
Stochastic Analysis

(Stochastic Processes II)

course notes

summer semester 2024

Markus Reiß
Humboldt-Universität zu Berlin

Preliminary version, 15. Juli 2024

Contents

1 Construction and properties of Brownian motion 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Construction of Brownian motion . . . . . . . . . . . . . . . . . . 1
1.3 Properties of Brownian sample paths . . . . . . . . . . . . . . . . 2
1.4 Brownian motion as a martingale and Markov process . . . . . . 2

2 Continuous martingales and stochastic integration 4
2.1 Local martingales and simple stochastic integrals . . . . . . . . . 4
2.2 Quadratic variation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Stochastic integration . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Main theorems of stochastic analysis 8
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1 Construction and properties of Brownian motion

1.1 Motivation

1.1 Definition. A process (Bt, t > 0) on (Ω,F ,P) is called Brownian motion
(Brownsche Bewegung) if

(a) B0 = 0 and Bt ∼ N(0, t), t > 0, holds;

(b) the increments are stationary and independent: for 0 6 t0 < t1 < · · · < tm
we have

(Bt1 −Bt0 , . . . , Btm −Btm−1) ∼ N
(
0, diag(t1 − t0, . . . , tm − tm−1)

)
.

(c) B has continuous sample paths, i.e. t 7→ Bt(ω) is continuous (for P-almost
all ω ∈ Ω).

1.2 Definition. Brownian motion (Bt, t ∈ [0, T ]) induces an image measure
(law) PW := P(Bt,t∈[0,T ]) on the path space (C([0, T ]),BC([0,T ])), called Wiener
measure.

1.3 Remark. Recall the construction of Brownian motion as a limit of rescaled,
interpolated random walks via Donsker’s invariance principle.

1.4 Lemma. Let (Bt, t > 0) be a Brownian motion. Then the following pro-
cesses are also Brownian motions:

(a) (−Bt, t > 0);

(b) (a−1/2Bat, t > 0) for any a > 0 (’time change’);

(c) (Xt, t > 0) with Xt = tB1/t for t > 0 and X0 = 0 (’time inversion’).

1.2 Construction of Brownian motion

1.5 Lemma. Brownian motion (Bt, t > 0) is a centred Gaussian process with
covariance function Cov(Bt, Bs) = t ∧ s, t, s > 0. Conversely, a continuous
Gaussian process (Xt, t > 0) with E[Xt] = 0, Cov(Xt, Xs) = t∧ s, t, s > 0, is a
Brownian motion.

1.6 Definition. Two processes (Xt, t ∈ T ), (Yt, t ∈ T ) on (Ω,F ,P) are called

(a) indistinguishable (ununterscheidbar) if P(∀ t ∈ T : Xt = Yt) = 1;

(b) versions or modifications (Versionen, Modifikationen) of each other if we
have ∀ t ∈ T : P(Xt = Yt) = 1.

1.7 Theorem. (Kolmogorov, Centsov, 1956) Let (Xt)t∈[0,T ] be a stochastic
process on (Ω,F ,P). If there are constants C > 0, α, β > 0 such that

∀s, t ∈ [0, T ] : E[|Xt −Xs|α] 6 C|t− s|1+β,

then X has a continuous version X̃, which has even γ-Hölder continuous paths
for any γ ∈ (0, β/α), i.e.

∀ω ∈ Ω ∃L(ω) > 0∀t, s ∈ [0, T ] : |X̃t(ω)− X̃s(ω)| 6 L(ω)|t− s|γ .

1.8 Corollary. Brownian motion exists and has a.s. γ-Hölder-continuous sam-
ple paths for any γ ∈ (0, 1/2).
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1.3 Properties of Brownian sample paths

1.9 Theorem. (Quadratic variation, Lévy) Let τn = {t(n)0 , . . . , t
(n)
mn} with 0 =

t
(n)
0 < · · · < t

(n)
mn = 1, n > 1, be partitions of [0, 1] with τn ⊆ τn+1 (refinement)

and maxi=1,...mn |t
(n)
i − t

(n)
i−1| → 0 as n→∞ (asymptotically dense). Then for a

Brownian motion B

lim
n→∞

mn∑
i=1

(B
t
(n)
i ∧t

−B
t
(n)
i−1∧t

)2 = t

holds in L2 and almost surely.

1.10 Corollary. Brownian motion is a.s. not of bounded variation on any
interval [0, t] and in particular not continuously differentiable.

1.11 Theorem. (Law of the iterated logarithm, Khinchine 1933) For Brownian
motion B we have almost surely:

(a) lim supt↓0
Bt√

2t log(log(t−1))
= 1;

(b) lim inft↓0
Bt√

2t log(log(t−1))
= −1;

(c) lim supt↑∞
Bt√

2t log(log(t))
= 1;

(d) lim inft↑∞
Bt√

2t log(log(t))
= −1.

1.12 Lemma. For Z ∼ N(0, 1) and a > 0 we have the bounds

1√
2π

1

a+ 1/a
e−a

2/2 6 P(Z > a) 6
1√
2π

1

a
e−a

2/2.

