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1 Construction and properties of Brownian motion

1.1 Motivation

1.1 Definition. A process (B, t > 0) on (§2,.%#,P) is called Brownian motion
(Brownsche Bewegung) if

(a) Bo=0and B; ~ N(0,t), t > 0, holds;

(b) the increments are stationary and independent: for 0 < tp <t1 < -+ <t
we have

(Bt, — Biy, .., B, — B, ) ~ N(0,diag(t; —to, ..., tm — tm—-1)).
(¢) B has continuous sample paths, i.e. t — By(w) is continuous (for P-almost
all w € Q).

1.2 Definition. Brownian motion (B, ¢ € [0,7]) induces an image measure
(law) PV := P(BotEl0T]) on the path space (C([0,T]), Bo(o,r)), called Wiener
measure.

1.3 Remark. Recall the construction of Brownian motion as a limit of rescaled,
interpolated random walks via Donsker’s invariance principle.

1.4 Lemma. Let (B, t > 0) be a Brownian motion. Then the following pro-
cesses are also Brownian motions:

(a) (=Bt > 0);
(b) (a=Y2By, t = 0) for any a > 0 (’time change’);
(c) (Xt,t > 0) with Xy = tBy, fort >0 and Xo = 0 ("time inversion’).

1.2 Construction of Brownian motion

1.5 Lemma. Brownian motion (B, t > 0) is a centred Gaussian process with
covariance function Cov(By, Bs) = t As, t,s = 0. Conversely, a continuous
Gaussian process (X¢, t > 0) with E[X;] =0, Cov(Xy, Xs) =tAs, t,s 20, is a
Brownian motion.

1.6 Definition. Two processes (X, t € T), (Yi, t € T') on (2,.7,P) are called
(a) indistinguishable (ununterscheidbar) if PVt € T: X, =Y;) = 1;

(b) versions or modifications (Versionen, Modifikationen) of each other if we
haveVteT: P(X;=Y;) = 1.

1.7 Theorem. (Kolmogorov, Centsov, 1956) Let (Xi)iejo,m) be a stochastic
process on (2, F,P). If there are constants C > 0, a, B > 0 such that

Vs,t € [0,T]: E[|X; — X,|% < C|t — s|'*P,
then X has a continuous version X, which has even v-Holder continuous paths
for any v € (0,8/a), i.e.
Vw € Q3IL(w) > 0Vt s € [0,T] : | Xi(w) — Xs(w)| < L(w)|t — s|7.

1.8 Corollary. Brownian motion exists and has a.s. v-Holder-continuous sam-
ple paths for any v € (0,1/2).




1.3 Properties of Brownian sample paths

1.9 Theorem. (Quadratic variation, Lévy) Let 7, = {t(on), ... ,t&’;i} with 0 =

t(()n) < < tﬁl}i =1, n > 1, be partitions of [0,1] with T, C Tp11 (refinement)

tin) . tgn

and max;=1,. .m,| 7)1] — 0 as n — oo (asymptotically dense). Then for a

Brownian motion B

Mn
. 2
i Z;(Btg”)/\t - Bt§ﬁ>lAt) =t
1=

holds in L? and almost surely.

1.10 Corollary. Brownian motion is a.s. mot of bounded variation on any
interval [0,t] and in particular not continuously differentiable.

1.11 Theorem. (Law of the iterated logarithm, Khinchine 1933) For Brownian
motion B we have almost surely:

| B —1;
(a) limsupy 2t log(log(t—1)) b

(b) liminf; o 1;

By - _
v/ 2tlog(log(t—1))
By

(C) lim SuptToo m = 1,'

(d) liminfyp, ——2—— = —

v/ 2t log(log(t))
1.12 Lemma. For Z ~ N(0,1) and a > 0 we have the bounds

1 1

e=a?/2 <P(Z >a)< @2

V2ma+1/a T V2ra
1.4 Brownian motion as a martingale and Markov process
1.13 Definition. A process (X, t > 0) is called
(a) adapted to a filtration (:#)i>0 if Xt is Fi-measurable for all ¢ > 0;

(b) (F)-martingale (sub-/super-martingale) if it is adapted, X; € L!(P) and
E[Xt | 95] = Xs (E[Xt ‘ fs] 2 XS, E[Xt ]fis] < XS) for all 0 < S < t,

(¢) (Z#)-Brownian motion if it is adapted, continuous, Xy = 0, the increments
X;— X, are independent of %5 and X; — X5 ~ N(0,t—s) forall 0 < s < t.

