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Abstract. As a concrete setting where stochastic partial differential equations (SPDEs) are able to model
real phenomena, we propose a stochastic Meinhardt model for cell repolarisation and study how
parameter estimation techniques developed for simple linear SPDE models apply in this situation.
We establish the existence of mild SPDE solutions and we investigate the impact of the driving
noise process on pattern formation in the solution. We then pursue estimation of the diffusion
term and show asymptotic normality for our estimator as the space resolution becomes finer. The
finite sample performance is investigated for synthetic data resembling experimental findings for
cell orientation.
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1. Introduction. Stochastic partial differential equations (SPDEs) generalize
deterministic partial differential equations (PDEs) by introducing driving noise processes
into the dynamics. These noise processes encapsulate unresolved and often unknown
processes happening at faster scales and random external forces acting on the system.
Not only the theory of SPDEs, but also the statistics for SPDEs have recently seen a
significant development, paving the way for a realistic modeling of complex phenomena.
We demonstrate the ability of SPDE models to describe cell repolarisation patterns and we
show how parameter estimation techniques, developed for simplified linear models, apply in
more complex and physically relevant situations. We see this as an important step to make
theoretical tools also available for concrete experimental setups. For the sake of clarity we
focus on a specific stochastic cell polarisation problem, but the methodology has a much
broader scope.

The SPDE we are interested in belongs to a general class of activator-inhibitor models,
which can be described by two coupled stochastic reaction-diffusion equations X = (A, I)
of the form {

∂
∂tA(t, x) = DA

∂2

∂x2
A(t, x) + fA(X(t, x), x) + σAξA(t, x),

∂
∂tI(t, x) = DI

∂2

∂x2
I(t, x) + fI(X(t, x), x) + σIξI(t, x),

(1.1)
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whereX = (A, I), with nonlinear functions fA, fI and with space-time white noise processes
ξA, ξI . In cell dynamics, we think of A as a hypothetical signalling molecule that in response
to an external signal gradient becomes enriched on one side of the cell, yielding polarity. I
counter-acts A so that removal of the signal results in loss of polarity. We here specifically
consider repolarisation, where the extracellular signal gradient is inverted so that A is
removed from one side of the cell and reappears on the opposite side, cf. Figure 1 below.

In directed animal cell motion cells respond to for example chemical or mechanical
extracellular signal gradients by adopting a functional asymmetry in form of a front-rear
pattern. Protrusion of the cell front is driven by local oriented growth of a dense network of
cytoskeletal actin filaments pushing the cellular envelope [29]. Myosin-II motor molecules
contracting the looser, ubiquitous cortical actin network lining the cell membrane result in
retraction of the cell rear in stringent environments [11].

Models for spontaneous symmetry breaking in non-linear reaction diffusion systems by
Turing [34] have been instrumental in understanding biological pattern formation, often
paraphrased in form of simple deterministic two-variable activator-inhibitor models such
as (1.1) without noise terms. Suprathreshold random perturbations can result in fast
autocatalytic local growth of the activator variable A, which eventually is kept in check by
the slower inhibitor I. Faster diffusion of the inhibitor compared to the activator prevents
formation of nearby activator peaks.

Meinhardt [27] has been the first to apply such models to cell polarisation in the context
of cell migration, where the ratio of activator-inhibitor diffusion can be tuned to either
obtain a single stable cell front (Figure 1(center)), or multiple independent fronts associated
with non-directed random cell motility. Various mathematical models for cell polarisation
and gradient sensing have been postulated ([21], [30], [19]) aiming to capture different
aspects of cellular physiology for example with regards to adaptation to extracellular signals,
reviewed in [6]. [24] fitted deterministic versions of three different models for cell polarisation
to experimental data of cells in a microfluidic chamber responding to inversion of gradients
of hydrodynamic shear flow of different strengths [13]. The parameter calibration was based
on a least-squares ansatz, implicitly assuming that the deterministic dynamics are corrupted
by Gaussian measurement noise.

Recognising that in confined spaces and with limited number of molecules noise becomes
increasingly important, more recently stochastic reaction-diffusion models for different
biological problems have been employed, e.g. in [2], [33]. Spontaneous symmetry breaking
in Turing-type models requires initial random perturbations, but we expect dynamic noise
to destabilise patterns if the power of the noise is too large.

In the current paper we present a stochastic version of the modified Meinhardt two-
variable model [24]. We believe that the stochasticity in the data is to some considerable
extent due to dynamic noise entering the dynamics as in (1.1). The data generated from
such a stochastic Meinhardt model is qualitatively of a different nature compared to a
deterministic PDE model corrupted by measurement errors. We perform a systematic
study of the effect of different noise levels on the repolarisation of cells. One result is
that inclusion of moderate levels of noise in the model speeds up the repolarisation of cells,
which biologically is interesting because it seems to be against our intuition that noise
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Figure 1: Heat maps for the space-time evolution of the activator A, brighter colors mean
higher values, space region R denotes the old front/new rear, region F is the new front/old rear;
(left) experimental data for measured fluorescence values averaged over several Dictyostelium cells
reacting to a gradient of shear flow; (center) solution to the deterministic Meinhardt model with
the same initial condition, (right) a typical realisation of the stochastic Meinhardt model with noise
level 0.02.

would negatively interfere with the formation of a pattern.
Recently, new tools for parameter estimation of stochastic differential equations have

been developed, see [8] for an overview. Most approaches focus on estimating coefficients
for the linear part of the equation, either from discrete [9], [16] or spectral [17], [32]
observations, but also aspects of the driving noise have been analysed [7], [5]. Owing to the
physical restriction of being able to measure only local averages, [4] have introduced local
measurements and constructed estimators in a linear SPDE for the diffusion term which
are provably rate-optimal. Even more, the proposed estimators apply in a nonparametric
setting of spatially varying diffusion and are robust to misspecification of the noise or when
subject to certain nonlinearities [3].

