝑗/(𝜆𝑖 − 𝜆 𝑗 )2 appearing in the non-asymptotic upper

bounds from [16, 22] and in the asymptotic limit [7].
To overcome this difficulty, [27] proposed a new approach based on a version

of the van Trees inequality with reference measure being the Haar measure on
the special orthogonal group 𝑆𝑂 (𝑝). The key ingredient was to explore the group
equivariance of the model (1), allowing to derive a non-asymptotic analogue of
the local asymptotic minimax theorem. For instance, using also large deviations
techniques to design optimal prior densities, a main consequence of the developed
theory is as follows.

Theorem 2 ([27]) Consider the statistical model (1) with 𝜆1 ≥ · · · ≥ 𝜆𝑝 > 0. Then
there are absolute constants 𝑐, 𝐶 > 0 such that for every ℎ ≥ 𝐶, we have

inf
�̂�

∫
𝑆𝑂 (𝑝)

E𝑈 ‖�̂� − 𝑃≤𝑑 (𝑈)‖22 𝜋ℎ (tr𝑈)𝑑𝑈 ≥ 𝑐 ·
∑︁
𝑖≤𝑑

∑︁
𝑗>𝑑

min
(1
𝑛

𝜆𝑖𝜆 𝑗

(𝜆𝑖 − 𝜆 𝑗 )2
,
1

ℎ2𝑝

)
,
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where the infimum is taken over all R𝑝×𝑝-valued estimators �̂� = �̂�(𝑋1, . . . , 𝑋𝑛),
𝑑𝑈 denotes the Haar measure on 𝑆𝑂 (𝑝), tr𝑈 denotes the trace of 𝑈, and the prior
probability density 𝜋ℎ is given by

𝜋ℎ (tr𝑈) = exp(ℎ𝑝 tr𝑈)∫
𝑆𝑂 (𝑝) exp(ℎ𝑝 tr𝑈) 𝑑𝑈

, ℎ > 0.

Theorem 2 is a slight reformulation of [27, Theorem 2], where the special choice
ℎ = 𝐶 is considered. Obviously, for this (from a non-asymptotic point of view)
optimal choice for ℎ, Theorem 2 implies Theorem 1, as can be seen from inserting
2𝑑 (𝑝−𝑑)/𝑝 ≥ min(𝑑, 𝑝−𝑑).Moreover, as shown in [27, Section 1.3], Theorem2 can
be used to derive tight non-asymptotic minimax lower bounds for standard examples
from functional PCA or kernel PCA, including exponentially and polynomially
decaying eigenvalues.
The goal of this paper is to extend the theory of [27] in several directions. First, we

provide a lower bound for the excess risk of PCA. This loss function is not covered
in [27] and a variation of the approach is needed to deal with it. Second, we provide
a slightly complementary (and less general) van Trees-type inequality tailored for
principal subspace estimation problems and dealing solely with the uniform prior.
Interestingly, such uniform prior densities lead to trivial results in the Trees inequality
from [27] (as well as in previous classical van Trees approaches [24, 11]). Indeed,
while the Fisher information of such uniform priors is zero, the average in the
numerator is zero as well, meaning that we get the trivial lower bound. Finally,
we provide lower bounds that are characterized by doubly substochastic matrices
whose entries are bounded by the different Fisher information directions, confirming
previous non-asymptotic upper bounds that hold for the principal subspaces of the
empirical covariance operator [22, Section 2.3].

2 A van Trees inequality for the estimation of principal subspaces

In this section, we state a general van Trees-type inequality tailored for principal
subspace estimation problems. Applications to more concrete settings are presented
in Section 4. Let (X, F , (P𝑈 )𝑈 ∈𝑂 (𝑝) ) be a statistical model with parameter space
being the orthogonal group 𝑂 (𝑝). Let (𝐴, 〈·, ·〉) be a real inner product space of
dimension 𝑚 ∈ N and let 𝜓 : 𝑂 (𝑝) → 𝐴 be a derived parameter. We suppose that
𝑂 (𝑝) acts (from the left, measurable) on X and 𝐴 such that

(A1) (P𝑈 )𝑈 ∈𝑂 (𝑝) is 𝑂 (𝑝)-equivariant, i.e. P𝑉𝑈 (𝑉𝐸) = P𝑈 (𝐸) for all 𝑈,𝑉 ∈
𝑂 (𝑝) and all 𝐸 ∈ F ;

(A2) 𝜓 is 𝑂 (𝑝)-equivariant, i.e. 𝜓(𝑉𝑈) = 𝑉𝜓(𝑈) for all𝑈,𝑉 ∈ 𝑂 (𝑝);
(A3) 〈𝑈𝑎,𝑈𝑏〉 = 〈𝑎, 𝑏〉 for all 𝑎, 𝑏 ∈ 𝐴 and all𝑈 ∈ 𝑂 (𝑝).
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Condition (A1) says that for a random variable 𝑋 with distribution P𝑈 we have that
𝑉𝑋 has distribution P𝑉𝑈 . For more background on statistical models under group
action, the reader is deferred to [8, 9] and also to [27, Section 2.3].
Next, we specify the allowed loss functions. Let (𝑣1, . . . , 𝑣𝑚) : 𝑂 (𝑝) → 𝐴𝑚 be

such that for all 𝑗 = 1, . . . , 𝑚,

(A4) 𝑣1 (𝑈), . . . , 𝑣𝑚 (𝑈) is an orthonormal basis of 𝐴 for all𝑈 ∈ 𝑂 (𝑝);
(A5) 𝑣 𝑗 are 𝑂 (𝑝)-equivariant, i.e. 𝑣 𝑗 (𝑉𝑈) = 𝑉𝑣 𝑗 (𝑈) for all𝑈,𝑉 ∈ 𝑂 (𝑝).

For 𝑤 ∈ R𝑚
>0 we now consider the loss function

𝑙𝑤 : 𝑂 (𝑝) × 𝐴 → R≥0, 𝑙𝑤 (𝑈, 𝑎) =
𝑚∑︁
𝑘=1

𝑤𝑘 〈𝑣𝑘 (𝑈), 𝑎 − 𝜓(𝑈)〉2.

If 𝑤1 = · · · = 𝑤𝑚 = 1, then 𝑙𝑤 does not depend on 𝑣1, . . . , 𝑣𝑚 and is equal to the
squared norm in 𝐴

𝑙 (1,...,1) (𝑈, 𝑎) = ‖𝑎 − 𝜓(𝑈)‖2 = 〈𝑎 − 𝜓(𝑈), 𝑎 − 𝜓(𝑈)〉. (2)

For general 𝑤, the loss function 𝑙𝑤 is itself invariant in the sense that

𝑙𝑤 (𝑉𝑈,𝑉𝑎) = 𝑙𝑤 (𝑈, 𝑎) for all𝑈,𝑉 ∈ 𝑂 (𝑝), 𝑎 ∈ 𝐴, (3)

as can be seen from (A2), (A3) and (A5). For an estimator �̂�(𝑋) based on an
observation 𝑋 from the experiment, the 𝑙𝑤 -risk is defined as E𝑈 𝑙𝑤 (𝑈, �̂�(𝑋)), where
E𝑈 denotes expectation with respect to 𝑋 having distribution P𝑈 .
In order to formulate our abstract main result, we also need some differentiability

conditions on 𝜓 and the 𝑣 𝑗 . We assume that 𝜓 and 𝑣 𝑗 are differentiable at the identity
matrix 𝐼𝑝 in the sense that for all 𝜉 ∈ 𝔰𝔬(𝑝), all 𝑎 ∈ 𝐴 and all 𝑗 = 1, . . . , 𝑚, we have

(A6) lim
𝑡→0

〈 𝜓 (exp(𝑡 𝜉 ))−𝜓 (𝐼𝑝)
𝑡

, 𝑎
〉
= 〈𝑑𝜓(𝐼𝑝)𝜉, 𝑎〉;

(A7) lim
𝑡→0

〈 𝑣𝑗 (exp(𝑡 𝜉 ))−𝑣𝑗 (𝐼𝑝)
𝑡

, 𝑎
〉
= 〈𝑑𝑣 𝑗 (𝐼𝑝)𝜉, 𝑎〉.