1.14 Proposition. If B is an (%#;)-Brownian motion, then the following pro-
cesses are (F)-martingales:

By, Bf —t; exp(AB; — $A\*) for any A € R.

1.15 Proposition. If B is a Brownian motion with respect to a filtration
(F)i=0, then also with respect to its right-continuous extension F; = FL =

ns>t 3?50




1.16 Definition. A random variable 7 with values in [0,+o00] is called
(F)-stopping time if {7 < t} € % holds for all t > 0. The o-algebra of
T-history is given by #, :={A € F|AN{r <t} € F for all t > 0}.

From now on we always assume a right-continuous filtration (%#;)¢>0.

1.17 Lemma. For an adapted right-continuous process X and a finite stopping
time 7, the map w — X,y (w) is Fr-measurable.

1.18 Lemma. Let 7 be an (%;)i>0-stopping time and t > 0. Then:
(a) FiNFr C Fiprs
(b)) Ae F, A e F= An{r <t} ,AN{r >t} € Fipnr;

(c) For an #;-measurable random variable X and an F;-measurable ran-
dom variable X', the random variables X1(1 < t), X'1(7 > t) are Fip,-
measurable.

1.19 Theorem. Let (X, t > 0) be an (%;)-adapted right-continuous process
with Xy € LY(P) for allt > 0. Then the following are equivalent:

(a) X is a martingale;
(b) for any bounded stopping time T we have E[X ;] = E[X];

(c) for all bounded stopping times o < T we have E[X; |.%#,] = X, (optional
sampling);

(d) for all stopping times T the process (Xipr,t = 0) is an (F)-martingale
(optional stopping).

1.20 Corollary. For a right-continuous martingale (My,t > 0) and a finite
stopping time T we have E[M;] = E[My] provided (Mipr,t > 0) is uniformly
integrable (e.g. dominated or bounded).

1.21 Proposition. For a Brownian motion (Bt > 0) and the stopping time
Tap = 1nf{t > 0| X; ¢ (a,b)} of first hitting a < 0 or b > 0 we have

d b
P(B,,, = a) = ,
la| + b’ ( ab @) la| + b

P(B;,, =b) = E[rap) = |alb.

1.22 Proposition. For a Brownian motion (By,t > 0) and the passage time
Ty :=1inf{t > 0| X; = b} at b > 0 we have

E[e=*™] = eV A >,

which yields (using inverse Laplace transfrom) that 1, has the density

b 2
) = —=e /) 0.
V2rt3
1.23 Theorem. Brownian motion B is a strong Markov process in the sense
that for any finite stopping time T the process By == By — Br, t > 0, is again
a Brownian motion, independent of .



1.24 Corollary. (Reflection principle) We have P(maxocs<t Bs = b) =
2P(B; = b) for a Brownian motion B and t,b > 0.

1.25 Corollary. The random variables M; = maxo<s<¢ By, |Bi| and My — By
have the same distribution for a Brownian motion B and t > 0.

2 Continuous martingales and stochastic integration

2.1 Local martingales and simple stochastic integrals

2.1 Definition. An (.%#;)-adapted continuous process (M;,t > 0) is called
continuous local martingale if there are (.%#;)-stopping times 71 < 7 < ---
with 7, T 400 a.s. such that M/ := M., , t > 0, are (.%;)-martingales for all
n > 1. The sequence (7,) is called localising sequence of stopping times for M.

2.2 Definition. A piecewise constant process (X, ¢ > 0) of the form
Xi(w) =D &)l wymaw)t), t=0,we,
k=0

is a simple process if 0 = 79 < 7 < -+ are (%;)-stopping times with 7 T oo
a.s. and each & is an (%, )-measurable (real) random variable. For any other

adapted process (Y, t > 0) we call

t o0
| XV = S Wiy~ Vi), 20,
0 k=0

the stochastic integral of X with respect to Y.

2.3 Proposition. If X is a simple bounded process and M a continuous L?-
martingale, then (fg XodM;,t > 0) is a continuous L>-martingale as well.

If X is a simple process and M is a continuous martingale, then
(f(;f XsdMs,t > 0) is a continuous local martingale.

