$Stochastik\ I$

Gliederung zur Vorlesung im Sommersemester 2012

Markus Reiß Humboldt-Universität zu Berlin

Vorläufige Version vom 11. Juli 2012

Inhaltsverzeichnis

1	Wahrscheinlichkeitsräume		1
	1.1	Ereignisse, Wahrscheinlichkeiten und Zufallsvariablen	1
	1.2	Diskrete Verteilungen	
	1.3	Maßtheorie und Wahrscheinlichkeitsmaße im \mathbb{R}^d	3
2	Bedingte Wahrscheinlichkeiten und Unabhängigkeit		7
	2.1	Bedingte Wahrscheinlichkeiten und Bayes-Formel	7
	2.2	Unabhängige Ereignisse und Lemma von Borel-Cantelli	
	2.3	Unabhängige Zufallsvariablen	8
	2.4	Faltung	
3	Erwartungswert, Varianz und Kovarianz		11
	3.1	Erwartungswert und Momente	11
	3.2	Varianz, Kovarianz und Korrelation	
	3.3	Mehrdimensionale Normalverteilung	
4	Einführung in statistische Tests		15
	4.1	Hypothesentests	15
	4.2	Neyman-Pearson-Tests	16
5	Grenzwertsätze		17
	5.1	Gesetze der großen Zahlen	17
	5.2	Konvergenz in Verteilung	18
	5.3	Charakteristische Funktionen und Zentraler Grenzwertsatz	19
6	Einführung in die Schätztheorie		20
	6.1	Grundlagen	20
	6.2	Cramér-Rao-Ungleichung und ML-Schätzer	20
	6.3	Likelihood-Quotienten-Tests	

Markus Reiß

Vorlesung

Stochastik I

Sommersemester 2009

Ein paar Literaturempfehlungen

- Hans-Otto Georgii, *Stochastik*, de Gruyter: exzellentes Lehrbuch inkl. Maßtheorie, verfügbar als E-Book: http://www.reference-global.com/isbn/978-3-11-019349-7
- Ulrich Krengel, Einführung in die Wahrscheinlichkeitstheorie und Statistik, Vieweg: Klassiker mit vielen Beispielen und Diskussionen, ohne Maßtheorie
- Herold Dehling, Beate Haupt, Einführung in die Wahrscheinlichkeitstheorie und Statistik, Springer: Lehrbuch mit vielen erklärenden Skizzen und Diagrammen, ohne Maßtheorie
- William Feller, An introduction to probability theory and its applications I, Wiley: das alte Testament, eine Fundgrube, immer noch Standardreferenz
- Kai Lai Chung, *A Course in Probability Theory*, Academic Press: Englisch-sprachiges Standardwerk, besonders empfehlenswert für char. Funktionen und Konvergenzresultate
- Achim Klenke, Wahrscheinlichkeitstheorie, Springer: Lehrbuch für Stochastik I und II, aus Vorlesungen entstanden
- Jürgen Elstrodt, Maß- und Integrationstheorie, Springer: mit viel Liebe und historischen Anmerkungen verfasstes, ausführliches Maßtheoriebuch
- Heinz Bauer, Wahrscheinlichkeitstheorie, de Gruyter: umfassendes deutsches Standardwerk, auf dem Maßtheoriebuch des Autors aufbauend
- Albert N. Shiryaev, *Probability*, Springer: umfassendes Lehrbuch, gut als Nachschlagewerk für Stochastik I und II
- Jean Jacod, Philip Protter, *Probability Essentials*, Springer: alle wichtigen Ergebnisse auf hohem Niveau, kurz und knapp
- John A. Rice, *Mathematical Statistics and Data Analysis*, Thomson: gutes einführendes Lehrbuch in die mathematische Statistik, viele Beispiele
- Jun Shao, *Mathematical Statistics*, Springer: deckt weite Themen der math. Statistik ab, gut für den Überblick und zum Nachschlagen

1 Wahrscheinlichkeitsräume

1.1 Ereignisse, Wahrscheinlichkeiten und Zufallsvariablen

- **1.1 Definition.** Mit Ω werde die nichtleere Menge der möglichen Versuchsausgänge oder Ergebnismenge bezeichnet. Ein Teilmengensystem $\mathscr{F} \subseteq \mathscr{P}(\Omega)$ heißt Menge der interessierenden Ereignisse oder mathematisch σ -Algebra, falls gilt:
 - (a) $\Omega \in \mathscr{F}$;
 - (b) $A \in \mathscr{F} \Rightarrow A^c \in \mathscr{F}$;
 - (c) $A_n \in \mathscr{F}, n \in \mathbb{N} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathscr{F}.$

Die Elemente von \mathscr{F} heißen <u>Ereignisse</u>. Ein <u>Wahrscheinlichkeitsmaß</u> P (auch <u>Wahrscheinlichkeitsverteilung</u> genannt) auf \mathscr{F} ist eine Abbildung $P:\mathscr{F}\to [0,1]$ mit

- (a) $P(\Omega) = 1$ (Normierung);
- (b) für $A_n \in \mathcal{F}$, $n \in \mathbb{N}$, paarweise disjunkt gilt

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}P(A_n) \ (\sigma\text{-Additivität}).$$

Ein Wahrscheinlichkeitsraum ist ein Tripel (Ω, \mathcal{F}, P) , bestehend aus einer Ergebnismenge Ω , einer σ -Algebra \mathcal{F} über Ω sowie einem Wahrscheinlichkeitsmaß P auf \mathcal{F} .

- **1.2 Lemma.** Für jede σ -Algebra \mathscr{F} gilt:
 - (a) $\varnothing \in \mathscr{F}$;
 - (b) $A_1, A_2 \in \mathscr{F} \Rightarrow A_1 \cup A_2 \in \mathscr{F}$;
 - (c) $A_n \in \mathcal{F}, n \in \mathbb{N} \Rightarrow \bigcap_{n \in \mathbb{N}} A_n, A_1 \cap A_2 \in \mathcal{F}.$
- **1.3 Lemma.** Für jedes Wahrscheinlichkeitsmaß $P: \mathscr{F} \to [0,1]$ gilt:
 - (a) $P(\emptyset) = 0$;
 - (b) $A, B \in \mathcal{F}, A \subseteq B \Rightarrow P(A) \leqslant P(B);$
 - $(c) \ \forall A, B \in \mathscr{F}: P(A \cup B) = P(A) + P(B) P(A \cap B);$
 - (d) $\forall A_n \in \mathscr{F}, n \geqslant 1 : P(\bigcup_{n \geq 1} A_n) \leqslant \sum_{n \geq 1} P(A_n)$ (Subadditivität);
 - (e) Für $A_n \in \mathcal{F}$, $n \geqslant 1$, mit $A_n \uparrow A$ (d.h. $A_n \subseteq A_{n+1}$, $\bigcup_n A_n = A$) gilt $P(A) = \lim_{n \to \infty} P(A_n)$ (σ -Stetigkeit).

Andererseits ist jede normierte, additive Mengenfunktion $Q: \mathscr{F} \to [0,1]$ (d.h. $Q(\Omega) = 1$, $Q(A \cup B) = Q(A) + Q(B)$ für alle disjunkten $A, B \in \mathscr{F}$), die σ -stetig ist, auch σ -additiv und damit ein Wahrscheinlichkeitsma β .

1.4 Definition. Es sei (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum und (S, \mathcal{F}) ein Messraum. Dann heißt eine Funktion $g: \Omega \to S$ messbar (bzgl. $(\mathcal{F}, \mathcal{F})$), falls

$$\forall A \in \mathscr{S} : g^{-1}(A) \in \mathscr{F}$$

gilt. Jede solche messbare Funktion heißt (S, \mathscr{S}) -wertige <u>Zufallsvariable</u>. Für $S = \mathbb{R}^d$ wird kanonisch $\mathscr{S} = \mathfrak{B}_{\mathbb{R}^d}$ gewählt, und man spricht bloß von einer Zufallsvariablen (d = 1) bzw. einem Zufallsvektor $(d \ge 2)$.

Die Verteilung einer (S, \mathcal{S}) -wertigen Zufallsvariablen X ist das Wahrscheinlichkeitsmaß (!)

$$P^X(A) := P(X \in A) = P(X^{-1}(A)), \quad A \in \mathscr{S}.$$

Die Verteilung P^X von X ist also das Bildmaß von P unter X. Mit der Verteilungsfunktion (Dichte, Zähldichte) von X meinen wir stets die zu P^X gehörige Größe.

Wir schreiben kurz
$$\{X \in A\} := \{\omega \in \Omega \mid X(\omega) \in A\}, \{X = x\} := \{\omega \in \Omega \mid X(\omega) = x\}, P(X \in A) := P(\{X \in A\}), P(X = x) := P(\{X = x\}) \text{ etc.}$$

1.2 Diskrete Verteilungen

1.5 Definition. Ist Ω eine endliche oder abzählbar unendliche Menge und P ein Wahrscheinlichkeitsmaß auf $\mathscr{F} = \mathscr{P}(\Omega)$, so heißt (Ω, \mathscr{F}, P) diskreter Wahrscheinlichkeitsraum. Man nennt eine S-wertige Zufallsvariable X diskret verteilt, falls sie bezüglich $\mathscr{P}(S)$ messbar ist und einen diskreten Wahrscheinlichkeitsraum $(S, \mathscr{P}(S), P^X)$ generiert.

1.6 Lemma.

- (a) Ist (Ω, \mathcal{F}, P) ein diskreter Wahrscheinlichkeitsraum, so ist P eindeutig durch seine $\underline{Z\ddot{a}hldichte}\ p:\Omega\to [0,1]$ mit $p(\omega):=P(\{\omega\})$ festgelegt. Ebenso legt bei einer diskret verteilten S-wertigen Zufallsvariablen X die zugehörige $Z\ddot{a}hldichte\ p^X(s)=P(X=s),\ s\in S,\ die\ Verteilung\ P^X$ eindeutig fest.
- (b) Ist andererseits Ω eine endliche oder abzählbar unendliche Menge und besitzt $p:\Omega \to [0,1]$ die Eigenschaft $\sum_{\omega \in \Omega} p(\omega) = 1$, so wird durch

$$P(A) := \sum_{\omega \in A} p(\omega), \quad A \subseteq \Omega,$$

ein Wahrscheinlichkeitsmaß P auf $\mathscr{F} = \mathscr{P}(\Omega)$ definiert, dessen Zähldichte p ist.

