
PERTURBATION BOUNDS FOR EIGENSPACES UNDER A

RELATIVE GAP CONDITION

MORITZ JIRAK AND MARTIN WAHL

Abstract. A basic problem in operator theory is to estimate how a small

perturbation affects the eigenspaces of a self-adjoint compact operator. In this
paper, we prove upper bounds for the subspace distance, taylored for relative

perturbations. As a main example, we consider the empirical covariance op-

erator, and show that a sharp bound can be achieved under a relative gap
condition. The proof is based on a novel contraction phenomenon, contrasting

previous spectral perturbation approaches.

1. Introduction

Let Σ be a positive self-adjoint compact operator on a separable Hilbert space
H. By the spectral theorem, there exists a sequence λ1 ≥ λ2 ≥ · · · > 0 of positive
eigenvalues (which is either finite or converges to zero), together with an orthonor-
mal system of eigenvectors u1, u2, . . . such that Σ =

∑
i≥1 λiui ⊗ ui. For u, v ∈ H,

we denote by u⊗ v the rank-one operator defined by (u⊗ v)x = 〈v, x〉u, x ∈ H.

Let Σ̂ be another positive self-adjoint compact operator on H. We consider Σ̂
as a perturbed version of Σ and write E = Σ̂− Σ for the perturbation, which will
be thought of as small. Again, by the spectral theorem, there exists a sequence

λ̂1 ≥ λ̂2 ≥ · · · > 0 of positive eigenvalues, together with an orthonormal system of

eigenvectors û1, û2, . . . such that Σ̂ =
∑
i≥1 λ̂iûi ⊗ ûi.

Given a finite subset I ⊆ N, a basic problem is to bound the distance between
the eigenspaces UI = span(ui : i ∈ I) and ÛI = span(ûi : i ∈ I). Letting

PI =
∑
i∈I ui ⊗ ui and P̂I =

∑
i∈I ûi ⊗ ûi be the orthogonal projections onto UI

and ÛI , respectively, a natural distance is given by the Hilbert-Schmidt distance
‖P̂I − PI‖2, which is equal to

√
2 times the Euclidean norm of the sines of the

canonical angles between the corresponding subspaces, see e.g. [3, Chapter VII.1]).
A first answer to this problem is given by the Davis-Kahan sin Θ theorem, a

version of which commonly used in probability and statistics reads as

‖P̂I − PI‖2 ≤ 2
√

2‖E‖2/gI , with gI = min
i∈I,j /∈I

|λi − λj |, (1.1)

see e.g. [8, 3, 29], where (1.1) is proven in [29] for the case that I is an interval.

Quantity ‖E‖2 is often replaced with
√
|I| times the operator norm ‖E‖∞.

More recently, there has been increasing interest in the case where Σ̂ arises from
Σ by random perturbation. In this regard, one of the most prominent examples is
the empirical covariance operator, a central object in high-dimensional probability
due to its importance in statistics and machine learning. The stochastic nature of
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this problem leaves room for significant improvements of (1.1), see e.g. [2, 7, 10,
21, 18, 22]. Combined with tools from probability theory, a powerful machinery
to derive more precise perturbation results is given by the holomorphic functional
calculus for linear operators, see e.g. [17, 6, 12]. For instance, assuming that

δI = 2‖E‖∞/gI < 1, (1.2)

we have, under the convention in Section 1.1, the first order perturbation expansion

P̂I − PI =
∑
i∈I

∑
j /∈I

1

λi − λj
(PiEPj + PjEPi) + SI(E) (1.3)

with remainder term satisfying ‖SI(E)‖∞ ≤ |I|δ2I/(1 − δI), cf. [12] or [18]. The
first term on the right-hand side of (1.3) represents a first order approximation for

P̂I −PI . While its Hilbert-Schmidt norm is usually of smaller magnitude than the
upper bound in (1.1), the main drawback of this approach is the requirement (1.2).

Let us illustrate this in the special case where Σ and Σ̂ are the population and the
empirical covariance operator, respectively (see Section 3 below). Then Lemma 1
below shows that under mild assumptions, the squared Hilbert-Schmidt norm of
the first order approximation satisfies∑

i∈I

∑
j /∈I

2‖PiEPj‖22
(λi − λj)2

≤ C log(n)

n

∑
i∈I

∑
j /∈I

λiλj
(λi − λj)2

(1.4)

with high probability, where C > 0 is a constant. A key feature of reproducing ker-
nel Hilbert spaces and functional data approaches in machine learning and statistics
are eigenvalues with an exponential or polynomial decay. For instance, for expo-
nentially decaying eigenvalues and the choice I = {1, . . . , k}, k ≥ 1, the right-hand
side of (1.4) is of order log(n)/n, while δI explodes exponentially in k, meaning that
(1.2) is quickly violated and the above approach breaks down. It is thus natural to
ask whether the first order approximation in (1.3) still gives accurate bounds (with
high probability), if (1.2) is no longer satisfied.

The aim of this paper is to provide an affirmative answer to this question, with a
view towards empirical covariance operators. Our main finding is that sharp bounds
of the type (1.4) can be derived for ‖P̂I −PI‖2, replacing (1.2) with a relative gap
condition. This is achieved by exploring a novel contraction phenomenon, bypassing
arguments based on the holomorphic functional calculus.

The paper is organised as follows. In Section 2.1 we derive perturbation bounds
in the case that certain relative coefficients (resp. blocks) are bounded. These
bounds are deduced from a more general statement, given in Section 2.2. Section 3.1
presents our main applications to the empirical covariance operator. Besides, our
approach can deal with a variety of other structured random perturbations. To
illustrate this further, we also discuss random perturbations of low rank matrices
in Section 3.2. Finally, the proof of our main result is given in Section 4.