2.4 Proposition. Let Xy = Y27 &1 (7, 7,,,](t) be a bounded simple process
with | X¢| < C for all t > 0 and a deterministic constant C > 0. If M is a
continuous L%-martingale, then

t 2 o
B[( [ xam)] = SE[EBM,,, ~ M, | Finnl] < CEMEL
k=0

2.2 Quadratic variation

2.5 Definition. From now on we always suppose that the filtration (.%;) con-
tains all null sets (it is completed). Together with right-continuity it fulfills the
"usual conditions’.

A% denotes the space of all continuous (.%;)-martingales (M, 0 < t < T)
with My = 0, My € L*(P). For M,N € .#3 we set [|M]| 42 := || M| 12(p),
(M, N)_42 == (Mr, Nr) 128, = E[MrNr).
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2.6 Proposition. (.72 (s, ')//%) is a Hilbert space, i.e. a complete space with
scalar product, if indistinguishable M, M’ € ///:,% are identified.

2.7 Theorem. Suppose the martingale M € //l% has finite variation, i.e.

V(M) = supyzq 2502 (M) — My | < 00 a.s. for partitions = 0 = t(()n) <
i i—1

£ <<t = T with max [t — ") = 0. Then M =0 a.s.

2.8 Theorem. For every bounded continuous martingale (M, t > 0) there ex-
ists a unique (up to indistinguishability) quadratic variation process ({M)¢, t >
0), which is adapted, continuous, increasing with (M)o = 0 and (M? — (M), t >
0) is a martingale.

2.9 Corollary. For every continuous local martingale (My,t > 0) there exists
a unique (up to indistinguishability) quadratic variation process ((M):,t > 0),
which is adapted, continuous, increasing with (M) = 0 and (M} — (M), t > 0)
s a local martingale.

2.3 Stochastic integration

2.10 Lemma. For a bounded simple process (Xi,t € [0,T]) and M € .42 the
stochastic integral is a continuous L?-martingale with

(a) (3 XsdMy)e = [y X2d(M)s, t € [0,T);
(b) E[(f5 XsdM,)?] = E| fg X2d(M),] (Ité isometry), t € [0,T].

Proof. We have for ¢,h > 0 (with ft+h = t+h fo

t+h ¢ t+h t+h t
( 0 XSdMs)2—</O Xdes)2 - ( | Xdes)2+2(/t XdeS> (/O Xdes>.
We have

t+h
E { ¢ XsdM, } [ng St h)(MTkH/\(Hh)Vt - MTk/\(t+h)\/t) ’ yt]
k>0

= ZE [&f <t+h)E [ e AER)vE — Mo ae+nyve ‘ ﬁm/\(t—&-h)vt} ‘ 9}} =0,

k>0

where we used that §g1(r, <t + h) is F, A(44n)v¢-measurable by Lemma m
(and 7, Ai+h) € Fr, /\(t—i—h)\/t) as well as that the inner conditional expectation

vanishes by optional sampling. Since fg X dM; is #-measurable, we obtain

Bl2(

o XSdMS> (/t XSdMS> )y}} —0.
0



Exactly as in the proof of Proposition

=10,

t+h 2 _
XdeS) ‘ 5&}} = ZE _513 E[M3k+1/\(t+h)vt - M'?k/\(t+h)vt | Fren+nyvil ‘ ﬁt}

= Z E fl% E[<M>‘rk+1/\(t+h)\/t - <M>‘rk/\(t+h)\/t ‘ yfk/\(tJrh)vt] ‘ 915}

=> E _€£(<M>Tk,+1/\(t+h)\/t — M) At+h)vi) ’ «%}

- [ X2d(M),

S

5]

We conclude

=10,

Since t +— fg X2d({M)s starts in zero, is adapted, continuous, increasing, the
last identity shows that it is indeed the quadratic variation process.

The Ito isometry follows by taking the expected value of the quadratic
variation of f0° XsdMy, which is a centred martingale. O

o Xdes)zlyt}—(/t XSdMS>2 :E[ o X2d(M), g?t]—/t X2d(M)s,.
0 0 0

2.11 Definition. A process (Xy,t > 0) is called progressively measurable with
respect to (%) if it is (.%#;)-adapted and the function (w, s) — Xs(w) on 2x[0, ¢]
is F @ P -measurable for all ¢ > 0.