1.4 Brownian motion as a martingale and Markov process

1.13 Definition. A process (Xt, t > 0) is called

(a) adapted to a filtration (Ft)t>0 if Xt is Ft-measurable for all t > 0;

(b) (Ft)-martingale (sub-/super-martingale) if it is adapted, Xt ∈ L1(P) and
E[Xt |Fs] = Xs (E[Xt |Fs] > Xs, E[Xt |Fs] 6 Xs) for all 0 6 s 6 t;

(c) (Ft)-Brownian motion if it is adapted, continuous, X0 = 0, the increments
Xt−Xs are independent of Fs and Xt−Xs ∼ N(0, t−s) for all 0 6 s < t.

1.14 Proposition. If B is an (Ft)-Brownian motion, then the following pro-
cesses are (Ft)-martingales:

Bt; B2
t − t; exp(λBt − 1

2λ
2t) for any λ ∈ R .

1.15 Proposition. If B is a Brownian motion with respect to a filtration
(F 0

t )t>0, then also with respect to its right-continuous extension Ft = F 0
t+ :=⋂

s>t F
0
s .
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1.16 Definition. A random variable τ with values in [0,+∞] is called
(Ft)-stopping time if {τ 6 t} ∈ Ft holds for all t > 0. The σ-algebra of
τ -history is given by Fτ := {A ∈ F |A ∩ {τ 6 t} ∈ Ft for all t > 0}.

From now on we always assume a right-continuous filtration (Ft)t>0.

1.17 Lemma. For an adapted right-continuous process X and a finite stopping
time τ , the map ω 7→ Xτ(ω)(ω) is Fτ -measurable.

1.18 Lemma. Let τ be an (Ft)t>0-stopping time and t > 0. Then:

(a) Ft ∩Fτ ⊆ Ft∧τ ;

(b) A ∈ Fτ , A
′ ∈ Ft ⇒ A ∩ {τ 6 t}, A′ ∩ {τ > t} ∈ Ft∧τ ;

(c) For an Fτ -measurable random variable X and an Ft-measurable ran-
dom variable X ′, the random variables X1(τ 6 t), X ′1(τ > t) are Ft∧τ -
measurable.

1.19 Theorem. Let (Xt, t > 0) be an (Ft)-adapted right-continuous process
with Xt ∈ L1(P) for all t > 0. Then the following are equivalent:

(a) X is a martingale;

(b) for any bounded stopping time τ we have E[Xτ ] = E[X0];

(c) for all bounded stopping times σ 6 τ we have E[Xτ |Fσ] = Xσ (optional
sampling);

(d) for all stopping times τ the process (Xt∧τ , t > 0) is an (Ft)-martingale
(optional stopping).

1.20 Corollary. For a right-continuous martingale (Mt, t > 0) and a finite
stopping time τ we have E[Mτ ] = E[M0] provided (Mt∧τ , t > 0) is uniformly
integrable (e.g. dominated or bounded).

1.21 Proposition. For a Brownian motion (Bt, t > 0) and the stopping time
τa,b := inf{t > 0 |Xt /∈ (a, b)} of first hitting a < 0 or b > 0 we have

P(Bτa,b = b) =
|a|
|a|+ b

, P(Bτa,b = a) =
b

|a|+ b
, E[τa,b] = |a|b.

1.22 Proposition. For a Brownian motion (Bt, t > 0) and the passage time
τb := inf{t > 0 |Xt = b} at b > 0 we have

E[e−λτb ] = e−b
√
2λ, λ > 0,

which yields (using inverse Laplace transfrom) that τb has the density

fb(t) =
b√

2πt3
e−b

2/(2t), t > 0.

1.23 Theorem. Brownian motion B is a strong Markov process in the sense
that for any finite stopping time τ the process B̃t := Bτ+t −Bτ , t > 0, is again
a Brownian motion, independent of Fτ .
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1.24 Corollary. (Reflection principle) We have P(max06s6tBs > b) =
2P(Bt > b) for a Brownian motion B and t, b > 0.

1.25 Corollary. The random variables Mt = max06s6tBt, |Bt| and Mt − Bt
have the same distribution for a Brownian motion B and t > 0.

2 Continuous martingales and stochastic integration

2.1 Local martingales and simple stochastic integrals

2.1 Definition. An (Ft)-adapted continuous process (Mt, t > 0) is called
continuous local martingale if there are (Ft)-stopping times τ1 6 τ2 6 · · ·
with τn ↑ +∞ a.s. such that M τn

t := Mt∧τn , t > 0, are (Ft)-martingales for all
n > 1. The sequence (τn) is called localising sequence of stopping times for M .

2.2 Definition. A piecewise constant process (Xt, t > 0) of the form

Xt(ω) =
∞∑
k=0

ξk(ω)1(τk(ω),τk+1(ω)](t), t > 0, ω ∈ Ω,

is a simple process if 0 = τ0 6 τ1 6 · · · are (Ft)-stopping times with τk ↑ ∞
a.s. and each ξk is an (Fτk)-measurable (real) random variable. For any other
adapted process (Yt, t > 0) we call∫ t

0
XsdYs :=

∞∑
k=0

ξk(Yt∧τk+1
− Yt∧τk), t > 0,

the stochastic integral of X with respect to Y .

2.3 Proposition. If X is a simple bounded process and M a continuous L2-
martingale, then (

∫ t
0 XsdMs, t > 0) is a continuous L2-martingale as well.

If X is a simple process and M is a continuous martingale, then
(
∫ t
0 XsdMs, t > 0) is a continuous local martingale.