Here, 𝑑𝜓(𝐼𝑝)𝜉 and 𝑑𝑣 𝑗 (𝐼𝑝)𝜉 denote the directional derivatives at 𝐼𝑝 defined on
the Lie algebra 𝔰𝔬(𝑝) on 𝑆𝑂 (𝑝) (i.e. the tangent space of 𝑂 (𝑝) at 𝐼𝑝). Since 𝐴 is
finite-dimensional, conditions (A6) and (A7) can also formulated in a norm-sense,
e.g. lim𝑡→0 ‖(𝜓(exp(𝑡𝜉)) − 𝜓(𝐼𝑝))/𝑡 − 𝑑𝜓(𝐼𝑝)𝜉‖ = 0 for all 𝜉 ∈ 𝔰𝔬(𝑝). For some
background on the special orthogonal group 𝑆𝑂 (𝑝) and its Lie algebra 𝔰𝔬(𝑝) see
e.g. [27, Section 2.1].

Proposition 1 Assume (A1)–(A7). Let 𝜉1, . . . , 𝜉𝑚 ∈ 𝔰𝔬(𝑝) be such that Pexp(𝑡 𝜉 𝑗 ) �
P𝐼𝑝 for all 𝑗 = 1, . . . , 𝑚 and all 𝑡 small enough. Suppose that there are 𝑎1, . . . , 𝑎𝑚 ∈
(0,∞] such that for all 𝑗 = 1, . . . , 𝑚,

lim
𝑡→0

𝜒2 (Pexp(𝑡 𝜉 𝑗 ) , P𝐼𝑝 )
𝑡2

= 𝑎−1𝑗 , (4)
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where 𝜒2 (·, ·) denotes the 𝜒2-divergence (cf. Remark 1 below). Then, for all estima-
tors �̂� = �̂�(𝑋) with values in 𝐴, we have

∫
𝑂 (𝑝)

E𝑈 𝑙𝑤 (𝑈, �̂�(𝑋)) 𝑑𝑈 ≥

( 𝑚∑
𝑗=1

〈𝑣 𝑗 (𝐼𝑝), 𝑑𝜓(𝐼𝑝)𝜉 𝑗〉
)2

∑𝑚
𝑗=1 𝑤

−1
𝑗
𝑎−1
𝑗
+

𝑚∑
𝑘=1

𝑤−1
𝑘

( 𝑚∑
𝑗=1

〈𝑣𝑘 (𝐼𝑝), 𝑑𝑣 𝑗 (𝐼𝑝)𝜉 𝑗〉
)2 .

Remark 1 The 𝜒2-divergence between two probability measures P � Q is defined
as 𝜒2 (P,Q) =

∫
( 𝑑P
𝑑Q )

2 𝑑Q − 1.

Remark 2 In the applications, the 𝑎−1
𝑗

∈ [0,∞) will be the different Fisher informa-
tion directions. We use the inverse notation because it will be more suitable to solve
the final optimization problem in Section 5.2.

Remark 3 Let us briefly compare Proposition 1 to [27, Proposition 1 and Theorem 3],
where a more general van Trees inequality is presented. In fact, the bound [27,
Theorem 3] has a more classical form and involves a general prior, an average over
the prior in the numerator and Fisher informations of the prior in the denominator.
Yet, while these Fisher informations are zero for the uniform prior considered in
Proposition 1, the averages in the denominator are zero as well. Hence, [27, Theorem
3] is trivial for the uniform prior. The reason that we can deal with the uniform prior
lies in the fact that in addition to the equivariance condition (A1) for the statistical
model, we also require equivariance of the derived parameter and invariance of the
loss function.

3 Proof of Proposition 1

We provide a proof which manifests Proposition 1 as a version of the Cramér-Rao
inequality for equivariant estimators.

3.1 Reduction to a pointwise risk

Weuse [27, Lemma4] in order to reduce theBayes risk of Proposition 1 to a pointwise
risk minimized over the class of all equivariant estimators. For completeness we
briefly repeat the (standard) argument. Let �̃� be an arbitrary estimator with values in
𝐴. Without loss of generality we may restrict ourselves to estimators with bounded
Hilbert-Schmidt norm sup𝑥∈X ‖�̃�(𝑥)‖2 < ∞. (Indeed, by (A2) and (A3) we know
that sup𝑈 ∈𝑂 (𝑝) ‖𝜓(𝑈)‖ = 𝐶 < ∞. Hence, setting �̃�(𝑥) = 0 whenever ‖�̃�(𝑥)‖2 >

𝐶𝑤 = 2𝐶 (𝑤max/𝑤min)1/2 with 𝑤max = max𝑘 𝑤𝑘 and 𝑤min = min𝑘 𝑤𝑘 , the 𝑙𝑤 -risk
is lowered. To see this use that for such an 𝑥, we have 𝑙1/2𝑤 (𝑈, 0) ≤ 𝑤

1/2
max𝐶, while,

𝑙
1/2
𝑤 (𝑈, �̃�) > 𝑤

1/2
min𝐶𝑤 − 𝑤

1/2
max𝐶 = 𝑤

1/2
max𝐶.) Hence, we can construct
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�̂�(𝑥) =
∫
𝑂 (𝑝)

𝑉𝑇 �̃�(𝑉𝑥) 𝑑𝑉, 𝑥 ∈ X.

By [27, Lemma 4] this defines an 𝑂 (𝑝)-equivariant estimator (i.e. it holds that
�̂�(𝑈𝑥) = 𝑈�̂�(𝑥) for all 𝑥 ∈ X and all𝑈 ∈ 𝑂 (𝑝)) satisfying∫

𝑂 (𝑝)
E𝑈 𝑙𝑤 (𝑈, �̃�(𝑋)) 𝑑𝑈 ≥

∫
𝑂 (𝑝)

E𝑈 𝑙𝑤 (𝑈, �̂�(𝑋)) 𝑑𝑈,

where we used (A1) and the facts that the loss function 𝑙𝑤 is convex in the second
argument and satisfies (3). Moreover, using that �̂� is 𝑂 (𝑝)-equivariant, it follows
again from [27, Lemma 4] that the risk E𝑈 𝑙𝑤 (𝑈, �̂�(𝑋)) is constant over𝑈 ∈ 𝑂 (𝑝).
Hence, we arrive at

inf
�̃�

∫
𝑂 (𝑝)

E𝑈 𝑙𝑤 (𝑈, �̃�(𝑋)) 𝑑𝑈 ≥ inf
�̂� 𝑂 (𝑝)-equivariant

E𝐼𝑝 𝑙𝑤 (𝐼𝑝 , �̂�(𝑋)),

and it suffices to lower bound the right-hand side.

3.2 A pointwise Cramér-Rao inequality for equivariant estimators

The classical Cramér-Rao inequality provides a lower bound for the (co-)variance
of unbiased estimators. In this section, we show that in our context, a similar lower
bound can be proved for the class of all equivariant estimators.

Lemma 1 Assume (A1)–(A7). Let 𝜉1, . . . , 𝜉𝑚 ∈ 𝔰𝔬(𝑝) be such that Pexp(𝑡 𝜉 𝑗 ) � P𝐼𝑝
for all 𝑗 = 1, . . . , 𝑚 and all 𝑡 small enough. Suppose that there are 𝑎1, . . . , 𝑎𝑚 ∈
(0,∞] such that lim𝑡→0 𝜒2 (Pexp(𝑡 𝜉 𝑗 ) , P𝐼𝑝 )/𝑡2 = 𝑎−1

𝑗
for all 𝑗 = 1, . . . , 𝑚. Then, for

any 𝑂 (𝑝)-equivariant estimators �̂�(𝑋) with values in 𝐴, we have

E𝐼𝑝 𝑙𝑤 (𝐼𝑝 , �̂�(𝑋)) ≥

( 𝑚∑
𝑗=1

〈𝑣 𝑗 (𝐼𝑝), 𝑑𝜓(𝐼𝑝)𝜉 𝑗〉
)2

∑𝑚
𝑗=1 𝑤

−1
𝑗
𝑎−1
𝑗
+

𝑚∑
𝑘=1

𝑤−1
𝑘

( 𝑚∑
𝑗=1

〈𝑣𝑘 (𝐼𝑝), 𝑑𝑣 𝑗 (𝐼𝑝)𝜉 𝑗〉
)2 .