1.7 Definition. Folgende Zähldichten beschreiben wichtige Verteilungen:

Laplace-/Gleich-Verteilung: $p_{Lap(\Omega)}(\omega) = \frac{1}{|\Omega|}, \ \omega \in \Omega, \ \text{für } |\Omega| < \infty;$

hypergeometrische Verteilung: Parameter $0 \le n \le N$, $0 \le W \le N$

$$p_{Hyp(N,W,n)}(w) = \frac{\binom{N-W}{n-w}\binom{W}{w}}{\binom{N}{n}}, \quad w \in \{0,\dots,W\}.$$

Bernoulli-Schema: Länge $n \in \mathbb{N}$, Erfolgswahrscheinlichkeit $p \in [0, 1]$

$$p_{Bern(n,p)}(\omega) = p^{\sum_{i=1}^{n} \omega_i} (1-p)^{n-\sum_{i=1}^{n} \omega_i}, \quad \omega = (\omega_1, \dots, \omega_n) \in \{0,1\}^n.$$

Binomialverteilung: Länge $n \in \mathbb{N}$, Erfolgswahrscheinlichkeit $p \in [0, 1]$

$$p_{Bin(n,p)}(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k \in \{0, 1, \dots, n\}.$$

Multinomialverteilung: Länge $n \in \mathbb{N}$, Klassenzahl $r \in \mathbb{N}$, Erfolgswahrscheinlichkeiten $p_1, \ldots, p_r \in [0, 1]$ mit $\sum_i p_i = 1$

$$p_{Mult(n,r,p_1,\ldots,p_r)}(k) = \frac{n!}{k_1!\cdots k_r!} p_1^{k_1}\cdots p_r^{k_r}, \quad k = (k_1,\ldots,k_r) \in \{0,1,\ldots,n\}^r.$$

Geometrische Verteilung: Erfolgswahrscheinlichkeit $p \in (0, 1]$

$$p_{Geo(p)}(k) = (1-p)^{k-1}p, \quad k \in \mathbb{N}.$$

Poissonverteilung: Parameter $\lambda > 0$

$$p_{Pois(\lambda)}(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k \in \mathbb{N}_0.$$

1.8 Satz (Poissonscher Grenzwertsatz). Es seien $p_n \in [0,1]$ gegeben mit $\lim_{n\to\infty} np_n = \lambda > 0$. Dann gilt für alle $k \in \mathbb{N}_0$

$$\lim_{n \to \infty} p_{Bin(n,p_n)}(k) = p_{Pois(\lambda)}(k).$$

1.9 Satz (Vitali, 1903). Sei $\Omega = \{0,1\}^{\mathbb{N}}$ der Ergebnisraum des unendlich oft wiederholten Münzwurfs. Dann gibt es kein Wahrscheinlichkeitsmaß P auf der Potenzmenge $\mathscr{P}(\Omega)$, das folgender Invarianzeigenschaft genügt:

$$\forall A \subseteq \Omega, n \in \mathbb{N} : P(T_n(A)) = P(A),$$

wobei $T_n(\omega) = T_n(\omega_1, \omega_2, \ldots) = (\omega_1, \ldots, \omega_{n-1}, 1 - \omega_n, \omega_{n+1}, \ldots)$ das Ergebnis des n-ten Wurfs umkehrt.

1.3 Maßtheorie und Wahrscheinlichkeitsmaße im \mathbb{R}^d

- **1.10 Lemma.** Es sei $\mathscr{E} \subseteq \mathscr{P}(\Omega)$ ein System von Teilmengen von Ω . Dann gibt es eine kleinste σ -Algebra \mathscr{F} , die \mathscr{E} enthält.
- **1.11 Definition.** In der Situation des vorigen Lemmas sagt man, dass die σ -Algebra \mathscr{F} von \mathscr{E} erzeugt wird. \mathscr{E} heißt <u>Erzeuger</u> von \mathscr{F} und man schreibt $\mathscr{F} = \sigma(\mathscr{E})$.
- **1.12 Definition.** Es sei (S, d) ein metrischer Raum. Dann heißt $\mathfrak{B}_S := \sigma(\{O \subseteq S \mid O \text{ offen}\})$ Borel- σ -Algebra über S.
- 1.13 Satz.

- (a) Die Borel- σ -Algebra $\mathfrak{B}_{\mathbb{R}}$ über \mathbb{R} wird auch erzeugt von folgenden Mengensystemen:
 - (i) $\mathscr{E}_1 := \{(a,b) \mid a,b \in \mathbb{R}\};$
 - (ii) $\mathscr{E}_2 := \{ [a, b] \mid a, b \in \mathbb{R} \};$
 - (iii) $\mathscr{E}_3 := \{(a, b] \mid a, b \in \mathbb{R}\};$
 - (iv) $\mathscr{E}_4 := \{(-\infty, b] \mid b \in \mathbb{R}\};$
 - (v) $\mathscr{E}_5 := \{(-\infty, b) \mid b \in \mathbb{R}\}.$
- (b) Die Borel- σ -Algebra $\mathfrak{B}_{\mathbb{R}^d}$ über \mathbb{R}^d wird auch erzeugt von folgenden Mengensystemen:
 - (i) $\mathscr{E}_1^d := \{(a_1, b_1) \times \cdots \times (a_d, b_d) \mid a_k, b_k \in \mathbb{R}, k = 1, \dots, d\};$
 - (ii) $\mathscr{E}_2^d := \{ [a_1, b_1] \times \cdots \times [a_d, b_d] \mid a_k, b_k \in \mathbb{R}, k = 1, \dots, d \};$
 - (iii) $\mathscr{E}_3^d := \{(a_1, b_1] \times \dots \times (a_d, b_d] \mid a_k, b_k \in \mathbb{R}, k = 1, \dots, d\};$
 - (iv) $\mathscr{E}_4^d := \{(-\infty, b_1] \times \cdots \times (-\infty, b_d] \mid b_k \in \mathbb{R}, k = 1, \dots, d\};$
 - (v) $\mathscr{E}_5^d := \{(-\infty, b_1) \times \cdots \times (-\infty, b_d) | b_k \in \mathbb{R}, k = 1, \dots, d\}.$
- **1.14 Lemma.** Eine Funktion $g: \Omega \to S$ ist bereits $(\mathscr{F}, \mathscr{S})$ -messbar, falls für einen Erzeuger \mathscr{E} von \mathscr{S} gilt

$$\forall A \in \mathscr{E}: g^{-1}(A) \in \mathscr{F}.$$

1.15 Korollar.

- (a) Jede stetige Funktion $g: S \to T$ zwischen metrischen Räumen (S, d_S) und (T, d_T) ist <u>Borel-messbar</u>, d.h. $(\mathfrak{B}_S, \mathfrak{B}_T)$ -messbar.
- (b) Jede Funktion $g: \Omega \to \mathbb{R}$ mit $\{g \leqslant y\} \in \mathscr{F}$ für alle $y \in \mathbb{R}$ ist $(\mathscr{F}, \mathfrak{B}_{\mathbb{R}})$ messbar.
- (c) Falls $g_n : \Omega \to \mathbb{R}$ $(\mathscr{F}, \mathfrak{B}_{\mathbb{R}})$ -messbar sind für alle $n \geq 1$, so auch $\inf_n g_n$, $\sup_n g_n$, $\limsup_n g_n$, $\liminf_n g_n$, sofern diese Funktionen endlich sind. Falls der punktweise Grenzwert $\lim_n g_n$ überall existiert, so ist auch dieser $(\mathscr{F}, \mathfrak{B}_{\mathbb{R}})$ -messbar.
- (d) Sind $g_1, \ldots, g_d : \Omega \to \mathbb{R}$ $(\mathscr{F}, \mathfrak{B}_{\mathbb{R}})$ -messbar und ist $h : \mathbb{R}^d \to \mathbb{R}^k$ Borel-messbar, so ist $\omega \mapsto h(g_1(\omega), \ldots, g_d(\omega))$ $(\mathscr{F}, \mathfrak{B}_{\mathbb{R}^k})$ -messbar; insbesondere sind also messbar: (g_1, \ldots, g_d) , $g_1 + g_2$, $g_1 g_2$, $g_1 \bullet g_2$, g_1/g_2 (falls überall wohldefiniert), $\max(g_1, g_2)$, $\min(g_1, g_2)$.
- (e) Ist $g: \Omega \to S$ $(\mathscr{F}, \mathscr{S})$ -messbar und $h: S \to T$ $(\mathscr{S}, \mathscr{T})$ -messbar, so ist die Komposition $h \circ g$ $(\mathscr{F}, \mathscr{T})$ -messbar.
- **1.16 Definition.** Es sei Ω eine nichtleere Menge. Dann heißt $\mathscr{A} \subseteq \mathscr{P}(\Omega)$ Algebra über Ω , falls gilt:
 - (a) $\Omega \in \mathscr{A}$;

- (b) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$;
- (c) $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$.

Eine Abbildung $\mu: \mathscr{A} \to [0, \infty]$ heißt Prämaß über \mathscr{A} , falls

- (a) $\mu(\emptyset) = 0$;
- (b) für $A_n \in \mathcal{A}$, $n \in \mathbb{N}$, paarweise disjunkt mit $\bigcup_n A_n \in \mathcal{A}$ gilt

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu(A_n)\ (\sigma\text{-Additivität}).$$

 μ heißt Maß, falls \mathscr{A} bereits eine σ-Algebra ist. Ein Maß μ heißt $\underline{\sigma}$ -endlich, falls es $A_n \in \mathscr{A}$, $n \in \mathbb{N}$, gibt mit $\mu(A_n) < \infty$ und $\Omega = \bigcup_n A_n$. Konsistent mit obiger Definition heißt ein Maß μ Wahrscheinlichkeitsmaß, falls $\mu(\Omega) = 1$ gilt.