2.4 Proposition. Let Xt =
∑∞

k=0 ξk1(τk,τk+1](t) be a bounded simple process
with |Xt| 6 C for all t > 0 and a deterministic constant C > 0. If M is a
continuous L2-martingale, then

E
[( ∫ t

0
XsdMs

)2]
=

∞∑
k=0

E
[
ξ2k E[M2

t∧τk+1
−M2

t∧τk |Ft∧τk ]
]
6 C2 E[M2

t ].

2.2 Quadratic variation

2.5 Definition. From now on we always suppose that the filtration (Ft) con-
tains all null sets (it is completed). Together with right-continuity it fulfills the
’usual conditions’.

M 2
T denotes the space of all continuous (Ft)-martingales (Mt, 0 6 t 6 T )

with M0 = 0, MT ∈ L2(P). For M,N ∈ M 2
T we set ‖M‖M 2

T
:= ‖MT ‖L2(P),

〈M,N〉M 2
T

:= 〈MT , NT 〉L2(P) = E[MTNT ].
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2.6 Proposition. (M 2
T , 〈•, •〉M 2

T
) is a Hilbert space, i.e. a complete space with

scalar product, if indistinguishable M,M ′ ∈M 2
T are identified.

2.7 Theorem. Suppose the martingale M ∈ M 2
T has finite variation, i.e.

VT (M) = supn>1

∑mn
i=1|Mt

(n)
i

−M
t
(n)
i−1

| < ∞ a.s. for partitions = 0 = t
(n)
0 <

t
(n)
1 < · · · < t

(n)
mn = T with maxi|t(n)i − t

(n)
i−1| → 0. Then M = 0 a.s.

2.8 Theorem. For every bounded continuous martingale (Mt, t > 0) there ex-
ists a unique (up to indistinguishability) quadratic variation process (〈M〉t, t >
0), which is adapted, continuous, increasing with 〈M〉0 = 0 and (M2

t −〈M〉t, t >
0) is a martingale.

2.9 Corollary. For every continuous local martingale (Mt, t > 0) there exists
a unique (up to indistinguishability) quadratic variation process (〈M〉t, t > 0),
which is adapted, continuous, increasing with 〈M〉0 = 0 and (M2

t −〈M〉t, t > 0)
is a local martingale.

2.3 Stochastic integration

2.10 Lemma. For a bounded simple process (Xt, t ∈ [0, T ]) and M ∈M 2
T the

stochastic integral is a continuous L2-martingale with

(a) 〈
∫ •
0 XsdMs〉t =

∫ t
0 X

2
sd〈M〉s, t ∈ [0, T ];

(b) E[(
∫ t
0 XsdMs)

2] = E[
∫ t
0 X

2
sd〈M〉s] (Itô isometry), t ∈ [0, T ].

Proof. We have for t, h > 0 (with
∫ t+h
t :=

∫ t+h
0 −

∫ t
0 )

(∫ t+h

0
XsdMs

)2
−
(∫ t

0
XsdMs

)2
=
(∫ t+h

t
XsdMs

)2
+2
(∫ t+h

t
XsdMs

)(∫ t

0
XsdMs

)
.

We have

E
[ ∫ t+h

t
XsdMs

∣∣∣Ft

]
= E

[∑
k>0

ξk1(τk 6 t+ h)(Mτk+1∧(t+h)∨t −Mτk∧(t+h)∨t)
∣∣∣Ft

]
=
∑
k>0

E
[
ξk1(τk 6 t+ h)E

[
Mτk+1∧(t+h)∨t −Mτk∧(t+h)∨t

∣∣∣Fτk∧(t+h)∨t

] ∣∣∣Ft

]
= 0,

where we used that ξk1(τk 6 t + h) is Fτk∧(t+h)∨t-measurable by Lemma 1.18
(and Fτk∧(t+h) ⊆ Fτk∧(t+h)∨t) as well as that the inner conditional expectation

vanishes by optional sampling. Since
∫ t
0 XsdMs is Ft-measurable, we obtain

E
[
2
(∫ t+h

t
XsdMs

)(∫ t

0
XsdMs

) ∣∣∣Ft

]
= 0.
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Exactly as in the proof of Proposition 2.4

E
[( ∫ t+h

t
XsdMs

)2 ∣∣∣Ft

]
=
∑
k>0

E
[
ξ2k E[M2

τk+1∧(t+h)∨t −M
2
τk∧(t+h)∨t |Fτk∧(t+h)∨t]

∣∣∣Ft

]
=
∑
k>0

E
[
ξ2k E[〈M〉τk+1∧(t+h)∨t − 〈M〉τk∧(t+h)∨t |Fτk∧(t+h)∨t]

∣∣∣Ft

]
=
∑
k>0

E
[
ξ2k(〈M〉τk+1∧(t+h)∨t − 〈M〉τk∧(t+h)∨t)

∣∣∣Ft

]
= E

[ ∫ t+h

t
X2
sd〈M〉s

∣∣∣Ft

]
.

We conclude

E
[( ∫ t+h

0
XsdMs

)2 ∣∣∣Ft

]
−
(∫ t

0
XsdMs

)2
= E

[ ∫ t+h

0
X2
sd〈M〉s

∣∣∣Ft

]
−
∫ t

0
X2
sd〈M〉s.

Since t 7→
∫ t
0 X

2
sd〈M〉s starts in zero, is adapted, continuous, increasing, the

last identity shows that it is indeed the quadratic variation process.
The Itô isometry follows by taking the expected value of the quadratic

variation of
∫ •
0 XsdMs, which is a centred martingale.

