Themen des statistischen maschinellen Lernens Wintersemester 2016/17 Humboldt-Universität zu Berlin

Dr. Martin Wahl

Sheet 3

- 1. (a) Show that if $k_1, k_2 : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ are two positive definite kernels (see Exercise 4, Sheet 2 for the definition) and a > 0, then $ak_1, k_1 + k_2$ and $k_1 \cdot k_2$ are also positive definite kernels.
 - (b) Show that if $k_n : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, $n \ge 1$, is a sequence of positive definite kernels which converge pointwise to a function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, then k is also a positive definite kernel.
 - (c) Let $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel. Show that $k' : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined by $k'(x, y) = k(x, y)/\sqrt{k(x, x)k(y, y)}$, if the denominator is non-zero, and k'(x, y) = 0, otherwise, is also a positive definite kernel.
 - (d) Deduce that the map $k : \mathbb{R}^q \times \mathbb{R}^q \to \mathbb{R}, (x, y) \mapsto \exp(-\|x y\|^2/(2\sigma^2))$ is a positive definite kernel, where $q \ge 1$ and $\sigma^2 > 0$.
- 2. Suppose that X, X_1, \ldots, X_n are i.i.d. random variables taking values in \mathbb{R}^p such that $\mathbb{E}[X] = 0$ and $\mathbb{E}[||X||^4] < \infty$. Let $\Sigma = \mathbb{E}[XX^T]$ and $\hat{\Sigma} = (1/n) \sum_{i=1}^n X_i X_i^T$. Show that

$$\mathbb{E}[\|\hat{\Sigma} - \Sigma\|_{HS}^2] = \frac{1}{n} \big(\mathbb{E}[\|X\|^4] - \|\Sigma\|_{HS}^2 \big).$$

In the case that each X_i is Gaussian, show that

$$\mathbb{E}[||X||^4] - ||\Sigma||^2_{HS} = (\operatorname{tr}(\Sigma))^2 + \operatorname{tr}(\Sigma^2).$$

- 3. Let $0 \le \theta_1 \le \cdots \le \theta_d \le \pi/2$ be the principal angles between two *d*-dimensional subspaces V and W of a Hilbert space $(H, \langle \cdot, \cdot \rangle)$, and let P_V and P_W be the orthogonal projections onto V and W respectively.
 - (a) Show that

$$\cos(\theta_1) = \max_{v \in V, w \in W} \frac{|\langle v, w \rangle|}{\|v\| \|w\|}.$$

(*Hint*: Use that the first singular value $s_1(A)$ of a $d \times d$ -matrix A satisfies $s_1(A) = \max_{\|x\|=1} \|Ax\| = \max_{\|x\|, \|y\|=1} y^T Ax$.) State and prove a similar formula for $\cos(\theta_j), j = 2, \ldots, d$.

(b) Show that

$$||P_V - P_W||_{HS}^2 = 2\sum_{j=1}^d \sin^2(\theta_j).$$