2.12 Lemma. FEvery adapted left- or right-continuous process is progressively
measurable. In particular, every simple process is progressively measurable.

2.13 Definition. For M € ///:,% introduce the space
T

Lr(M) = {(Xt,t €10,7)) ) X progressively measurable, E [/ de(M}t} < oo}
0

with norm || X||pr = E[fOTde(M>t]1/2 and scalar product (X,Y )y 1 =
E[f; X;Yid(M)], identifying X and Y with [ (X; — ¥;)2d(M); = 0 a.s.

2.14 Lemma. 2 (M) is a Hilbert space.

2.15 Theorem. The set &r = {(X¢,t € [0,T])| X simple and bounded} is
dense in Lp(M).

2.16 Definition. The linear map It : & C (M) — #2? with I7(X) =
fo. XsdM; is isometric and thus has a unique isometric extension I : Zp(M) —
M2, For X € Zp(M) we define the stochastic integral

/ X dM, = Ip(X) € M2
0

Equivalently, for X € %r(M) we choose X (™ € & with | X™ — X|[pr7 — 0
and define

t t
/ XydM, := lim [ XMdM,, t €[0,T], in A4}
0

n—o0 0



2.17 Proposition. (Properties of the stochastic integral) For M € .#* and
X € (M) we have

(a) (Jy XsdMy,t € [0,T)) € M3 such that E[ [ X,dM, | F,] = 0 for all 0 <
u<t<T andt— fg XdMy is continuous a.s.

(b) (fg XodM) = [y XPd(M); and E[(fy XsdM,)?] = E[[fy X2d(M),] (Ito
isometry), t € [0,T].

(c)Va,f € R, X,Y € Z(M), t € [0,T] : [i(aXs + BYs)dM, =
a [y XodM, + B [) YodM,.

2.18 Lemma. For M € .#2, X € %r(M) and a stopping time T we have

tAT
/ XsdMg = /XdMT /Xl T)dMs a.s.

2.19 Definition. For a continuous local martingale (M, t € [0,T]) with My =
0 define

T
Lroe,r(M) == {(Xt,t € [0,77) ) X progr. measurable, /0 X2d(M); < oo a.s.}.

If (0,) are stopping times localising M (such that M°» € .#2%), introduce
Tp := op Anf{t > 0| fot X2d(M)s > n} and define the stochastic integral for
X € Loe(M) as

n—oo

/ XsdM = lim X aM;m, te]|0,T],

with a.s.-convergence.

2.20 Proposition. For a continuous local martingale (My,t € [0,T]) with
My = 0 and X € Loe (M) the stochastic integral fo. XdM, is well defined
and satisfies:

(a) (fg XsdMs,t € [0,T]) is a continuous local martingale;

(b) ([5 XsdMy), = fg X2d{M)s, t €[0,T], where for a continuous local mar-
tingale N the quadratic variation t — (N)¢ is an adapted, continuous,
increasing process such that N} — (N)y, t € [0,T] forms a local martin-
gale.

(c) ftm XsdMg = fg XsdMT = fg Xs1(s < 7)dMs holds a.s. for any stop-
ping time T.
2.21 Theorem. If (M, t € [0,T)]) is a continuous local martingale with My = 0
and (X¢,t € [0,T]) is an adapted, continuous process, then X € Loe (M) and
for partitions 0 = tém) - < t&m) =t of[0,t] C [0,T] with max;(t, ¢ )—tETl)) —
0 as m — co we have

Nm t
P

E Xt(m)(Mt(m) — Mt(m)) —>/ XdMs.

—  ti i i1 0



2.22 Corollary. For a continuous local martingale (M, t € [0,T]) with My = 0

and partitions 0 = tém) < e < t%) =t of [0,t] C [0,7] with maxi(tz(»m) -
tETl)) — 0 as m — oo we have

Nom, t

P
> (M, (m) — Mt(ml)f - (M), and M?=2 /0 ModM, + (M);.
1:1 k2 11—

3 Main theorems of stochastic analysis

3.1 The Ito formula

3.1 Definition. A continuous semi-martingale (X¢,t € [0,7]) with respect to
some filtration (.%;) is a continuous, (.%#;)-adapted process which can be decom-
posed as Xy = M; + Ay, t € [0,T], with a continuous local (.%;)-martingale M
and a finite variation process A (which is then necessarily continuous, adapted).
We define

t t t
/stXs ;:/ stMer/ YidA,, tel0,T),
0 0 0

when YV € Zoer(M) and f(fY;(w)dAs(w) is a.s. well defined, i.e. Y(w) €
LY (p1(w) + po(w)) as., when A, = Agl) - A§2) for some increasing pro-
cess AD,A® and p; denote the by A® induced Lebesgue-Stieltjes measures,
1 = 1,2. In particular, fot Ysd X, is well defined for continuous, (.%;)-adapted
processes Y.