Proof For𝑈 𝑗 = exp(𝑡𝜉 𝑗 ), 𝑗 = 1, . . . , 𝑚, consider the expression

𝑚∑︁
𝑗=1
E𝐼𝑝 〈𝑣 𝑗 (𝐼𝑝), �̂�(𝑋) − 𝜓(𝐼𝑝)〉 −

𝑚∑︁
𝑗=1
E𝐼𝑝 〈𝑣 𝑗 (𝐼𝑝), �̂�(𝑋) − 𝜓(𝑈𝑇

𝑗 )〉. (5)

Clearly (5) is equal to

𝑚∑︁
𝑗=1

〈𝑣 𝑗 (𝐼𝑝), 𝜓(𝑈𝑇
𝑗 ) − 𝜓(𝐼𝑝)〉. (6)
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On the other hand, using (A1)–(A3), (A5) and the equivariance of �̂�, we have

E𝐼𝑝 〈𝑣 𝑗 (𝐼𝑝), �̂�(𝑋) − 𝜓(𝑈𝑇
𝑗 )〉

= E𝑈 𝑗
〈𝑣 𝑗 (𝐼𝑝), �̂�(𝑈𝑇

𝑗 𝑋) − 𝜓(𝑈𝑇
𝑗 )〉 = E𝑈 𝑗

〈𝑣 𝑗 (𝐼𝑝),𝑈𝑇
𝑗 �̂�(𝑋) −𝑈𝑇

𝑗 𝜓(𝐼𝑝)〉

= E𝑈 𝑗
〈𝑣 𝑗 (𝑈 𝑗 ), �̂�(𝑋) − 𝜓(𝐼𝑝)〉 = E𝐼𝑝

𝑑P𝑈 𝑗

𝑑P𝐼𝑝
(𝑋)〈𝑣 𝑗 (𝑈 𝑗 ), �̂�(𝑋) − 𝜓(𝐼𝑝)〉.

Hence, (5) is also equal to

E𝐼𝑝

𝑚∑︁
𝑗=1

〈𝑣 𝑗 (𝐼𝑝), �̂�(𝑋) − 𝜓(𝐼𝑝)〉 − E𝐼𝑝
𝑚∑︁
𝑗=1

𝑑P𝑈 𝑗

𝑑P𝐼𝑝
(𝑋)〈𝑣 𝑗 (𝑈 𝑗 ), �̂�(𝑋) − 𝜓(𝐼𝑝)〉 (7)

Using (5)–(7), Parseval’s identity, (A4) and the Cauchy-Schwarz inequality (twice),
we arrive at( 𝑚∑︁

𝑗=1
〈𝑣 𝑗 (𝐼𝑝), 𝜓(𝑈𝑇

𝑗 ) − 𝜓(𝐼𝑝)〉
)2

=

(
E𝐼𝑝

𝑚∑︁
𝑗=1

〈𝑣 𝑗 (𝐼𝑝), �̂�(𝑋) − 𝜓(𝐼𝑝)〉 − E𝐼𝑝
𝑚∑︁
𝑗=1

𝑑P𝑈 𝑗

𝑑P𝐼𝑝
(𝑋)〈𝑣 𝑗 (𝑈 𝑗 ), �̂�(𝑋) − 𝜓(𝐼𝑝)〉

)2
=

(
E𝐼𝑝

𝑚∑︁
𝑘=1

{ 𝑚∑︁
𝑗=1

〈𝑣 𝑗 (𝐼𝑝), 𝑣𝑘 (𝐼𝑝)〉 −
𝑚∑︁
𝑗=1

𝑑P𝑈 𝑗

𝑑P𝐼𝑝
(𝑋)〈𝑣 𝑗 (𝑈 𝑗 ), 𝑣𝑘 (𝐼𝑝)〉

}
〈𝑣𝑘 (𝐼𝑝), �̂�(𝑋) − 𝜓(𝐼𝑝)〉

)2
≤

(
E𝐼𝑝

𝑚∑︁
𝑘=1

𝑤𝑘 〈𝑣𝑘 (𝐼𝑝), �̂�(𝑋) − 𝜓(𝐼𝑝)〉2
)

·
(
E𝐼𝑝

𝑚∑︁
𝑘=1

𝑤−1
𝑘

{ 𝑚∑︁
𝑗=1

〈𝑣 𝑗 (𝐼𝑝), 𝑣𝑘 (𝐼𝑝)〉 −
𝑚∑︁
𝑗=1

𝑑P𝑈 𝑗

𝑑P𝐼𝑝
(𝑋)〈𝑣 𝑗 (𝑈 𝑗 ), 𝑣𝑘 (𝐼𝑝)〉

}2)
.

The first term on the right-hand side is equal to the 𝑙𝑤 -risk at 𝐼𝑝 . Moreover, the
second term can be written as
𝑚∑︁
𝑘=1

𝑤−1
𝑘

{( 𝑚∑︁
𝑗=1

〈𝑣 𝑗 (𝑈 𝑗 ) − 𝑣 𝑗 (𝐼𝑝), 𝑣𝑘 (𝐼𝑝)〉
)2

+ E𝐼𝑝
( 𝑚∑︁
𝑗=1

( 𝑑P𝑈 𝑗

𝑑P𝐼𝑝
(𝑋) − 1

)
〈𝑣 𝑗 (𝑈 𝑗 ), 𝑣𝑘 (𝐼𝑝)〉

)2}
.

In particular, we have proved that

E𝐼𝑝 𝑙𝑤 (𝐼𝑝 , �̂�(𝑋)) ≥
𝐷2∑𝑚

𝑘=1 𝑤
−1
𝑘
(𝐷2

𝑘
+ E𝐼𝑝 (𝐵𝑘 + 𝐶𝑘 )2)

(8)

with
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𝐷 =

𝑚∑︁
𝑗=1

〈𝑣 𝑗 (𝐼𝑝), 𝜓(𝑈𝑇
𝑗 ) − 𝜓(𝐼𝑝)〉,

𝐷𝑘 =

𝑚∑︁
𝑗=1

〈𝑣 𝑗 (𝑈 𝑗 ) − 𝑣 𝑗 (𝐼𝑝), 𝑣𝑘 (𝐼𝑝)〉,

𝐵𝑘 =

𝑚∑︁
𝑗=1

( 𝑑P𝑈 𝑗

𝑑P𝐼𝑝
(𝑋) − 1

)
〈𝑣 𝑗 (𝐼𝑝), 𝑣𝑘 (𝐼𝑝)〉,

𝐶𝑘 =

𝑚∑︁
𝑗=1

( 𝑑P𝑈 𝑗

𝑑P𝐼𝑝
(𝑋) − 1

)
〈𝑣 𝑗 (𝑈 𝑗 ) − 𝑣 𝑗 (𝐼𝑝), 𝑣𝑘 (𝐼𝑝)〉.

We now invoke a limiting argument to deduce Lemma 1 from (8). For this, recall
that 𝑈 𝑗 = exp(𝑡𝜉 𝑗 ), 𝜉 𝑗 ∈ 𝔰𝔬(𝑝), multiply numerator and denominator by 1/𝑡2 and
let 𝑡 → 0. First, by (A6) and (A7), we have

1
𝑡
𝐷 → −

𝑚∑︁
𝑗=1

〈𝑣 𝑗 (𝐼𝑝), 𝑑𝜓(𝐼𝑝)𝜉 𝑗〉,

1
𝑡
𝐷𝑘 →

𝑚∑︁
𝑗=1

〈𝑣𝑘 (𝐼𝑝), 𝑑𝑣 𝑗 (𝐼𝑝)𝜉 𝑗〉

as 𝑡 → 0. Moreover, by assumption (4), we have

1
𝑡2

𝑚∑︁
𝑘=1

𝑤−1
𝑘 E𝐼𝑝𝐵

2
𝑘 =

1
𝑡2

𝑚∑︁
𝑗=1

𝑤−1
𝑗 𝜒2 (P𝑈 𝑗

, P𝐼𝑝 ) →
𝑚∑︁
𝑗=1

𝑤−1
𝑗 𝑎−1𝑗 as 𝑡 → 0.