- **1.17 Satz** (Maßerweiterungssatz von Carathéodory, 1917). Jedes Prämaß μ auf einer Algebra $\mathscr A$ kann zu einem Maß $\tilde{\mu}$ auf der von $\mathscr A$ erzeugten σ -Algebra $\mathscr F = \sigma(\mathscr A)$ fortgesetzt werden, d.h. $\tilde{\mu}$ ist ein Maß auf $\mathscr F$ mit $\tilde{\mu}(A) = \mu(A)$ für alle $A \in \mathscr A$.
- **1.18 Satz** (Eindeutigkeitssatz). Es seien μ und ν σ -endliche Maße auf (Ω, \mathscr{F}) und es gebe $A_n \in \mathscr{F}$, $n \in \mathbb{N}$, $mit \ \mu(A_n) = \nu(A_n) < \infty$ und $\bigcup_n A_n = \Omega$. Stimmen μ und ν auf einem Erzeuger \mathscr{E} von \mathscr{F} überein, der in dem Sinne \cap -stabil ist, dass $A, B \in \mathscr{E} \Rightarrow A \cap B \in \mathscr{E}$ gilt, so stimmen μ und ν auf der ganzen σ -Algebra \mathscr{F} überein. Insbesondere ist ein Wahrscheinlichkeitsmaß durch seine Werte auf einem \cap -stabilen Erzeuger eindeutig festgelegt.
- **1.19 Definition.** Für ein Wahrscheinlichkeitsmaß P auf $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$ ist die zugehörige Verteilungsfunktion gegeben durch $F(x) := P((-\infty, x]), x \in \mathbb{R}$; für $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$ -wertige Zufallsvariablen X wird durch $F^X(x) := P^X((-\infty, x]) = P(X \leq x), x \in \mathbb{R}$, die zugehörige Verteilungsfunktion definiert.
- **1.20 Lemma.** Jede Verteilungsfunktion F ist monoton wachsend, rechtsstetig und erfüllt $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$.
- **1.21 Satz.** Es sei $F : \mathbb{R} \to \mathbb{R}$ eine monoton wachsende, rechtsstetige Funktion. Dann existiert ein Ma β μ auf $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$ mit

$$\mu((a,b]) = F(b) - F(a), \quad a < b \in \mathbb{R}.$$

 μ ist eindeutig durch F definiert und heißt Lebesgue-Stieltjes-Maß zu F.

- **1.22 Korollar.** Es gibt genau ein Ma β λ auf $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$ mit $\lambda((a, b]) = b a$, das Lebesguema β .
- **1.23 Korollar.** Ist $F: \mathbb{R} \to [0,1]$ monoton wachsend und rechtsstetig mit $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$, so existiert genau ein Wahrscheinlichkeitsmaß P auf $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$ mit P((a,b]) = F(b) F(a) für alle a < b. Insbesondere ist F die Verteilungsfunktion von P.

- **1.24 Definition.** Ist $f: \mathbb{R}^d \to [0, \infty)$ eine Lebesgue-integrierbare Funktion mit $\int_{\mathbb{R}^d} f(x) \, dx = 1$, so heißt f Wahrscheinlichkeitsdichte oder kurz Dichte auf \mathbb{R}^d .
- **1.25 Korollar.** Jede Wahrscheinlichkeitsdichte f auf \mathbb{R} erzeugt mittels

$$P_f((a,b]) = \int_a^b f(x) \, dx, \quad a, b \in \mathbb{R}, \ a < b,$$

ein eindeutiges Wahrscheinlichkeitsmaß P_f auf $\mathfrak{B}_{\mathbb{R}}$.

1.26 Lemma.

- (a) Ist f die Dichte eines Wahrscheinlichkeitsmaßes P auf $\mathfrak{B}_{\mathbb{R}}$ mit Verteilungsfunktion F, so gilt $F(x) = \int_{-\infty}^{x} f(y) dy$ für alle $x \in \mathbb{R}$.
- (b) Ist die Verteilungsfunktion F eines Wahrscheinlichkeitsmaßes P auf $\mathfrak{B}_{\mathbb{R}}$ (schwach) differenzierbar, so ist f(x) := F'(x) die zugehörige Wahrscheinlichkeitsdichte.

Vollkommen Analoges gilt für die Dichte f^X , die Verteilungsfunktion F^X und die Verteilung P^X einer reellwertigen Zufallsvariablen.

1.27 Definition. Folgende Wahrscheinlichkeitsdichten beschreiben wichtige Verteilungen auf $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$:

Gleichverteilung: $f_{U(G)}(x) = \frac{1}{\lambda(G)} \mathbf{1}_G(x)$ für $G \in \mathfrak{B}_{\mathbb{R}}$ mit Lebesguemaß $\lambda(G) \in (0, \infty)$;

Exponentialverteilung: $f_{Exp(\lambda)}(x) = \lambda e^{-\lambda x} \mathbf{1}_{\mathbb{R}^+}(x)$ mit Parameter $\lambda > 0$;

Normalverteilung: $f_{N(\mu,\sigma^2)}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$ mit Parametern $\mu \in \mathbb{R}, \ \sigma > 0.$

$$\chi^{2}(1)$$
-Verteilung: $f_{\chi^{2}(1)}(x) = \frac{1}{\sqrt{2\pi x}}e^{-x/2}\mathbf{1}_{\mathbb{R}^{+}}(x)$

1.28 Satz. Jede Wahrscheinlichkeitsdichte f auf \mathbb{R}^d erzeugt mittels

$$P_f((a_1, b_1] \times \dots \times (a_d, b_d]) = \int_{a_1}^{b_1} \dots \int_{a_d}^{b_d} f(x_1, \dots, x_d) dx_d \dots dx_1$$

für $a_k, b_k \in \mathbb{R}$ mit $a_k < b_k$ ein eindeutiges Wahrscheinlichkeitsmaß P_f auf $\mathfrak{B}_{\mathbb{R}^d}$, und es gilt $P_f(B) = \int_B f(x) dx$.

1.29 Definition. Sind f_1, \ldots, f_d Wahrscheinlichkeitsdichten auf \mathbb{R} , so heißt

$$f(x_1, ..., x_d) = \prod_{k=1}^{d} f_k(x_k), \quad x_1, ..., x_d \in \mathbb{R},$$

<u>Produktdichte</u> der $(f_k)_{k=1,\dots,d}$ im \mathbb{R}^d . Insbesondere ist die <u>d-dimensionale</u> Standard-Normalverteilung $N(0, E_d)$ im \mathbb{R}^d definiert über die Dichte

$$f(x) = (2\pi)^{-d/2} e^{-|x|^2/2}, x \in \mathbb{R}^d, \text{ mit } |x|^2 = \sum_{i=1}^d x_i^2.$$

- **1.30 Satz** (Dichtetransformationssatz). Ist X eine reellwertige Zufallsvariable mit Dichte f^X sowie $Y = \varphi(X)$ für $\varphi : \mathbb{R} \to \mathbb{R}$ injektiv derart, dass die Inverse $\varphi^{-1} : \varphi(R) \to \mathbb{R}$ differenzierbar ist, so besitzt Y ebenfalls eine Dichte und zwar $f^Y(y) = f^X(\varphi^{-1}(y))|(\varphi^{-1})'(y)|\mathbf{1}(y \in \varphi(\mathbb{R})).$
- **1.31 Korollar.** Ist X eine reellwertige Zufallsvariable mit Dichte f^X , so besitzt Y = aX + b für $a \in \mathbb{R} \setminus \{0\}$, $b \in \mathbb{R}$ die Dichte $f^Y(y) = |a|^{-1} f^X(a^{-1}(y b))$.
- **1.32 Lemma.** Ist X ein d-dimensionaler Zufallsvektor mit Dichte f^X , so besitzt Y = AX + b für $A \in \mathbb{R}^{d \times d}$ invertierbar und $b \in \mathbb{R}^d$ die Dichte $f^Y(y) = |\det(A)|^{-1} f^X(A^{-1}(y-b))$.

2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit

- 2.1 Bedingte Wahrscheinlichkeiten und Bayes-Formel
- **2.1 Definition.** Es seien A und B Ereignisse mit P(B) > 0. Dann wird mit

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)}$$

die bedingte Wahrscheinlichkeit von A gegeben (oder: unter) B bezeichnet.

- **2.2 Satz.** Auf dem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) sei B ein Ereignis mit P(B) > 0. Dann gilt:
 - (a) Durch $Q(A) := P(A \mid B)$ wird ein Wahrscheinlichkeitsmaß Q auf \mathscr{F} definiert.
 - (b) (<u>Formel von der totalen Wahrscheinlichkeit</u>) Es sei $B = \bigcup_{i=1}^{N} B_i$ Vereinigung paarweise disjunkter Ereignisse B_i mit $P(B_i) > 0$. Dann folgt für jedes Ereignis A

$$P(A \cap B) = \sum_{i=1}^{N} P(B_i) P(A \mid B_i).$$

(c) (<u>Bayesformel</u>) Für jedes Ereignis A und jede Zerlegung $\Omega = \bigcup_{i=1}^{N} B_i$ von Ω in paarweise disjunkte Ereignisse B_i mit $P(B_i) > 0$ gilt

$$P(B_i | A) = \frac{P(B_i)P(A | B_i)}{\sum_{j=1}^{N} P(B_j)P(A | B_j)}.$$

In (b) und (c) kann auch $N = \infty$ gesetzt werden.

2.3 Lemma (Multiplikationsformel/Pfadregel). Für Ereignisse A_1, \ldots, A_n mit $P(A_1 \cap \cdots \cap A_{n-1}) > 0$ gilt

$$P(A_1 \cap \dots \cap A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \dots P(A_n \mid A_1 \cap \dots \cap A_{n-1}).$$

2.2 Unabhängige Ereignisse und Lemma von Borel-Cantelli

2.4 Definition.

- (a) Zwei Ereignisse A und B heißen (stochastisch) unabhängig (unter P), falls $P(A \cap B) = P(A)P(B)$ gilt.
- (b) Eine Familie $(A_i)_{i \in I}$ von Ereignissen, $I \neq \emptyset$ beliebige Indexmenge, heißt (stochastisch) unabhängig, falls für jede endliche Teilmenge $J \subseteq I$ gilt

$$P\Big(\bigcap_{j\in J} A_j\Big) = \prod_{j\in J} P(A_j).$$

2.5 Definition. Für eine Folge $(A_n)_{n\geqslant 1}$ von Ereignissen setze

$$\limsup_{n\to\infty}A_n:=\bigcap_{m\geqslant 1}\bigcup_{n\geqslant m}A_n=\{\omega\in\Omega\,|\,\omega\in A_n\text{ für unendlich viele }n\},$$

$$\liminf_{n\to\infty}A_n:=\bigcup_{m\geqslant 1}\bigcap_{n\geqslant m}A_n=\{\omega\in\Omega\,|\,\omega\in A_n\text{ für alle, bis auf endlich viele }n\}.$$

- **2.6 Satz** (Lemma von Borel-Cantelli). Für eine Folge $(A_n)_{n\geqslant 1}$ von Ereignissen gilt:
 - (a) Aus $\sum_{n\geq 1} P(A_n) < \infty$ folgt $P(\limsup_{n\to\infty} A_n) = 0$.
 - (b) Gilt $\sum_{n\geqslant 1} P(A_n) = \infty$ und ist die Folge $(A_n)_{n\geqslant 1}$ unabhängig, so folgt $P(\limsup_{n\to\infty} A_n) = 1$.
- **2.7 Definition.** Es seien $\mathcal{M}_i \subseteq \mathcal{F}$, $i \in I$, Mengen von Ereignissen. Dann heißt $(\mathcal{M}_i)_{i \in I}$ unabhängig, falls für jede beliebige Auswahl von Ereignissen $A_i \in \mathcal{M}_i$ die Familie $(A_i)_{i \in I}$ unabhängig ist.
- **2.8 Lemma.** Sind $(A_i)_{i \in I}$ unabhängige Ereignisse, so sind auch die erzeugten σ -Algebren $\mathscr{F}_i := \{\varnothing, \Omega, A_i, A_i^c\}, i \in I$, unabhängig.