We extend the estimation method in [4] to cope also with multiple spatial measurements,
systems of SPDEs as (1.1) and with more general boundary conditions (here periodic
boundary conditions will apply). We shall perform parameter estimation in the stochastic
Meinhardt model for cell repolarisation and provide confidence intervals to quantify the
uncertainty. In particular, we are interested in determining the diffusion constant for the
activator in the Meinhardt model. Although the activator variable in the model cannot be
directly related to a specific molecular component, putting limits on how fast the activator
spreads can ideally help narrowing down possible mechanisms. For example, spreading of
the activator could be down to lateral growth of the actin network (slow), diffusion of
chemoattractant receptors within the cell membrane (medium) or diffusion of phospholipid
signalling molecules (PIP3) within the cell membrane (fast).

Mathematically, we derive a central limit theorem for our estimator by using advanced
tools from stochastic analysis and semigroup theory. We are aware of only one related work
[31] which uses the spectral method to fit parameters of a 2D Fitz-Hugh-Nagumo model
for travelling actin waves through cells. For the stochastic Meinhardt model we compare in
Section 5 below our method with the spectral estimation method.
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In the next Section 2 the stochastic Meinhardt model is introduced, along with a rigorous
proof for existence of a solution. Section 3 presents the main insights how adding noise to
the Meinhardt model affects the dynamics and repolarisation. In Section 4 estimators for
local measurements of the activator are analysed mathematically and applied in Section 5
to synthetic data. Section 6 discusses the main results. All technical details and proofs are
deferred to Appendix A. A description of the setup for numerical experiments based on the
fitted parameter values from [24] can be found in Appendix B.

2. The stochastic Meinhardt model. Diffusion is considered to take place along the
cell contour, and so we study the equation (1.1) for t > 0 on a circle Λ of length L >
0 or equivalently on Λ = [0, L] with periodic boundary conditions. We think of A as a
large, membrane-bound autocatalytic activator requiring fA to be nonlinear and with slow
diffusion (that is, small DA). The production of A is counteracted by a small cytosolic
inhibitor I with faster diffusion (that is, DI > DA), where fI is linear or nonlinear. In case
of the two-variable Meinhardt model the functions fA and fI are given by

fA(y, x) = rA
s(x)

(
bA + y2

1

)
(sI + |y2|)

(
1 + sAy2

1

) − rAy1, fI(y, x) = bIy1 − rIy2,(2.1)

for y ∈ R2 and x ∈ Λ. The function

(2.2) s(x) = 1 + a · cos(2π(x/L+ 1/2))

corresponds to an extracellular signal, for example a gradient of chemoattractant, which
stimulates the production of A with signal strength modulated by a constant a. The
constants rA, rI and bA, bI are degradation and production rates, sA controls the saturation
and the Michaelis-Menten constant sI prevents fA from exploding. While bI is fixed in our
setup, it will generally depend on the pressure of the signal s [24]. For a more detailed
description of the nonlinearities fA, fI and a stability analysis for varying parameters see
[23], [28].

Additional external forces acting on the cell membrane are modeled by two independent
space-time white noise processes ξA, ξI . By space-time white noise we mean a centered
Gaussian process ξ on [0, T ]× Λ with covariance function

Cov
(
ξ(t, x), ξ(t′, x′)

)
= δ(t− t′)δ(x− x′).

By integrating formally against test functions, ξ induces an isonormal Gaussian process
on L2([0, T ] × Λ). In this way, space-time white noise corresponds to a random Schwartz
distribution on L2(Λ) with values in negative Sobolev spaces [15]. Since the nonlinearity
fA(X(t, x), x) is not well-defined for a distribution valued process X, this means we cannot
obtain classical solutions to the SPDE (1.1). After formally integrating the noise, however,
W (t) =

∫ t
0 ξ(s, ·)ds is a (cylindrical) Wiener process with values in L2(Λ) [12], and we can

use the well-developed theory for SPDEs to show that (1.1) is well-posed in the mild sense.
The solution even has some minimal spatial regularity.

Theorem 2.1. Consider the stochastic Meinhardt model corresponding to the SPDE in
(1.1) with nonlinearities fA, fI from (2.1) on Λ = [0, L] with periodic boundary conditions.
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Figure 2: (left) Boxplots for the distribution of the time to repolarisation τγ for different noise
levels σA; (right) a typical realisation of the stochastic Meinhardt model with larger noise level 0.05.

Assume for the initial value (A0, I0) ∈ C2+s(Λ;R2) for 0 < s < 1/2. Then there exists a
unique mild solution X = (A, I) ∈ C([0, T ];Cs(Λ;R2)).

For the proof in Appendix A.1 we shall employ the language of stochastic analysis, while
for modeling purposes we prefer (1.1) with the physical white noise interpretation. A more
realistic model might consider multiplicative noise levels σA, σI depending on X. Moreover,
also the parameters and initial conditions could be subject to noise [19]. Here, we refrain
from this generality and focus on the impact of simple additive space-time white noise in
(1.1). Note that neither the model proposed by Meinhardt nor other models suggested in
the literature for cell repolarisation include dynamic noise so far.

