Themen des statistischen maschinellen Lernens Wintersemester 2016/17 Humboldt-Universität zu Berlin

Dr. Martin Wahl

Sheet 1

- 1. Let X be a Rademacher random variable, i.e. $\mathbb{P}(X=-1) = \mathbb{P}(X=1) = 1/2$. Show that $X \in SG(1)$.
- 2. Let X be a real-valued random variable.
 - (a) Show that if $X \in SG(\sigma^2)$, then $X^2 \in SE(2\sigma^2)$.
 - (b) Show that if $X \in SG(\sigma^2)$, then $X \mathbb{E}X \in SG(2\sigma^2)$. (*Hint*: use Jensen's inequality.)
 - (c) Show that if $\mathbb{E}[X] = 0$ and $X^2 \in SE(\mu)$, then there exists an absolute constant C > 0 such that $X \in SG(C\mu)$.
 - (d) Show that if $X \in SE(\mu)$, then there exists an absolute constant C > 0 such that $X \mathbb{E}X \in SE(C\mu)$.
- 3. (Hoeffding's lemma). Let X be a random variable with $\mathbb{E}[X] = 0$, taking values in the bounded interval [-K, K], where K > 0.
 - (a) Use the convexity of $x \mapsto e^{ux}$ to show that

$$e^{u\delta} \le \frac{K - \delta}{2K} e^{-uK} + \frac{K + \delta}{2K} e^{uK}$$
 for every $|\delta| \le K$.

(b) Deduce that

$$\mathbb{E}[e^{uX}] \le (e^{-uK} + e^{uK})/2 \le e^{u^2K^2/2} \text{ for every } u \in \mathbb{R}.$$

Thus $X \in SG(K^2)$.

4. Suppose that $X \in SG(\sigma^2)$. Show that

$$\mathbb{E}\big[|X|^k\big] \le (2\sigma^2)^{k/2} k\Gamma(k/2)$$

for all integers $k \geq 1$, where $\Gamma(\cdot)$ denotes the Gamma function defined by $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$, x > 0. (*Hint*: apply the formula $\mathbb{E}[|X|^k] = \int_0^\infty k t^{k-1} \mathbb{P}(|X| \geq t) dt$.) Deduce that there exists an absolute constant C > 0 such that $(\mathbb{E}[|X|^k])^{1/k} \leq C\sqrt{k}\sigma$ for all integers $k \geq 1$.

Conversely, suppose that X is a centered random variable such that for some constant $\sigma > 0$,

$$(\mathbb{E}[|X|^k])^{1/k} \le \sqrt{k}\sigma$$

for all integers $k \geq 1$. Show that there exists an absolute constant C > 0 such that $X \in SG(C\sigma^2)$. (*Hint*: By the dominated convergence theorem, we have $\mathbb{E}[e^{uX}] = 1 + \sum_{k=2}^{\infty} u^k \mathbb{E}[X^k]/k!$.)