2.3 Unabhängige Zufallsvariablen

- **2.9 Definition.** Eine Familie $(X_i)_{i\in I}$ von (S_i, \mathscr{S}_i) -wertigen Zufallsvariablen heißt unabhängig, falls für jede beliebige Wahl von $A_i \in \mathscr{S}_i$ die Familie von Ereignissen $(\{X_i \in A_i\})_{i\in I}$ unabhängig ist. Äquivalent ist die Familie $(X_i)_{i\in I}$ unabhängig, falls die von X_i erzeugten σ -Algebren $\mathscr{F}^{X_i} = \{X_i^{-1}(A) \mid A \in \mathscr{S}_i\}, i \in I$, unabhängig sind.
- **2.10 Satz.** Es seien $(X_i)_{i\in I}$ eine Familie von Zufallsvariablen mit Werten in (S_i, \mathscr{S}_i) und $\mathscr{E}_i \cap$ -stabile Erzeuger von \mathscr{S}_i . Dann ist $(X_i)_{i\in I}$ bereits unabhängig, falls $(\{X_i \in A_i\})_{i\in I}$ unabhängig ist für beliebige $A_i \in \mathscr{E}_i$.
- **2.11 Korollar.** Es seien X_1, \ldots, X_n Zufallsvariablen auf (Ω, \mathcal{F}, P) .

(a) Sind X_k diskret-verteilte S_k -wertige Zufallsvariablen, so sind X_1, \ldots, X_n genau dann unabhängig, wenn gilt

$$p^{(X_1,...,X_n)}(s_1,...,s_n) = \prod_{k=1}^n p^{X_k}(s_k) \text{ für alle } s_k \in S_k.$$

(b) Hat jedes X_k Werte in $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$, so sind X_1, \ldots, X_n genau dann unabhängig, wenn gilt

$$P(X_1 \leqslant b_1, \dots, X_n \leqslant b_n) = \prod_{k=1}^n P(X_k \leqslant b_k) \text{ für alle } b_k \in \mathbb{R}.$$

- **2.12 Satz.** Es sei $X = (X_1, ..., X_n)$ ein Zufallsvektor auf (Ω, \mathcal{F}, P) mit Dichte $f^X : \mathbb{R}^n \to [0, \infty)$. Dann gilt
 - (a) Jedes X_k besitzt eine Dichte, die sogenannte Randdichte

$$f^{X_k}(x_k) := \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) dx_1 \dots dx_{k-1} dx_{k+1} \dots dx_n, \quad x_k \in \mathbb{R}.$$

(b) Die Zufallsvariablen X_1, \ldots, X_n sind genau dann unabhängig, wenn gilt

$$f^X(x_1,\ldots,x_n)=\prod_{k=1}^n f^{X_k}(x_k)$$
 für Lebesgue-fast alle $x_1,\ldots,x_n\in\mathbb{R}$.

- **2.13 Lemma.** Sind $(X_i)_{i\in I}$ eine Familie unabhängiger (S_i, \mathcal{S}_i) -wertiger Zufallsvariablen und $g_i: S_i \to T_i$ $(\mathcal{S}_i, \mathcal{T}_i)$ -messbare Funktionen, so ist auch die Familie $(g_i(X_i))_{i\in I}$ unabhängig.
- **2.14 Definition.** Es seien $(\Omega_k, \mathscr{F}_k, P_k)$, $1 \leq k \leq n$, Wahrscheinlichkeitsräume. Setze $\Omega := \Omega_1 \times \cdots \times \Omega_n$ und definiere über Ω die <u>Produkt- σ -Algebra</u>

$$\mathscr{F} := \mathscr{F}_1 \otimes \cdots \otimes \mathscr{F}_n := \sigma(\{A_1 \times \cdots \times A_n \mid A_1 \in \mathscr{F}_1, \dots, A_n \in \mathscr{F}_n\}).$$

Gilt für ein Wahrscheinlichkeitsmaß P auf \mathscr{F}

$$\forall A_1 \in \mathscr{F}_1, \dots, A_n \in \mathscr{F}_n : P(A_1 \times \dots \times A_n) = \prod_{k=1}^n P_k(A_k),$$

so heißt P Produktmaß, Schreibweise $P = P_1 \otimes \cdots \otimes P_n$.

2.15 Lemma. Ist $(\Omega_1 \times \cdots \times \Omega_n, \mathscr{F}_1 \otimes \cdots \otimes \mathscr{F}_n, P_1 \otimes \cdots \otimes P_n)$ ein Produkt-Wahrscheinlichkeitsraum, so sind die Koordinatenabbildungen $\pi_k(\omega) = \pi_k(\omega_1, \ldots, \omega_n) := \omega_k, \ k = 1, \ldots, n, \ unabhängige (\Omega_k, \mathscr{F}_k)$ -wertige Zufallsvariablen auf dem Produkt-Wahrscheinlichkeitsraum mit Verteilung $P^{\pi_k} = P_k$.

2.16 Definition. Es seien $(\Omega_i, \mathscr{F}_i, P_i)_{i \in I}$, I beliebige Indexmenge, Wahrscheinlichkeitsräume. Setze $\Omega := \prod_{i \in I} \Omega_i$ (kartesisches Produkt) und definiere mittels der Koordinatenprojektionen $\pi_i : \Omega \to \Omega_i$ über Ω die Produkt- σ -Algebra

$$\mathscr{F}:=\bigotimes_{i\in I}\mathscr{F}_i:=\sigma\Big(\bigcup_{i\in I}\{\pi_i^{-1}(A_i)\,|\,A_i\in\mathscr{F}_i\}\Big).$$

Gilt für ein Wahrscheinlichkeitsmaß P auf \mathscr{F}

$$\forall J \subseteq I \text{ endlich}, A_i \in \mathscr{F}_i : P\Big(\bigcap_{i \in J} \pi_i^{-1}(A_i)\Big) = \prod_{i \in J} P_i(A_i),$$

so heißt P Produktmaß, Schreibweise $P = \bigotimes_{i \in I} P_i$.

- 2.17 Satz. Ein solches Produktmaß existiert stets und ist eindeutig.
- **2.18 Korollar.** Zu vorgegebenen Wahrscheinlichkeitsmaßen P_i auf $(\Omega_i, \mathscr{F}_i)$, $i \in I$, existiert ein Wahrscheinlichkeitsraum mit einer Familie unabhängiger $(\Omega_i, \mathscr{F}_i)$ -wertiger Zufallsvariablen $(X_i)_{i \in I}$, deren Verteilung P_i ist.
- **2.19 Definition.** Es sei $(X_k)_{k\geqslant 1}$ eine Folge von Zufallsvariablen auf (Ω, \mathscr{F}, P) mit Werten in (S_k, \mathscr{S}_k) . Ein Ereignis $A\in \mathscr{F}$ heißt <u>asymptotisch</u> bezüglich (X_k) , falls es für alle $n\geqslant 1$ nur von $(X_k, k\geqslant n)$ abhängt in dem Sinne, dass $A\in \mathscr{A}_X$ gilt. Hierbei ist die asymptotische σ -Algebra \mathscr{A}_X definiert als

$$\mathscr{A}_X := \bigcap_{n\geqslant 1} \sigma\Big(\bigcup_{k\geqslant n} \mathscr{F}^{X_k}\Big).$$

- **2.20 Satz** (0-1-Gesetz von Kolmogorov). Es seien $(X_k)_{k\geqslant 1}$ unabhängige Zufallsvariablen auf (Ω, \mathcal{F}, P) . Dann gilt für jedes bezüglich (X_k) asymptotische Ereignis A: P(A) = 0 oder P(A) = 1.
- **2.21 Lemma.** Es seien $(X_i)_{i\in I}$ eine Familie unabhängiger Zufallsvariablen mit Werten in (S_i, \mathscr{S}_i) und $I = I_1 \cup I_2$ eine disjunkte Zerlegung von I. Dann sind die σ -Algebren $\mathscr{F}_1 := \sigma(\bigcup_{i\in I_1} \mathscr{F}^{X_i})$ und $\mathscr{F}_2 := \sigma(\bigcup_{i\in I_2} \mathscr{F}^{X_i})$ unabhängig.

2.4 Faltung

2.22 Definition. Sind P,Q Wahrscheinlichkeitsmaße auf $(\mathbb{R},\mathfrak{B}_{\mathbb{R}})$, so ist die Faltung P*Q definiert als das Wahrscheinlichkeitsmaß(!)

$$P * Q(B) = \int_{\mathbb{R}} P(B - \{x\}) Q(dx), \quad B \in \mathfrak{B}_{\mathbb{R}}, \text{ mit } B - \{x\} = \{b - x \mid b \in B\}.$$

- **2.23 Lemma.** Es seien X und Y unabhängige reellwertige Zufallsvariablen. Dann besitzt X + Y die Verteilung $P^{X+Y} = P^X * P^Y$.
- 2.24 Korollar. Die Faltung ist kommutativ und assoziativ.
- **2.25 Korollar.** Besitzen P und Q Zähldichten p bzw. q auf \mathbb{Z} (auf \mathbb{N}_0), so besitzt P*Q die Zähldichte $(p*q)(k) := \sum_{m \in \mathbb{Z}} p(k-m)q(m)$ (auf \mathbb{N}_0 : $(p*q)(k) := \sum_{m=0}^k p(k-m)q(m)$).