3. The effect of noise. In Turing-type models for pattern formation noise in the initial
condition is required to leave a homogeneous steady state. Its strength determines how fast a
suprathreshold level for the activator A starts growing into a pattern whose wavelength can
be determined by linear stability analysis. Dynamic noise, on the other hand, is expected
to destabilise this pattern either over time, or very suddenly. Contrary to this intuition, we
will now describe two noteworthy effects arising from moderate noise levels.

Noise speeds up repolarisation. In Figure 1(center) we see the solution of (1.1) starting
from a polarised state with high activator concentration in some part of the cell called ’rear’.
Stimulated by the extracellular signal (2.2) the activator breaks down in order to reappear
in an area of high signal strength called ’front’, and the cell repolarises. Figure 1(right), on
the other hand, contains a typical realisation of the SPDE (1.1). The evolution of activator
concentration deviates considerably from the deterministic dynamics, but repolarisation is
still achieved. For a more quantitative analysis consider the relative activator concentrations

µF (t) =
1

L

∫
SF

A(t, x)dx, µR(t) =
1

L

∫
SR

A(t, x)dx, t > 0,

near the front SF = [L/4, 3L/4] and the rear SR = [0, L/4)∪ (3L/4, L]. With this we define
the ’time to repolarisation’

τγ = inf{t > 0 : µF (t) > γµR(t)}
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as the time when the activator concentration in the front part is significantly higher than in
the rear depending on a threshold γ > 1. We computed τγ for 500 Monte Carlo iterations
with γ = 1.2 for different noise levels σA ∈ {0.02, 0.04, . . . , 0.10} (see Appendix B for
details on the numerical setup). The corresponding boxplots describing the distribution of
τγ depending on σA is contained in Figure 2(left). We see that the mean of τγ decreases for
growing σA, while the variance increases. For example, while τγ = 50.82 in the deterministic
case (i.e., σA = 0), it is τγ = 40.12 (on average) in the case σA = 0.10. A similar behaviour
holds for varying σI . The same qualitative results were obtained for parameters and initial
conditions different from the ones in Appendix B.

We can conclude that repolarisation is not only stable under noise, but it is even
accelerated. The interpretation of this behaviour could be that the noise breaks symmetries,
making the dynamics more ’turbulent’ and therefore the creation of a new front is sped up.

In principle, the noise may act such that repolarisation is never achieved. In case of
the noise levels for σA considered above, however, this was not an issue and only very few
realisations of X had to be discarded for computing τγ . Moreover, realisations of (1.1),
which would have lead to negative concentrations of A or I, were not taken into account
(even for σA = 0.1 this concerned only 2.6% of all simulated paths).

Splitting of the front. For the deterministic Meinhardt model it has been shown by [23]
that the repolarised front may not be stable. Indeed, if the parameters, obtained from fitting
data on the short timescales at which repolarisation typically occurs (120 sec), are used for
long term simulations, then the front splits into several parts. This can be verified for the
parameters in Appendix B: upon repolarisation, the front splits first into two parts (around
time t = 200) and then into three parts (around time t = 700).

From Figure 2(right) we see, however, that the stochastic Meinhardt model with a larger
noise level may lead to a sudden split into several fronts, and even a renewed polarisation of
the rear. For very small noise levels (for example, σA = 0.01) the front splitting into three
fronts occurs much faster (around t = 400 - 500 s) than in the deterministic system, while
for larger noise levels this occurs even faster.

We want to note that front splitting is a common feature of amoeboid cell migration,
allowing cells to explore their environment. It is visible in single cell data [24], but not
in Figure 1(left), which corresponds to data averaged over several cells. Still, in strong
signal gradients cells can move with a single front for long times (>10 minutes) [24]. The
Meinhardt model for long term simulations requires a smaller diffusivity DI . When DI was
reduced by 25%, both deterministic and stochastic solutions produced a single stable front.

4. Parameter estimation. We derive an estimator D̂A,δ of the diffusivity DA from first
principles and state its main properties. Let us assume that we can measure the activator
A at M points xk ∈ Λ for k = 1, . . . ,M over a period of time [0, T ]. Measurements usually
correspond to fluorescence distributions (for example of actin in [24]) at the cell cortex and
are obtained through microscopy. This means that every measurement necessarily has a
minimal spatial resolution δ > 0 determined by the experimental setup. It can be described
by a local measurement [4], that is, a linear functional

(4.1) Aδ(t, xk) := 〈A(t),Kδ,xk〉 = A(t) ∗Kδ,·(xk), 0 6 t 6 T,
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where 〈·, ·〉 denotes the L2(Λ) inner product and ∗ means convolution with respect to
Kδ,xk(x) := δ−1/2K(δ−1(x − xk)) for a compactly supported function K ∈ H2(R), the
classical L2-Sobolev space of order 2. Kδ,xk corresponds to the point spread function in
imaging systems. A particular example for K is the standard bump function (see Section 5
below). The scaling by δ−1/2 is irrelevant for the estimator, but normalizesKδ,xk in L

2-norm
and eases the notation later. From (1.1) we find that Aδ(t, xk) satisfies

(4.2)
∂

∂t
Aδ(t, xk) = DAA

∆
δ (t, xk) + 〈fA(X(t, ·), ·),Kδ,xk〉+ σA‖Kδ,xk‖ ξA,k(t),

with scalar white noise (in time) ξA,k(t) = 〈ξA(t),Kδ,xk〉/‖Kδ,xk‖, and where

(4.3) A∆
δ (t, xk) :=

∂2

∂x2
Aδ(t, ·)

∣∣
x=xk

=
〈
A(t),

∂2

∂x2
Kδ,xk

〉
.

