Ausgewahlte Themen
des maschinellen Lernens WS 2016,/2017

Exercise sheet, Theme “Convex Optimization”

Aufgabe 1 (Properties of convex functions)
Let f be a real-valued function defined on a convex set X C R,

a) Prove: a convex function f is always continuous on Int(X’) (and upper semi-continuous on 9X)

b) For this question only, f is not assumed convex. Prove: if for all z € X, 9f(z) # 0, then f is a
convex function.

c¢) Prove: if f is convex, then for all x € Int(X), 9f(z) # 0. Hint: one can use without justification
the “supporting hyperplane” theorem: if C is a convex set and zo € C, then there exists a vector
w # 0 such that for all © € C, (x — xg,w) > 0. Use the fact that the epigraph of f is convex.

d) Prove: if f is convex and differentiable at x, then Vf(x) € 9f(x) and is even its unique element
if x € Int(X).

e) Prove: f(x*) is a local minimimum of f iff f(z*) is a global minimum, iff 0 € 9 f(z*).

f) Prove: if f is convex and differentiable, then f(x*) is minimum of f iff for all y € X it holds
(Vf(z*),y —x*) > 0.

Aufgabe 2 (Brunn-Minkowski inequality)
In this exercise we will prove a fundamental theorem which will be used in the next one. Let the ambient
space be R? and denote for to measurable sets A, B the “Minkowski sum” of A and B as

A+B={a+bacAbe B}.

The Brunn-Minkowski inequality states the following: for any measurable A, B of finite volume and
A € ]0,1] such that (1 — A\)A + AB is measurable, it holds

Va((1 = N)A+ AB)T > (1 — \)Va(A)7 + AVy(B)1,

where V; denotes volume (d-dimensional Lebesgue measure). In this sense the function A — Vy(A)a
is “concave”.

Below we call “cuboid” a d-dimensional rectangular (axis-aligned) box (=cartesian product of intervals
along each coordinate).

a) Prove the inequality when both A and B are cuboids. Hint: assume w.l.o.g. that Va((1 — N\)A +
AB) = 1 and use the inequality between geometric and arithmetic mean.

b) We now establish the inequality when A and B are disjoint finite unions of cuboids, by recursion
on the total number of cuboids.

e Assume w.l.o.g. that A is a disjoint union of at least two cuboids and prove that there exists
at least an axis-aligned hyperplane H that separates two cuboids of A.
e Denote H™ one of the half-spaces defined by H and A, := H, N A and similarly for other

Va(A) _ Va(A4) _ Va(Ao)
Va(B) = Va(By) = Va(B-)~

e Justify the inequality Va((1 — \)A+ AB) < Va((1 = N)A4 + ABy) + Va((1 — N)A_ + AB_).

sets. Justify that w.l.o.g. we can by translation of B assume that
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)

e Apply the induction hypothesis on the quantities on the right-hand-side of the above
inequality, and use the assumption on the volume ratios to conclude.

Conclude by approximating arbitrary measurable sets by finite union of cuboids.

Aufgabe 3 (Griinbaum’s Lemma)

We proceed to proving the following property which was used in the lecture: if K is a compact convex
set of R?, and H a hyperplane going through the center of gravity of K, then the intersection of K
with either half-space defined by H has volume at least 1V,(K).

Without loss of generality, we assume K has center of gravity at the origin and H = {x : ; = 0}. For
any set A, we denote A; := AN{x:x;=t}; Ay :=ANn{r:21 >0}and A_ := An{x:2; <0}.

a)

Construct a “symmetrized” version K’ of K (“Schwarzsche Abrundung”) as follows. For any ¢ € R,
K] is the (d — 1)-dimensional ball B(0,r;) with r; chosen so that V41 (B(0,7)) = Va—1(K%).

Prove that K’ is convex. (Hint: use the Brunn-Minkowski inequality to establish that t — ry is
concave.) Prove that V(K ) = V4(K4) and V4(K”) = Va(K_).

Now consider a second transformation by “conification” of K’. Consider a cone C defined as
follows: Cy is the (d — 1)-dimensional ball B(0,7}) with r; = (ro — at)1{roa™t >t >t_}, with «
chosen so that Vy(C4) = V4(K/,) and t_ chosen so that V4(C_) = Vg(K" ) (note that Cy = K
by construction).

Prove that the center of gravity of C' must have nonnegative first coordinate g (and zero other
coordinates)

Hint: let F(t) = Vd(K[/o,t]) and G(t) = V4(Clo,y). Then F(0) = G(0) = 0 and F(o0) = G(c0).
Furthermore F'(t) = Cyré™" and G'(t) = Cy(r})?~'. By concavity of r, and linearity of v, we
have r; > ry fort € [0,Tp] then vy < 1 fort € [Ty, 00| for some Ty. Hence H = F — G is such

that H(0) = H(oco) = 0, and H nondecreasing on [0,Ty] then nonincreasing on [Ty, 00|, hence
H(t) >0 for allt > 0.

Deduce from the previous question that the cone is a worst-case situation. Compute the position
of gc of the center of gravity of a cone of height h and its volume, and conclude.

Seite 2 von 2



