Themen des statistischen maschinellen Lernens Wintersemester 2016/17 Humboldt-Universität zu Berlin

Dr. Martin Wahl

Sheet 2

- 1. A linear map $P : \mathbb{R}^p \to \mathbb{R}^p$ is called orthogonal projection if (i) P is idempotent, i.e. $P^2 = P$ and (ii) P is self-adjoint, i.e. $\langle Pu, v \rangle = \langle u, Pv \rangle$ for all $u, v \in \mathbb{R}^p$.
 - (a) Let P be an orthogonal projection and $\operatorname{Im} P = \{Pu : u \in \mathbb{R}^p\}$ be the image of P. Show that $\langle u Pu, v \rangle = 0$ for all $u \in \mathbb{R}^p$ and $v \in \operatorname{Im} P$. Deduce that $||u - Pu||^2 \le ||u - v||^2$ for all $u \in \mathbb{R}^p$ and $v \in \operatorname{Im} P$.
 - (b) Given a *d*-dimensional subspace V of \mathbb{R}^p , there is a unique orthogonal projection P with $\operatorname{Im} P = V$. If v_1, \ldots, v_d is an orthonormal basis of V, it can be written (in matrix form) as $P = \sum_{j < d} v_j v_j^T = (v_1 \cdots v_d)(v_1 \cdots v_d)^T$.
- 2. (Best affine approximation). Let $X_1, \ldots, X_n \in \mathbb{R}^p$. Consider the following minimisation problem

$$\min_{\mu, z_i, V} \sum_{i=1}^n \|X_i - \mu - V z_i\|^2, \tag{0.1}$$

where the minimum is taken over all $\mu \in \mathbb{R}^p$, $z_1, \ldots, z_n \in \mathbb{R}^d$ and $V \in \mathbb{R}^{p \times d}$ whose columns form an orthonormal system in \mathbb{R}^p . Let

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}) (X_i - \bar{X})^T$.

By the spectral theorem, we have $\hat{\Sigma} = \sum_{j=1}^{p} \hat{\lambda}_{j} \hat{u}_{j} \hat{u}_{j}^{T}$ with $\hat{\lambda}_{1} \geq \cdots \geq \hat{\lambda}_{p} \geq 0$ and $\hat{u}_{1}, \ldots, \hat{u}_{p}$ orthonormal basis of \mathbb{R}^{p} . Show that the minimum in (0.1) is attained for $\mu = \bar{X}, V = (\hat{u}_{1}, \ldots, \hat{u}_{d})$ and $z_{i} = V^{T}(X_{i} - \bar{X})$.

3. Let $X_1, \ldots, X_n \in \mathbb{R}^p$ and $\hat{\Sigma} = (1/n) \sum_{i=1}^n X_i X_i^T$. By the spectral theorem, we have $\hat{\Sigma} = \sum_{j=1}^p \hat{\lambda}_j \hat{u}_j \hat{u}_j^T$ with $\hat{\lambda}_1 \geq \cdots \geq \hat{\lambda}_p \geq 0$ and $\hat{u}_1, \ldots, \hat{u}_p$ orthonormal basis of \mathbb{R}^p . Show that for $j = 1, \ldots, p$,

$$\hat{u}_j \in \operatorname*{argmax}_{\substack{\|v\|=1\\v \perp \hat{u}_1, \dots, \hat{u}_{j-1}}} \langle \hat{\Sigma}v, v \rangle = \operatorname*{argmax}_{\substack{\|v\|=1\\v \perp \hat{u}_1, \dots, \hat{u}_{j-1}}} \frac{1}{n} \sum_{i=1}^n \langle X_i, v \rangle^2.$$

4. (Reproducing kernel Hilbert space). A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a positive definite kernel if it is symmetric (k(x, y) = k(y, x) for all $x, y \in \mathcal{X}$) and if for any $n \in \mathbb{N}, x_1, \ldots, x_n \in \mathcal{X}$ and $a_1, \ldots, a_n \in \mathbb{R}$ we have

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) \ge 0.$$

The goal of this exercise is to show that there is a Hilbert space \mathcal{F} of functions on \mathcal{X} such that (i) $k(x, \cdot) \in \mathcal{F}$ for all $x \in \mathcal{X}$ and (ii) $f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{F}}$ for all $x \in \mathcal{X}$ and $f \in \mathcal{F}$.

(a) Let

$$\mathcal{F}_0 = \Big\{ f : \mathcal{X} \to \mathbb{R} : f = \sum_{i=1}^n a_i k(x_i, \cdot), n \in \mathbb{N}, x_i \in \mathcal{X}, a_i \in \mathbb{R}, i = 1, \dots, n \Big\}.$$

For $f = \sum_{i=1}^{n} a_i k(x_i, \cdot)$ and $g = \sum_{j=1}^{m} b_j k(y_j, \cdot)$, define

$$\langle f, g \rangle_{\mathcal{F}_0} = \sum_{i=1}^n \sum_{j=1}^m a_i b_j k(x_i, y_j)$$

Show that $(\mathcal{F}_0, \langle \cdot, \cdot \rangle_{\mathcal{F}_0})$ is an inner product space and that $f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{F}_0}$ for all $x \in \mathcal{X}$ and $f \in \mathcal{F}_0$.

- (b) Show that for any Cauchy sequence (f_n) in \mathcal{F}_0 , the sequence $(f_n(x))$ converges in \mathbb{R} for all $x \in \mathcal{X}$. (*Hint*: Use that $|f(x)| \leq \sqrt{k(x,x)} ||f||_{\mathcal{F}_0}$.)
- (c) Show that for any Cauchy sequence (f_n) in \mathcal{F}_0 which converges pointwise to 0, we have $||f_n||_{\mathcal{F}_0} \to 0$.
- (d) (Completion). Let \mathcal{F} be the class of functions $f : \mathcal{X} \to \mathbb{R}$ which are pointwise limits of Cauchy sequences (f_n) in \mathcal{F}_0 . For $f, g \in \mathcal{F}$, define

$$\langle f, g \rangle_{\mathcal{F}} = \lim_{n \to \infty} \langle f_n, g_n \rangle_{\mathcal{F}_0},$$

where (f_n) and (g_n) are Cauchy sequences converging pointwise to f and g, respectively. Prove that $\langle \cdot, \cdot \rangle_{\mathcal{F}}$ is a (well-defined) inner product on \mathcal{F} . Show that $(\mathcal{F}, \langle \cdot, \cdot \rangle_{\mathcal{F}})$ is a Hilbert space which contains \mathcal{F}_0 as a dense subspace. Deduce that \mathcal{F} is a Hilbert space which satisfies the above properties (i) and (ii).