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Exercise sheet 2, Theme “Convex Optimization”

Aufgabe 1 (Gradient descent with varying step size)
Consider the result of the lecture analyzing the convergence of (averaged) gradient descent for T steps
in the general case (the assumption on the objective function f besides convexity is just that it has
subgradients bounded in norm by a constant L) using the step size η = R

L
√
T

(which is constant but
depends on the total number of steps T ).
Analyze the convergence (under the same hypotheses) of the gradient with varying and decreasing step
size ηt = R

L
√
t
. (Look at the proof in the lecture and try to adapt it to this case.)

Analyze the same method when stochastic gradient is applied instead of deterministic gradient.

Aufgabe 2 (Gradient descent under α-strong convexity)
In the lecture we have seen that additional hypotheses on f (compared to the “basic” case where it
is just assumed to be Lipschitz) allows to obtain faster convergence for (appropriate variants of ) the
gradient descent method. In particular we have analyzed separately the cases where the function f to
optimize is β-smooth, or when f is both β-smooth and α-strongly convex. In this exercise we consider
the case where f is only α-strongly convex.
More precisely, we assume that:

• f is convex and its domain of definition X is a compact convex subset of Rd;

• f is L-Lipschitz (i.e. ∀gx ∈ ∂f(x), ‖gx‖ ≤ L);

• f is α-strongly convex.

We consider the (projected) gradient descent iterations with varying step-sizes ηt > 0. Denote δt := η−1t

and assume for simplicity of notation below that δ0 > 0 is defined.

a) Looking at the proof in the lecture of the basic L-Lipschitz case, prove that under the additional
α-strongly convex assumption one has for any t ≥ 1:

f(xt)− f(x∗) ≤ 1

2

(
ηtL

2 + (δt − α) ‖xt − x∗‖2 − δt ‖xt+1 − x∗‖2
)
.

b) Assume that the step-sizes are decreasing and let ST :=
∑T

t=1 δt−1. Deduce from the above that

f

(
1

ST

T∑
t=1

δt−1xt

)
− f(x∗) ≤ 1

2ST

(
TL2 + δ0(δ1 − α) ‖x1 − x∗‖2

)
,

provided δt−1 ≥ δt+1 − α, for t ≥ 1.

c) Deduce that the gradient descent with step size ηt = 2/(α(t + 1)) satisfies under the considered
assumptions:

f

(
1

T (T + 1)

T∑
t=1

txt

)
≤ 2L2

α(T + 1)
.

d) It can seem surprising that the bound does not depend at all on an a priori bound on |f |, nor on
the diameter of X (as did the other bounds obtained in the lecture). However, prove that in fact
the assumptions made for the above result imply that the diameter of X must be less than 4L/α.
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Aufgabe 3 (Properties of Bregman divergences)
Recall that if Φ : D → R is a differentiable strictly convex function on an open convex set D ⊂ Rd, the
Bregman divergence associated to Φ is defined as

D(y, x) = Φ(y)− Φ(x)− 〈∇Φ(x), y − x〉

which is always a nonnegative quantity by convexity.

a) Let X ⊂ D be a compact convex subset, and

ΠX (x) = Arg Min
y∈D

D(y, x)

denote the projection on X in the Φ-Bregman divergence sense.

Prove that

〈∇Φ(ΠX (x))−∇Φ(x),ΠX (x)− y〉 ≤ 0,

for any x ∈ D, y ∈ X ; and as a consequence

D(y,ΠX (x)) +D(ΠX (x), x) ≤ D(y, x) .

b) We consider the following particular case: D = Rd
>0, X =

{
x ∈ R>0 :

∑d
i=1 xi = 1

}
the open

simplex, and Φ(x) =
∑d

i=1 xi log xi the Shannon entropy. (It can be checked that although X is
not compact, the results of the previous question apply.)

(a) What is the Bregman divergence associated to Φ?

(b) Prove that ΠX (x) = x
‖x‖1

for x ∈ D.

(c) Prove that Φ is 1-strongly convex on X with respect to ‖·‖1, i.e

d∑
i=1

xi log
xi
yi
≥ 1

2
‖x− y‖21

for x, y ∈ X (Pinsker’s inequality).

• Prove the inequality by elementary means in the case d = 2.
• Reduce the inequality in the case d > 2 to the case d = 2 by using the “log-sum

inequality”:∑
i

xi log
xi
yi
≥ (
∑
i

xi) log

∑
i xi∑
i yi

.

(Prove this inequality, and apply it separately to the set of indices {i : xi ≥ yi}, and its
complementary).
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