Themen des statistischen maschinellen Lernens Wintersemester 2016/17
Humboldt-Universität zu Berlin
Dr. Martin Wahl

Sheet 3

1. (a) Show that if $k_{1}, k_{2}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ are two positive definite kernels (see Exercise 4, Sheet 2 for the definition) and $a>0$, then $a k_{1}, k_{1}+k_{2}$ and $k_{1} \cdot k_{2}$ are also positive definite kernels.
(b) Show that if $k_{n}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, n \geq 1$, is a sequence of positive definite kernels which converge pointwise to a function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, then k is also a positive definite kernel.
(c) Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a positive definite kernel. Show that $k^{\prime}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ defined by $k^{\prime}(x, y)=k(x, y) / \sqrt{k(x, x) k(y, y)}$, if the denominator is nonzero, and $k^{\prime}(x, y)=0$, otherwise, is also a positive definite kernel.
(d) Deduce that the map $k: \mathbb{R}^{q} \times \mathbb{R}^{q} \rightarrow \mathbb{R},(x, y) \mapsto \exp \left(-\|x-y\|^{2} /\left(2 \sigma^{2}\right)\right)$ is a positive definite kernel, where $q \geq 1$ and $\sigma^{2}>0$.
2. Suppose that X, X_{1}, \ldots, X_{n} are i.i.d. random variables taking values in \mathbb{R}^{p} such that $\mathbb{E}[X]=0$ and $\mathbb{E}\left[\|X\|^{4}\right]<\infty$. Let $\Sigma=\mathbb{E}\left[X X^{T}\right]$ and $\hat{\Sigma}=$ $(1 / n) \sum_{i=1}^{n} X_{i} X_{i}^{T}$. Show that

$$
\mathbb{E}\left[\|\hat{\Sigma}-\Sigma\|_{H S}^{2}\right]=\frac{1}{n}\left(\mathbb{E}\left[\|X\|^{4}\right]-\|\Sigma\|_{H S}^{2}\right) .
$$

In the case that each X_{i} is Gaussian, show that

$$
\mathbb{E}\left[\|X\|^{4}\right]-\|\Sigma\|_{H S}^{2}=(\operatorname{tr}(\Sigma))^{2}+\operatorname{tr}\left(\Sigma^{2}\right) .
$$

3. Let $0 \leq \theta_{1} \leq \cdots \leq \theta_{d} \leq \pi / 2$ be the principal angles between two d-dimensional subspaces V and W of a Hilbert space $(H,\langle\cdot, \cdot\rangle)$, and let P_{V} and P_{W} be the orthogonal projections onto V and W respectively.
(a) Show that

$$
\cos \left(\theta_{1}\right)=\max _{v \in V, w \in W} \frac{|\langle v, w\rangle|}{\|v\|\|w\|} .
$$

(Hint: Use that the first singular value $s_{1}(A)$ of a $d \times d$-matrix A satisfies $s_{1}(A)=\max _{\|x\|=1}\|A x\|=\max _{\|x\|,\|y\|=1} y^{T} A x$.) State and prove a similar formula for $\cos \left(\theta_{j}\right), j=2, \ldots, d$.
(b) Show that

$$
\left\|P_{V}-P_{W}\right\|_{H S}^{2}=2 \sum_{j=1}^{d} \sin ^{2}\left(\theta_{j}\right) .
$$