1.1. Further notation. Let 〈·, ·〉 and ‖ · ‖ denote the inner product and the norm
on H, respectively. Let p = dimH be the dimension of H. Abusing notation, an
index i ∈ N or a set I ⊆ N of indices is to be understood as a subset of {1, . . . , p}
if p is finite. The set Ic denotes the complement of I (with respect to {1, . . . , p}
if p is finite). For i ≥ 1, we write Pi = ui ⊗ ui and P̂i = ûi ⊗ ûi. Hence for

I ⊆ N, we have PI =
∑
i∈I Pi and P̂I =

∑
i∈I P̂i. If p < ∞, then we extend the
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sequence of eigenvalues of Σ and Σ̂ by adding zeros such that the corresponding
eigenvectors form an orthonormal basis of H. (We proceed similarly if Σ̂ is finite-
rank.) If p =∞, then we assume (without loss of generality) that the eigenvectors
u1, u2, . . . form an orthonormal basis of H. Thus we always have

∑
i≥1 Pi = I.

Given a bounded (resp. Hilbert-Schmidt) operator A on H, we write ‖A‖∞ (resp.
‖A‖2) for the operator norm (resp. the Hilbert-Schmidt norm). Given a trace class
operator A on H, we denote the trace of A by tr(A).

2. Main results

2.1. Sharp relative perturbation bounds. We assume throughout Section 2.1
that the eigenvalues (λi) are strictly positive and summable, meaning that Σ is a
strictly positive, self-adjoint trace class operator. We begin with introducing the
crucial relative eigenvalue separation measure.

Definition 1. For a subset I ⊆ N, we define

rI(Σ) =
∑
i∈I

λi
minj /∈I |λi − λj |

+
∑
j /∈I

λj
mini∈I |λj − λi|

.

The quantity rI(Σ) measures in a weighted way how well the eigenvalues in
(λi)i∈I are separated from the rest of the spectrum. Let us consider two examples.
First, for k ≥ 1, we have

r{i:λi=λk}(Σ) =
mkλk
gk

+
∑

j:λj 6=λk

λj
|λj − λk|

(2.1)

with multiplicity mk = |{i : λi = λk}| and gap gk = mini:λi 6=λk
|λi − λk|. Second,

for k ≥ 1, we have

r{1,...,k}(Σ) =
∑
i≤k

λi
λi − λk+1

+
∑
j>k

λj
λk − λj

. (2.2)

The expressions in (2.1) and (2.2) can be easily evaluated if the λj have e.g. expo-
nential or polynomial decay (cf. Section 3). We now state our first main result.

Theorem 1. Let I ⊆ N be finite. Suppose that there is a real number x > 0 such
that for all i, j ≥ 1,

‖PiEPj‖2 ≤ x
√
λiλj . (2.3)

If

rI(Σ) ≤ 1/(8x), (2.4)

then we have

‖P̂I − PI‖22 ≤ 16x2
∑
i∈I

∑
j /∈I

λiλj
(λi − λj)2

. (2.5)

Remark 1. The numerical constants in (2.4) and (2.5) are selected for convenience.

Remark 2. Motivated by the empirical covariance operator, Theorem 1 considers a
perturbation problem where the perturbation E is related to Σ. There is, however,
also a connection to numerical analysis. If p is finite, then x can be chosen as the
maximum of the absolute values of the 〈ui, Euj〉/

√
λiλj , i, j ∈ {1, . . . , p}. These

quantities are the coefficients of the so called relative perturbation Σ−1/2EΣ−1/2

with respect to the eigenvectors of Σ. The latter matrix plays a prominent role in
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relative perturbation theory, see e.g. [13, 14]. The novel ingredient of Theorem 1
is Condition (2.4), ensuring that sharp bounds can be derived. Indeed, (2.5) gives
the size of the squared Hilbert-Schmidt norm of the first order approximation in
(1.3), provided that the bounds in (2.3) are sufficiently tight.

Remark 3. An inspection of the proof shows that the inequality

‖P̂I − PI‖22 ≤ 8
∑
i∈I

∑
j /∈I

‖PiEPj‖22
(λi − λj)2

+ 512x4r2I(Σ)
∑
i∈I

∑
j /∈I

λiλj
(λi − λj)2

(2.6)

holds, from which (2.5) follows by inserting (2.3) and (2.4).

Next, we state the following generalization of Theorem 1, more suitable for
infinite-dimensional Hilbert spaces:

Theorem 2. Let I ⊆ N be finite. Write I = ∪̇r≤mIr such that for all r ≤ m
and all i, j ∈ Ir we have λi = λj. Let I ′ ⊆ N be another finite subset such that
|λi − λj | ≥ λi/2 for all i ∈ I and all j /∈ I ′. Write I ′ \ I = ∪̇m<r≤m+nIr such
that for all m < r ≤ m + n and all i, j ∈ Ir we have λi = λj. Let Im+n+1 = I ′c.
Suppose that there is a real number x > 0 such that for all r, s ≤ m+ n+ 1,

‖PIrEPIs‖2 ≤ x
√∑
i∈Ir

λi

√∑
j∈Is

λj . (2.7)

If rI(Σ) ≤ 1/(8x), then (2.5) holds with the constant 16 replaced by 64.

Theorem 2 reveals that it actually suffices to have adequate bounds for certain
blocks corresponding to the same eigenvalue, and that the far away part represented
by I ′c can be dealt with separately. Note that (2.7) follows from (2.3), as can be
seen by squaring out the Hilbert-Schmidt norm.