2.26 Satz. Es seien X und Y unabhängige reellwertige Zufallsvariablen und X besitze eine Dichte f^X . Dann besitzt X + Y die Dichte

$$f^{X+Y}(z) = \int_{\mathbb{R}} f^X(z-y) P^Y(dy), \quad z \in \mathbb{R}.$$

Falls auch Y eine Dichte besitzt, so gilt

$$f^{X+Y}(z) = f^X * f^Y(z) := \int_{\mathbb{R}} f^X(z-y) f^Y(y) \, dy, \quad z \in \mathbb{R}.$$

3 Erwartungswert, Varianz und Kovarianz

3.1 Erwartungswert und Momente

3.1 Definition. Eine reellwertige Zufallsvariable X auf (Ω, \mathcal{F}, P) heißt einfach falls sie nur endlich viele Werte annimmt, d.h es folgende Darstellung gibt:

$$X = \sum_{i=1}^{m} \alpha_i \mathbf{1}_{A_i} \text{ mit } m \in \mathbb{N}, \, \alpha_i \in \mathbb{R}, \, A_i \in \mathscr{F}.$$

Für eine solche Zufallsvariable definieren wir ihren Erwartungswert als

$$\mathbb{E}[X] := \sum_{i=1}^{m} \alpha_i P(A_i).$$

- **3.2 Lemma.** Für eine einfache Zufallsvariable X auf (Ω, \mathcal{F}, P) gilt:
 - (a) $\mathbb{E}[X] = \sum_{x \in X(\Omega)} x P(X = x)$; insbesondere hängt der Erwartungswert nur von der Verteilung P^X von X ab.
 - (b) Der Erwartungswert ist linear und monoton: ist Y eine weitere einfache Zufallsvariable und sind $\alpha, \beta \in \mathbb{R}$, so gilt

$$\mathbb{E}[\alpha X + \beta Y] = \alpha \, \mathbb{E}[X] + \beta \, \mathbb{E}[Y];$$

aus
$$X \leqslant Y$$
 (d.h. $\forall \omega \in \Omega : X(\omega) \leqslant Y(\omega)$) folgt $\mathbb{E}[X] \leqslant \mathbb{E}[Y]$.

- (c) Falls X und Y unabhängige einfache Zufallsvariablen sind, so gilt $\mathbb{E}[X \bullet Y] = \mathbb{E}[X] \bullet \mathbb{E}[Y]$.
- (d) Für jedes $A \in \mathscr{F}$ gilt $\mathbb{E}[\mathbf{1}_A] = P(A)$.
- **3.3 Definition.** Es sei $X \ge 0$ eine nichtnegative Zufallsvariable. Sind dann X_n einfache nichtnegative Zufallsvariablen mit $X_n(\omega) \uparrow X(\omega)$ für $n \to \infty$ und alle $\omega \in \Omega$, so definiere den Erwartungswert

$$\mathbb{E}[X] := \lim_{n \to \infty} \mathbb{E}[X_n] \in [0, +\infty]$$

(man kann zeigen, dass dies nicht von der Auswahl der X_n abhängt).

Betrachte nun auf dem Wahrscheinlichkeitsraum (Ω, \mathscr{F}, P) die Menge der Zufallsvariablen

$$\mathscr{L}^1 := \mathscr{L}^1(\Omega, \mathscr{F}, P) := \{X : \Omega \to \mathbb{R} \mid \text{messbar} \mid \mathbb{E}[|X|] < \infty\}.$$

Dann definiere für $X \in \mathcal{L}^1$ mit $X_+ := \max(X,0), X_- := \max(-X,0)$ den Erwartungswert als

$$\mathbb{E}[X] := \mathbb{E}[X_+] - \mathbb{E}[X_-] \in \mathbb{R}.$$

Man schreibt auch $\mathbb{E}[X] = \int X dP = \int_{\Omega} X(\omega) P(d\omega)$ sowie $\int_{A} X dP = \int_{\Omega} X(\omega) \mathbf{1}_{A}(\omega) P(d\omega)$ für $A \in \mathcal{F}$.

- **3.4 Satz.** Für $X \in \mathcal{L}^1(\Omega, \mathcal{F}, P)$ gilt:
 - (a) $\mathbb{E}[X] = \int_{\mathbb{R}} x P^X(dx)$; insbesondere hängt der Erwartungswert nur von der Verteilung P^X von X ab.
 - (b) Der Erwartungswert ist linear und monoton: ist Y eine weitere Zufallsvariable in \mathcal{L}^1 und sind $\alpha, \beta \in \mathbb{R}$, so gilt

$$\mathbb{E}[\alpha X + \beta Y] = \alpha \,\mathbb{E}[X] + \beta \,\mathbb{E}[Y];$$

aus $X \leqslant Y$ folgt $\mathbb{E}[X] \leqslant \mathbb{E}[Y]$.

(c) Falls $X, Y \in \mathcal{L}^1$ unabhängig sind, so gilt $X \bullet Y \in \mathcal{L}^1$ und $\mathbb{E}[X \bullet Y] = \mathbb{E}[X] \bullet \mathbb{E}[Y]$.

3.5 Korollar.

(a) Ist X eine Zufallsvariable mit abzählbarem Wertebereich $X(\Omega) \subseteq \mathbb{R}$, so gilt $X \in \mathcal{L}^1$ genau dann, wenn $\sum_{x \in X(\Omega)} |x| P(X = x)$ endlich ist. In diesem Fall gilt für den Erwartungswert

$$\mathbb{E}[X] = \sum_{x \in X(\Omega)} x P(X = x).$$

(b) Ist X eine Zufallsvariable mit Dichte $f^X : \mathbb{R} \to [0, \infty)$, so gilt $X \in \mathcal{L}^1$ genau dann, wenn $\int_{\mathbb{R}} |x| f^X(x) dx$ endlich ist. In diesem Fall gilt für den Erwartungswert

$$\mathbb{E}[X] = \int_{\mathbb{R}} x f^X(x) dx.$$

3.6 Satz. Es seien X ein Zufallsvektor mit Dichte $f^X : \mathbb{R}^d \to [0, \infty)$ sowie $h : \mathbb{R}^d \to \mathbb{R}$ Borel-messbar. Dann gilt:

$$h(X) \in \mathcal{L}^1 \iff \int_{\mathbb{R}^d} |h(x)| f^X(x) \, dx < \infty.$$

In diesem Fall erhalten wir

$$\mathbb{E}[h(X)] = \int_{\mathbb{R}^d} h(x) f^X(x) \, dx.$$

- **3.7 Definition.** Wir sagen, dass eine Zufallsvariable X in \mathcal{L}^p liegt für p > 0, falls $|X|^p \in \mathcal{L}^1$, also $\mathbb{E}[|X|^p] < \infty$ gilt. Für $X \in \mathcal{L}^p$ und $p \in \mathbb{N}$ heißt $\mathbb{E}[X^p]$ das \underline{p} -te Moment von X; für $X \in \mathcal{L}^p$ und p > 0 heißt $\mathbb{E}[|X|^p]$ das \underline{p} -te absolute Moment von X.
- **3.8 Lemma.** Für $0 gilt <math>\mathcal{L}^q \subseteq \mathcal{L}^p$.

3.2 Varianz, Kovarianz und Korrelation

3.9 Definition. Für eine Zufallsvariable $X \in \mathcal{L}^2$ bezeichnet

$$Var(X) := \mathbb{E}[(X - \mathbb{E}[X])^2]$$

die Varianz von X. $\sigma(X) := \sqrt{\operatorname{Var}(X)}$ heißt Standardabweichung von X.

3.10 Satz (Eigenschaften der Varianz). Für $X,Y\in \mathscr{L}^2$ gilt:

- (a) $Var(X) = 0 \iff P(X = \mathbb{E}[X]) = 1;$
- (b) $\forall a, b \in \mathbb{R} : \operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X);$
- (c) $\operatorname{Var}(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$;
- (d) $Var(X + Y) \leq 2Var(X) + 2Var(Y)$;
- (e) falls X, Y unabhängig sind, so gilt Var(X + Y) = Var(X) + Var(Y).

3.11 Satz (Beste lineare Vorhersage). Es seien X,Y Zufallsvariablen in \mathcal{L}^2 sowie

$$L_X := \{aX + b \mid a, b \in \mathbb{R}\} \subseteq \mathcal{L}^2$$

die Menge der auf linearen Funktionen von X basierenden Zufallsvariablen. Dann nimmt die mittlere quadratische Abweichung

$$\varphi: L_X \to [0, \infty), \quad \varphi(Z) := \mathbb{E}[(Y - Z)^2]$$

 $ihr\ Minimum\ bei\ Z = a^*X + b^*\ an\ mit$

$$a^* = \frac{\mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]}{\operatorname{Var}(X)}, \quad b^* = \mathbb{E}[Y] - a^* \,\mathbb{E}[X]$$

(a* beliebig falls Var(X) = 0). Für Var(X) > 0 gilt

$$\varphi(a^*X+b^*) = \operatorname{Var}(Y) - \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]^2 / \operatorname{Var}(X) = \operatorname{Var}(Y)(1 - \rho^2(X,Y))$$

mit nachfolgend definierter Korrelation $\rho(X,Y)$.

3.12 Definition. Für Zufallsvariablen $X, Y \in \mathcal{L}^2$ definiert

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

die Kovarianz zwischen X und Y. Falls $\sigma(X) > 0$ und $\sigma(Y) > 0$ gilt, so heißt

$$\rho(X,Y) := \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$$

die Korrelation zwischen X und Y. Falls Cov(X,Y)=0 gilt, heißen X und Y unkorreliert.

3.13 Satz (Eigenschaften von Kovarianz und Korrelation). Für $X,Y,Z\in \mathscr{L}^2$ gilt:

- (a) $Cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$, Cov(X, X) = Var(X);
- (b) $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y);$
- (c) $\forall a, b \in \mathbb{R} : \operatorname{Cov}(aX + b, Y) = a \operatorname{Cov}(X, Y);$
- (d) Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z);
- (e) falls X, Y unabhängig sind, so sind X, Y unkorreliert;
- (f) $|\operatorname{Cov}(X,Y)| \leq \sigma(X)\sigma(Y)$ und $\rho(X,Y) \in [-1,+1]$.