On the other hand, 𝐶𝑘 is asymptotically negligible, as can be seen from

1
𝑡2
E𝐼𝑝𝐶

2
𝑘 ≤ 1

𝑡2

( 𝑚∑︁
𝑗=1

𝜒2 (P𝑈 𝑗
, P𝐼𝑝 )

) ( 𝑚∑︁
𝑗=1

〈𝑣 𝑗 (𝑈 𝑗 ) − 𝑣 𝑗 (𝐼𝑝), 𝑣𝑘 (𝐼𝑝)〉2
)
→ 0

as 𝑡 → 0. Here, we used (4) and (A7). Thus,

1
𝑡2

��� 𝑚∑︁
𝑘=1

𝑤−1
𝑘 E𝐼𝑝 (𝐵𝑘 + 𝐶𝑘 )2 −

𝑚∑︁
𝑘=1

𝑤−1
𝑘 E𝐼𝑝𝐵

2
𝑘

���
≤ 1

𝑡2

𝑚∑︁
𝑘=1

𝑤−1
𝑘 (2(E𝐼𝑝𝐵2𝑘 )

1/2 (E𝐼𝑝𝐶2𝑘 )
1/2 + E𝐼𝑝𝐶2𝑘 ) → 0

as 𝑡 → 0. The proof now follows from inserting these limits into (8). �
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4 Applications

In this section, we specialize our lower bounds in the context of principal component
analysis (PCA) and a low-rank denoising model. In doing so, we will focus on the
derived parameter

𝜓(𝑈) = 𝑃≤𝑑 (𝑈) =
∑︁
𝑖≤𝑑

𝑢𝑖𝑢
𝑇
𝑖 , 𝑈 ∈ 𝑂 (𝑝),

where 1 ≤ 𝑑 ≤ 𝑝 and 𝑢1, . . . , 𝑢𝑝 are the columns of𝑈 ∈ 𝑂 (𝑝). This will correspond
to the estimation of the 𝑑-th principal subspace. We discuss several loss functions
based on the Hilbert-Schmidt distance and the excess risk in the reconstruction error.

4.1 PCA and the subspace distance

In this section, we consider the statistical model given in (1)

(P𝑈 )𝑈 ∈𝑂 (𝑝) , P𝑈 = N(0,𝑈Λ𝑈𝑇 )⊗𝑛,

with Λ = diag(𝜆1, . . . , 𝜆𝑝) and 𝜆1 ≥ · · · ≥ 𝜆𝑝 > 0. The following theorem proved
in Section 5 applies Proposition 1 to the above model, derived parameter 𝑃≤𝑑 , and
loss function given by the Hilbert-Schmidt distance (cf. Section 5.1 below).

Theorem 3 Consider the statistical model (1). Then, for each 𝛿 > 0, we have

inf
�̂�

∫
𝑂 (𝑝)

E𝑈 ‖�̂� − 𝑃≤𝑑 (𝑈)‖22 𝑑𝑈 ≥ 𝐼𝛿

with infimum taken over all R𝑝×𝑝-valued estimators �̂� = �̂�(𝑋1, . . . , 𝑋𝑛) and

𝐼𝛿 =
1

1 + 2𝛿 max
{∑︁
𝑖≤𝑑

∑︁
𝑗>𝑑

𝑥𝑖 𝑗 : 0 ≤ 𝑥𝑖 𝑗 ≤ 2
𝑛

𝜆𝑖𝜆 𝑗

(𝜆𝑖−𝜆 𝑗 )2
for all 𝑖 ≤ 𝑑, 𝑗 > 𝑑,∑︁

𝑖≤𝑑
𝑥𝑖 𝑗 ≤ 𝛿 for all 𝑗 > 𝑑,∑︁

𝑗>𝑑

𝑥𝑖 𝑗 ≤ 𝛿 for all 𝑖 ≤ 𝑑

}
.

Remark 4 We write 𝑖 ≤ 𝑑 for 𝑖 ∈ {1, . . . , 𝑑} and 𝑗 > 𝑑 for 𝑗 ∈ {𝑑 + 1, . . . , 𝑝}.

Remark 5 A (non-square) matrix (𝑥𝑖 𝑗 ) is called doubly substochastic (cf. [2, Sec-
tion 2]) if
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𝑥𝑖 𝑗 ≥ 0 for all 𝑖, 𝑗 ,∑
𝑖

𝑥𝑖 𝑗 ≤ 1 for all 𝑗 ,∑
𝑗

𝑥𝑖 𝑗 ≤ 1 for all 𝑖.

Hence, choosing 𝛿 = 1, Theorem 3 holds with

𝐼1 =
1
3
max

{∑︁
𝑖≤𝑑

∑︁
𝑗>𝑑

𝑥𝑖 𝑗 : (𝑥𝑖 𝑗 ) doubly substochastic with

𝑥𝑖 𝑗 ≤ 2
𝑛

𝜆𝑖𝜆 𝑗

(𝜆𝑖−𝜆 𝑗 )2
for all 𝑖 ≤ 𝑑, 𝑗 > 𝑑

}
.

Remark 6 That doubly substochastic matrices play a role is no coincidence. Such
a structure also appears in the upper bounds for the principal subspaces of the
empirical covariance operator; see e.g. [22]. To explain this, let 𝑋, 𝑋1, . . . , 𝑋𝑛 be
independent random variables with expectation zero and covariance matrix Σ and
let Σ̂ = 𝑛−1

∑𝑛
𝑖=1 𝑋𝑖𝑋

𝑇
𝑖
be the empirical covariance operator. Moreover, let 𝜆1 ≥

· · · ≥ 𝜆𝑝 (resp. �̂�1 ≥ · · · ≥ �̂�𝑝) be the eigenvalues of Σ (resp. Σ̂) and let 𝑢1, . . . , 𝑢𝑝

(resp. �̂�1, . . . , �̂�𝑝) be the corresponding eigenvectors of Σ (resp. Σ̂). Then, for 𝑃≤𝑑 =∑
𝑖≤𝑑 𝑢𝑖𝑢

𝑇
𝑖
and �̂�≤𝑑 =

∑
𝑖≤𝑑 �̂�𝑖 �̂�

𝑇
𝑖
, we have (cf. [22, 16])

‖�̂�≤𝑑 − 𝑃≤𝑑 ‖22 = 2
∑︁
𝑖≤𝑑

∑︁
𝑗>𝑑

𝑥𝑖 𝑗 with 𝑥𝑖 𝑗 = 〈𝑢𝑖 , �̂� 𝑗〉2.

There are two completely different possibilities to bound this Hilbert-Schmidt dis-
tance. First, by Bessel’s inequality, we always have the trivial bounds∑︁

𝑖≤𝑑
𝑥𝑖 𝑗 ≤ 1 and

∑︁
𝑗>𝑑

𝑥𝑖 𝑗 ≤ 1.

On the other hand, using perturbative methods, one e.g. has

𝑛𝑥𝑖 𝑗 = 𝑛〈𝑢𝑖 , �̂� 𝑗〉2
𝑑→ N

(
0,

𝜆𝑖𝜆 𝑗

(𝜆𝑖 − 𝜆 𝑗 )2
)
,

see e.g. [1], and also [15] for a non-asymptotic version of this result. Hence, the
lower bound in Theorem 3 can be interpreted as the fact that we can not do better
than the best mixture of trivial and perturbative bounds.

Remark 7 A simple and canonical choice of the 𝑥𝑖 𝑗 in Theorem 3 is given by

𝑥𝑖 𝑗 = min
(2
𝑛

𝜆𝑖𝜆 𝑗

(𝜆𝑖 − 𝜆 𝑗 )2
,
1
𝑝

)
,

in which case we rediscover the bound [27, Theorem 1]. Yet, let us point out that the
result in Theorem 2 is stronger in the sense that it allows for priors that are highly
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concentrated around 𝐼𝑝 (cf. ℎ of size
√
𝑛), while Theorem 3 provides a lower bound

for the uniform prior.

Remark 8 In general it seems difficult to find a simple closed form expression for the
lower bound in Theorem 3. One exception is given e.g. by the case 𝑑 = 1, in which
case we have

𝐼1 =
1
3
min

(2
𝑛

∑︁
𝑗>1

𝜆1𝜆 𝑗

(𝜆1 − 𝜆 𝑗 )2
, 1
)
.

Remark 9 Using decision-theoretic arguments, the result can be extended to random
variables with values in a Hilbert space; see [27, Section 1.4] for the details.