2.11 Definition. A process (Xt, t > 0) is called progressively measurable with
respect to (Ft) if it is (Ft)-adapted and the function (ω, s) 7→ Xs(ω) on Ω×[0, t]
is Ft ⊗B[0,t]-measurable for all t > 0.

2.12 Lemma. Every adapted left- or right-continuous process is progressively
measurable. In particular, every simple process is progressively measurable.

2.13 Definition. For M ∈M 2
T introduce the space

LT (M) :=
{

(Xt, t ∈ [0, T ])
∣∣∣X progressively measurable, E

[ ∫ T

0
X2
t d〈M〉t

]
<∞

}
with norm ‖X‖M,T := E[

∫ T
0 X2

t d〈M〉t]1/2 and scalar product 〈X,Y 〉M,T :=

E[
∫ T
0 XtYtd〈M〉t], identifying X and Y with

∫ T
0 (Xt − Yt)2d〈M〉t = 0 a.s.

2.14 Lemma. LT (M) is a Hilbert space.

2.15 Theorem. The set ET := {(Xt, t ∈ [0, T ]) |X simple and bounded} is
dense in LT (M).

2.16 Definition. The linear map IT : ET ⊆ LT (M) → M 2
T with IT (X) =∫ •

0 XsdMs is isometric and thus has a unique isometric extension ĨT : LT (M)→
M 2

T . For X ∈ LT (M) we define the stochastic integral∫ •
0
XsdMs := ĨT (X) ∈M 2

T .

Equivalently, for X ∈ LT (M) we choose X(n) ∈ ET with ‖X(n) −X‖M,T → 0
and define ∫ t

0
XsdMs := lim

n→∞

∫ t

0
X(n)
s dMs, t ∈ [0, T ], in M 2

T .
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2.17 Proposition. (Properties of the stochastic integral) For M ∈ M 2
T and

X ∈ LT (M) we have

(a) (
∫ t
0 XsdMs, t ∈ [0, T ]) ∈ M 2

T such that E[
∫ t
uXsdMs |Fu] = 0 for all 0 6

u < t 6 T and t 7→
∫ t
0 XsdMs is continuous a.s.

(b) 〈
∫ •
0 XsdMs〉t =

∫ t
0 X

2
t d〈M〉t and E[(

∫ t
0 XsdMs)

2] = E[
∫ t
0 X

2
sd〈M〉s] (Itô

isometry), t ∈ [0, T ].

(c) ∀α, β ∈ R, X, Y ∈ LT (M), t ∈ [0, T ] :
∫ t
0 (αXs + βYs) dMs =

α
∫ t
0 XsdMs + β

∫ t
0 YsdMs.

2.18 Lemma. For M ∈M 2
T , X ∈ LT (M) and a stopping time τ we have∫ t∧τ

0
XsdMs =

∫ t

0
XsdM

τ
s =

∫ t

0
Xs1(s 6 τ) dMs a.s.

2.19 Definition. For a continuous local martingale (Mt, t ∈ [0, T ]) with M0 =
0 define

Lloc,T (M) :=
{

(Xt, t ∈ [0, T ])
∣∣∣X progr. measurable,

∫ T

0
X2
t d〈M〉t <∞ a.s.

}
.

If (σn) are stopping times localising M (such that Mσn ∈ M 2
T ), introduce

τn := σn ∧ inf{t > 0 |
∫ t
0 X

2
sd〈M〉s > n} and define the stochastic integral for

X ∈ Lloc,T (M) as∫ t

0
XsdMs := lim

n→∞

∫ t

0
XsdM

τn
s , t ∈ [0, T ],

with a.s.-convergence.

2.20 Proposition. For a continuous local martingale (Mt, t ∈ [0, T ]) with
M0 = 0 and X ∈ Lloc,T (M) the stochastic integral

∫ •
0 XsdMs is well defined

and satisfies:

(a) (
∫ t
0 XsdMs, t ∈ [0, T ]) is a continuous local martingale;

(b) 〈
∫ •
0 XsdMs〉t =

∫ t
0 X

2
sd〈M〉s, t ∈ [0, T ], where for a continuous local mar-

tingale N the quadratic variation t 7→ 〈N〉t is an adapted, continuous,
increasing process such that N2

t − 〈N〉t, t ∈ [0, T ] forms a local martin-
gale.

(c)
∫ t∧τ
0 XsdMs =

∫ t
0 XsdM

τ
s =

∫ t
0 Xs1(s 6 τ) dMs holds a.s. for any stop-

ping time τ .

2.21 Theorem. If (Mt, t ∈ [0, T ]) is a continuous local martingale with M0 = 0
and (Xt, t ∈ [0, T ]) is an adapted, continuous process, then X ∈ Lloc,T (M) and

for partitions 0 = t
(m)
0 < · · · < t

(m)
nm = t of [0, t] ⊆ [0, T ] with maxi(t

(m)
i −t

(m)
i−1)→

0 as m→∞ we have

nm∑
i=1

X
t
(m)
i−1

(M
t
(m)
i

−M
t
(m)
i−1

)
P−→
∫ t

0
XsdMs.
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2.22 Corollary. For a continuous local martingale (Mt, t ∈ [0, T ]) with M0 = 0

and partitions 0 = t
(m)
0 < · · · < t

(m)
nm = t of [0, t] ⊆ [0, T ] with maxi(t

(m)
i −

t
(m)
i−1)→ 0 as m→∞ we have

nm∑
i=1

(M
t
(m)
i

−M
t
(m)
i−1

)2
P−→ 〈M〉t and M2

t = 2

∫ t

0
MsdMs + 〈M〉t.

3 Main theorems of stochastic analysis

3.1 The Itô formula

3.1 Definition. A continuous semi-martingale (Xt, t ∈ [0, T ]) with respect to
some filtration (Ft) is a continuous, (Ft)-adapted process which can be decom-
posed as Xt = Mt + At, t ∈ [0, T ], with a continuous local (Ft)-martingale M
and a finite variation process A (which is then necessarily continuous, adapted).
We define ∫ t