2.2. A general perturbation bound. We now present a more technical pertur-
bation bound and show how it implies Theorems 1 and 2. In order to deal with
the different assumptions on certain coefficients (resp. blocks) of E from the last
section, we introduce some flexibility with respect to the structure of E.

Theorem 3. Let I ⊆ N be a finite subset and let {I1, . . . , Im} be a partition of I
(meaning that I1, . . . , Im are non-empty, disjoint subsets of I whose union is equal
to I). Let {Im+1, Im+2, . . . } be a (possibly finite) partition of Ic into intervals. Let
(ar) and (br) be sequences of non-negative real numbers such that for all r, s ≥ 1,

‖PIrEPIs‖∞ ≤ max(
√
arbs,

√
bras), ‖PIrEPIs‖2 ≤

√
brbs. (2.8)

Suppose that (∑
r≥1

ar
gr

)(∑
r≥1

br
gr

)
≤ 1/64 (2.9)

with gr = mini∈Ir,j∈Ic |λi−λj | for r ≤ m and gr = minj∈Ir,i∈I |λi−λj | otherwise.
Then we have

‖P̂I − PI‖22 ≤ 12
∑
r>m

∑
s≤m

brbs
g2r,s

+ 256

(∑
r≥1

br
gr

)2 ∑
r>m

∑
s≤m

arbs
g2r,s

(2.10)

with g2r,s = mini∈Ir,j∈Is(λi − λj)2.
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In particular, if (2.8) holds with ar = br and if
∑
r≥1 br/gr ≤ 1/8, then we have

‖P̂I − PI‖22 ≤ 16
∑
r>m

∑
s≤m

brbs
g2r,s

. (2.11)

Remark 4. From (2.9), it follows that (br) is summable. Combining this with
Assumption (2.8), we see that E has to be Hilbert-Schmidt.

Remark 5. Theorem 3 includes a version of the Davis-Kahan sin Θ theorem. Indeed,
the simple choice I1 = I, I2 = Ic and ar = ‖E‖2∞/‖E‖2, br = ‖E‖2, r = 1, 2,

leads to ‖P̂I − PI‖2 ≤ 4‖E‖2/gI , provided that ‖E‖∞/gI ≤ 1/16, with gI =
mini∈I,j /∈I |λi − λj |. One advantage of the Davis-Kahan sin Θ theorem is that it
depends only on a small number of parameters: this version, for instance, shows
that the sensitivity of P̂I − PI can be described by the size of the perturbation
relative to the gap gI . Our main objective is to go beyond this simple worst-case
scenario using only a single gap. This corresponds to choosing finer partitions. In
the extreme case where both partitions consist of singletons, the bound reflects
the magnitude of the first order approximation given in (1.3), and involves gaps
between all relevant eigenvalues.

Remark 6. Assumption (2.8) is designed to deal with random perturbations. While

it might be difficult to check (2.8) for a given fixed Σ and Σ̂, we show in Section 3
that it holds with high probability for a variety of structured random perturba-
tions. In this respect, note that Assumption (2.8) allows for some flexibility when
bounding PIrEPIs . Observe that since ‖ · ‖∞ ≤ ‖ · ‖2, the second condition implies
the first if ar = br for all r ≥ 1. If, however, significantly better bounds for the
operator norm are available, see e.g. [26, 4, 25], we may select ar � br, yielding
much weaker conditions in (2.9).

Remark 7. If p = dimH < ∞, then Theorem 3 holds for all self-adjoint operators
Σ and Σ̂. Indeed, we can always find a real number y > 0 such that Σ + yI and
Σ̂ + yI are positive, and the claim follows because eigenvectors, gaps, and E are
invariants of this transformation. If p =∞, then positiveness is also not necessary,
but the statement and its proof are notationally more involved.

We conclude this section by showing how Theorems 1 and 2 can be obtained by
an application of Theorem 3.

Proof of Theorems 1 and 2. In order to obtain Theorem 1, take partitions of I and
Ic consisting of singletons. Choose aj = bj = xλj , with x from (2.3). Then
(2.8) holds because ‖PiEPj‖∞ = ‖PiEPj‖2 and (2.9) coincides with (2.4). Thus
(2.5) follows from (2.11). Regarding Theorem 2, the partition is already given. In
addition, for r ≤ m + n + 1, set ar = br = x

∑
i∈Ir λi. Then it is easy to see that

(2.8) and (2.9) are implied by (2.7) and (2.4), respectively, and the claim follows
from (2.11), using that by construction of I ′,

x2λi
∑
j∈I′c λj

minj∈I′c(λi − λj)2
≤ 4x2

∑
j∈I′c

λiλj
λ2i
≤ 4x2

∑
j∈I′c

λiλj
(λi − λj)2

for all i ∈ I. �
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3. Applications

3.1. Empirical covariance operators. Let us discuss applications of our main
result to the empirical covariance operator. Let X be a random variable taking
values inH. We suppose thatX is centered and strongly square-integrable, meaning
that EX = 0 and E‖X‖2 <∞. Let Σ = EX ⊗X be the covariance operator of X,
which is a positive, self-adjoint trace class operator, see e.g. [12, Theorem 7.2.5].

For j ≥ 1, let ηj = λ
−1/2
j 〈uj , X〉 be the j-th Karhunen-Loève coefficient of X. Let

X1, . . . , Xn be independent copies of X and let

Σ̂ =
1

n

n∑
l=1

Xl ⊗Xl

be the empirical covariance operator. Combining Theorem 2 with concentration
inequalities, we get:

Theorem 4. In the above setting, suppose that for some q > 4 and Cη > 0,

sup
j≥1

E|ηj |q ≤ Cη. (3.1)

Then there are constants c1, C1 > 0 depending only on Cη and q, such that for all
k, k0 ≥ 1 with λk0 ≤ λk/2 and all t ≥ 1 satisfying

t√
n

(∑
i≤k

λi
λi − λk+1

+
∑
j>k

λj
λk − λj

)
≤ c1, (3.2)

we have

P
(
‖P̂{1,...,k} − P{1,...,k}‖22 >

C1t
2

n

∑
i≤k

∑
j>k

λiλj
(λi − λj)2

)
(3.3)

≤ k20
(n1−q/4

tq/2
+ exp(−t2)

)
.

