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1 Construction and properties of Brownian motion

1.1 Motivation

1.1 Definition. A process (Bt, t > 0) on (Ω,F ,P) is called Brownian motion
(Brownsche Bewegung) if

(a) B0 = 0 and Bt ∼ N(0, t), t > 0, holds;

(b) the increments are stationary and independent: for 0 6 t0 < t1 < · · · < tm
we have

(Bt1 −Bt0 , . . . , Btm −Btm−1) ∼ N
(
0, diag(t1 − t0, . . . , tm − tm−1)

)
.

(c) B has continuous sample paths, i.e. t 7→ Bt(ω) is continuous (for P-almost
all ω ∈ Ω).

1.2 Definition. Brownian motion (Bt, t ∈ [0, T ]) induces an image measure
(law) PW := P(Bt,t∈[0,T ]) on the path space (C([0, T ]),BC([0,T ])), called Wiener
measure.

1.3 Remark. Recall the construction of Brownian motion as a limit of rescaled,
interpolated random walks via Donsker’s invariance principle.

1.4 Lemma. Let (Bt, t > 0) be a Brownian motion. Then the following pro-
cesses are also Brownian motions:

(a) (−Bt, t > 0);

(b) (a−1/2Bat, t > 0) for any a > 0 (’time change’);

(c) (Xt, t > 0) with Xt = tB1/t for t > 0 and X0 = 0 (’time inversion’).

1.2 Construction of Brownian motion

1.5 Lemma. Brownian motion (Bt, t > 0) is a centred Gaussian process with
covariance function Cov(Bt, Bs) = t ∧ s, t, s > 0. Conversely, a continuous
Gaussian process (Xt, t > 0) with E[Xt] = 0, Cov(Xt, Xs) = t∧ s, t, s > 0, is a
Brownian motion.

1.6 Definition. Two processes (Xt, t ∈ T ), (Yt, t ∈ T ) on (Ω,F ,P) are called

(a) indistinguishable (ununterscheidbar) if P(∀ t ∈ T : Xt = Yt) = 1;

(b) versions or modifications (Versionen, Modifikationen) of each other if we
have ∀ t ∈ T : P(Xt = Yt) = 1.

1.7 Theorem. (Kolmogorov, Centsov, 1956) Let (Xt)t∈[0,T ] be a stochastic
process on (Ω,F ,P). If there are constants C > 0, α, β > 0 such that

∀s, t ∈ [0, T ] : E[|Xt −Xs|α] 6 C|t− s|1+β,

then X has a continuous version X̃, which has even γ-Hölder continuous paths
for any γ ∈ (0, β/α), i.e.

∀ω ∈ Ω ∃L(ω) > 0∀t, s ∈ [0, T ] : |X̃t(ω)− X̃s(ω)| 6 L(ω)|t− s|γ .

1.8 Corollary. Brownian motion exists and has a.s. γ-Hölder-continuous sam-
ple paths for any γ ∈ (0, 1/2).
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1.3 Properties of Brownian sample paths

1.9 Theorem. (Quadratic variation, Lévy) Let τn = {t(n)0 , . . . , t
(n)
mn} with 0 =

t
(n)
0 < · · · < t

(n)
mn = 1, n > 1, be partitions of [0, 1] with τn ⊆ τn+1 (refinement)

and maxi=1,...mn |t
(n)
i − t

(n)
i−1| → 0 as n→∞ (asymptotically dense). Then for a

Brownian motion B

lim
n→∞

mn∑
i=1

(B
t
(n)
i ∧t

−B
t
(n)
i−1∧t

)2 = t

holds in L2 and almost surely.

1.10 Corollary. Brownian motion is a.s. not of bounded variation on any
interval [0, t] and in particular not continuously differentiable.

1.11 Theorem. (Law of the iterated logarithm, Khinchine 1933) For Brownian
motion B we have almost surely:

(a) lim supt↓0
Bt√

2t log(log(t−1))
= 1;

(b) lim inft↓0
Bt√

2t log(log(t−1))
= −1;

(c) lim supt↑∞
Bt√

2t log(log(t))
= 1;

(d) lim inft↑∞
Bt√

2t log(log(t))
= −1.

1.12 Lemma. For Z ∼ N(0, 1) and a > 0 we have the bounds

1√
2π

1

a+ 1/a
e−a

2/2 6 P(Z > a) 6
1√
2π

1

a
e−a

2/2.

1.4 Brownian motion as a martingale and Markov process

1.13 Definition. A process (Xt, t > 0) is called

(a) adapted to a filtration (Ft)t>0 if Xt is Ft-measurable for all t > 0;

(b) (Ft)-martingale (sub-/super-martingale) if it is adapted, Xt ∈ L1(P) and
E[Xt |Fs] = Xs (E[Xt |Fs] > Xs, E[Xt |Fs] 6 Xs) for all 0 6 s 6 t;

(c) (Ft)-Brownian motion if it is adapted, continuous, X0 = 0, the increments
Xt−Xs are independent of Fs and Xt−Xs ∼ N(0, t−s) for all 0 6 s < t.

1.14 Proposition. If B is an (Ft)-Brownian motion, then the following pro-
cesses are (Ft)-martingales:

Bt; B2
t − t; exp(λBt − 1

2λ
2t) for any λ ∈ R .

1.15 Proposition. If B is a Brownian motion with respect to a filtration
(F 0

t )t>0, then also with respect to its right-continuous extension Ft = F 0
t+ :=⋂

s>t F
0
s .
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1.16 Definition. A random variable τ with values in [0,+∞] is called
(Ft)-stopping time if {τ 6 t} ∈ Ft holds for all t > 0. The σ-algebra of
τ -history is given by Fτ := {A ∈ F |A ∩ {τ 6 t} ∈ Ft for all t > 0}.

From now on we always assume a right-continuous filtration (Ft)t>0.

1.17 Lemma. For an adapted right-continuous process X and a finite stopping
time τ , the map ω 7→ Xτ(ω)(ω) is Fτ -measurable.
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