3.2 Definition. For a continuous semi-martingale X its quadratic variation is
given by

Nm

(X)e = n}ﬂ’})oz(thmw - XtETl)/\t)2’ t€[0,71,
i=1

with convergence in probability for any sequence of partitions 0 = tém) <<

t,({Z =T with max;—1,..p,, (tz(m) — tETl)) — 0 as m — oo (if the limit exists).

For two continuous semi-martingales the quadratic covariation is defined via
polarisation as

(X,Y); = %((X+Y>t (X - Y>t>, te0,7].

3.3 Proposition. For a continuous semi-martingale X = M + A the quadratic
variation ezists and satisfies (X)¢ = (M ).

In general, for any continuous semi-martingale X and any continuous finite
variation process A we have (X, Ay = 0.

3.4 Theorem (Partial integration). For continuous semi-martingales X,Y we
have

t t
Xth:XoYo—i—/ Xde5+/ YsdXs+(X,Y):, te€][0,T], a.s.
0 0



and in particular
t
X2 =X2+ 2/ XdXs+(X), te€]0,T], as.
0

3.5 Theorem (Associativity of stochastic integration). Let M € .#%, X €
ZLr(M) and Y € ZLp(N) with Ny = fo XsdMs. Then YX € Zp(M) and

t

/YSdNS—/ Y XsdMs, t€]0,T], a.s.

0 0
This holds more generally for continuous semi-martingales M and processes
X, Y for which the integrals make sense.

3.6 Theorem. If X is a continuous semi-martingale and f € C?*(R), then
(f(X¢),t €0,T]) is a continuous semi-martingale and the It formula holds:

f(Xy) = f(Xo) / f(Xs)dXs+ = / (X s, t€[0,T], a.s.
3.7 Definition. A d-dimensional continuous semi-martingale X, =
(Xt(l), . ,Xt(d))T is a vector of d (one-dimensional) continuous semi-martingales
Xt(l), ce X(d) A d-dimensional Brownian motion B; = (Bgl), . ,Bt(d))T is a
vector of d independent Brownian motions Bt( ), . 7Bt(d).

3.8 Theorem (Multi-dimensional It6 formula). If X is a d-dimensional contin-
uous semi-martingale and f € C%(R?), then (f(X¢),t € [0,T]) is a continuous
(one-dimensional) semi—martmgale and the following Ito formula holds:

3.9 Corollary. If X is a continuous semi-martingale and f € C>'(R x RT)
(i.e., f € CYRxRT) and z — f(x,t) € C*(R) for allt > 0), then (f(X3,t),t €
[0,T]) is a continuous semi-martingale and

2
J(Xi,t) = f(Xo,0) /6 (X, ) dX+/ 8f X, )d+ gé

3.10 Corollary. If f € C?*(R?), z € R? and B is d-dimensional Brownian
motion, then for X; = x + By

10 = 1@+ [ wrgaxy+ [ anr

where V denotes the gradient and A the Laplace operator. In particular, for a
harmonic function f (i.e. Af =0) the process (f(X),t € [0,T]) is a continuous

(XS7 S)d<X>

local martingale.

3.11 Corollary. Consider Xy = x + By, t > 0 for a d-dimensional Brownian
motion B and x € R\{0}. Then for 0 < r < |z|

1, for d € {1,2},
ez = {(T/\x!)dQ <1, ford=3

9



3.2 Important consequences

3.12 Theorem (Lévy’s characterisation of Brownian motion). For an (%;)-

adapted stochastic process (B, t > 0) the following are equivalent:
(a) B is an (%)-Brownian motion;
(b) B is a continuous local (F)-martingale with By = 0 and (B); =t. t > 0.

3.13 Theorem (Burkholder-Davis-Gundy inequality). For every p > 0 there

are constants c,, Cp, > 0 such that for any continuous local martingale M with
My=0
¢ E[(M)?] < E [ max |M, "] < G, E[(M)}"].