Remark 8. For t =
√

log n, (3.3) gives a similar high probability bound as in (1.4).

Remark 9. Theorem 4 gives useful bounds for t ≥
√

log k0. Corresponding bounds
for t <

√
log k0 can be obtained using Remark 3, we omit the details. In (3.3), k0

can be replaced by the number of distinct eigenvalues with indices smaller than or
equal to k0.

Remark 10. In the literature it is often assumed that the ηj are independent and
satisfy some moment growth condition, see e.g. [21], or that X is sub-Gaussian
or even Gaussian, see e.g. [19, 18]. In contrast, we only need the existence of a
uniform moment bound on the ηj of order q > 4. In fact, since our bounds are based
on the Fuk-Nagaev inequality, we expect our moment assumptions to be minimal.
Despite this generality, we obtain sharp results, capable of serving as a new tool in
functional PCA or kernel PCA (cf. [12, 11, 24]).

Following [16], we call (3.2) a relative rank condition, in contrast to the effective
rank condition introduced in [18], where the latter is based on (1.2) and the con-
centration inequality in [19, 1]. The relative rank condition can be easily verified
for exponentially and polynomially decaying eigenvalues. For instance, for poly-
nomially decaying eigenvalues, the eigenvalue expressions in (3.2) and (3.3) are of
order k log(k) and k2 log(k), respectively (cf. [15, Lemma 7.13]).
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Corollary 1. Grant Assumption (3.1). If for some α > 0, λj = j−α−1, j ≥ 1,
then there are constants c1, C1 > 0 depending only on α, Cη, and q such that for
all k ≥ 2 and all t ≥ 1 satisfying tk log(k) ≤ c1

√
n, we have

P
(
‖P̂{1,...,k} − P{1,...,k}‖22 >

C1t
2k2 log(k)

n

)
≤ k2

(n1−q/4
tq/2

+ exp(−t2)
)
.

Moreover, if λj = exp(−αj), j ≥ 1, then for all k ≥ 1 and all t ≥ 1 satisfying
tk ≤ c1

√
n, we have

P
(
‖P̂{1,...,k} − P{1,...,k}‖22 >

C1t
2

n

)
≤ k2

(n1−q/4
tq/2

+ exp(−t2)
)
.

Relative perturbation bounds for the empirical covariance operator have recently
attracted attention in the literature. In [21, 15, 16], using different arguments, the
special case I = {i} was treated. The general case is more complicated. For
instance, [21] combines the holomorphic functional calculus with a normalization
argument to go beyond the standard approach outlined in the introduction. They
were, however, not able to obtain the sharp leading term in (3.3) by their method of
proof, and require much stronger probabilistic conditions. Several types of relative
perturbations have also been investigated in the deterministic case, see e.g. [14].
However, designed for a different purpose, they give significantly inferior results
when applied to the empirical covariance operator.

Let us now turn to the proof of Theorem 4. The following lemma provides the
necessary concentration inequality needed to deal with Condition (2.7).

Lemma 1. Let I,J ⊆ N. Under the assumptions of Theorem 4, there is a constant
C1 > 0 depending only on Cη and q, such that for all t ≥ 1,

P
( ‖PIEPJ ‖2

(
∑
i∈I
∑
j∈J λiλj)

1/2
>
C1t√
n

)
≤ n1−q/4

tq/2
+ exp(−t2).

Theorem 4 is now an immediate consequence of Theorem 2, the union bound, and
Lemma 1. Lemma 1 itself follows from [9, Theorem 3.1], a Banach space version of
the Fuk-Nagaev inequality. For the sake of completeness, we describe the relevant
computations below.

Proof of Lemma 1. Observe that

nPIEPJ =

n∑
l=1

∑
i∈I

∑
j∈J

(〈Xl, ui〉〈Xl, uj〉 − δij
√
λiλj)ui ⊗ uj =:

n∑
l=1

Zl,

where the Zl are i.i.d. random variables taking values in the Hilbert space of all
Hilbert-Schmidt operators on H, endowed with the Hilbert-Schmidt scalar product
〈·, ·〉2. First, for every Hilbert-Schmidt operator A on H with ‖A‖2 ≤ 1, we have

E
n∑
l=1

〈A,Zl〉22 ≤ nE‖Z1‖22 = n
∑
i∈I

∑
j∈J

λiλjE(ηiηj − δij)2 ≤ C2n
∑
i∈I

∑
j∈J

λiλj ,

as can be seen by the Cauchy-Schwarz inequality, the definition of the ηj , Jensen’s
inequality, and (3.1). Similarly, by Jensen’s inequality and (3.1), we have

E
∥∥∥ n∑
l=1

Zl

∥∥∥
2
≤
(
n
∑
i∈I

∑
j∈J

λiλjE(ηiηj − δij)2
)1/2

≤ C3

(
n
∑
i∈I

∑
j∈J

λiλj

)1/2
.
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Finally, by Minkowski’s inequality, Jensen’s inequality, and (3.1), we have

(E‖Z1‖q/22 )4/q ≤
∑
i∈I

∑
j∈J

λiλj(E(ηiηj − δij)q/2)4/q ≤ C4

∑
i∈I

∑
j∈J

λiλj .