3.3 Mehrdimensionale Normalverteilung

- **3.14 Definition.** Es seien $\mu \in \mathbb{R}^d$ sowie $\Sigma \in \mathbb{R}^{d \times d}$ eine symmetrische, positiv semi-definite Matrix. Ein Zufallsvektor X im \mathbb{R}^d ist $N(\mu, \Sigma)$ -verteilt, falls $X = \mu + \Sigma^{1/2}Y$ gilt mit einem standard-normalverteilten Zufallsvektor Y im \mathbb{R}^d . $N(\mu, \Sigma)$ heißt \underline{d} -dimensionale Normalverteilung mit Mittelwertvektor μ und Kovarianzmatrix Σ .
- **3.15 Lemma.** Für einen $N(\mu, \Sigma)$ -verteilten Zufallsvektor $X = (X_1, \dots, X_d)$ und $1 \leq k, \ell \leq d$ gilt

$$\mathbb{E}[X_k] = \mu_k, \quad \text{Cov}(X_k, X_\ell) = \Sigma_{k\ell}.$$

3.16 Lemma. Ist $\Sigma \in \mathbb{R}^{d \times d}$ symmetrisch und strikt positiv definit, so besitzt die $N(\mu, \Sigma)$ -Verteilung eine Dichte im \mathbb{R}^d , nämlich

$$\varphi_{\mu,\Sigma}(x) = (2\pi)^{-d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}\langle \Sigma^{-1}(x-\mu), x-\mu\rangle\right), \quad x \in \mathbb{R}^d.$$

- **3.17 Korollar.** Sind X_1, \ldots, X_n gemeinsam normalverteilt (d.h. (X_1, \ldots, X_n) ist n-dimensional normalverteilt) und sind X_1, \ldots, X_n (paarweise) unkorreliert, so sind X_1, \ldots, X_n sogar unabhängig.
- **3.18 Lemma.** Ist $O \in \mathbb{R}^{d \times d}$ eine orthogonale Matrix, so gilt für einen standardnormalverteilten Zufallsvektor X im \mathbb{R}^d , dass auch OX standard-normalverteilt ist.
- **3.19 Satz.** Ist X ein $N(\mu, \Sigma)$ -verteilter Zufallsvektor im \mathbb{R}^d und ist $A \in \mathbb{R}^{m \times d}$ eine deterministische Matrix, so ist Y = AX ein $N(A\mu, A\Sigma A^{\top})$ -verteilter Zufallsvektor im \mathbb{R}^m .

Proof. Wir müssen zeigen, dass sich Y darstellen lässt als $Y = A\mu + (A\Sigma A^{\top})^{1/2}Z$ mit einer geeigneten Zufallsvariablen $Z \sim N(0, E_m)$. Aus der Darstellung $X = \mu + \Sigma^{1/2}W$ mit $W \sim N(0, E_d)$ ergibt sich die zu erfüllende Bedingung als

$$A(\mu + \Sigma^{1/2}W) = A\mu + (A\Sigma A^{\top})^{1/2}Z$$
, d.h. $A\Sigma^{1/2}W = (A\Sigma A^{\top})^{1/2}Z$.

Der Satz zur orthogonalen Normalform (z.B. in M. Koecher, Lineare Algebra und Analytische Geometrie, Seite 199) zeigt, dass es orthogonale Matrizen $T_1 \in$

 $\mathbb{R}^{m \times m}, T_2 \in \mathbb{R}^{d \times d}$ und eine Diagonalmatrix $D \in \mathbb{R}^{r \times r}, r \leqslant \min(m, d)$, mit strikt positiven Diagonaleinträgen gibt, so dass in Blockmatrixnotation (beachte jeweils die Dimensionen!) $A\Sigma^{1/2} = T_1 \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} T_2$ gilt. Dies impliziert

$$(A\Sigma A^{\top})^{1/2} = (A\Sigma^{1/2}(A\Sigma^{1/2})^{\top})^{1/2} = \left(T_1 \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}^{\top} T_1^{\top} \right)^{1/2}$$

$$= T_1 \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} T_1^{\top}.$$

Wir müssen also $Z \sim N(0, E_m)$ finden mit $\begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} T_1^{\top} Z = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} T_2 W$. Setze $Z := T_1 \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} T_2 W + W'$ mit $W' \sim N(0, \begin{pmatrix} 0 & 0 \\ 0 & E_{m-r} \end{pmatrix})$ unabhängig von W, ggf. definiert auf einem größeren Wahrscheinlichkeitsraum (bzw. W' = 0 falls m = r). Aus dem Lemma folgt $T_2 W \sim N(0, E_d)$, weil T_2 orthogonale Matrix ist, und weiter, dass $\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} T_2 W$ ein $N(0, \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix})$ -verteilter Vektor im \mathbb{R}^m ist (Projektion auf die ersten r-Koordinaten). Daher gilt $\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} T_2 W + W' \sim N(0, E_m)$, und es folgt wieder nach dem Lemma $Z \sim N(0, E_m)$. Schließlich ergibt sich für $(A \Sigma A^{\top})^{1/2} Z$

$$T_1 \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} T_2 W + W' \end{pmatrix} = T_1 \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} T_2 W = A \Sigma^{1/2} W,$$

wie zu zeigen war.

3.20 Korollar. Sind X und Y unabhängig und gemäß $N(\mu_X, \sigma_X^2)$ bzw. $N(\mu_Y, \sigma_Y^2)$ verteilt mit $\mu_X, \mu_Y \in \mathbb{R}$, $\sigma_X, \sigma_Y > 0$, so ist X + Y gemäß $N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$ verteilt.

4 Einführung in statistische Tests

4.1 Hypothesentests

4.1 Definition. Ein <u>statistisches Modell</u> ist ein Tripel $(\mathfrak{X}, \mathscr{F}, (P_{\vartheta})_{\vartheta \in \Theta})$ bestehend aus einer Menge \mathfrak{X} mit einer σ -Algebra \mathscr{F} (<u>dem Stichprobenraum</u>) und einer Familie $(\mathbb{P}_{\vartheta})_{\vartheta \in \Theta}$ von Wahrscheinlichkeitsmaßen auf \mathscr{F} . Die mindestens zwei-elementige Menge Θ heißt Parametermenge und jedes $\vartheta \in \Theta$ Parameter.

4.2 Definition. Aufbau eines Testverfahrens:

- (a) Wahl eines statistischen Modells $(\mathfrak{X}, \mathscr{F}, (P_{\vartheta})_{\vartheta \in \Theta})$
- (b) Formulierung von <u>Hypothese und Alternative</u>: $\Theta = \Theta_0 \dot{\cup} \Theta_1$ $\vartheta \in \Theta_0$: ϑ entspricht der Hypothese H_0 $\vartheta \in \Theta_1$: ϑ entspricht der Alternative H_1

- (c) Wahl eines Irrtumsniveaus $\alpha \in (0,1)$ für den Fehler erster Art, sich bei Vorliegen der Hypothese für die Alternative zu entscheiden.
- (d) Konstruktion eines (randomisierten) Tests $\varphi: \mathfrak{X} \to [0,1]$ zum Niveau α : $\varphi(x) = 0$: Entscheidung für H_0 , $\varphi(x) = 1$: Entscheidung für H_1 , $\varphi(x) \in (0,1)$: Entscheidung mit Wahrscheinlichkeit $\varphi(x)$ für H_1 , $\sup_{\vartheta \in \Theta_0} \mathbb{E}_{\vartheta}[\varphi] \leqslant \alpha$.
- (e) Durchführen des Experiments
- **4.3 Definition.** Die Funktion $G_{\varphi}: \Theta \to [0,1]$ mit $G_{\varphi}(\vartheta) = \mathbb{E}_{\vartheta}[\varphi]$ heißt Gütefunktion des Tests φ . Ist φ ein Test vom Niveau α , so gilt $G_{\varphi}(\vartheta_0) \leqslant \alpha$ für alle $\vartheta_0 \in \Theta_0$. Für $\vartheta_1 \in \Theta_1$ bezeichnet $\beta_{\varphi}(\vartheta_1) = 1 G_{\varphi}(\vartheta_1)$ die Wahrscheinlichkeit für den Fehler 2. Art der Entscheidung für H_0 , obwohl $\vartheta_1 \in \Theta_1$ vorliegt.
- **4.4 Definition.** Ein Test φ von $H_0: \vartheta \in \Theta_0$ gegen $H_1: \vartheta \in \Theta_1$ heißt gleichmäßig bester Test zum Niveau α , falls φ ein Test zum Niveau α ist und für jeden anderen Test ψ zum Niveau α gilt:

$$\forall \vartheta_1 \in \Theta_1 : \mathbb{E}_{\vartheta_1}[\varphi] \geqslant \mathbb{E}_{\vartheta_1}[\psi].$$

4.2 Neyman-Pearson-Tests

4.5 Definition. Der <u>Likelihood-Quotient</u> von \mathbb{P}_1 bezüglich \mathbb{P}_0 ist im diskreten Fall mit Zähldichten $p_1(x)$ und $p_0(x)$ gegeben durch

$$R(x) := \begin{cases} p_1(x)/p_0(x), & \text{falls } p_0(x) > 0, \\ +\infty, & \text{falls } p_0(x) = 0, \\ \text{beliebig}, & \text{falls } p_0(x) = p_1(x) = 0. \end{cases}$$

Im Fall von Dichten $f_0(x)$ und $f_1(x)$ im \mathbb{R}^d ist R(x) entsprechend definiert, indem p_0, p_1 jeweils durch f_0, f_1 ersetzt werden.

Jeder Test φ der Form

$$\varphi(x) = \begin{cases} 1, & \text{falls } R(x) > c, \\ 0, & \text{falls } R(x) < c, \\ \gamma, & \text{falls } R(x) = c \end{cases}$$

mit beliebigem $c \ge 0$ und $\gamma \in [0,1]$ heißt ein Neyman-Pearson-Test.

- **4.6 Satz.** Für das Testen von $H_0: \vartheta = 0$ gegen $H_1: \vartheta = 1$ gilt:
 - (a) Ist φ^* ein Neyman-Pearson-Test, so gilt $\mathbb{E}_1[\varphi^*] \geqslant \mathbb{E}_1[\varphi]$ für jeden beliebigen Test φ mit $\mathbb{E}_0[\varphi] \leqslant \mathbb{E}_0[\varphi^*]$.
 - (b) Für jedes Niveau $\alpha \in (0,1)$ existiert ein Neyman-Pearson-Test φ^* mit $exakt \mathbb{E}_0[\varphi^*] = \alpha$.
 - (c) Ein (gleichmäßig) bester Test zum Niveau α ist gegeben durch einen Neyman-Pearson-Test φ^* mit $\mathbb{E}_0[\varphi^*] = \alpha$.