Neglecting the contribution of the nonlinear term in (4.2) leads to a parametric estimation
problem for DA with respect to the scalar processes (Aδ(t, xk))06t6T for k = 1, . . . ,M . The
maximum-likelihood estimator can be obtained, in principle, by Girsanov’s theorem [22],
but this leads to a non-explicit filtering problem, as explained in [4] for the case M = 1.
Instead, consider the modified likelihood with stochastic differentials dAδ(t, xk) (in time)

Lδ(DA) = exp

(
DA

σ2
A‖Kδ,xk‖2

M∑
k=1

(∫ T

0
A∆
δ (t, xk)dAδ(t, xk)−

DA

2

∫ T

0

(
A∆
δ (t, xk)

)2
dt

))
.

Maximising with respect to DA and assuming that we have also measurements
(A∆

δ (t, xk))06t6T at our disposal, leads to the augmented MLE

(4.4) D̂A,δ =

∑M
k=1

∫ T
0 A∆

δ (t, xk)dAδ(t, xk)∑M
k=1

∫ T
0 (A∆

δ (t, xk))2dt
.

Note that this extends the construction of [4] to more than one pair of local measurements.
Equivalently, D̂A,δ can be obtained formally (that is, neglecting the term independent of
DA in the quadratic expansion and interpreting ∂

∂tAδdt = dAδ) as minimiser of the least
squares contrast

DA 7→
M∑
k=1

∫ T

0

(
∂
∂tAδ(t, xk)−DAA

∆
δ (t, xk)

)2
dt.
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With Brownian motions Wk(t) =
∫ t

0 ξA,k(s)ds we obtain from (4.2) the basic error
decomposition

D̂A,δ = DA + I−1
δ Rδ + σA‖Kδ,xk‖I

−1
δ Mδ,(4.5)

with Iδ =

M∑
k=1

∫ T

0

(
A∆
δ (t, xk)

)2
dt, (observed Fisher information)

Mδ =
M∑
k=1

∫ T

0
A∆
δ (t, xk)dWk(t), (martingale part)

Rδ =
M∑
k=1

∫ T

0
A∆
δ (t, xk)〈fA(X(t, ·), ·),Kδ,xk〉dt. (nonlinear bias)

For M = 1 and linear SPDEs with Dirichlet boundary conditions [4] show that Iδ → ∞
in probability for resolution δ → 0. We will see that this remains true in the present case
with periodic boundary conditions and fixed M . For independent Brownian motions Wk,
for example when the Kδ,xk have disjoint supports, the observed Fisher information Iδ
corresponds to the quadratic variation of the martingale part Mδ. Consistency of D̂A,δ is
therefore expected to hold as soon as the nonlinear bias is not too large. For a nonlinearity
depending only on the underlying process, that is A, [3] prove that this depends on its spatial
regularity, but in our case fA(X(t, ·), ·) also depends on additional randomness through the
inhibitor I.

We prove in Appendix A.2 for fixed T andM that D̂A,δ is not only a consistent estimator
of DA for resolution levels δ → 0, but also that its error satisfies a CLT with rate δ (which
is optimal already for the linear case in [4]) and with explicit asymptotic variance.

Theorem 4.1. Consider the setting of Theorem 2.1 and let K ∈ H2(R) have compact
support such that ‖ ∂∂xK‖L2(R) 6= 0. If σA > 0, then, as δ → 0, D̂A,δ is a consistent and
asymptotically normal estimator of DA, that is,

δ−1
(
D̂A,δ −DA

)
d−→ N

(
0, DA

Σ

MT

)
, Σ =

2‖K‖2L2(R)

‖ ∂∂xK‖
2
L2(R)

.

The proof in Appendix A.2 is self-contained and significantly shorter compared to similar
results in [4], [3]. The proof is also not restricted to Dirichlet or periodic boundary
conditions. The asymptotic variance in Theorem 4.1 improves for more observationsM and
for a growing time horizon T , but is independent of the noise level σA and the nonlinearity
fA. This robustness is particularly important in modelling realistic nonlinear dynamics such
as (1.1), which are subject to model uncertainties in parameters and even the form of the
equation.

Remark 4.2. It is interesting to note that the robustness of the estimator D̂A,δ to
nonlinear perturbations fA is an impact of the driving noise process. If there is no noise, that
is σA = σI = 0, then A(t) ∈ C2(Λ), fA(X(t, ·), ·) ∈ C(Λ) by classical theory for parabolic
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Figure 3: log10-log10 plot of root mean squared estimation errors for M = δ−1 and two different
kernels.

PDEs [14] or argue as in the proof of Theorem 2.1, which does not assume nonvanishing
noise. This implies by convolution approximation uniformly in 0 6 t 6 T as δ → 0

〈fA(X(t, ·), ·), δ−1/2Kδ,xk〉 → fA(X(t, xk), xk)

∫
R
K(x)dx,

δ−1/2A∆
δ (t, xk) =

〈 ∂2

∂x2
A(t), δ−1/2Kδ,xk

〉
→ ∂2

∂x2
A(t, xk)

∫
R
K(x)dx.

From this and the basic error decomposition (4.5) it follows then, assuming
∫
RK(x)dx 6= 0

and ∂2

∂x2
A(t, xk) 6= 0 for at least on xk, that D̂A,δ −DA converges to a non-zero constant.