Lemma 1 now follows from [9, Theorem 3.1] applied with s = q/2. �

3.2. Using the operator norm. Let us give two simple examples showing how
one can benefit from having two different norms in Condition (2.8).

Random perturbation of a low rank matrix. Let H = Rp and let Σ =
∑
i≤k λiuiu

T
i

be a symmetric matrix with λ1 ≥ · · · ≥ λk > 0 and u1, . . . , uk orthonormal system
in Rp. Let Σ̂ = Σ + εξ, where ε > 0 and ξ = (ξij)1≤i,j≤p is a GOE matrix, i.e.
a symmetric random matrix whose upper triangular entries are independent zero
mean Gaussian random variables with Eξ2ij = 1 for 1 ≤ i < j ≤ p and Eξ2ii = 2 for
i = 1, . . . , p. Then Theorem 3 yields that for all t ≥ 1, with probability at least
1− 18 exp(−c1t),

‖P̂1 − P1‖22 ≤ C1

(
ε2tk

(λ1 − λ2)2
+
ε2t(p− k)

λ21
+

ε4t2(p− k)2

λ21(λ1 − λ2)2

)
, (3.4)

where c1, C1 > 0 are absolute constants. In comparison, the Davis-Kahan sin Θ
theorem in (1.1) with ‖E‖2 replaced by

√
|I|‖E‖∞ yields a bound of order ε2p/(λ1−

λ2)2, which is inferior to (3.4) for k smaller than p and λ1 − λ2 smaller than λ1.
The bound in (3.4) can be compared to [27, Theorem 8] and [22, Remark 15], where
a structurally similar third term appears.

Let us deduce (3.4) from (2.10), using also Remark 7. Since ξ is invariant under
orthogonal transformations, we may assume that ui is the i-th standard basis vector
in Rp. Hence, Condition (2.8) is dealing with submatrices of E = εξ. We choose
I1 = {1}, I2 = {2, . . . , k}, and I3 = {k + 1, . . . , p}. Applying concentration results
for the operator norm of random matrices (e.g. [4, Theorem 5.6] and [20, Theorem

1]) and the bound ‖PIrEPIs‖2 ≤
√
|Ir| ∧ |Is|‖PIrEPIs‖∞, we get that for all

t ≥ 1, (2.8) is satisfied with probability at least 1− 18 exp(−c1t), provided that we
choose

(a1, a2, a3) = (ε
√
t, ε
√
t, ε
√
t), (b1, b2, b3) = (C2ε

√
t, C2(k − 1)ε

√
t, C2(p− k)ε

√
t).

By Theorem 3, we get, for all t ≥ 1, with probability at least 1− 18 exp(−c1t),

‖P̂1 − P1‖22 ≤ C3

(
ε2tk

(λ1 − λ2)2
+
ε2t(p− k)

λ21
+

ε4t2k2

(λ1 − λ2)4
+

ε4t2(p− k)2

λ21(λ1 − λ2)2

)
,

provided that

ε2tk

(λ1 − λ2)2
+

ε2t(p− k)

λ1(λ1 − λ2)
≤ c2. (3.5)

Since always ‖P̂1−P1‖22 ≤ 2, Condition (3.5) can be dropped and the above bound
can be rearranged into the desired form (3.4), by adjusting C3.

Spiked covariance model. Consider the empirical covariance operator from Sec-
tion 3.1. Let H = Rp and let Σ = µ1PI1 + µ2PI2 + µ3PI3 with µ1 > µ2 > µ3 > 0
and mr = |Ir|, r = 1, 2, 3. Assume that the ηj are independent and sub-Gaussian,
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meaning that for some constant Cη > 0, E1/q|ηj |q ≤ Cη
√
q for all natural num-

bers q ≥ 1 and all j = 1, . . . , p. Then Theorem 3 yields that for all t ≥ 1, with
probability at least 1− 9 exp(−(m1 ∧m2 ∧m3)t),

‖P̂I1 − PI1‖22 ≤ C1m1

(
µ2
1k

(µ1 − µ2)2
t

n
+

µ2
1(p− k)

(µ1 − µ3)2
t

n
+

µ4
1(p− k)2

(µ1 − µ2)2(µ1 − µ3)2
t2

n2

)
.

(3.6)

where k = m1 + m2 is the dimension of the spiked part and C1 > 0 is a constant
depending only on Cη. In comparison, the Davis-Kahan sin Θ theorem in (1.1) with

‖E‖2 replaced by
√
|I|‖E‖∞ yields a bound of order µ2

1m1p/(n(µ1 − µ2)2).
Let us deduce (3.6) from Theorem 3, by replacing Lemma 1 with the following

concentration inequality for the operator norm of empirical covariance operators.

Lemma 2. In the above setting, there is a constant C2 > 0 depending only on Cη
such that for all r, s = 1, 2, 3 and all t ≥ 1 satisfying t(mr ∨ms)/n ≤ 1, we have

P
(
‖PIrEPIs‖∞ > C2

√
µrµs(mr ∨ms)t

n

)
≤ exp(−(mr ∨ms)t).

The case r = s follows from [19, Theorem 1], the non-diagonal case follows from
a similar standard net argument as presented therein (see also [26, 22]). Proceeding
as in the proof of (3.4), we get that for all 1 ≤ t ≤ n/(k ∨ (p− k)), (2.8) is satisfied
with probability at least 1− 9 exp(−(m1 ∧m2 ∧m3)t), provided that we choose

(a1, a2, a3) = (µ1

√
t/n, µ2

√
t/n, µ3

√
t/n),

(b1, b2, b3) = (C2µ1m1

√
t/n, C2µ2m2

√
t/n), C2µ3m3

√
t/n).