0
YsdXs :=

∫ t

0
YsdMs +

∫ t

0
YsdAs, t ∈ [0, T ],

when Y ∈ Lloc,T (M) and
∫ t
0 Ys(ω)dAs(ω) is a.s. well defined, i.e. Y (ω) ∈

L1(µ1(ω) + µ2(ω)) a.s., when At = A
(1)
t − A

(2)
t for some increasing pro-

cess A(1), A(2) and µi denote the by A(i) induced Lebesgue-Stieltjes measures,
i = 1, 2. In particular,

∫ t
0 YsdXs is well defined for continuous, (Ft)-adapted

processes Y .

3.2 Definition. For a continuous semi-martingale X its quadratic variation is
given by

〈X〉t = lim
m→∞

nm∑
i=1

(X
t
(m)
i ∧t −Xt

(m)
i−1∧t

)2, t ∈ [0, T ],

with convergence in probability for any sequence of partitions 0 = t
(m)
0 < · · · <

t
(m)
nm = T with maxi=1,...,nm(t

(m)
i − t(m)

i−1)→ 0 as m→∞ (if the limit exists).
For two continuous semi-martingales the quadratic covariation is defined via

polarisation as

〈X,Y 〉t =
1

4

(
〈X + Y 〉t − 〈X − Y 〉t

)
, t ∈ [0, T ].

3.3 Proposition. For a continuous semi-martingale X = M+A the quadratic
variation exists and satisfies 〈X〉t = 〈M〉t.

In general, for any continuous semi-martingale X and any continuous finite
variation process A we have 〈X,A〉t = 0.

3.4 Theorem (Partial integration). For continuous semi-martingales X,Y we
have

XtYt = X0Y0 +

∫ t

0
XsdYs +

∫ t

0
YsdXs + 〈X,Y 〉t, t ∈ [0, T ], a.s.
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and in particular

X2
t = X2

0 + 2

∫ t

0
XsdXs + 〈X〉t, t ∈ [0, T ], a.s.

3.5 Theorem (Associativity of stochastic integration). Let M ∈ M 2
T , X ∈

LT (M) and Y ∈ LT (N) with Nt =
∫ t
0 XsdMs. Then Y X ∈ LT (M) and∫ t

0
YsdNs =

∫ t

0
YsXsdMs, t ∈ [0, T ], a.s.

This holds more generally for continuous semi-martingales M and processes
X,Y for which the integrals make sense.

3.6 Theorem. If X is a continuous semi-martingale and f ∈ C2(R), then
(f(Xt), t ∈ [0, T ]) is a continuous semi-martingale and the Itô formula holds:

f(Xt) = f(X0) +

∫ t

0
f ′(Xs) dXs +

1

2

∫ t

0
f ′′(Xs)d〈X〉s, t ∈ [0, T ], a.s.

3.7 Definition. A d-dimensional continuous semi-martingale Xt =

(X
(1)
t , . . . , X

(d)
t )> is a vector of d (one-dimensional) continuous semi-martingales

X
(1)
t , . . . , X

(d)
t . A d-dimensional Brownian motion Bt = (B

(1)
t , . . . , B

(d)
t )> is a

vector of d independent Brownian motions B
(1)
t , . . . , B

(d)
t .

3.8 Theorem (Multi-dimensional Itô formula). If X is a d-dimensional contin-
uous semi-martingale and f ∈ C2(Rd), then (f(Xt), t ∈ [0, T ]) is a continuous
(one-dimensional) semi-martingale and the following Itô formula holds:

f(Xt) = f(X0) +
d∑
i=1

∫ t

0

∂f

∂xi
(Xs) dX

(i)
s +

1

2

d∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d〈X(i), X(j)〉s.

3.9 Corollary. If X is a continuous semi-martingale and f ∈ C2,1(R×R+)
(i.e., f ∈ C1(R×R+) and x 7→ f(x, t) ∈ C2(R) for all t > 0), then (f(Xt, t), t ∈
[0, T ]) is a continuous semi-martingale and

f(Xt, t) = f(X0, 0)+

∫ t

0

∂f

∂x
(Xs, s) dXs+

∫ t

0

∂f

∂t
(Xs, s) ds+

1

2

∫ t

0

∂2f

∂x2
(Xs, s)d〈X〉s.

3.10 Corollary. If f ∈ C2(Rd), x ∈ Rd and B is d-dimensional Brownian
motion, then for Xt = x+Bt

f(Xt) = f(x) +

∫ t

0
〈∇f(Xs), dXs〉+

1

2

∫ t

0
∆f(Xs) ds,

where ∇ denotes the gradient and ∆ the Laplace operator. In particular, for a
harmonic function f (i.e. ∆f = 0) the process (f(Xt), t ∈ [0, T ]) is a continuous
local martingale.