4.2 PCA and the excess risk

Theorem 3 provides a lower bound for the squared Hilbert-Schmidt distance ‖�̂� −
𝑃≤𝑑 (𝑈)‖22. If the estimator �̂� is itself an orthogonal projection of rank 𝑑, then ‖�̂� −
𝑃≤𝑑 (𝑈)‖22 is equal to

√
2 times theEuclidean normof the sines of the canonical angles

between the corresponding subspaces, see e.g. [2, Chapter VII.1]. This so-called
sinΘ distance is a well-studied distance in linear algebra, numerical analysis and
statistics; see e.g. [2, 14, 31]. In the context of statistical learning, another important
loss function arises if one introduces PCA as an empirical risk minimization problem
with respect to the reconstruction error.
For 1 ≤ 𝑑 ≤ 𝑝, let P𝑑 be the set of all orthogonal projections 𝑃 : R𝑝 → R𝑝 of

rank 𝑑. Consider the statistical model defined by (1). Then the reconstruction error
is defined by

𝑅𝑈 (𝑃) = E𝑈 ‖𝑋 − 𝑃𝑋 ‖2, 𝑃 ∈ P𝑑 ,𝑈 ∈ 𝑂 (𝑝)

and it is easy to see that (cf. [22])

𝑃≤𝑑 (𝑈) ∈ arg min
𝑃∈P𝑑

𝑅𝑈 (𝑃).

Hence, the performance of �̂� ∈ P𝑑 can be measured by its excess risk defined by

E𝑈 (�̂�) = 𝑅𝑈 (�̂�) − min
𝑃∈P𝑑

𝑅𝑈 (𝑃) = 𝑅𝑈 (�̂�) − 𝑅𝑈 (𝑃≤𝑑 (𝑈)). (9)

In Section 5.3, we show that E𝑈 (�̂�) can be written in the form 𝑙𝑤 for some suitable
choices for 𝐴, 𝑣 and 𝑤, and Proposition 1 yields the following.

Theorem 4 Consider the statistical model (1) with the excess risk loss function
from (9). Assume that 𝜆𝑑 > 𝜆𝑑+1. Then, for any natural numbers 𝑟, 𝑠 satisfying
1 ≤ 𝑟 ≤ 𝑑 < 𝑠 ≤ 𝑝 and 𝜇 ∈ (𝜆𝑑+1, 𝜆𝑑), we have
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inf
�̂�

∫
𝑂 (𝑝)

E𝑈E𝑈 (�̂�) 𝑑𝑈 ≥ 𝐽𝜇

with infimum taken over all P𝑑-valued estimators �̂� = �̂�(𝑋1, . . . , 𝑋𝑛) and

𝐽𝜇 =
1
3
max

{∑︁
𝑖≤𝑟

∑︁
𝑗>𝑠

𝑥𝑖 𝑗 : 0 ≤ 𝑥𝑖 𝑗 ≤ 1
𝑛

𝜆𝑖𝜆 𝑗

𝜆𝑖−𝜆 𝑗
for all 𝑖 ≤ 𝑟, 𝑗 > 𝑠,∑︁

𝑖≤𝑟
𝑥𝑖 𝑗 ≤ 𝜇 − 𝜆 𝑗 for all 𝑗 > 𝑠,∑︁

𝑗>𝑠

𝑥𝑖 𝑗 ≤ 𝜆𝑖 − 𝜇 for all 𝑖 ≤ 𝑟

}
.

Remark 10 The lower bound has a similar structure than the mixture bounds estab-
lished in [22]. In particular, as in the case of the Hilbert-Schmidt distance, the term
𝑛−1𝜆𝑖𝜆 𝑗/(𝜆𝑖−𝜆 𝑗 ) corresponds to the size of certain weighted projector norms, while
the other two constrains correspond to trivial bounds. The lower bound strenghtens
the reciprocal dependence of the excess risk on spectral gaps (the excess risk might
be small in both cases, small and large gaps); see e.g. [22, Section 2.3].

An important special case is given when the last two restrictions in 𝐽𝜇 are satisfied
for 𝑟 = 𝑑, 𝑠 = 𝑑 + 1 and 𝑥𝑖 𝑗 = 𝑛−1𝜆𝑖𝜆 𝑗/(𝜆𝑖 − 𝜆 𝑗 ). Then, letting 𝜇 = (𝜆𝑑 + 𝜆𝑑+1)/2,
they are satisfied if and only if

𝜆𝑑+1
𝜇 − 𝜆𝑑+1

∑︁
𝑖≤𝑑

𝜆𝑖

𝜆𝑖 − 𝜆𝑑+1
≤ 𝑛 and

𝜆𝑑

𝜆𝑑 − 𝜇

∑︁
𝑗>𝑑

𝜆 𝑗

𝜆𝑑 − 𝜆 𝑗

≤ 𝑛,

as can be seen from a monotonicity argument. A simple modification leads to the
following corollary.
Corollary 1 We have

inf
�̂�

∫
𝑂 (𝑝)

E𝑈E𝑈 (�̂�) 𝑑𝑈 ≥ 1
3𝑛

∑︁
𝑖≤𝑑

∑︁
𝑗>𝑑

𝜆𝑖𝜆 𝑗

𝜆𝑖 − 𝜆 𝑗

,

provided that

𝜆𝑑

𝜆𝑑 − 𝜆𝑑+1

(∑︁
𝑖≤𝑑

𝜆𝑖

𝜆𝑖 − 𝜆𝑑+1
+
∑︁
𝑗>𝑑

𝜆 𝑗

𝜆𝑑 − 𝜆 𝑗

)
≤ 𝑛

2
. (10)

Remark 11 Condition (10) is the main condition of [22] under which perturbation
bounds for the empirical covariance operator are developed (cf. [22, Remark 3.15]).
If it is not satisfied, then the accuracy of empirical spectral projectors is expected to
break down; see also [28]. The quantity in the brackets is called in [15, 16] relative
rank.

The involved eigenvalue expressions in Corollary 1 can be easily evaluated if the 𝜆 𝑗

have e.g. exponential or polynomial decay (cf. [23]).
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Example 1 If for some 𝛼 > 0, we have 𝜆 𝑗 = 𝑗−𝛼−1, 𝑗 = 1, . . . , 𝑝, then there are
constants 𝑐1, 𝑐2 > 0 depending only on 𝛼 such that

inf
�̂�

∫
𝑂 (𝑝)

E𝑈E𝑈 (�̂�) 𝑑𝑈 ≥ 𝑐1
𝑑2−𝛼

𝑛
, provided that 𝑑2 log 𝑑 ≤ 𝑐2𝑛.

Moreover, if for some 𝛼 > 0, we have 𝜆 𝑗 = 𝑒−𝛼 𝑗 , 𝑗 = 1, . . . , 𝑝, then there are
constants 𝑐1, 𝑐2 > 0 depending only on 𝛼 such that

inf
�̂�

∫
𝑂 (𝑝)

E𝑈E𝑈 (�̂�) 𝑑𝑈 ≥ 𝑐1
𝑑𝑒−𝛼𝑑

𝑛
, provided that 𝑑 ≤ 𝑐2𝑛.

4.3 Low-rank matrix denoising

For a diagonal matrix Λ = diag(𝜆1, . . . , 𝜆𝑝) with 𝜆1 ≥ · · · ≥ 𝜆𝑝 ≥ 0, we consider
the statistical model defined by

(P𝑈 )𝑈 ∈𝑂 (𝑝) , P𝑈 = N(vec(𝑈Λ𝑈𝑇 ), 𝜖2𝐼𝑝2 )⊗𝑛, (11)

where vec(𝑈Λ𝑈𝑇 ) denotes the vectorization of 𝑈Λ𝑈𝑇 . This statistical model cor-
responds to observing

𝑋 = 𝑈Λ𝑈𝑇 + 𝜖 (𝜉𝑖 𝑗 ) ∈ R𝑝×𝑝 ,

with 𝜉𝑖 𝑗 being independent Gaussian random variables with expectation 0 and vari-
ance 1. Similarly, it is also possible to consider a GOE matrix in which case one
would have a symmetric perturbation. The following theorem is the analogue of
Theorem 3.

Theorem 5 Consider the statistical model (11). Then for each 𝛿 > 0, we have

inf
�̂�

∫
𝑂 (𝑝)

E𝑈 ‖�̂� − 𝑃≤𝑑 (𝑈)‖22 𝑑𝑈 ≥ 𝐼 ′𝛿

with infimum taken over all R𝑝×𝑝-valued estimators �̂� = �̂�(𝑋1, . . . , 𝑋𝑛) and

𝐼 ′𝛿 =
1

1 + 2𝛿 max
{∑︁
𝑖≤𝑑

∑︁
𝑗>𝑑

𝑥𝑖 𝑗 : 0 ≤ 𝑥𝑖 𝑗 ≤ 𝜖 2

(𝜆𝑖−𝜆 𝑗 )2
for all 𝑖 ≤ 𝑑, 𝑗 > 𝑑,∑︁

𝑖≤𝑑
𝑥𝑖 𝑗 ≤ 𝛿 for all 𝑗 > 𝑑,∑︁

𝑗>𝑑

𝑥𝑖 𝑗 ≤ 𝛿 for all 𝑖 ≤ 𝑑

}
.