Applying Theorem 3, (3.6) follows from a similar computation leading to (3.4).
Given two groups of eigenvalues Σ = µ1PI1 +µ2PI2 with µ1 > µ2 and mr = |Ir|,

r = 1, 2, a similar computation yields a bound of order µ1µ2m1m2/(n(µ1 − µ2)2).
The latter is known to be optimal in a minimax sense, see e.g. Theorem 8 and
9 in [5] and also [23]. Extensions of this bound to a high-dimensional context
can be found in [5, 28]. In comparison, the three-group bound (3.6) depends on
two different gaps, and contains a second order perturbation term. As already
mentioned in the previous example, a similar third term is present in the results in
[27, 22]. Note that this term can be avoided by applying Theorem 4, yet under the
additional relative gap condition in (3.2).

4. Proof of main theorem

4.1. Separation of eigenvalues. In this section, we show that under Condition

(2.9), the perturbed eigenvalues (λ̂i)i∈I are well-separated from (λj)j /∈I .

Lemma 3. Under the assumptions of Theorem 3, we have

|λ̂i − λj | ≥
|λi − λj |

2

for all i ∈ I and j /∈ I.

The proof is based on the following result, which is an intermediate step in the
proof of Propositions 3.10 and 3.13 in [23]. In fact, (4.1), for instance, follows from
the min-max characterisation of eigenvalues in combination with [23, Lemma 3.11].
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Proposition 1. For all i ≥ 1 and y > 0, we have the implications∥∥∥(∑
k≥i

1√
λi + y − λk

Pk

)
E
(∑
k≥i

1√
λi + y − λk

Pk

)∥∥∥2
∞
≤ 1⇒ λ̂i − λi ≤ y (4.1)

and∥∥∥(∑
k≤i

1√
λk + y − λi

Pk

)
E
(∑
k≤i

1√
λk + y − λi

Pk

)∥∥∥2
∞
≤ 1⇒ λ̂i − λi ≥ −y. (4.2)

Proof of Lemma 3. It suffices to show that

λ̂i − λj ≥
λi − λj

2
(4.3)

for all i ∈ I and j /∈ I such that i < j, and that

λj − λ̂i ≥
λj − λi

2
(4.4)

for all i ∈ I and j /∈ I such that j < i. We only prove (4.3), the proof of (4.4)
follows the same line of arguments. First, (4.3) is equivalent to

λ̂i − λi ≥ −
λi − λj

2
(4.5)

for all i ∈ I and j /∈ I such that i < j. Thus, it suffices to show that the left-hand
side in (4.2) is satisfied with y = (λi − λj)/2. For r ≥ 1, set

Tr =
∑

k∈Ir,k≤i

1√
λk + y − λi

Pk.

(Set Tr = 0 if the summation is empty.) Using that the Tr are self-adjoint and have
orthogonal ranges, we have∥∥∥(∑

k≤i

1√
λk + y − λi

Pk

)
E
(∑
k≤i

1√
λk + y − λi

Pk

)∥∥∥2
∞

(4.6)

=
∥∥∥(∑

r≥1

Tr

)
E
(∑
s≥1

Ts

)∥∥∥2
∞
≤
∑
r≥1

∑
s≥1

‖TrETs‖2∞.

Using the identities Tr = TrPIr = PIrTr and (2.8), we have

‖TrETs‖2∞ ≤ (arbs + bras)‖Tr‖2∞‖Ts‖2∞
for all r, s ≥ 1. Hence,∑

r≥1

∑
s≥1

‖TrETs‖2∞ ≤ 2

(∑
r≥1

ar‖Tr‖2∞
)(∑

s≥1

bs‖Ts‖2∞
)
. (4.7)

Now, using that mink∈Ir,k≤i(λk + y − λi) ≥ mink∈Ir |λk − λi| ≥ gr for r > m, and
mink∈Ir,k≤i(λk + y − λi) ≥ mink∈Ir |λk − λj |/2 ≥ gr/2 for r ≤ m, we obtain that

‖Tr‖2∞ ≤ 2/gr (4.8)

for all r ≥ 1. Using (4.6)-(4.8) in combination with (2.9), we conclude that∥∥∥(∑
k≤i

1√
λk + y − λi

Pk

)
E
(∑
k≤i

1√
λk + y − λi

Pk

)∥∥∥2
∞
≤ 1/8 ≤ 1,

and the claim follows from (4.2). �



PERTURBATION BOUNDS FOR EIGENSPACES 11

4.2. Key contraction phenomenon. The proof of Theorem 3 is based on a first
order perturbation expansion, combined with a recursive argument to get control
of the remainder term. The main technical lemma is as follows:

Lemma 4. Under the assumptions of Theorem 3, the inequality√√√√∑
i∈I

‖PIrEP̂i‖22
(λ̂i − λj)2

≤
(

3

2

√
br + 4

√
ar
∑
s≥1

bs
gs

)√∑
s≤m

bs
mini∈Is(λi − λj)2

holds for all r ≥ 1 and all j /∈ I.

Proof. We recall some simple properties of the Hilbert-Schmidt norm which we will
use in the sequel without further comment. For Hilbert-Schmidt operators A and
B on H, we have ‖AB‖2 ≤ ‖A‖∞‖B‖2. Moreover, for a Hilbert-Schmidt operator
A on H and a bounded sequence of real numbers (xi)i≥1 we have ‖

∑
i≥1 xiPiA‖22 =∑

i≥1 x
2
i ‖PiA‖22 and the same identity holds for PiA replaced by APi.