On the other hand, in the linear PDE case with fA ≡ 0 we have exactly D̂A,δ = DA and
there is no estimation error.

As consequence of Theorem 4.1 we can easily construct an asymptotic confidence interval
for DA.

Corollary 4.3. Consider the setting of Theorem 4.1. For 0 < α < 1 a confidence interval
I1−α for DA with asymptotic coverage 1− α as δ → 0 is given by

I1−α =

[
D̂A,δ −

δ

(MT )1/2

(
D̂A,δΣ

)1/2
q1−α/2, D̂A,δ +

δ

(MT )1/2

(
D̂A,δΣ

)1/2
q1−α/2

]
with the standard normal (1− α/2)-quantile q1−α/2.

5. Application to synthetic data. Let us apply the results of the previous section to the
estimation of the diffusion constant DA. Synthetic data of local measurements are obtained
by simulating the SPDE (1.1) using a finite difference scheme as explained in Appendix B
with experimentally calibrated DA = 4.415 × 10−2 for m = 35 ∗ L = 700 points in space
and n = 352 ∗ T points in time. As a typical example for the kernel K we use a standard
bump function

(5.1) K(x) = exp

(
− 10

1− x2

)
1[−1,1](x), x ∈ R,
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but we also consider another kernel K̃ = ∂2K/∂x2 for comparison. Note that K̃ oscillates
more than K, and so we expect smaller estimation errors for K̃ according to Theorem
4.1. For different resolutions δ we let M ≡ M(δ) = δ−1 and compute for each of the two
kernels local measurements Aδ(t, xk), A∆

δ (t, xk) according to (4.1) and (4.3) on a regular
grid xk = Lk/M , k = 0, . . . ,M − 1.

Figure 3 shows a log10-log10 plot of root mean squared estimation errors with respect
to the augmented MLE D̂A,δ, obtained after 1000 Monte Carlo iterations. We see that for
small δ, the errors decay approximately like δ/

√
M = δ3/2, as predicted by Theorem 4.1.

This is true for both kernels, K and K̃, but the errors are significantly smaller for K̃. The
observed difference in log10 errors is approximatly 0.65 ≈ log10(0.0173)− log10(0.039) and
corresponds to the reduced asymptotic variance in Theorem 4.1 with Σ = 0.173 for K and
Σ = 0.039 for K̃.

We have verified the confidence intervals of Corollary 4.3 empirically for estimation with
M = 1 at 100 different xk in (4.4) and with kernel K̃. For δ = 0.013 and at most points the
coverage of the asymptotic 90%-confidence intervals I0.90 was near the nominal level, but
the results were not homogeneous in space, with coverage dropping significantly at some
points. This is due to the relatively large nonlinearity fA in (4.2), where repolarisation leads
to fast changes in the activator A (cf. Figure 1). This effect becomes smaller as δ → 0, as
the nonlinearity plays no role in the asymptotic error according to Theorem 4.1.

Further unreported simulations show similarly good performance for the proxy MLE
from [4], extended toM measurements as D̂A,δ, at least with kernel K̃, with the estimation
error differing from D̂A,δ by a constant factor (it almost coincides with D̂A,δ for kernel
K). The spectral estimator [17], on the other hand, which is based on globally averaged
observations instead of local information, was significantly affected by the large nonlinear
dynamics, and did not perform well. This is in line with similar findings by [31] in a related
application to cell motility. This suggests that the augmented MLE is able to compensate
for local disturbances (like traveling waves) better than the spectral estimator.

6. Discussion. We have extended parameter estimation methods developed for linear
SPDEs to systems of stochastic-reaction diffusion equations with periodic boundary
conditions. The inclusion of noise into biological models is becoming increasingly relevant,
owing to availability of high resolution measurement devices and improved computational
methods.

As concrete application we have estimated the diffusivity in a stochastic Meinhardt
model for cell repolarisation. For this model, we have demonstrated through simulations
that moderate levels of dynamic noise do not destroy the pattern formation mechanism,
but amplify it, leading to faster repolarisation and front splitting. This is achieved despite
the simple activator-inhibitor structure of (1.1) and using only space-time white noise. We
believe that this is the starting point for studying more detailed models for cell repolarisation
based on SPDEs with spatially nonhomogeneous and possibly multiplicative noise. In
this way we hope to obtain models that recover the variations within cells and between
different cell populations better. The estimation methods developed here will be essential
in calibrating these models to experimental data.
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Appendix A. Proofs.
In the following, we consider for fixed T < ∞ a filtered probability space

(Ω,F , (Ft)06t6T ,P). Unless stated otherwise, all limits are taken as δ → 0. C always denotes
a generic positive constant which may change from line to line. A . B means A 6 CB and
An = OP(Bn) means that An/Bn is tight, that is, supn P(|An| > C|Bn|) → 0 as C → ∞.
We also write ∆ = ∂2/∂x2 to denote the Laplacian on L2(Λ) = L2(Λ;R) with periodic
boundary conditions.

A.1. Existence of a unique solution.
Reformulation and mild solution. Let us first reformulate the Meinhardt model as an

SPDE in the space L2(Λ;R2). Let SA and SI denote the analytic and self-adjoint semigroups
generated by DA∆ and DI∆ on L2(Λ). For smooth z = (z1, z2) ∈ L2(Λ;R2) consider also
the differential operator Az = (DA∆z1, DI∆z2) with periodic boundary conditions, which
generates the semigroup S(t) = (SA(t), SI(t)) on L2(Λ;R2). Let B : L2(Λ;R2)→ L2(Λ;R2),
Bz = (σAz1, σIz2) and define F : L2(Λ;R2)→ L2(Λ;R2) by

F (z)(x) = (FA(z)(x), FI(z)(x)) = (fA(z(x), x), fI(z(x), x)) .