0<s<t

3.3 DMartingale representation theorems

3.14 Proposition. A continuous local martingale M with My = 0 satisfies
M e #} = E[(M)r] < co. In particular, for a continuous local martingale

M and X € Loe (M) we have (ngdeS,t € [0,T)) € 4% if and only if
E[f] X2d(M),] < co.

3.15 Theorem (Doob’s martingale representation). Let M be a continuous
local martingale with My = 0 and an absolutely continuous quadratic variation
(i.e., (M) = fot Gsds, t > 0, for some Go(w) € L*([0,00))). Then there is a

Brownian motion (possibly on an enlarged probability space) and X € Loe1(B)
such that a.s.

t
Mt = / Xsst’ t>0.
0

3.16 Theorem (Brownian martingale representation). For a Brownian motion
B let (%) be the completed canonical filtration of B. Then:

(a) For a random variable Z € L*(Q, %1, P) there exists a unique h € £r(B)
with

T
Z =E[Z] +/ hsdBs.
0

(b) For every L*>-martingale (My,t € [0,T]) with respect to (F;) there is a
unique h € L1 (B) with

t
Mt = MO —|—/ hSst, a.s., te [O,T]
0

(c) Statement (b) remains true for continuous local martingales M and h €

ﬁoc,T(B)-

3.17 Corollary. Every L?-martingale with respect to the completed canonical
Brownian filtration has a continuous version.

3.18 Corollary. The completed canonical Brownian filtration is right-
continuous.

10



3.19 Theorem (Dambins, Dubbins, Schwarz; time-changed Brownian motion).
Let M be a continuous local (F;)-martingale with My = 0 and limy_, oo (M), =
o0 a.s., where the filtration (F) is completed by null sets. Then there is a
Brownian motion B such that a.s.

Vi 2 0: Mt == B<M>t
3.20 Lemma. Let M be a continuous local martingale. For all 0 < a < b the
events {Vt € [a,b] : My = My} and {{M), = (M)} are a.s. equal.
3.4 Change of measure

3.21 Lemma. Let (Lt € [0,T]) be a non-negative martingale on
(Q,.7,(F),P) with E[Ly] = 1. Then defining the probability measure Qp on
Fr via dc% = L7 we have for any Fy-measurable Y € LY(Q7), t € [0,T):

EplY Ly | 7.
Vs € [0,t]: Eq,[Y | F = P[Lt‘s] Qr -a.s.
S

3.22 Corollary. In the setting of the lemma assume that (MyLy,t € [0,7T)) is
a P-martingale for some adapted process M. Then (Mg, t € [0,T]) is a Qp-
martingale.

3.23 Theorem (Girsanov 1960). Suppose X € Lo 7(B) for a Brownian mo-
tion B and let

t 1 t
L, = exp</ XSdBS—2/ des), te[0,T].
0 0

If L is a martingale (for which E[Ly] =1 suffices), then
- t

Bt = Bt—/ XSdS, te [O,T],
0

defines a Brownian motion under the probability measure Qp given by
dQr /dP = Lp.

3.24 Definition. The Cameron-Martin space of Brownian motion on [0,77] is
given by

t
H = {f e C([0,T]) |3g € L*([0,T))Vt € [0,T] : f(t) :/ g(s) ds}.
0

3.25 Corollary. For all functions h € J the laws of a Brownian motion
(B, t € [0,T]) and of (B + h(t),t € [0,T]) on C([0,T]) are equivalent (have
the same null sets).

3.26 Definition. The support of a probability measure P on the Borel o-
algebra of a metric space is given by

supp(P) := ﬂ{A closed | P(A) = 1}.

11



3.27 Corollary. The support of the law Piof Brownian motion on C([0,T7)
(Wiener measure) is given by supp(P¥) = # = {f € C([0,T])| f(0) = 0}.

3.28 Theorem. Suppose X € Lo r(B) for a Brownian motion B and let
Y, = fg XsdBs, t € [0,T]. Then the implications (a) = (b) = (c¢) hold with

(a) (Novikov condition): Elexp(3(Y)r)] < oo;
(b) (Kazamaki condition): Y is a martingale and Elexp(5Yr)] < oo;
(¢) (Girsanov hypothesis): Ly = exp(Y; — 5(Y),), t € [0, T, is a martingale.