Let r ≥ 1 be arbitrary. By the identity I = PI + PIc (see the convention in
Section 1.1), and the triangular inequality, we have√√√√∑

i∈I

‖PIrEP̂i‖22
(λ̂i − λj)2

=

∥∥∥∥∑
i∈I

1

λ̂i − λj
PIrEP̂i

∥∥∥∥
2

(4.9)

≤
∥∥∥∥∑
i∈I

1

λ̂i − λj
PIrEPIP̂i

∥∥∥∥
2

+

∥∥∥∥∑
i∈I

1

λ̂i − λj
PIrEPIc P̂i

∥∥∥∥
2

.

Note that all denominators are non-zero by Lemma 3. We start with the first term
on the right-hand side of (4.9). By the identity

(λ̂i − λk)PkP̂i = PkEP̂i, (4.10)

valid for every i, k ≥ 1, we have∑
i∈I

1

λ̂i − λj
PIP̂i −

∑
k∈I

1

λk − λj
PkP̂I =

∑
k∈I

∑
i∈I

(
1

λ̂i − λj
− 1

λk − λj

)
PkP̂i

= −
∑
k∈I

∑
i∈I

1

λk − λj
1

λ̂i − λj
PkEP̂i.

Using this identity and the triangular inequality, we get∥∥∥∥∑
i∈I

1

λ̂i − λj
PIrEPIP̂i

∥∥∥∥
2

≤
∥∥∥∥∑
k∈I

1

λk − λj
PIrEPkP̂I

∥∥∥∥
2

(4.11)

+

∥∥∥∥∑
k∈I

∑
i∈I

1

λk − λj
1

λ̂i − λj
PIrEPkEP̂i

∥∥∥∥
2

.

The first term on the right-hand side of (4.11) is bounded as follows:∥∥∥∥∑
k∈I

1

λk − λj
PIrEPkP̂I

∥∥∥∥
2

≤
∥∥∥∥∑
k∈I

1

λk − λj
PIrEPk

∥∥∥∥
2

. (4.12)

Next, consider the second term on the right-hand side of (4.11). Using the trian-
gular inequality, we have∥∥∥∥∑

k∈I

∑
i∈I

1

λk − λj
1

λ̂i − λj
PIrEPkEP̂i

∥∥∥∥
2

(4.13)
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≤
∑
s≤m

∥∥∥∥ ∑
k∈Is

∑
i∈I

1

λk − λj
1

λ̂i − λj
PIrEPkEP̂i

∥∥∥∥
2

=
∑
s≤m

√√√√∑
i∈I

1

(λ̂i − λj)2

∥∥∥∥ ∑
k∈Is

1

λk − λj
PIrEPkEP̂i

∥∥∥∥2
2

.

Now, for each s ≤ m and i ∈ I,∑
k∈Is

1

λk − λj
PIrEPkEP̂i = PIrEPIs

( ∑
k∈Is

1

λk − λj
Pk

)
PIsEP̂i

and by (2.8) and the definition of the gs, this implies that∥∥∥∥ ∑
k∈Is

1

λk − λj
PIrEPkEP̂i

∥∥∥∥
2

≤
∥∥∥∥PIrEPIs∥∥∥∥

∞

∥∥∥∥ ∑
k∈Is

1

λk − λj
Pk

∥∥∥∥
∞

∥∥∥∥PIsEP̂i∥∥∥∥
2

≤
(√

arbs
gs

+

√
bras
gs

)∥∥∥∥PIsEP̂i∥∥∥∥
2

.

Inserting this inequality into (4.13), we get∥∥∥∥∑
k∈I

∑
i∈I

1

λk − λj
1

λ̂i − λj
PIrEPkEP̂i

∥∥∥∥
2

(4.14)

≤
∑
s≤m

(√
arbs
gs

+

√
bras
gs

)∥∥∥∥∑
i∈I

1

λ̂i − λj
PIsEP̂i

∥∥∥∥
2

.

For the second term on the right-hand side of (4.9) we proceed similarly. By (4.10),
Lemma 3, and the triangular inequality, we have∥∥∥∥∑

i∈I

1

λ̂i − λj
PIrEPIc P̂i

∥∥∥∥
2

=

∥∥∥∥∑
k/∈I

∑
i∈I

1

λ̂i − λk
1

λ̂i − λj
PIrEPkEP̂i

∥∥∥∥
2

≤
∑
s>m

√√√√∑
i∈I

1

(λ̂i − λj)2

∥∥∥∥ ∑
k∈Is

1

λ̂i − λk
PIrEPkEP̂i

∥∥∥∥2
2

.

(4.15)

Now, for s > m and i ∈ I, we have∑
k∈Is

1

λ̂i − λk
PIrEPkEP̂i = PIrEPIs

( ∑
k∈Is

1

λ̂i − λk
Pk

)
PIsEP̂i

and by (2.8) and Lemma 3, this implies that∥∥∥∥ ∑
k∈Is

1

λ̂i − λk
PIrEPkEP̂i

∥∥∥∥
2

≤ 2

(√
arbs
gs

+

√
bras
gs

)∥∥∥∥PIsEP̂i∥∥∥∥
2

.

Inserting this into (4.15), we conclude that∥∥∥∥∑
i∈I

1

λ̂i − λj
PIrEPIc P̂i

∥∥∥∥
2

(4.16)

≤ 2
∑
s>m

(√
arbs
gs

+

√
bras
gs

)∥∥∥∥∑
i∈I

1

λ̂i − λj
PIsEP̂i

∥∥∥∥
2

.
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Collecting (4.9), (4.11)-(4.16), we conclude that∥∥∥∥∑
i∈I

1

λ̂i − λj
PIrEP̂i

∥∥∥∥
2

≤
∥∥∥∥∑
i∈I

1

λi − λj
PIrEPi

∥∥∥∥
2

(4.17)

+ 2
∑
s≥1

(√
arbs
gs

+

√
bras
gs

)∥∥∥∥∑
i∈I

1

λ̂i − λj
PIsEP̂i

∥∥∥∥
2

∀r ≥ 1.