3.11 Corollary. Consider Xt = x + Bt, t > 0 for a d-dimensional Brownian
motion B and x ∈ Rd \{0}. Then for 0 < r < |x|

P(∃t > 0 : |Xt| 6 r) =

{
1, for d ∈ {1, 2},
(r/|x|)d−2 < 1, for d > 3.
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3.2 Important consequences

3.12 Theorem (Lévy’s characterisation of Brownian motion). For an (Ft)-
adapted stochastic process (Bt, t > 0) the following are equivalent:

(a) B is an (Ft)-Brownian motion;

(b) B is a continuous local (Ft)-martingale with B0 = 0 and 〈B〉t = t. t > 0.

3.13 Theorem (Burkholder-Davis-Gundy inequality). For every p > 0 there
are constants cp, Cp > 0 such that for any continuous local martingale M with
M0 = 0

cp E[〈M〉p/2t ] 6 E
[

max
06s6t

|Ms|p
]
6 Cp E[〈M〉p/2t ].

3.3 Martingale representation theorems

3.14 Proposition. A continuous local martingale M with M0 = 0 satisfies
M ∈M 2

T ⇐⇒ E[〈M〉T ] <∞. In particular, for a continuous local martingale

M and X ∈ Lloc,T (M) we have (
∫ t
0 XsdMs, t ∈ [0, T ]) ∈ M 2

T if and only if

E[
∫ T
0 X2

t d〈M〉t] <∞.

3.15 Theorem (Doob’s martingale representation). Let M be a continuous
local martingale with M0 = 0 and an absolutely continuous quadratic variation
(i.e., 〈M〉t =

∫ t
0 Gsds, t > 0, for some G•(ω) ∈ L1([0,∞))). Then there is a

Brownian motion (possibly on an enlarged probability space) and X ∈ Lloc,T (B)
such that a.s.

Mt =

∫ t

0
XsdBs, t > 0.

3.16 Theorem (Brownian martingale representation). For a Brownian motion
B let (Ft) be the completed canonical filtration of B. Then:

(a) For a random variable Z ∈ L2(Ω,FT ,P) there exists a unique h ∈ LT (B)
with

Z = E[Z] +

∫ T

0
hsdBs.

(b) For every L2-martingale (Mt, t ∈ [0, T ]) with respect to (Ft) there is a
unique h ∈ LT (B) with

Mt = M0 +

∫ t

0
hsdBs, a.s., t ∈ [0, T ].

(c) Statement (b) remains true for continuous local martingales M and h ∈
Lloc,T (B).

3.17 Corollary. Every L2-martingale with respect to the completed canonical
Brownian filtration has a continuous version.

3.18 Corollary. The completed canonical Brownian filtration is right-
continuous.

10



3.19 Theorem (Dambins, Dubbins, Schwarz; time-changed Brownian motion).
Let M be a continuous local (Ft)-martingale with M0 = 0 and limt→∞〈M〉t =
∞ a.s., where the filtration (Ft) is completed by null sets. Then there is a
Brownian motion B such that a.s.

∀t > 0 : Mt = B〈M〉t .

3.20 Lemma. Let M be a continuous local martingale. For all 0 6 a < b the
events {∀t ∈ [a, b] : Mt = Ma} and {〈M〉b = 〈M〉a} are a.s. equal.

3.4 Change of measure

3.21 Lemma. Let (Lt, t ∈ [0, T ]) be a non-negative martingale on
(Ω,F , (Ft),P) with E[LT ] = 1. Then defining the probability measure QT on
FT via dQT

dP = LT we have for any Ft-measurable Y ∈ L1(QT ), t ∈ [0, T ]:

∀s ∈ [0, t] : EQT
[Y |Fs] =

EP[Y Lt |Fs]

Ls
QT -a.s.

3.22 Corollary. In the setting of the lemma assume that (M̄tLt, t ∈ [0, T ]) is
a P-martingale for some adapted process M̄ . Then (M̄t, t ∈ [0, T ]) is a QT -
martingale.

3.23 Theorem (Girsanov 1960). Suppose X ∈ Lloc,T (B) for a Brownian mo-
tion B and let

Lt := exp
(∫ t

0
XsdBs −

1

2

∫ t

0
X2
sds
)
, t ∈ [0, T ].

If L is a martingale (for which E[LT ] = 1 suffices), then

B̄t := Bt −
∫ t

0
Xsds, t ∈ [0, T ],

defines a Brownian motion under the probability measure QT given by
dQT /dP = LT .

3.24 Definition. The Cameron-Martin space of Brownian motion on [0, T ] is
given by

H :=
{
f ∈ C([0, T ])

∣∣∣∃g ∈ L2([0, T ])∀t ∈ [0, T ] : f(t) =

∫ t

0
g(s) ds

}
.

3.25 Corollary. For all functions h ∈ H the laws of a Brownian motion
(Bt, t ∈ [0, T ]) and of (Bt + h(t), t ∈ [0, T ]) on C([0, T ]) are equivalent (have
the same null sets).

3.26 Definition. The support of a probability measure P on the Borel σ-
algebra of a metric space is given by

supp(P) :=
⋂
{A closed | P(A) = 1}.
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3.27 Corollary. The support of the law PBT of Brownian motion on C([0, T ])
(Wiener measure) is given by supp(PBT ) = H = {f ∈ C([0, T ]) | f(0) = 0}.