3.29 Corollary (piecewise Novikov condition). The Girsanov condition in part
(c) of the theorem holds already if there are 0 = tg < t; < -+ < ty, =T such

that .
1 i
v¢:1,...,m;E[exp(§ des>}<oo.

ti—1

3.30 Lemma. For a,zq € R deterministic and a Brownian motion B the
Ornstein- Uhlenbeck process X; := e®zq + e® fot e~ *dBs solves the stochastic
differential equation

dXt = (IXtdt + dBt, t > 07 X() = X0

in the sense that a.s.

t
Xt:a:o+/aXsds+Bt, t>0.
0

3.31 Lemma. Fora € R let Lga) (X) = exp(fot aXdX — 3 gaQngds). Then

for a Brownian motion B the process (Lga)(B),t € [0,T]) is a martingale.

(a)
Under Qﬁﬁ) on C([0,T]), given by dd%g = ng) (X) for the coordinate process
T

X € C([0,T)) and the law P2 of Brownian motion on C([0,T)), the process

t
B .= X, —/ aX,ds, tel0,T],
0

18 a Brownian motion.

3.32 Corollary. The law Qg?) of the Ornstein-Uhlenbeck process with param-
eter a € R and initial value zg = 0 on C([0,T]) has the likelihood function
(density)

T 1 (T
Lr(a) = exp (/ aXdX; — 2/ athth>
0 0

with respect to ]P’% = Qg? ). The mazimum-likelihood estimator ar of the param-
eter a € R, given the continuous observation of an Ornstein-Uhlenbeck process
(X¢,t €10,TY), is given by

T XdX,

ar = .
ST x2dt

12



3.33 Lemma. If ag < 0 holds, then we have %fg X2dt — |2a0|™! as T — oo

in LQ(Qg?O))—com)eTgence.

3.34 Theorem (martingale CLT). For every T > 0 let X € Zr(B) for a
Brownian motion B and assume that there are deterministic numbers o1 > 0

such that o> fOT X2dt 5 1. Then
T d
;1/ X:dB; % N(0,1) as T — oo.
0

3.35 Corollary. Under Qgﬂlo) we have

) x,aB*
ST Xx2dt

ELT = ag +

and the estimation error satisfies for ag < 0
VT (ar — ag) % N(0,2]ao)).

3.36 Corollary. For o € (0,1) the interval

o ~ /914 ~
I’ir—a = |:CLT - |’L11“T|Q1—o¢/27aT +

is an asymptotic (1 — a)-confidence interval for ag < 0, where q_o/2 denotes
the (1 — a/2)-quantile of N(0,1).

TT‘ Q1—o¢/2:|

3.5 Kunita-Watanabe theory

3.37 Proposition. Let M and N be two continuous local martingales.

(a) ((M,N)¢,t > 0) is the unique (up to indistinguishability) continuous,
adapted, finite-variation process starting in zero such that

(MyN; — (M, N)y,t > 0)
is a local martingale.
(b) The map (M,N) — (M, N) is bilinear and symmetric.
(¢) (M,N), = (M — My, N — No)¢ for all t € [0,T].

3.38 Remark. Recall from Exercise 6.1 that every function f: [0,7] — R of
finite variation can be written as f = f; — fo for monotone functions f; and fs.
The variation of f is defined as

V(e = ht) + fat), t€][0,T].

3.39 Lemma (Kunita-Watanabe inequality). Let M and N be continu-
ous local martingales and let H and K be measurable processes such that
S| Hy K |dV (M, N)); < oo. Then

/ H, K d{M, N),

13
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3.40 Theorem. Let M € .#% and H € Zp(M). The stochastic integral
fo. H,dM; is the unique element in //l% that satisfies

</ HSdMS,N>:/ H,d(M,N), VN € .43
0 0

3.41 Corollary. For M, N € .#}% and H € %r(M), K € %r(M) we have

. . t
</ Hdes,/ stNs> :/ H,K.d(M,,N,) Vte[0,T].
0 0 t 0

4 Stochastic differential equations

4.1 Strong solutions

4.1 Definition. Let (Q,.7,(.%#;),P) be a filtered probability space with a fil-
tration (.%;) satisfying the usual conditions and carrying an m-dimensional
(Z#1)-Brownian motion and an %p-measurable random variable £. A strong
solution to the SDE

dXt = b(Xt,t) dt + O'(Xt, t) dBt, t 2 O, XQ == 6 (41)

is a continuous, (.%;)-adapted d-dimensional process (X¢,t > 0) satisfying a.s.