5 Grenzwertsätze

5.1 Gesetze der großen Zahlen

5.1 Satz (Allgemeine Markov-Ungleichung). Es sei X eine Zufallsvariable und $\varphi: [0,\infty) \to [0,\infty)$ monoton wachsend. Dann gilt für jedes K>0 mit $\varphi(K)>0$:

$$P(|X| \geqslant K) \leqslant \frac{\mathbb{E}[\varphi(|X|)]}{\varphi(K)}.$$

5.2 Korollar (Tschebyschev-Ungleichung). Ist X eine Zufallsvariable in \mathcal{L}^2 , so gilt für jedes $\varepsilon > 0$

$$P(|X - \mathbb{E}[X]| \geqslant \varepsilon) \leqslant \frac{\operatorname{Var}(X)}{\varepsilon^2}.$$

5.3 Satz (schwaches Gesetz der großen Zahlen). Es sei $(X_i)_{i\geqslant 1}$ eine Folge unkorrelierter Zufallsvariablen in \mathcal{L}^2 mit demselben Erwartungswert $\mu\in\mathbb{R}$ und $\sup_i \mathrm{Var}(X_i) < \infty$. Dann erfüllt das arithmetische Mittel

$$A_n := \frac{1}{n} \sum_{i=1}^n X_i$$

 $f\ddot{u}r \ jedes \ \varepsilon > 0$

$$\lim_{n \to \infty} P(|A_n - \mu| > \varepsilon) = 0.$$

5.4 Korollar. (Weierstraßscher Approximationssatz) Zur stetigen Funktion $f: [0,1] \to \mathbb{R}$ definiere das zugehörige Bernstein-Polynom n-ten Grades

$$f_n(x) := \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}, \quad x \in [0,1].$$

Dann gilt $\lim_{n\to\infty} ||f - f_n||_{\infty} = 0$ mit $||g||_{\infty} := \sup_{x\in[0,1]} |g(x)|$.

5.5 Definition. Es seien $(X_n)_{n\geqslant 1}$ und X Zufallsvariablen auf demselben Wahrscheinlichkeitsraum (Ω, \mathscr{F}, P) . Man sagt, dass X_n <u>stochastisch</u> (oder auch <u>in</u> P-Wahrscheinlichkeit) gegen X konvergiert für $n \to \infty$, falls für alle $\varepsilon > 0$ gilt

$$\lim_{n \to \infty} P(|X - X_n| > \varepsilon) = 0.$$

Man sagt, dass X_n <u>P-fast sicher</u> gegen X <u>konvergiert</u>, falls

$$P(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1.$$

- **5.6 Satz.** Fast sichere Konvergenz impliziert stochastische Konvergenz, aber nicht umgekehrt.
- **5.7 Satz.** (starkes Gesetz der großen Zahlen) Es sei $(X_i)_{i\geqslant 1}$ eine Folge unkorrelierter Zufallsvariablen in \mathcal{L}^2 mit demselben Erwartungswert $\mu\in\mathbb{R}$ und $\sup_i \mathrm{Var}(X_i) < \infty$. Dann konvergiert das arithmetische Mittel $A_n = \frac{1}{n} \sum_{i=1}^n X_i$ fast sicher gegen μ .

- **5.8 Definition.** Identifiziert man $X,Y \in \mathcal{L}^p(\Omega,\mathscr{F},P)$ (Zusammenfassung in einer Äquivalenzklasse), wenn X=Y P-fast sicher, d.h. P(X=Y)=1, gilt, so erhält man den Vektorraum $L^p(\Omega,\mathscr{F},P)$. Mit der Norm $\|X\|_{L^p}=\mathbb{E}[|X|^p]^{1/p}$ wird $L^p(\Omega,\mathscr{F},P)$ für $p\geqslant 1$ zum Banachraum und mit dem Skalarprodukt $\langle X,Y\rangle=\mathbb{E}[XY]$ wird $L^2(\Omega,\mathscr{F},P)$ zum Hilbertraum (Beweis in Analysis!). Für eine Folge (X_n) in $\mathcal{L}^p(\Omega,\mathscr{F},P)$, p>0, und ein $X\in\mathcal{L}^p(\Omega,\mathscr{F},P)$ sagen wir, dass X_n gegen X in L^p konvergiert, falls $\mathbb{E}[|X_n-X|^p]\to 0$ für $n\to\infty$ gilt.
- **5.9 Lemma.** Konvergert (X_n) gegen X in L^p für ein p > 0, so auch stochastisch: $X_n \xrightarrow{L^p} X \Rightarrow X_n \xrightarrow{P} X$.
- **5.10 Satz** (Lévy's Äquivalenzsatz). Es seien $(X_i)_{i\geqslant 1}$ eine Folge unabhängiger Zufallsvariablen und $S_n := \sum_{i=1}^n X_i, \ n\geqslant 1$. Dann sind für $n\to\infty$ äquivalent:
 - (a) $(S_n)_{n\geq 1}$ konvergiert fast sicher.
 - (b) $(S_n)_{n\geq 1}$ konvergiert stochastisch.

Andernfalls divergiert $(S_n)_{n\geqslant 1}$ mit Wahrscheinlichkeit Eins.

5.11 Lemma (Ottaviani-Ungleichung). Unter den Voraussetzungen des Satzes gilt für $\alpha>0$

$$P\left(\max_{j=1,\dots,n}|S_j|\geqslant 2\alpha\right)\leqslant \frac{P(|S_n|\geqslant \alpha)}{1-\max_{j=1,\dots,n}P(|S_n-S_j|\geqslant \alpha)}.$$

5.2 Konvergenz in Verteilung

5.12 Definition. Die \mathbb{R}^d -wertigen Zufallsvariablen $(X_n)_{n\geqslant 1}$ <u>konvergieren in Verteilung</u> gegen die \mathbb{R}^d -wertige Zufallsvariable X, Notation $X_n \xrightarrow{d} X$, falls für jede stetige beschränkte Funktion $\varphi : \mathbb{R}^d \to \mathbb{R}$ gilt

$$\lim_{n\to\infty} \mathbb{E}[\varphi(X_n)] = \mathbb{E}[\varphi(X)].$$

Wahrscheinlichkeitsmaße $(P_n)_{n\geqslant 1}$ auf $(\mathbb{R}^d,\mathfrak{B}_{\mathbb{R}^d})$ konvergieren schwach gegen ein Wahrscheinlichkeitsmaß P auf $(\mathbb{R}^d,\mathfrak{B}_{\mathbb{R}^d})$, Notation $P_n \xrightarrow{w} P$, falls für jede stetige beschränkte Funktion $\varphi: \mathbb{R}^d \to \mathbb{R}$ gilt

$$\lim_{n \to \infty} \int_{\mathbb{P}^d} \varphi(x) \, P_n(dx) = \int_{\mathbb{P}^d} \varphi(x) \, P(dx).$$

Man definiert Konvergenz in Verteilung mit einem Wahrscheinlichkeitsmaß P als Limes allgemein durch $X_n \xrightarrow{d} P : \iff P^{X_n} \xrightarrow{w} P$.

- **5.13 Satz.** Konvergiert X_n gegen X stochastisch, so auch in Verteilung: $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$.
- **5.14 Satz.** Für reellwertige Zufallsvariablen sind äquivalent:

(a)
$$X_n \xrightarrow{d} X$$

- (b) Die Verteilungsfunktionen erfüllen $F^{X_n}(x) \to F^X(x)$ für alle $x \in \mathbb{R}$, an denen F^X stetig ist (Stetigkeitspunkte von F^X).
- **5.15 Satz.** (Auswahlsatz von Helly) Ist (P_n) eine Folge von Wahrscheinlichkeitsmaßen auf $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$ mit Verteilungsfunktionen (F_n) , so existiert eine Teilfolge (n_k) und eine monoton wachsende rechtsstetige Funktion $F: \mathbb{R} \to [0, 1]$ mit $\lim_{k\to\infty} F_{n_k}(x) = F(x)$ für alle Stetigkeitspunkte von F.
- **5.16 Definition.** Eine Folge von Wahrscheinlichkeitsmaßen (P_n) auf $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$ heißt (gleichgradig) straff, falls für jedes $\varepsilon > 0$ ein $K_{\varepsilon} > 0$ existiert mit $\sup_{n \geq 1} P_n([-K_{\varepsilon}, K_{\varepsilon}]^{\complement}) < \varepsilon$.
- **5.17 Korollar.** Ist (P_n) eine straffe Folge von Wahrscheinlichkeitsmaßen, so gibt es eine Teilfolge (n_k) und ein Wahrscheinlichkeitsmaß P auf $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$, so dass $P_{n_k} \xrightarrow{w} P$ gilt.

5.3 Charakteristische Funktionen und Zentraler Grenzwertsatz

5.18 **Definition.** Für eine reellwertige Zufallsvariable X bezeichnet

$$\varphi^X(u) := \mathbb{E}[e^{iuX}] = \mathbb{E}[\cos(uX)] + i \mathbb{E}[\sin(uX)], \quad u \in \mathbb{R},$$

die charakteristische Funktion von X. Entsprechend ist für ein Wahrscheinlichkeitsmaß P auf $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$

$$\varphi^{P}(u) := \int_{\mathbb{R}} e^{iux} P(dx) = \int_{\mathbb{R}} \cos(ux) P(dx) + i \int_{\mathbb{R}} \sin(ux) P(dx), \quad u \in \mathbb{R},$$

die charakteristische Funktion von P.

- **5.19 Lemma.** Die charakteristische Funktion erfüllt $\varphi(0) = 1$, $\sup_{u} |\varphi(u)| \leq 1$ und ist gleichmäßig stetig auf \mathbb{R} .
- **5.20 Satz.** (Eindeutigkeitssatz) Zwei Wahrscheinlichkeitsmaße mit derselben charakteristischen Funktion sind identisch.
- **5.21 Satz.** (Stetigkeitssatz von Lévy) Sind (P_n) Wahrscheinlichkeitsmaße mit charakteristischen Funktionen (φ_n) und gilt $\lim_{n\to\infty} \varphi_n(u) = \psi(u)$ für alle $u \in \mathbb{R}$ und eine bei u = 0 stetige Funktion ψ , so ist $\psi = \varphi^P$, die charakteristische Funktion eines Wahrscheinlichkeitsmaßes P auf $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$, und es gilt $P_n \stackrel{w}{\to} P$.
- **5.22 Satz.** (Zentraler Grenzwertsatz) Es sei $(X_i)_{i\geqslant 1}$ eine Folge unabhängiger und identisch verteilter Zufallsvariablen (i.i.d.=independent and identically distributed) in \mathcal{L}^2 mit $\mu = \mathbb{E}[X_i]$, $\sigma^2 = \text{Var}(X_i) > 0$, so erfüllt ihre standardisierte Summe

$$S_n^* := \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu}{\sigma} \xrightarrow{d} N(0, 1).$$

Insbesondere gilt für a < b also $\mathbb{P}(a < S_n^* \leq b) \to \Phi(b) - \Phi(a)$ mit der Verteilungsfunktion Φ der Standardnormalverteilung N(0,1).