Example 2 Suppose that rank(Λ) = 𝑑 ≤ 𝑝 − 𝑑. Then, setting
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𝑥𝑖 𝑗 = min
( 𝜖2
𝜆2
𝑖

,
1

𝑝 − 𝑑

)
, we get 𝐼 ′1 ≥

1
3

∑︁
𝑖≤𝑑
min

( 𝜖2 (𝑝 − 𝑑)
𝜆2
𝑖

, 1
)
.

5 Proofs for Section 4

In this section we show how Theorems 3–5 can be obtained by an application of
Proposition 1.

5.1 Specialization to principal subspaces

We start with specializing Proposition 1 in the case where

𝜓(𝑈) = 𝑃≤𝑑 (𝑈) =
∑︁
𝑖≤𝑑

𝑢𝑖𝑢
𝑇
𝑖 = 𝑈

∑︁
𝑖≤𝑑

𝑒𝑖𝑒
𝑇
𝑖 𝑈

𝑇 , 𝑈 ∈ 𝑂 (𝑝),

Here 𝑢𝑖 = 𝑈𝑒𝑖 is the 𝑗-th column of 𝑈 and 𝑒1, . . . , 𝑒𝑝 denotes the standard basis in
R𝑝 . We consider 𝐴 = R𝑝×𝑝 endowed with the trace inner product 〈𝑎, 𝑏〉2 = tr(𝑎𝑇 𝑏),
𝑎, 𝑏 ∈ R𝑝×𝑝 and choose

𝑣 : 𝑂 (𝑝) → R𝑝×𝑝 , 𝑣(𝑈) = (𝑢𝑘𝑢𝑇𝑙 )1≤𝑘,𝑙≤𝑝 .

Hence, for 𝑤 ∈ R𝑝×𝑝
>0 , we consider the loss function defined by

𝑙𝑤 (𝑈, 𝑎) =
𝑝∑︁

𝑘=1

𝑝∑︁
𝑙=1

𝑤𝑘𝑙 〈𝑢𝑘𝑢𝑇𝑙 , 𝑎 − 𝑃≤𝑑 (𝑈)〉.

In particular, if 𝑤𝑘𝑙 = 1 for all 𝑘, 𝑙, then 𝑙𝑤 (𝑈, 𝑎) = ‖𝑎 − 𝑃≤𝑑 (𝑈)‖22 = 〈𝑎 −
𝑃≤𝑑 (𝑈), 𝑎−𝑃≤𝑑 (𝑈)〉2 is the squared Hilbert-Schmidt (or Frobenius) distance. Note
that, in contrast to Section 2, we consider a double index in this section. We equip
𝐴 with the group action given by conjugation𝑈 · 𝑎 = 𝑈𝑎𝑈𝑇 , 𝑎 ∈ R𝑝×𝑝 ,𝑈 ∈ 𝑂 (𝑝).
Using this definition it is easy to see that (A2), (A3), (A4) and (A5) are satisfied.
Moreover, the following lemma verifies (A6) and (A7) in this case.

Lemma 2 For 𝜉 ∈ 𝔰𝔬(𝑝), we have

(i) 𝑑𝑃≤𝑑 (𝐼𝑝)𝜉 = 𝜉
∑

𝑖≤𝑑 𝑒𝑖𝑒
𝑇
𝑖
−∑

𝑖≤𝑑 𝑒𝑖𝑒
𝑇
𝑖
𝜉,

(ii) 𝑑𝑣𝑖 𝑗 (𝐼𝑝)𝜉 = 𝜉𝑒𝑖𝑒
𝑇
𝑗
− 𝑒𝑖𝑒

𝑇
𝑗
𝜉.

In particular, for 𝑖 ≠ 𝑗 and 𝐿 (𝑖 𝑗) = 𝑒𝑖𝑒
𝑇
𝑗
− 𝑒 𝑗𝑒

𝑇
𝑖
∈ 𝔰𝔬(𝑝), we have

(i) 𝑑𝑃≤𝑑 (𝐼𝑝)𝐿 (𝑖 𝑗) = −𝑑𝑃≤𝑑 (𝐼𝑝)𝐿 ( 𝑗𝑖) = −𝑒𝑖𝑒𝑇𝑗 − 𝑒 𝑗𝑒
𝑇
𝑖

if 𝑖 ≤ 𝑑 and 𝑗 > 𝑑,
(ii) 𝑑𝑣𝑖 𝑗 (𝐼𝑝)𝐿 (𝑖 𝑗) = 𝑒𝑖𝑒

𝑇
𝑖
− 𝑒 𝑗𝑒

𝑇
𝑗
.
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Remark 12 We have 𝑑𝑃≤𝑑 (𝐼𝑝)𝐿 (𝑘𝑙) = 0 if 𝑘, 𝑙 ≤ 𝑑 or 𝑘, 𝑙 > 𝑑.

Proof By definition, for 𝑈 ∈ 𝑆𝑂 (𝑝) and 𝜉 ∈ 𝔰𝔬(𝑝), we have 𝑑𝑃≤𝑑 (𝐼𝑝)𝜉 =

𝑓 ′(0) with 𝑓 : R → R𝑝×𝑝 , 𝑡 ↦→ ∑
𝑖≤𝑑 (exp(𝑡𝜉)𝑒𝑖) (exp(𝑡𝜉)𝑒𝑖)𝑇 . Hence, using

(𝑑/𝑑𝑡) exp(𝑡𝜉) = 𝜉 exp(𝑡𝜉), (i) follows. Claim (ii) can be shown analogously and
(iii) and (iv) follow from inserting 𝜉 = 𝐿 (𝑖 𝑗) into (i) and (ii), respectively. �

Corollary 2 Consider the above setting with 𝜓 = 𝑃≤𝑑 . Suppose that (A1) holds and
that there is a bilinear form I : 𝔰𝔬(𝑝) × 𝔰𝔬(𝑝) → R such that

lim
𝑡→0

𝜒2 (Pexp(𝑡 𝜉 ) , P𝐼𝑝 )
𝑡2

= I(𝜉, 𝜉) for all 𝜉 ∈ 𝔰𝔬(𝑝). (12)

Let 𝐼 ⊆ {1, . . . , 𝑑} and 𝐽 ⊆ {𝑑 + 1, . . . , 𝑝}. Then, for every 𝑧𝑖 𝑗 , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, we have

inf
�̂�

∫
𝑂 (𝑝)

E𝑈 𝑙𝑤 (𝑈, �̂�) 𝑑𝑈 (13)

≥

( ∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑧𝑖 𝑗

)2
∑
𝑖∈𝐼

∑
𝑗∈𝐽

((𝑤𝑖 𝑗 + 𝑤 𝑗𝑖)𝑎𝑖 𝑗 )−1𝑧2𝑖 𝑗 +
∑
𝑖∈𝐼

𝑤−1
𝑖𝑖

( ∑
𝑗∈𝐽

𝑧𝑖 𝑗

)2
+ ∑

𝑗∈𝐽
𝑤−1

𝑗 𝑗

( ∑
𝑖∈𝐼

𝑧𝑖 𝑗

)2 ,
where 𝑎−1

𝑖 𝑗
= I(𝐿 (𝑖 𝑗) , 𝐿 (𝑖 𝑗) ) and 𝐿 (𝑖 𝑗) = 𝑒𝑖𝑒

𝑇
𝑗
− 𝑒 𝑗𝑒

𝑇
𝑖

, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽.

Proof We choose 𝜉 (𝑖 𝑗) = 𝑦𝑖 𝑗𝐿
(𝑖 𝑗) and 𝜉 ( 𝑗𝑖) = −𝑦 𝑗𝑖𝐿

( 𝑗𝑖) = 𝑦 𝑗𝑖𝐿
(𝑖 𝑗) for 𝑖 ∈ 𝐼 and

𝑗 ∈ 𝐽 and we set 𝜉 (𝑙𝑘) = 0 in all other cases. Then, by Lemma 2, the sum in the
numerator of Proposition 1 is equal to∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

〈𝑣𝑖 𝑗 (𝐼𝑝), 𝑑𝑃≤𝑑 (𝐼𝑝)𝜉 (𝑖 𝑗)〉 +
∑︁
𝑗∈𝐽

∑︁
𝑖∈𝐼

〈𝑣 𝑗𝑖 (𝐼𝑝), 𝑑𝑃≤𝑑 (𝐼𝑝)𝜉 ( 𝑗𝑖)〉

=
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

(
𝑦𝑖 𝑗 〈𝑒𝑖𝑒𝑇𝑗 ,−𝑒𝑖𝑒𝑇𝑗 − 𝑒 𝑗𝑒

𝑇
𝑖 〉 + 𝑦 𝑗𝑖 〈𝑒 𝑗𝑒

𝑇
𝑖 ,−𝑒𝑖𝑒𝑇𝑗 − 𝑒 𝑗𝑒

𝑇
𝑖 〉

)
= −

∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

𝑦𝑖 𝑗 + 𝑦 𝑗𝑖 .