t t
Xt:§+/ b(Xs,s)ds+/ o0(Xs,s8)dBs, t=0.
0 0

Here b : R?x[0,00) — RY, o : RTx[0,00) — R¥™ are measurable, locally
bounded (e.g. continuous) functions and we understand coordinatewise

WV

t m t
Xi,t:&-—i—/ bi(XS,s)ds—i—Z/ 0ij(Xs,5)dBjs, t>0.
0 : 0
J=1

4.2 Lemma (Gronwall). Let f: [0,T] — R? be bounded, measurable. Assume
for some a,b > 0 that

f(t)<a+b/0 f(s)ds, tel0,T].

Then f(t) < ae® holds for all t € [0,T).

4.3 Definition. The Frobenius or Hilbert-Schmidt norm of a matrix M €
RY>™ is given by | M||r = (3 ij)l/g.

i:17"'7d7j:17"'7m

4.4 Lemma. Let b,o be of linear growth, i.e.
IK >0Vz € RY >0 |b(z,t)| + ||o(z, t)|F < K1+ |2]),

and assume E[|€|?] < co. Then for any T > 1 every strong solution of the SDE
(4.1)) satisfies

vte[0,T]: E [ sup |XS]2} < C(K*1? +E[|€|2])GCTK% < %

0<s<t

with some numerical constant C > 0.
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4.5 Theorem. Assume that there is a K > 0 such that

(a) Yo,y € Rt > 00 [b(a,t) = b(y, t)| + oz, 1) — o(y.t)|r < K|z —y]
(global Lipschitz condition) and

(b) Ve € Rt >0 |b(z,t)| + ||lo(z,t)||r < K(1+|z|) (linear growth).
If E[|€]?] < oo holds, then the SDE (4.1)) has a strong solution which is unique
in the sense that two solutions are indistinguishable.
4.2 Weak solutions

4.6 Definition. A weak solution to the above SDE is an adapted, continuous
process (X¢,t > 0), defined on some(!) filtered probability space (92, .7, (%), P),
satisfying the usual conditions, carrying an (.%;)-Brownian motion B and an
Fo-measurable random variable &, such that a.s.

t t
thf—i—/ b(Xs,s)ds+/ 0(Xs,8)dBs, t>0.
0 0

We say that weak uniqueness holds if any two weak solutions have the same
finite-dimensional distributions, i.e. generate the same law on C([0, c0)).

4.7 Theorem. Ifb: R? x[0,T] — R is measurable, bounded, then the SDE
dX; =b(Xy,t)dt +dBy, t€[0,T); Xo=¢

has a weak solution and weak uniqueness holds.

4.3 Connections to PDEs
4.8 Lemma. For a (weak or strong) solution X of the time-homogeneous SDE
dX; = b(Xt) dt + O'(Xt) dB:, t>0; Xo=¢ (42)

and f € C?(RY) we have a.s.
t ¢
FO) = 1O + [ (2N ds+ [ (VI)0(X)dB), >0,
0 0
in terms of the differential operator

d d

Lf(x) =) bi(2)0, f(x) + % > aij(2)0e,0n, f ()

i=1 ij=1
with

aij(z) =Y oin(x)o(x) = (o0 )ij(@).
k=1

If Zf(x) =0 for all z € RY, then f(X;) — f(€) is a local martingale.
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4.9 Definition. Let D C R? be a bounded domain (i.e., open and connected)

and ¢ € C(0D). Then u € C?(D) N C(D) solves the Dirichlet problem (.Z, )
if

ZLu(x)=0, ze€D, and wu(z)=e¢(x), ze€dD.

4.10 Theorem. Assume that u solves the Dirichlet problem (£, ) and that
the SDE (4.2)) admits a solution X* with initial value X§ = = for some x € D.
If the stopping time Top = inf{t > 0| X} € 9D} is a.s. finite, then we have

u(z) = Elp(X7, )]

ToD

If the assumptions hold for all x € D, then the solution for the Dirichlet problem
is unique, and it satisfies u(x) € [minycpp ©(y), maxycap p(y)].
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