Consider two independent cylindrical Wiener processes WA, WI on L2(Λ) such that
W (t) = (WA(t),WI(t)) is a cylindrical Wiener process on L2(Λ;R2), and formally dW (t) =
(ξA(t), ξI(t))dt. Solving (1.1) then corresponds to finding a solutionX = (A, I) to the SPDE

(A.1)


dX(t) = (AX(t) + F (X(t))) dt+B dW (t), 0 < t 6 T,

X(0) = (A0, I0),

X(t, 0) = X(t, L), 0 6 t 6 T.

We use the mild solution concept of [12]. We will show that there exists a process X taking
values in L2(Λ;R2) satisfying

(A.2) X(t) = S(t)X(0) +

∫ t

0
S(t− s)F (X(s))ds+

∫ t

0
S(t− s)BdW (s).

Linear and nonlinear parts. The idea is to obtain the existence of X from X := X̄ + X̃
with X̄(t) :=

∫ t
0 S(t− s)BdW (s) and where X̃ satisfies

(A.3) X̃(t) = S(t)X(0) +

∫ t

0
S(t− s)F (X̄(s) + X̃(s))ds, 0 6 t 6 T.

The process X̄ is the unique mild solution to the linear SPDE (A.1) (with F ≡ 0 and
X(0) = 0) and takes values in L2(Λ;R2) (apply, for example, [3, Proposition 30] separately
to the component processes Ā, Ī). Finding a process X̃ solving (A.3), on the other hand,
means equivalently finding a solution to the nonlinear PDE with random coefficients

(A.4)
∂

∂t
X̃(t) = AX̃(t) + F (X̄(t) + X̃(t)), 0 < t 6 T, X̃(0) = X(0).

Since this equation does not depend explicitly on the noise process W anymore, it can be
solved for a fixed realisation of X̄. The proof follows from a classical fixed point argument.
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Proof of Theorem 2.1. We will extend [3, Theorem 31] to the present situation, that is
to a system of two equations and with periodic boundary conditions. For s ∈ R, p > 1 and
u ∈ Lp(Λ) define the norm ‖u‖s,p = ‖(I −∆)s/2u‖Lp(Λ) and consider the Bessel potential
spaces

W s,p(Λ) = {u ∈ Lp(Λ) : ‖u‖s,p <∞} .

Abusing notation, for v ∈ Lp(Λ;R2) we also write ‖v‖s,p = (‖v1‖2s,p + ‖v2‖2s,p)1/2 and define
accordingly the spaces

W s,p(Λ;R2) =
{
v ∈ Lp(Λ;R2) : ‖v‖s,p <∞

}
.

Note that I −∆ is a strictly positive operator and thus (I −∆)−1 is a bounded operator
on L2(Λ) for periodic boundary conditions, while (−∆)−1 is not. The spaces W s,p(Λ) differ
from the classical Sobolev spaces, but allow for a Sobolev embedding theorem (see for
example [10, Section 2.3]). The reader can check that the statement of [3, Theorem 31]
remains true, once the spacesW s,p(Λ) appearing in that theorem are replaced by the spaces
W s,p(Λ;R2) from above.

Let now η < 2 and 0 < s < 1/2 such that s + η > 2, and fix p > 2 such that
s > 1/p. We obtain from [3, Proposition 30] for Λ = [0, L] that the linear process satisfies
X̄ ∈ C([0, T ];W s,p(Λ;R2)). Since X(0) ∈ C2+s(Λ;R2) by assumption, after checking
the assumptions on F in the aforementioned theorem, which we will do below, we can
then conclude that X̃ satisfying (A.3) exists uniquely with X̃ ∈ C([0, T ];W s+η,p(Λ;R2)).
In particular, X ∈ C([0, T ];W s,p(Λ;R2)). The result follows from applying the Sobolev
embedding theorem componentwise such that X̃ ∈ C([0, T ];C2+s(Λ;R2)) and X ∈
C([0, T ];Cs(Λ;R2)) for all s < 1/2, as claimed.

We are left with checking that F satisfies Assumptions As′,η,p′ , Ls,η,p and Cs1,s from
[3, Appendix B.2] for s1 = 0 and all s1 6 s′ 6 s, 2 6 p′ 6 p. It is enough to check this
separately for the component functions FA, FI . Since z 7→ FI(z) = bIz1 − rIz2 is linear,
Assumptions As′,η,p′ and Ls,η,p follow immediately from choosing ε = 2 − η, h = C for
a constant C < ∞, and using that r 7→ ‖z1‖r,p is increasing. Moreover, assumption C0,s

follows from the Cauchy-Schwarz inequality with b being the identity (up to a constant).
With respect to FA write

FA(z)(x) = rAs(x)f1(z1(x))f2(z2(x))− rAf3(z1(x)),

with f1(y) =
bA + y2

1 + sAy2
, f2(y) =

1

sI + |y|
, f3(y) = y, y ∈ R .

Note that s and f1 are bounded, smooth and have also bounded derivatives, while f2 is
bounded and Lipschitz. This already implies Assumption C0,s. With respect to Assumption
As′,η,p′ let again ε = 2− η. We will show by interpolation, cf. [26], that

(A.5) ‖FA(z)‖s′,p′ . ‖z‖s′,p′ , 0 6 s′ 6 1, z ∈W s′,p′(Λ;R2).