On the other hand, for 1 ≤ 𝑘, 𝑙 ≤ 𝑝, the term in the squared brackets in the
denominator is equal to∑︁

𝑖∈𝐼

∑︁
𝑗∈𝐽

〈𝑣𝑘𝑙 (𝐼𝑝), 𝑑𝑣𝑖 𝑗 (𝐼𝑝)𝜉 (𝑖 𝑗)〉 +
∑︁
𝑗∈𝐽

∑︁
𝑖∈𝐼

〈𝑣𝑘𝑙 (𝐼𝑝), 𝑑𝑣 𝑗𝑖 (𝐼𝑝)𝜉 ( 𝑗𝑖)〉

=
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

(𝑦𝑖 𝑗 〈𝑒𝑘𝑒𝑇𝑙 , 𝑒𝑖𝑒
𝑇
𝑖 − 𝑒 𝑗𝑒

𝑇
𝑗 〉 − 𝑦 𝑗𝑖 〈𝑒𝑘𝑒𝑇𝑙 , 𝑒 𝑗𝑒

𝑇
𝑗 − 𝑒𝑖𝑒

𝑇
𝑖 〉)

and the latter is equal to



16 Martin Wahl
∑
𝑗∈𝐽

𝑦𝑘 𝑗 + 𝑦 𝑗𝑘 , 𝑘 = 𝑙 ∈ 𝐼,∑
𝑖∈𝐼

𝑦𝑖𝑘 + 𝑦𝑘𝑖 , 𝑘 = 𝑙 ∈ 𝐽,

0, else.

Hence the second term in the denominator is equal to∑︁
𝑖∈𝐼

𝑤−1
𝑖𝑖

(∑︁
𝑗∈𝐽

𝑦𝑖 𝑗 + 𝑦 𝑗𝑖

)2
+
∑︁
𝑗∈𝐽

𝑤−1
𝑗 𝑗

(∑︁
𝑖∈𝐼

𝑦𝑖 𝑗 + 𝑦 𝑗𝑖

)2
Finally, the Fisher information term is equal to∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

(
𝑤−1
𝑖 𝑗 I(𝜉 (𝑖 𝑗) , 𝜉 (𝑖 𝑗) ) + 𝑤−1

𝑗𝑖 I(𝜉 ( 𝑗𝑖) , 𝜉 ( 𝑗𝑖) )
)
=
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

(𝑤−1
𝑖 𝑗 𝑎

−1
𝑖 𝑗 𝑦

2
𝑖 𝑗 + 𝑤−1

𝑗𝑖 𝑎
−1
𝑖 𝑗 𝑦

2
𝑗𝑖).

Plugging all these formulas into Proposition 1, we get that, for every 𝑦𝑖 𝑗 , 𝑦 𝑗𝑖 ∈ R,
𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, the left-hand side in (13) is lower bounded by( ∑

𝑖∈𝐼

∑
𝑗∈𝐽

𝑦𝑖 𝑗 + 𝑦 𝑗𝑖

)2
∑
𝑖∈𝐼

∑
𝑗∈𝐽

(𝑤−1
𝑖 𝑗
𝑎−1
𝑖 𝑗
𝑦2
𝑖 𝑗
+ 𝑤−1

𝑗𝑖
𝑎−1
𝑖 𝑗
𝑦2
𝑗𝑖
) + ∑

𝑖∈𝐼
𝑤−1
𝑖𝑖

( ∑
𝑗∈𝐽

𝑦𝑖 𝑗 + 𝑦 𝑗𝑖

)2
+ ∑

𝑗∈𝐽
𝑤−1

𝑗 𝑗

( ∑
𝑖∈𝐼

𝑦𝑖 𝑗 + 𝑦 𝑗𝑖

)2 .
For 𝑎, 𝑏 ≥ 0 and 𝑧 ∈ R, it is easy to that minimizing 𝑎−1𝑥2+𝑏−1𝑦2 subject to 𝑥+𝑦 = 𝑧

leads to the value (𝑎 + 𝑏)−1𝑧2. Hence, using this with 𝑎 = 𝑤𝑖 𝑗𝑎𝑖 𝑗 , 𝑏 = 𝑤 𝑗𝑖𝑎𝑖 𝑗 and
𝑧 = 𝑧𝑖 𝑗 , the claim follows. �

5.2 A simple optimization problem

We now consider the optimization problem

max
𝑧𝑖 𝑗 ∈R

𝑖∈𝐼 , 𝑗∈𝐽

( ∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑧𝑖 𝑗

)2
∑
𝑖∈𝐼

∑
𝑗∈𝐽

𝑏−1
𝑖 𝑗
𝑧2
𝑖 𝑗
+ ∑

𝑖∈𝐼
𝑤−1
𝑖𝑖

( ∑
𝑗∈𝐽

𝑧𝑖 𝑗

)2
+ ∑

𝑗∈𝐽
𝑤−1

𝑗 𝑗

( ∑
𝑖∈𝐼

𝑧𝑖 𝑗

)2 , (14)

where 𝑤𝑖𝑖 and 𝑤 𝑗 𝑗 are positive real numbers and 𝑏𝑖 𝑗 = (𝑤𝑖 𝑗 + 𝑤 𝑗𝑖)𝑎𝑖 𝑗 ∈ (0,∞],
𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽. If 𝐼 or 𝐽 is a singleton, then a solution to (14) can be given explicitly.

Lemma 3 Suppose that 𝐼 = {1} and that 𝑤11 = 𝑤 𝑗 𝑗 = 1 for all 𝑗 ∈ 𝐽. Then a
solution of (14) is given by

𝑧1 𝑗 = (1 − 𝑏−11 𝑗 )
−1

∑︁
𝑘∈𝐽

(1 − 𝑏−11𝑘 )
−1, 𝑏1 𝑗 = 2𝑎1 𝑗
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leading to the maximum∑
𝑗∈𝐽

(1 − 𝑏−11 𝑗 )
−1

1 + ∑
𝑗∈𝐽

(1 − 𝑏−11 𝑗 )−1
≥ 1
4
min

(∑︁
𝑗∈𝐽
min(𝑏1 𝑗 , 1), 1

)
=
1
4
min

(∑︁
𝑗∈𝐽

𝑏1 𝑗 , 1
)
. (15)

Proof The inequality in (15) follows from the inequality 𝑥/(1+𝑥) ≥ (1/2)min(𝑥, 1).
Obviously, the values for 𝑧1 𝑗 given in Lemma 3 lead to the expression (15).
Hence, it remains to show that (14) is upper bounded by the left-hand side in
(15), which can be seen by inserting the (Cauchy-Schwarz) inequality (∑ 𝑗∈𝐽 (1 +
𝑏−11 𝑗 )

−1)−1 (∑ 𝑗∈𝐽 𝑧1 𝑗 )2 ≤
∑

𝑗∈𝐽 (1 + 𝑏−11 𝑗 )𝑧
2
1 𝑗 into (14). �

In general, it seems more difficult to give an explicit formula for (14) using e.g.
only 𝑏𝑖 𝑗 and ∧. Yet, the following lower bound is sufficient for our purposes. In the
special case of Lemma 3, it gives the second bound in (15).

Lemma 4 For each 𝛿 > 0, the value defined through (14) is lower bounded by

maximize
1

1 + 2𝛿
∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

𝑥𝑖 𝑗

subject to 0 ≤ 𝑥𝑖 𝑗 ≤ 𝑏𝑖 𝑗 for all 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, (16)∑︁
𝑖∈𝐼

𝑥𝑖 𝑗 ≤ 𝛿𝑤 𝑗 𝑗 for all 𝑗 ∈ 𝐽,∑︁
𝑗∈𝐽

𝑥𝑖 𝑗 ≤ 𝛿𝑤𝑖𝑖 for all 𝑖 ∈ 𝐼 .