3.28 Theorem. Suppose X ∈ Lloc,T (B) for a Brownian motion B and let

Yt =
∫ t
0 XsdBs, t ∈ [0, T ]. Then the implications (a)⇒ (b)⇒ (c) hold with

(a) (Novikov condition): E[exp(12〈Y 〉T )] <∞;

(b) (Kazamaki condition): Y is a martingale and E[exp(12YT )] <∞;

(c) (Girsanov hypothesis): Lt = exp(Yt − 1
2〈Y 〉t), t ∈ [0, T ], is a martingale.

3.29 Corollary (piecewise Novikov condition). The Girsanov condition in part
(c) of the theorem holds already if there are 0 = t0 < t1 < · · · < tm = T such
that

∀i = 1, . . . ,m : E
[

exp
(1

2

∫ ti

ti−1

X2
sds
)]

<∞.

3.30 Lemma. For a, x0 ∈ R deterministic and a Brownian motion B the
Ornstein-Uhlenbeck process Xt := eatx0 + eat

∫ t
0 e
−asdBs solves the stochastic

differential equation

dXt = aXtdt+ dBt, t > 0; X0 = x0

in the sense that a.s.

Xt = x0 +

∫ t

0
aXsds+Bt, t > 0.

3.31 Lemma. For a ∈ R let L
(a)
t (X) = exp(

∫ t
0 aXsdXs − 1

2

∫ t
0 a

2X2
sds). Then

for a Brownian motion B the process (L
(a)
t (B), t ∈ [0, T ]) is a martingale.

Under Q(a)
T on C([0, T ]), given by

dQ(a)
T

dPB
T

= L
(a)
T (X) for the coordinate process

X ∈ C([0, T ]) and the law PBT of Brownian motion on C([0, T ]), the process

B̄
(a)
t := Xt −

∫ t

0
aXsds, t ∈ [0, T ],

is a Brownian motion.

3.32 Corollary. The law Q(a)
T of the Ornstein-Uhlenbeck process with param-

eter a ∈ R and initial value x0 = 0 on C([0, T ]) has the likelihood function
(density)

LT (a) = exp
(∫ T

0
aXtdXt −

1

2

∫ T

0
a2X2

t dt
)

with respect to PBT = Q(0)
T . The maximum-likelihood estimator âT of the param-

eter a ∈ R, given the continuous observation of an Ornstein-Uhlenbeck process
(Xt, t ∈ [0, T ]), is given by

âT =

∫ T
0 XtdXt∫ T
0 X2

t dt
.
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3.33 Lemma. If a0 < 0 holds, then we have 1
T

∫ T
0 X2

t dt→ |2a0|−1 as T →∞
in L2(Q(a0)

T )-convergence.

3.34 Theorem (martingale CLT). For every T > 0 let X ∈ LT (B) for a
Brownian motion B and assume that there are deterministic numbers ϕT > 0

such that ϕ−2T
∫ T
0 X2

t dt
P−→ 1. Then

ϕ−1T

∫ T

0
XtdBt

d−→ N(0, 1) as T →∞.

3.35 Corollary. Under Q(a0)
T we have

âT = a0 +

∫ T
0 XtdB̄

(a0)
t∫ T

0 X2
t dt

and the estimation error satisfies for a0 < 0

√
T (âT − a0)

d−→ N(0, 2|a0|).

3.36 Corollary. For α ∈ (0, 1) the interval

ÎT1−α :=
[
âT −

√
2|âT |
T q1−α/2, âT +

√
2|âT |
T q1−α/2

]
is an asymptotic (1 − α)-confidence interval for a0 < 0, where q1−α/2 denotes
the (1− α/2)-quantile of N(0, 1).

3.5 Kunita-Watanabe theory

3.37 Proposition. Let M and N be two continuous local martingales.

(a) (〈M,N〉t, t > 0) is the unique (up to indistinguishability) continuous,
adapted, finite-variation process starting in zero such that

(MtNt − 〈M,N〉t, t > 0)

is a local martingale.

(b) The map (M,N) 7→ 〈M,N〉 is bilinear and symmetric.

(c) 〈M,N〉t = 〈M −M0, N −N0〉t for all t ∈ [0, T ].

3.38 Remark. Recall from Exercise 6.1 that every function f : [0, T ] → R of
finite variation can be written as f = f1− f2 for monotone functions f1 and f2.
The variation of f is defined as

V (f)t : = f1(t) + f2(t), t ∈ [0, T ].

3.39 Lemma (Kunita-Watanabe inequality). Let M and N be continu-
ous local martingales and let H and K be measurable processes such that∫ T
0 |HtKt|dV (〈M,N〉)t <∞. Then∣∣∣∣ ∫ T

0
HtKtd〈M,N〉t

∣∣∣∣ 6 ∫ T

0
|HtKt|dV (〈M,N〉)t 6

(∫ T

0
H2
t d〈M〉t

)1/2(∫ T

0
K2
t d〈N〉t

)1/2

.
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3.40 Theorem. Let M ∈ M 2
T and H ∈ LT (M). The stochastic integral∫ •

0 HsdMs is the unique element in M 2
T that satisfies〈∫ •

0
HsdMS , N

〉
=

∫ •
0
Hsd〈M,N〉s ∀N ∈M 2

T .