Indeed, since the spaces W s,p(Λ) (and thus W s,p(Λ;R2)) are compatible with complex
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interpolation ([10, Section 2.2]), it is by [26, Theorem 2.1.6] enough to prove

‖FA(z)‖0,p′ . ‖z‖0,p′ , z ∈ Lp′(Λ;R2),

‖FA(z)‖1,p′ . ‖z‖1,p′ , z ∈W 1,p′(Λ;R2).

The first inequality holds trivially, because FA + rAf3 is bounded and f3 is linear. For the
second inequality we have

‖FA(z)‖1,p′ . ‖f ′1(z1)
∂

∂x
z1‖0,p′ + ‖f ′2(z2)

∂

∂x
z2‖0,p′ + ‖

∂

∂x
z1‖0,p′ . ‖z‖1,p′ ,

with weak derivatives f ′1, f ′2, proving Assumption As′,η,p′ . At last, for Assumption Ls,η,p
observe that W s,p(Λ) is a Banach algebra with respect to pointwise multiplication when
s > 1/p (proof analogous to [1, Theorem 4.39]). Hence we compute for u, v ∈W s,p(Λ;R2)

‖FA(u)− FA(v)‖s,p . ‖f1(u1)f2(u2)− f1(v1)f2(v2)‖s,p + ‖u1 − v1‖s,p
. ‖f2(u2)‖s,p‖f1(u1)− f1(v1)‖s,p + ‖f1(v1)‖s,p‖f2(u1)− f2(v1)‖s,p

+ ‖u1 − v1‖s,p . ‖u− v‖s,p,

concluding in the last line by (A.5) and [3, Lemma 38(ii)] applied to f1, f2.

A.2. Results on parameter estimation. Since we are not considering Dirichlet
boundary conditions, we cannot rely on the Feynman-Kac arguments of [4] and [3] to study
the action of the semigroup generated by ∆ on Kδ,xk . The following proof avoids this issue,
and also holds for more general boundary conditions. The proof is inspired by [3, Theorem
3], but is fully self-contained.

Consider the decomposition A = Ā + Ã into linear and nonlinear parts Ā and Ã
according to Section A.1. With this we also set

Ā∆
δ (t, xk) := 〈Ā(t),∆Kδ,xk〉 = σA

〈∫ t

0
SA(t− s)dWA(s),∆Kδ,xk

〉
(A.6)

= σA

∫ t

0
〈SA(t− s)∆Kδ,xk , dWA(s)〉,

as well as Ã∆
δ (t, xk) = 〈Ã(t),∆Kδ,xk〉. We also use the linear observed Fisher information

Īδ =
∑M

k=1

∫ T
0

(
Ā∆
δ (t, xk)

)2
dt.

Proof of Theorem 4.1. Using that ‖Kδ,xk‖ = ‖K‖L2(R), the basic error decomposition
(4.5) can equivalently be written as

δ−1(D̂A,δ −DA) = (δ2Iδ)−1δRδ + σA‖K‖L2(R)(δ
2Iδ)−1/2(I−1/2

δ Mδ).

The martingale part satisfies Mδ = Mδ(T ), where Mδ(t
′) =

∑M
k=1

∫ t′
0 A∆

δ (t, xk)dWk(t) is
a continuous martingale in t′ > 0 with respect to the natural filtration generated by the
Brownian motionsWk as a sum of such martingales. Without loss of generality let the Kδ,xk

have disjoint supports, which is true for sufficiently small δ, since M is fixed. But then the
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processesWk are independent and the quadratic variation of the martingaleMδ(t
′) at t′ = T

is exactly Iδ. By a classical time-change [20, Theorem 3.4.6] we can write Mδ = w̄Iδ for a
Brownian motion w̄, possibly defined on an extension of the underlying probability space.
We conclude from Proposition A.1(i,ii,iii) that Iδ/E[Īδ]→ 1 in probability and

Mδ

I1/2
δ

=
E[Īδ]1/2

I1/2
δ

· w̄Iδ
E[Īδ]1/2

d−→ N (0, 1).

Proposition A.1(i,ii,iii) also shows δ2Iδ → κ in probability and the result follows from
Slutsky’s Lemma and Proposition A.1(iv).

Proposition A.1. The following holds as δ → 0:
(i) δ2 E[Īδ]→ κ := MTσ2

AD
−1
A ‖K‖2L2(R)Σ

−1 with Σ from Theorem 4.1,
(ii) Īδ/E[Īδ]→ 1 in probability,
(iii) Iδ = Īδ +OP(δ−1/2),
(iv) Rδ = OP(δ−1/2).

Proof. (i). We find from (A.6) and Itô’s isometry ([12, Proposition 4.28]) that

(A.7) E[Īδ] = σ2
A

M∑
k=1

∫ T

0

∫ t

0
‖SA(s)∆Kδ,xk‖

2dsdt.

The operators S1(s) are self-adjoint such that ‖SA(s)∆Kδ,xk‖2 = 〈SA(2s)∆Kδ,xk ,∆Kδ,xk〉.
The semigroup identity 2

∫ t
0 SA(2s)DA∆Kδ,xkds = SA(2t)Kδ,xk −Kδ,xk therefore implies

E[Īδ] =
1

2
D−1
A σ2

A

M∑
k=1

(∫ T

0
〈SA(2t)∆Kδ,xk ,Kδ,xk〉dt− T 〈Kδ,xk ,∆Kδ,xk〉

)

=
1

2
D−1
A σ2

A

M∑
k=1

(
1

2
D−1
A 〈SA(2T )Kδ,xk −Kδ,xk ,Kδ,xk〉 − T 〈Kδ,xk ,∆Kδ,xk〉

)
.

