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Exercise sheet, Theme “Convex Optimization”

Aufgabe 1 (Properties of convex functions)
Let f be a real-valued function defined on a convex set X ⊂ Rd.

a) Prove: a convex function f is always continuous on Int(X ) (and upper semi-continuous on ∂X )

b) For this question only, f is not assumed convex. Prove: if for all x ∈ X , ∂f(x) 6= ∅, then f is a
convex function.

c) Prove: if f is convex, then for all x ∈ Int(X ), ∂f(x) 6= ∅. Hint: one can use without justification
the “supporting hyperplane” theorem: if C is a convex set and x0 ∈ ∂C, then there exists a vector
w 6= 0 such that for all x ∈ C, 〈x− x0, w〉 ≥ 0. Use the fact that the epigraph of f is convex.

d) Prove: if f is convex and differentiable at x, then ∇f(x) ∈ ∂f(x) and is even its unique element
if x ∈ Int(X ).

e) Prove: f(x∗) is a local minimimum of f iff f(x∗) is a global minimum, iff 0 ∈ ∂f(x∗).

f) Prove: if f is convex and differentiable, then f(x∗) is minimum of f iff for all y ∈ X it holds
〈∇f(x∗), y − x∗〉 ≥ 0.

Aufgabe 2 (Brunn-Minkowski inequality)
In this exercise we will prove a fundamental theorem which will be used in the next one. Let the ambient
space be Rd and denote for to measurable sets A, B the “Minkowski sum” of A and B as

A+B = {a+ b, a ∈ A, b ∈ B} .

The Brunn-Minkowski inequality states the following: for any measurable A,B of finite volume and
λ ∈ [0, 1] such that (1− λ)A+ λB is measurable, it holds

Vd((1− λ)A+ λB)
1
d ≥ (1− λ)Vd(A)

1
d + λVd(B)

1
d ,

where Vd denotes volume (d-dimensional Lebesgue measure). In this sense the function A 7→ Vd(A)
1
d

is “concave”.
Below we call “cuboid” a d-dimensional rectangular (axis-aligned) box (=cartesian product of intervals
along each coordinate).

a) Prove the inequality when both A and B are cuboids. Hint: assume w.l.o.g. that Vd((1− λ)A+
λB) = 1 and use the inequality between geometric and arithmetic mean.

b) We now establish the inequality when A and B are disjoint finite unions of cuboids, by recursion
on the total number of cuboids.

• Assume w.l.o.g. that A is a disjoint union of at least two cuboids and prove that there exists
at least an axis-aligned hyperplane H that separates two cuboids of A.

• Denote H+ one of the half-spaces defined by H and A+ := H+ ∩ A and similarly for other
sets. Justify that w.l.o.g. we can by translation of B assume that Vd(A)

Vd(B) =
Vd(A+)
Vd(B+) =

Vd(A−)
Vd(B−) .

• Justify the inequality Vd((1− λ)A+ λB) ≤ Vd((1− λ)A+ + λB+) + Vd((1− λ)A− + λB−).
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• Apply the induction hypothesis on the quantities on the right-hand-side of the above
inequality, and use the assumption on the volume ratios to conclude.

c) Conclude by approximating arbitrary measurable sets by finite union of cuboids.

Aufgabe 3 (Grünbaum’s Lemma)
We proceed to proving the following property which was used in the lecture: if K is a compact convex
set of Rd, and H a hyperplane going through the center of gravity of K, then the intersection of K
with either half-space defined by H has volume at least 1

eVd(K).
Without loss of generality, we assume K has center of gravity at the origin and H = {x : x1 = 0}. For
any set A, we denote At := A ∩ {x : x1 = t} ; A+ := A ∩ {x : x1 ≥ 0} and A− := A ∩ {x : x1 ≤ 0} .

a) Construct a “symmetrized” version K ′ of K (“Schwarzsche Abrundung”) as follows. For any t ∈ R,
K ′t is the (d− 1)-dimensional ball B(0, rt) with rt chosen so that Vd−1(B(0, rt)) = Vd−1(Kt).

Prove that K ′ is convex. (Hint: use the Brunn-Minkowski inequality to establish that t 7→ rt is
concave.) Prove that Vd(K ′+) = Vd(K+) and Vd(K ′−) = Vd(K−).

b) Now consider a second transformation by “conification” of K ′. Consider a cone C defined as
follows: Ct is the (d− 1)-dimensional ball B(0, r′t) with r′t = (r0 − αt)1{r0α−1 ≥ t ≥ t−}, with α
chosen so that Vd(C+) = Vd(K ′+) and t− chosen so that Vd(C−) = Vd(K ′−) (note that C0 = K ′0
by construction).

Prove that the center of gravity of C must have nonnegative first coordinate gC (and zero other
coordinates)

Hint: let F (t) = Vd(K ′[0,t]) and G(t) = Vd(C[0,t]). Then F (0) = G(0) = 0 and F (∞) = G(∞).
Furthermore F ′(t) = Cdr

d−1
t and G′(t) = Cd(r

′
t)

d−1. By concavity of rt and linearity of r′t, we
have r′t ≥ rt for t ∈ [0, T0] then r′t ≤ rt for t ∈ [T0,∞] for some T0. Hence H = F − G is such
that H(0) = H(∞) = 0, and H nondecreasing on [0, T0] then nonincreasing on [T0,∞], hence
H(t) ≥ 0 for all t ≥ 0.

c) Deduce from the previous question that the cone is a worst-case situation. Compute the position
of gC of the center of gravity of a cone of height h and its volume, and conclude.
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