3.41 Corollary. For M,N ∈M 2
T and H ∈ LT (M), K ∈ LT (M) we have〈∫ •

0
HsdMs,

∫ •
0
KsdNs

〉
t

=

∫ t

0
HsKsd〈Ms, Ns〉 ∀t ∈ [0, T ].

4 Stochastic differential equations

4.1 Strong solutions

4.1 Definition. Let (Ω,F , (Ft),P) be a filtered probability space with a fil-
tration (Ft) satisfying the usual conditions and carrying an m-dimensional
(Ft)-Brownian motion and an F0-measurable random variable ξ. A strong
solution to the SDE

dXt = b(Xt, t) dt+ σ(Xt, t) dBt, t > 0; X0 = ξ (4.1)

is a continuous, (Ft)-adapted d-dimensional process (Xt, t > 0) satisfying a.s.

Xt = ξ +

∫ t

0
b(Xs, s) ds+

∫ t

0
σ(Xs, s) dBs, t > 0.

Here b : Rd×[0,∞) → Rd, σ : Rd×[0,∞) → Rd×m are measurable, locally
bounded (e.g. continuous) functions and we understand coordinatewise

Xi,t = ξi +

∫ t

0
bi(Xs, s) ds+

m∑
j=1

∫ t

0
σi,j(Xs, s) dBj,s, t > 0.

4.2 Lemma (Gronwall). Let f : [0, T ]→ Rd be bounded, measurable. Assume
for some a, b > 0 that

f(t) 6 a+ b

∫ t

0
f(s) ds, t ∈ [0, T ].

Then f(t) 6 aebt holds for all t ∈ [0, T ].

4.3 Definition. The Frobenius or Hilbert-Schmidt norm of a matrix M ∈
Rd×m is given by ‖M‖F := (

∑
i=1,...,d,j=1,...,mM

2
ij)

1/2.

4.4 Lemma. Let b, σ be of linear growth, i.e.

∃K > 0 ∀x ∈ Rd, t > 0 : |b(x, t)|+ ‖σ(x, t)‖F 6 K(1 + |x|),

and assume E[|ξ|2] <∞. Then for any T > 1 every strong solution of the SDE
(4.1) satisfies

∀t ∈ [0, T ] : E
[

sup
06s6t

|Xs|2
]
6 C(K2T 2 + E[|ξ|2])eCTK2t <∞

with some numerical constant C > 0.
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4.5 Theorem. Assume that there is a K > 0 such that

(a) ∀x, y ∈ Rd, t > 0 : |b(x, t) − b(y, t)| + ‖σ(x, t) − σ(y, t)‖F 6 K|x − y|
(global Lipschitz condition) and

(b) ∀x ∈ Rd, t > 0 : |b(x, t)|+ ‖σ(x, t))‖F 6 K(1 + |x|) (linear growth).

If E[|ξ|2] <∞ holds, then the SDE (4.1) has a strong solution which is unique
in the sense that two solutions are indistinguishable.

4.2 Weak solutions

4.6 Definition. A weak solution to the above SDE is an adapted, continuous
process (Xt, t > 0), defined on some(!) filtered probability space (Ω,F , (Ft),P),
satisfying the usual conditions, carrying an (Ft)-Brownian motion B and an
F0-measurable random variable ξ, such that a.s.

Xt = ξ +

∫ t

0
b(Xs, s) ds+

∫ t

0
σ(Xs, s) dBs, t > 0.

We say that weak uniqueness holds if any two weak solutions have the same
finite-dimensional distributions, i.e. generate the same law on C([0,∞)).

4.7 Theorem. If b : Rd×[0, T ]→ Rd is measurable, bounded, then the SDE

dXt = b(Xt, t) dt+ dBt, t ∈ [0, T ]; X0 = ξ

has a weak solution and weak uniqueness holds.

4.3 Connections to PDEs

4.8 Lemma. For a (weak or strong) solution X of the time-homogeneous SDE

dXt = b(Xt) dt+ σ(Xt) dBt, t > 0; X0 = ξ (4.2)

and f ∈ C2(Rd) we have a.s.

f(Xt) = f(ξ) +

∫ t

0
(L f)(Xs) ds+

∫ t

0
〈∇f(Xs), σ(Xs)dBs〉, t > 0,

in terms of the differential operator

L f(x) :=

d∑
i=1

bi(x)∂xif(x) +
1

2

d∑
i,j=1

aij(x)∂xi∂xjf(x)

with

aij(x) =

m∑
k=1

σik(x)σjk(x) = (σσ>)ij(x).

If L f(x) = 0 for all x ∈ Rd, then f(Xt)− f(ξ) is a local martingale.
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4.9 Definition. Let D ⊆ Rd be a bounded domain (i.e., open and connected)
and ϕ ∈ C(∂D). Then u ∈ C2(D) ∩ C(D̄) solves the Dirichlet problem (L , ϕ)
if

L u(x) = 0, x ∈ D, and u(x) = ϕ(x), x ∈ ∂D.

4.10 Theorem. Assume that u solves the Dirichlet problem (L , ϕ) and that
the SDE (4.2) admits a solution Xx with initial value Xx

0 = x for some x ∈ D.
If the stopping time τ∂D := inf{t > 0 |Xx

t ∈ ∂D} is a.s. finite, then we have

u(x) = E[ϕ(Xx
τ∂D

)].

If the assumptions hold for all x ∈ D, then the solution for the Dirichlet problem
is unique, and it satisfies u(x) ∈ [miny∈∂D ϕ(y),maxy∈∂D ϕ(y)].
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