Proof Let 𝑧𝑖 𝑗 = 𝑥𝑖 𝑗 be real values satisfying the constraints in (16). Then we have∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

𝑏−1𝑖 𝑗 𝑧
2
𝑖 𝑗 +

∑︁
𝑖∈𝐼

𝑤−1
𝑖𝑖

(∑︁
𝑗∈𝐽

𝑧𝑖 𝑗

)2
+
∑︁
𝑗∈𝐽

𝑤−1
𝑗 𝑗

(∑︁
𝑖∈𝐼

𝑧𝑖 𝑗

)2
≤ (1 + 2𝛿)

∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

𝑧𝑖 𝑗 .

Inserting this into (14), the claim follows �

Remark 13 If 𝑏𝑖 𝑗 = ∞, then the first constraint in (16) can be written as 0 ≤ 𝑥𝑖 𝑗 < ∞.

5.3 End of proofs of the consequences

Proof (Proof of Theorem 3) By [27, Lemma 1], Condition (12) is satisfied with

I(𝜉, 𝜉) = 𝑛

2

𝑝∑︁
𝑖, 𝑗=1

𝜉2𝑖 𝑗
(𝜆𝑖 − 𝜆 𝑗 )2

𝜆𝑖𝜆 𝑗

, 𝜉 ∈ 𝔰𝔬(𝑝).

Moreover, letting 𝑂 (𝑝) act coordinate-wise on ∏𝑛
𝑖=1 R

𝑝 the statistical model in
(1) satisfies (A1). Hence, applying Corollary 2 with 𝐼 = {1, . . . , 𝑑} and 𝐽 = {𝑑 +
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1, . . . , 𝑝}, 𝑤𝑘𝑙 = 𝑤𝑘𝑙 = 1 for all 𝑘, 𝑙 (leading to the Hilbert-Schmidt distance, cf.
(2)), the claim follows from Lemma 4, using that 𝑏𝑖 𝑗 = 2𝑎𝑖 𝑗 = 2I(𝐿 (𝑖 𝑗) , 𝐿 (𝑖 𝑗) )−1 =
(2/𝑛)𝜆𝑖𝜆 𝑗/(𝜆𝑖 − 𝜆 𝑗 )2 ∈ (0,∞]. �

Proof (Proof of Theorem 4) The main remaining point is to show that the excess
risk E𝑈 (�̂�), �̂� ∈ P𝑑 , is of the form 𝑙𝑤 (𝑈, �̂�) for some 𝑤 ∈ R𝑝×𝑝

≥0 . This can be
deduced from [22, Lemma 2.6].

Lemma 5 For �̂� ∈ P𝑑 and 𝜇 ∈ [𝜆𝑑+1, 𝜆𝑑], we have

E𝑈 (�̂�) =
𝑝∑︁

𝑘=1

𝑝∑︁
𝑙=1

𝑤𝑘𝑙 〈𝑢𝑘𝑢𝑇𝑙 , �̂� − 𝑃≤𝑑 (𝑈)〉22 = 𝑙𝑤 (𝑈, �̂�)

with 𝑤𝑘𝑙 = 𝜆𝑘 − 𝜇 for 𝑘 ≤ 𝑑 and 𝑤𝑘𝑙 = 𝜇 − 𝜆𝑘 for 𝑘 > 𝑑. �

Proof For brevity we write 𝑃≤𝑑 (𝑈) = 𝑃≤𝑑 and 𝑃𝑘 = 𝑃𝑘 (𝑈) = 𝑢𝑘𝑢
𝑇
𝑘
. By [22,

Lemma 2.6], we have

E𝑈 (�̂�) =
∑︁
𝑘≤𝑑

(𝜆𝑘 − 𝜇)‖𝑃𝑘 (𝐼 − �̂�)‖22 +
∑︁
𝑘>𝑑

(𝜇 − 𝜆𝑘 )‖𝑃𝑘 �̂�‖22.

Inserting

‖𝑃𝑘 (𝐼 − �̂�)‖22 = ‖𝑃𝑘 (𝑃≤𝑑 − �̂�)‖22, 𝑘 ≤ 𝑑,

‖𝑃𝑘 �̂�‖22 = ‖𝑃𝑘 (�̂� − 𝑃≤𝑑)‖22 = ‖𝑃𝑘 (𝑃≤𝑑 − �̂�)‖22, 𝑘 > 𝑑,

we obtain

E𝑈 (�̂�) =
∑︁
𝑘≤𝑑

(𝜆𝑘 − 𝜇)‖𝑃𝑘 (𝑃≤𝑑 − �̂�)‖22 +
∑︁
𝑘>𝑑

(𝜇 − 𝜆𝑘 )‖𝑃𝑘 (𝑃≤𝑑 − �̂�)‖22

=
∑︁
𝑘≤𝑑

𝑝∑︁
𝑙=1

(𝜆𝑘 − 𝜇)‖𝑃𝑘 (𝑃≤𝑑 − �̂�)𝑃𝑙 ‖22 +
∑︁
𝑘>𝑑

𝑝∑︁
𝑙=1

(𝜇 − 𝜆𝑘 )‖𝑃𝑘 (𝑃≤𝑑 − �̂�)𝑃𝑙 ‖22,

and the claim follows from inserting the identity ‖𝑃𝑘𝐵𝑃𝑙 ‖22 = 〈𝑢𝑘𝑢𝑇𝑙 , 𝐵〉
2
2 , 𝐵 ∈

R𝑝×𝑝 . �

Applying Lemma 5, we get

inf
�̂�∈P𝑑

∫
𝑂 (𝑝)

E𝑈E𝑈 (�̂�) 𝑑𝑈 = inf
�̂�∈P𝑑

∫
𝑂 (𝑝)

E𝑈 𝑙𝑤 (𝑈, �̂�) 𝑑𝑈 ≥ inf
�̂�

∫
𝑂 (𝑝)

E𝑈 𝑙𝑤 (𝑈, �̂�) 𝑑𝑈,

where the last infimum is over all estimators �̂� with values in R𝑝×𝑝 . Hence, applying
Corollary 2 with 𝑤 = (𝑤𝑘𝑙) from Lemma 5, 𝐼 = {1, . . . , 𝑟}, 𝐽 = {𝑠, . . . , 𝑝} and

𝑏𝑖 𝑗 = (𝑤𝑖 𝑗 − 𝑤 𝑗𝑖)𝑎𝑖 𝑗 = (𝜆𝑖 − 𝜇 − (𝜇 − 𝜆 𝑗 ))I(𝐿 (𝑖 𝑗) , 𝐿 (𝑖 𝑗) )−1 = 1
𝑛

𝜆𝑖𝜆 𝑗

𝜆𝑖 − 𝜆 𝑗

,

the claim follows from Lemma 4. �
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Proof (Proof of Theorem 5) We let 𝑂 (𝑝) act on R𝑝×𝑝 by conjugation. Since
𝑉 (𝜉𝑖 𝑗 )𝑉𝑇 𝑑

= (𝜉𝑖 𝑗 ), we have 𝑉𝑋𝑉𝑇 𝑑
= 𝑉𝑈𝑋 (𝑉𝑈)𝑇 + 𝜖 (𝜉𝑖 𝑗 ), meaning that the statis-

tical model in (11) satisfies (A1). Using the identity 𝜒2 (N (𝜇1, 𝜖 𝐼𝑝),N(𝜇2, 𝜖 𝐼𝑝)) =
exp(𝜖−2‖𝜇1 − 𝜇2‖22) − 1, we get

𝜒2 (Pexp(𝑡 𝜉 ) , P𝐼𝑝 ) = exp(𝜖−2‖ exp(𝑡𝜉)Λ exp(−𝑡𝜉) − Λ‖22) − 1.

From this, it easily follows that (12) is satisfied with

I(𝜉, 𝜉) = 𝜖−2‖𝜉Λ − Λ𝜉‖22 = 𝜖−2
𝑝∑︁
𝑖=1

𝑝∑︁
𝑗=1

𝜉2𝑖 𝑗 (𝜆𝑖 − 𝜆 𝑗 )2.

Hence, applying Corollary 2 with 𝑤𝑘𝑙 = 1, 𝐼 = {1, . . . , 𝑑} and 𝐽 = {𝑑 + 1, . . . , 𝑝},
the claim follows from Lemma 4. �
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