It remains to solve this recursive inequality. First, using (2.8), we have∥∥∥∥∑
i∈I

1

λi − λj
PIrEPi

∥∥∥∥
2

=

√√√√∑
i∈I

‖PIrEPi‖22
(λi − λj)2

(4.18)

≤

√√√√∑
s≤m

‖PIrEPIs‖22
mini∈Is(λi − λj)2

≤
√∑
s≤m

brbs
mini∈Is(λi − λj)2

=:
√
brB

for all r ≥ 1. If we set

Ar =

∥∥∥∥∑
i∈I

1

λ̂i − λj
PIrEP̂i

∥∥∥∥
2

∀r ≥ 1,

then (4.17) implies that

Ar ≤
√
brB + 2

√
ar

(∑
s≥1

√
bs
gs

As

)
+ 2
√
br

(∑
s≥1

√
as
gs

As

)
∀r ≥ 1. (4.19)

Multiplying both sides with
√
br/gr and summing over r ≥ 1, we have∑

r≥1

√
br
gr

Ar

≤
(∑
r≥1

br
gr

)
B + 2

(∑
r≥1

√
arbr
gr

)(∑
s≥1

√
bs
gs

As

)
+ 2

(∑
r≥1

br
gr

)(∑
s≥1

√
as
gs

As

)
.

By (2.9) and the Cauchy-Schwarz inequality, this implies∑
r≥1

√
br
gr

Ar ≤
4

3

(∑
r≥1

br
gr

)
B +

8

3

(∑
r≥1

br
gr

)(∑
s≥1

√
as
gs

As

)
.

Inserting this inequality into (4.19), we get

Ar ≤
√
brB +

8

3

√
ar

(∑
s≥1

bs
gs

)
B (4.20)

+
16

3

√
ar

(∑
s≥1

bs
gs

)(∑
s≥1

√
as
gs

As

)
+ 2
√
br

(∑
s≥1

√
as
gs

As

)
∀r ≥ 1.

Now, multiplying both sides with
√
ar/gr and summing over r ≥ 1, we have∑

r≥1

√
ar
gr

Ar ≤
(∑
r≥1

√
arbr
gr

)
B +

8

3

(∑
r≥1

ar
gr

)(∑
s≥1

bs
gs

)
B

+
16

3

(∑
r≥1

ar
gr

)(∑
s≥1

bs
gs

)(∑
s≥1

√
as
gs

As

)
+ 2

(∑
r≥1

√
arbr
gr

)(∑
s≥1

√
as
gs

As

)
.
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By (2.9) and the Cauchy-Schwarz inequality, this implies∑
r≥1

√
ar
gr

Ar ≤
B

8
+
B

24
+

1

12

(∑
s≥1

√
as
gs

As

)
+

1

4

(∑
s≥1

√
as
gs

As

)
and thus ∑

r≥1

√
ar
gr

Ar ≤
B

4
.

Inserting this into (4.20), we conclude that

Ar ≤
3

2

√
brB + 4

(
√
ar
∑
s≥1

bs
gs

)
B ∀r ≥ 1,

and the claim follows from inserting the definitions of Ar and B. �

4.3. End of proof of Theorem 3. Using that orthogonal projections are idempo-
tent and self-adjoint, we have ‖(I − PI)P̂I‖22 = tr((I − PI)P̂I) = tr(PI(I − P̂I)) =

‖PI(I − P̂I)‖22. Hence, by the identity P̂I −PI = (I −PI)P̂I −PI(I − P̂I), we get

‖P̂I − PI‖22 = 2‖(I − PI)P̂I‖22 = 2
∑
r>m

‖PIr P̂I‖22. (4.21)

By (4.10), we have for every r > m,

‖PIr P̂I‖22 =
∑
i∈I

∑
j∈Ir

‖PjEP̂i‖22
(λ̂i − λj)2

≤
∑
i∈I

‖PIrEP̂i‖22
minj∈Ir (λ̂i − λj)2

. (4.22)

Note that all denominators are non-zero by Lemma 3. Now, using (4.3), (4.4), and

the fact that Ir is an interval, we get that minj∈Ir (λ̂i−λj)2 is attained at at most
two points, namely at the endpoints of Ir. Hence, there are j0, j1 ∈ Ir such that

‖PIr P̂I‖22 ≤
∑
i∈I

‖PIrEP̂i‖22
(λ̂i − λj0)2

+
∑
i∈I

‖PIrEP̂i‖22
(λ̂i − λj1)2

.

Inserting this into (4.21) and applying Lemma 4, the claim follows from a simple
computation, using the inequality (y + z)2 ≤ 4y2/3 + 4z2. �
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schweig, Universitätsplatz 2, 38106 Braunschweig, Germany.

E-mail address: m.jirak@tu-braunschweig.de

Martin Wahl, Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den

Linden 6, 10099 Berlin, Germany.

E-mail address: martin.wahl@math.hu-berlin.de


	1. Introduction
	1.1. Further notation

	2. Main results
	2.1. Sharp relative perturbation bounds
	2.2. A general perturbation bound

	3. Applications
	3.1. Empirical covariance operators
	3.2. Using the operator norm

	4. Proof of main theorem
	4.1. Separation of eigenvalues
	4.2. Key contraction phenomenon
	4.3. End of proof of Theorem 3

	References