5.23 Satz. Für alle $n \ge 1$ und $p \in (0,1)$ gilt folgende Fehlerabschätzung im Poissonschen Grenzwertsatz:

$$\sum_{k\geqslant 0} |\mathrm{Bin}_{n,p}(k) - \mathrm{Poiss}_{np}(k)| \leqslant 2np^2.$$

6 Einführung in die Schätztheorie

6.1 Grundlagen

- **6.1 Definition.** Es sei $(\mathcal{X}, \mathscr{F}, (P_{\vartheta})_{\vartheta \in \Theta})$ ein statistisches Modell sowie $g : \Theta \to \mathbb{R}^d$. Für jedes $\vartheta \in \Theta$ wird $g(\vartheta)$ abgeleiteter Parameter genannt. Jede messbare Funktion $\hat{g} : \mathcal{X} \to \mathbb{R}^d$ heißt Schätzer von $g(\vartheta)$. Für eine Realisierung (konkrete Beobachtung, Stichprobe) $x \in \mathcal{X}$ ist $\hat{g}(x)$ der zugehörige Schätzwert.
- **6.2 Definition.** Der <u>mittlere quadratische Fehler MSE</u> (mean squared error) eines Schätzers \hat{g} von $g(\vartheta)$ ist gegeben durch

$$R(\hat{g}, \vartheta) := \mathbb{E}_{\vartheta}[|\hat{g} - g(\vartheta)|^2], \quad \vartheta \in \Theta.$$

Liegt $|\hat{g}|$ in $\mathcal{L}^1(P_{\vartheta})$, so heißt

$$B(\hat{g}, \vartheta) := \mathbb{E}_{\vartheta}[\hat{g} - g(\vartheta)], \quad \vartheta \in \Theta, \text{ (koordinatenweise Erwartung)}$$

<u>Verzerrung</u> oder <u>Bias</u> von \hat{g} . Gilt $B(\hat{g}, \vartheta) = 0$ für alle $\vartheta \in \Theta$, so ist \hat{g} ein erwartungstreuer Schätzer von $g(\vartheta)$.

6.3 Lemma (Bias-Varianz-Zerlegung). Für jeden Schätzer \hat{g} von $g(\vartheta)$ mit $R(\hat{g},\vartheta)<\infty$ gilt

$$R(\hat{q}, \vartheta) := |B(\hat{q}, \vartheta)|^2 + \mathbb{E}_{\vartheta}[|\hat{q} - \mathbb{E}_{\vartheta}[\hat{q}]|^2].$$

6.2 Cramér-Rao-Ungleichung und ML-Schätzer

6.4 Satz (Cramér-Rao-Ungleichung). Im statistischen Modell $(\mathbb{R}^d, \mathfrak{B}_{\mathbb{R}^d}, (P_{\vartheta})_{\vartheta \in \Theta})$ seien $\Theta \subseteq \mathbb{R}$ offen, $g : \Theta \to \mathbb{R}$ differenzierbar und \hat{g} ein erwartungstreuer Schätzer von $g(\vartheta)$. Weiterhin besitze jedes P_{ϑ} eine Dichte f_{ϑ} , so dass $\frac{d}{d\vartheta}f_{\vartheta}(x)$ für Lebesgue-fast alle $x \in \mathbb{R}^d$ existiert und folgende Vertauschungen erlaubt sind:

$$\frac{d}{d\vartheta} \int_{\mathbb{R}^d} h(x) f_{\vartheta}(x) \, dx = \int_{\mathbb{R}^d} h(x) \frac{d}{d\vartheta} f_{\vartheta}(x) \, dx \quad \text{ für } h(x) = 1, \, h(x) = \hat{g}(x).$$

Dann folgt

$$\forall \vartheta \in \Theta : \ R(\hat{g}, \vartheta) \geqslant \frac{g'(\vartheta)^2}{I(\vartheta)} \quad \ mit \ I(\vartheta) := \mathbb{E}_{\vartheta} \left[\left(\frac{\frac{d}{d\vartheta} f_{\vartheta}}{f_{\vartheta}} \right)^2 \right],$$

sofern die Fisher-Information $I(\vartheta)$ endlich ist.

Ein vollkommen analoges Resultat gilt im Fall von Verteilungen P_{ϑ} mit Zähldichten p_{ϑ} .

6.5 Lemma. Im Produktmodell $(\mathfrak{X}^n, \mathfrak{F}^{\otimes n}, (P_{\vartheta}^{\otimes n})_{\vartheta \in \Theta})$ gilt unter den Voraussetzungen im Satz für die Fisher-Information I_n bei n Beobachtungen $I_n(\vartheta) = nI_1(\vartheta)$.

- **6.6 Definition.** Ist $(\mathfrak{X}, \mathfrak{F}, (P_{\vartheta})_{\vartheta \in \Theta})$ ein diskretes statistisches Modell mit Zähldichten p_{ϑ} , so heißt $L(\vartheta,x)=p_{\vartheta}(x)$ Likelihood-Funktion. Entsprechend definiert man in einem Modell mit Lebesgue-Dichten f_{ϑ} die Likelihood-Funktion als $L(\vartheta,x)=f_{\vartheta}(x)$. Mit $\ell(\vartheta,x)=\log(L(\vartheta,x))$ wird die Loglikelihood-Funktion bezeichnet. Man schreibt auch nur $L(\vartheta), \ell(\vartheta)$ für die entsprechenden Zufallsvariablen.
- **6.7 Definition.** Gilt für einen Schätzer $\hat{\vartheta}$, dass $L(\hat{\vartheta}(x), x) = \max_{\vartheta \in \Theta} L(\vartheta, x)$ oder äquivalent $\ell(\vartheta(x), x) = \max_{\vartheta \in \Theta} \ell(\vartheta, x)$ für alle $x \in \mathcal{X}$ erfüllt ist, so nennt man $\hat{\theta}$ Maximum-Likelihood-Schätzer (MLE).
- **6.8 Lemma** (Plug-in-Prinzip). Ist $g:\Theta\to\Theta'$ bijektiv, so ist $g(\hat{\vartheta}^{MLE})$ mit dem MLE $\hat{\vartheta}^{MLE}$ für $\vartheta \in \Theta$ Maximum-Likelihood-Schätzer von $g(\vartheta) \in \Theta'$.

Likelihood-Quotienten-Tests

6.9 Definition. In einem statistischen Modell mit Likelihoodfunktion $L(\vartheta, x)$ betrachte das Testproblem $H_0: \vartheta \in \Theta_0$ gegen $H_1: \vartheta \in \Theta_1$ mit $\Theta = \Theta_0 \dot{\cup} \Theta_1$. Dann heißt ein Test der Form

$$\varphi(x) := \mathbf{1} \Big(\frac{\sup_{\vartheta \in \Theta_1} L(\vartheta, x)}{\sup_{\vartheta \in \Theta_0} L(\vartheta, x)} > c_{\alpha} \Big)$$

Likelihood-Quotienten-Test. Mit den Maximum-Likelihood-Schätzern $\hat{\vartheta}_0, \hat{\vartheta}_1$ für Parametermengen Θ_0 bzw. Θ_1 gilt $\varphi = \mathbf{1}(L(\hat{\vartheta}_1) > c_{\alpha}L(\hat{\vartheta}_0))$.

 $\{0,\ldots,n\}^r \mid k_1+\cdots+k_r=n\}$, Potenzmenge als σ -Algebra und Parametermen $ge\ \Theta = \{\vartheta \in (0,1)^r \mid \vartheta_1 + \dots + \vartheta_r = 1\}\ f\ddot{u}r\ r \in \mathbb{N}\ ist\ der\ Likelihoodquotienten$ gegeben durch

$$\varphi(k) := \mathbf{1} \left(k_1 \log(\frac{k_1}{n \vartheta_{0,1}}) + \dots + k_1 \log(\frac{k_r}{n \vartheta_{0,r}}) > c_{\alpha} \right)$$

mit geeignetem kritischen Wert $c_{\alpha} > 0$. Der Test φ wird durch den χ^2 -Test $\tilde{\varphi}(k) = \mathbf{1}(V^2(k) > c'_{\alpha})$ mit <u>Pearsons</u> χ^2 -Statistik $V^2(k) = \sum_{i=1}^r \frac{(k_i - n\vartheta_{0,i})^2}{n\vartheta_{0,i}}$ und $c'_{\alpha} > 0$ geeignet für $n \to \infty$ approximiert.

6.11 Satz. Sind $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ unabhängige, identisch verteilte Beobachtungen mit $\mu \in \mathbb{R}$ und $\sigma > 0$ unbekannt ($n \ge 2$), so ist der Likelihood-Quotienten-Test für $H_0: \mu = \mu_0$ gegen $H_1: \mu \neq \mu_0$ ($\sigma > 0$ beliebig) gegeben durch den zweiseitigen t-Test der Form

$$\varphi(x) = \mathbf{1}(|T_{n-1}(x)| > C_{\alpha})$$

 $mit\ T_{n-1} := \frac{\bar{X} - \mu_0}{\hat{\sigma}},\ wobei\ \bar{X} := \frac{1}{n} \sum_{i=1}^n X_i,\ \hat{\sigma}^2 = \frac{1}{(n-1)} \sum_{i=1}^n (X_i - \bar{X})^2.$ Unter der Hypothese H_0 ist T_{n-1} gemäß einer Student-t-Verteilung mit n-1 Freiheitsgraden verteilt, das heißt mit Dichte

$$f(x) = \frac{\Gamma(n/2)}{\Gamma((n-1)/2)\sqrt{2\pi}} \left(1 + \frac{x^2}{n-1}\right)^{-n/2}.$$