Themen des statistischen maschinellen Lernens Wintersemester 2016/17
Humboldt-Universität zu Berlin
Dr. Martin Wahl

Sheet 2

1. A linear map $P: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ is called orthogonal projection if (i) P is idempotent, i.e. $P^{2}=P$ and (ii) P is self-adjoint, i.e. $\langle P u, v\rangle=\langle u, P v\rangle$ for all $u, v \in \mathbb{R}^{p}$.
(a) Let P be an orthogonal projection and $\operatorname{Im} P=\left\{P u: u \in \mathbb{R}^{p}\right\}$ be the image of P. Show that $\langle u-P u, v\rangle=0$ for all $u \in \mathbb{R}^{p}$ and $v \in \operatorname{Im} P$. Deduce that $\|u-P u\|^{2} \leq\|u-v\|^{2}$ for all $u \in \mathbb{R}^{p}$ and $v \in \operatorname{Im} P$.
(b) Given a d-dimensional subspace V of \mathbb{R}^{p}, there is a unique orthogonal projection P with $\operatorname{Im} P=V$. If v_{1}, \ldots, v_{d} is an orthonormal basis of V, it can be written (in matrix form) as $P=\sum_{j \leq d} v_{j} v_{j}^{T}=\left(v_{1} \cdots v_{d}\right)\left(v_{1} \cdots v_{d}\right)^{T}$.
2. (Best affine approximation). Let $X_{1}, \ldots, X_{n} \in \mathbb{R}^{p}$. Consider the following minimisation problem

$$
\begin{equation*}
\min _{\mu, z_{i}, V} \sum_{i=1}^{n}\left\|X_{i}-\mu-V z_{i}\right\|^{2} \tag{0.1}
\end{equation*}
$$

where the minimum is taken over all $\mu \in \mathbb{R}^{p}, z_{1}, \ldots, z_{n} \in \mathbb{R}^{d}$ and $V \in \mathbb{R}^{p \times d}$ whose columns form an orthonormal system in \mathbb{R}^{p}. Let

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text { and } \quad \hat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T}
$$

By the spectral theorem, we have $\hat{\Sigma}=\sum_{j=1}^{p} \hat{\lambda}_{j} \hat{u}_{j} \hat{u}_{j}^{T}$ with $\hat{\lambda}_{1} \geq \cdots \geq \hat{\lambda}_{p} \geq 0$ and $\hat{u}_{1}, \ldots, \hat{u}_{p}$ orthonormal basis of \mathbb{R}^{p}. Show that the minimum in (0.1) is attained for $\mu=\bar{X}, V=\left(\hat{u}_{1}, \ldots, \hat{u}_{d}\right)$ and $z_{i}=V^{T}\left(X_{i}-\bar{X}\right)$.
3. Let $X_{1}, \ldots, X_{n} \in \mathbb{R}^{p}$ and $\hat{\Sigma}=(1 / n) \sum_{i=1}^{n} X_{i} X_{i}^{T}$. By the spectral theorem, we have $\hat{\Sigma}=\sum_{j=1}^{p} \hat{\lambda}_{j} \hat{u}_{j} \hat{u}_{j}^{T}$ with $\hat{\lambda}_{1} \geq \cdots \geq \hat{\lambda}_{p} \geq 0$ and $\hat{u}_{1}, \ldots, \hat{u}_{p}$ orthonormal basis of \mathbb{R}^{p}. Show that for $j=1, \ldots, p$,

$$
\hat{u}_{j} \in \underset{\substack{\|v\|=1 \\ v \perp \hat{u}_{1}, \ldots, \hat{u}_{j-1}}}{\operatorname{argmax}}\langle\hat{\Sigma} v, v\rangle=\underset{\substack{\|v\|=1 \\ v \perp \hat{u}_{1}, \ldots, \hat{u}_{j-1}}}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n}\left\langle X_{i}, v\right\rangle^{2} .
$$

4. (Reproducing kernel Hilbert space). A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called a positive definite kernel if it is symmetric $(k(x, y)=k(y, x)$ for all $x, y \in \mathcal{X})$ and if for any $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in \mathcal{X}$ and $a_{1}, \ldots, a_{n} \in \mathbb{R}$ we have

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

The goal of this exercise is to show that there is a Hilbert space \mathcal{F} of functions on \mathcal{X} such that (i) $k(x, \cdot) \in \mathcal{F}$ for all $x \in \mathcal{X}$ and (ii) $f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{F}}$ for all $x \in \mathcal{X}$ and $f \in \mathcal{F}$.
(a) Let

$$
\mathcal{F}_{0}=\left\{f: \mathcal{X} \rightarrow \mathbb{R}: f=\sum_{i=1}^{n} a_{i} k\left(x_{i}, \cdot\right), n \in \mathbb{N}, x_{i} \in \mathcal{X}, a_{i} \in \mathbb{R}, i=1, \ldots, n\right\} .
$$

For $f=\sum_{i=1}^{n} a_{i} k\left(x_{i}, \cdot\right)$ and $g=\sum_{j=1}^{m} b_{j} k\left(y_{j}, \cdot\right)$, define

$$
\langle f, g\rangle_{\mathcal{F}_{0}}=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} k\left(x_{i}, y_{j}\right) .
$$

Show that $\left(\mathcal{F}_{0},\langle\cdot, \cdot\rangle_{\mathcal{F}_{0}}\right)$ is an inner product space and that $f(x)=$ $\langle f, k(x, \cdot)\rangle_{\mathcal{F}_{0}}$ for all $x \in \mathcal{X}$ and $f \in \mathcal{F}_{0}$.
(b) Show that that for any Cauchy sequence $\left(f_{n}\right)$ in \mathcal{F}_{0}, the sequence $\left(f_{n}(x)\right)$ converges in \mathbb{R} for all $x \in \mathcal{X}$. (Hint: Use that $|f(x)| \leq \sqrt{k(x, x)}\|f\|_{\mathcal{F}_{0}}$.)
(c) Show that for any Cauchy sequence $\left(f_{n}\right)$ in \mathcal{F}_{0} which converges pointwise to 0 , we have $\left\|f_{n}\right\|_{\mathcal{F}_{0}} \rightarrow 0$.
(d) (Completion). Let \mathcal{F} be the class of functions $f: \mathcal{X} \rightarrow \mathbb{R}$ which are pointwise limits of Cauchy sequences $\left(f_{n}\right)$ in \mathcal{F}_{0}. For $f, g \in \mathcal{F}$, define

$$
\langle f, g\rangle_{\mathcal{F}}=\lim _{n \rightarrow \infty}\left\langle f_{n}, g_{n}\right\rangle_{\mathcal{F}_{0}},
$$

where $\left(f_{n}\right)$ and $\left(g_{n}\right)$ are Cauchy sequences converging pointwise to f and g, respectively. Prove that $\langle\cdot, \cdot\rangle_{\mathcal{F}}$ is a (well-defined) inner product on \mathcal{F}. Show that $\left(\mathcal{F},\langle\cdot, \cdot\rangle_{\mathcal{F}}\right)$ is a Hilbert space which contains \mathcal{F}_{0} as a dense subspace. Deduce that \mathcal{F} is a Hilbert space which satisfies the above properties (i) and (ii).