Noting that ‖SA(T )Kδ,xk‖ 6 ‖Kδ,xk‖, because the semigroup is contractive, (i) follows from
〈Kδ,xk ,∆Kδ,xk〉 = −δ−2‖ ∂∂xK‖

2
L2(R).

(ii). It is enough to show δ4Var(Īδ)→ 0, because this and (i) imply Var(Īδ)/E[Īδ]2 → 0.
Since M is fixed, we can use the Cauchy-Schwarz inequality to obtain the upper bound
Var(Īδ) 6 M

∑M
k=1 Var(

∫ T
0 (Ā∆

δ (t, xk))
2dt). (A.6) shows that the Ā∆

δ (t, xk) are centered
Gaussian random variables. Wick’s formula ([18, Theorem 1.28]) gives

Var(Īδ) .
M∑
k=1

∫ T

0

∫ T

0
Cov

((
Ā∆
δ (t, xk)

)2
,
(
Ā∆
δ (t′, xk)

)2)
dt′dt

= 4

M∑
k=1

∫ T

0

∫ t

0
Cov

(
Ā∆
δ (t, xk), Ā

∆
δ (t′, xk)

)2
dt′dt

= 4σ4
A

M∑
k=1

∫ T

0

∫ t

0

(∫ t′

0
〈SA(t− s)∆Kδ,xk , SA(t′ − s)∆Kδ,xk〉ds

)2

dt′dt,
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again using Itô’s isometry in the last line. Arguing as in (i) by the semigroup identity and
SA(t− s) = SA(t− t′)SA(t′ − s), the ds-integral equals∫ t′

0
〈SA(2(t′ − s))∆Kδ,xk , SA(t− t′)∆Kδ,xk〉ds

=
1

2DA
〈(SA(2t′)− I)Kδ,xk , SA(t− t′)∆Kδ,xk〉 6

1

2DA
〈Kδ,xk , SA(t− t′)(−∆)Kδ,xk〉,

where we used in the inequality that the −∆ and thus SA(t) for t > 0 are self-adjoint,
non-negative operators, which commute. This also shows that the ds-integral from above
is in fact non-negative, and so we obtain from the last display using the Cauchy-Schwarz
inequality

Var(Īδ) . ‖K‖2L2(R)

M∑
k=1

∫ T

0

∫ t

0
‖SA(t′)∆Kδ,xk‖

2dt′dt . E[Īδ] . δ−2,

cf. (A.7) and (i), implying δ4Var(Īδ)→ 0 and (ii) follows.
(iii). Recall from the proof of Theorem 2.1 that Ã ∈ C([0, T ];C2(Λ)) P-almost surely.

This means∣∣∣Ã∆
δ (t, xk)

∣∣∣ =
∣∣∣〈∆Ã(t),Kδ,xk〉

∣∣∣ 6 ‖Ã‖C([0,T ];C2(Λ))‖Kδ,xk‖L1(Λ) = OP(δ1/2),(A.8)

using ‖Kδ,xk‖L1(Λ) 6 δ1/2‖K‖L1(R). We conclude by the Cauchy-Schwarz inequality and (i),
because∣∣Iδ − Īδ∣∣ . M∑

k=1

∫ T

0

((
Ã∆
δ (t, xk)

)2
+ 2

∣∣∣Ã∆
δ (t, xk)Ā

∆
δ (t, xk)

∣∣∣) dt = OP(δ + δ1/2Ī1/2
δ ).

(iv). The Cauchy-Schwarz inequality and (i,ii,iii) show

|Rδ| . I
1/2
δ

(
M∑
k=1

∫ T

0
〈FA(X(t)),Kδ,xk〉

2dt

)1/2

. I1/2
δ δ1/2‖FA(X(·))‖C([0,T ];C(Λ))‖K‖L1(R).

This is of order OP(δ−1/2), using that FA(X(·)) ∈ C([0, T ];C(Λ)) P-almost surely by
Theorem 2.1, recalling that z 7→ FA(z) is Lipschitz, and the result follows.

Appendix B. Setup of numerical and real data experiments.
All simulations were performed with parameters and initial conditions obtained by

calibrating the deterministic Meinhardt model to experimental data. The parameters in
(1.1), (2.1) and (2.2) are taken from [24, Table S1, Figure 4],

DA = 4.415× 10−2, DI = 9.768× 10−2,

rA = 2.393× 10−1, rI = 2.378× 10−1,

bA = 2.776× 10−1, bI = 2.076× 10−1,

sA = 5.647× 10−3, sI = 3.397× 10−1,

a = 1.280× 10−2.



16 R. ALTMEYER, T. BRETSCHNEIDER, J. JANÁK AND M. REIß

The initial conditions for the activator A and inhibitor I are taken correspondingly from
[24, Table S2, Figure 4].

Numerical simulations were performed in the programming language Julia using a finite
difference scheme for semilinear SPDEs [25]. The source code can be obtained from the
authors upon request. For comparison to the experimental setup of [24] we consider T =
100, L = 20 and choose dt = T/N and dx = L/M as step sizes for time and space
discretisations, such that the Courant-Friedrichs-Lewy (CFL) condition is satisfied, ensuring
stable simulations, that is dt � (dx)2 [25].
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