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1 Construction and properties of Brownian motion

1.1 Motivation

1.1 Definition. A process (Bt, t > 0) on (Ω,F ,P) is called Brownian motion
(Brownsche Bewegung) if

(a) B0 = 0 and Bt ∼ N(0, t), t > 0, holds;

(b) the increments are stationary and independent: for 0 6 t0 < t1 < · · · < tm
we have

(Bt1 −Bt0 , . . . , Btm −Btm−1) ∼ N
(
0, diag(t1 − t0, . . . , tm − tm−1)

)
.

(c) B has continuous sample paths, i.e. t 7→ Bt(ω) is continuous (for P-almost
all ω ∈ Ω).

1.2 Definition. Brownian motion (Bt, t ∈ [0, T ]) induces an image measure
(law) PW := P(Bt,t∈[0,T ]) on the path space (C([0, T ]),BC([0,T ])), called Wiener
measure.

1.3 Remark. Recall the construction of Brownian motion as a limit of rescaled,
interpolated random walks via Donsker’s invariance principle.

1.4 Lemma. Let (Bt, t > 0) be a Brownian motion. Then the following pro-
cesses are also Brownian motions:

(a) (−Bt, t > 0);

(b) (a−1/2Bat, t > 0) for any a > 0 (’time change’);

(c) (Xt, t > 0) with Xt = tB1/t for t > 0 and X0 = 0 (’time inversion’).

1.2 Construction of Brownian motion

1.5 Lemma. Brownian motion (Bt, t > 0) is a centred Gaussian process with
covariance function Cov(Bt, Bs) = t ∧ s, t, s > 0. Conversely, a continuous
Gaussian process (Xt, t > 0) with E[Xt] = 0, Cov(Xt, Xs) = t∧ s, t, s > 0, is a
Brownian motion.

1.6 Definition. Two processes (Xt, t ∈ T ), (Yt, t ∈ T ) on (Ω,F ,P) are called

(a) indistinguishable (ununterscheidbar) if P(∀ t ∈ T : Xt = Yt) = 1;

(b) versions or modifications (Versionen, Modifikationen) of each other if we
have ∀ t ∈ T : P(Xt = Yt) = 1.

1.7 Theorem. (Kolmogorov, Centsov, 1956) Let (Xt)t∈[0,T ] be a stochastic
process on (Ω,F ,P). If there are constants C > 0, α, β > 0 such that

∀s, t ∈ [0, T ] : E[|Xt −Xs|α] 6 C|t− s|1+β,

then X has a continuous version X̃, which has even γ-Hölder continuous paths
for any γ ∈ (0, β/α), i.e.

∀ω ∈ Ω ∃L(ω) > 0∀t, s ∈ [0, T ] : |X̃t(ω)− X̃s(ω)| 6 L(ω)|t− s|γ .

1.8 Corollary. Brownian motion exists and has a.s. γ-Hölder-continuous sam-
ple paths for any γ ∈ (0, 1/2).
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1.3 Properties of Brownian sample paths

1.9 Theorem. (Quadratic variation, Lévy) Let τn = {t(n)0 , . . . , t
(n)
mn} with 0 =

t
(n)
0 < · · · < t

(n)
mn = 1, n > 1, be partitions of [0, 1] with τn ⊆ τn+1 (refinement)

and maxi=1,...mn |t
(n)
i − t

(n)
i−1| → 0 as n→∞ (asymptotically dense). Then for a

Brownian motion B

lim
n→∞

mn∑
i=1

(B
t
(n)
i ∧t

−B
t
(n)
i−1∧t

)2 = t

holds in L2 and almost surely.

1.10 Corollary. Brownian motion is a.s. not of bounded variation on any
interval [0, t] and in particular not continuously differentiable.

1.11 Theorem. (Law of the iterated logarithm, Khinchine 1933) For Brownian
motion B we have almost surely:

(a) lim supt↓0
Bt√

2t log(log(t−1))
= 1;

(b) lim inft↓0
Bt√

2t log(log(t−1))
= −1;

(c) lim supt↑∞
Bt√

2t log(log(t))
= 1;

(d) lim inft↑∞
Bt√

2t log(log(t))
= −1.

1.12 Lemma. For Z ∼ N(0, 1) and a > 0 we have the bounds

1√
2π

1

a+ 1/a
e−a

2/2 6 P(Z > a) 6
1√
2π

1

a
e−a

2/2.

1.4 Brownian motion as a martingale and Markov process

1.13 Definition. A process (Xt, t > 0) is called

(a) adapted to a filtration (Ft)t>0 if Xt is Ft-measurable for all t > 0;

(b) (Ft)-martingale (sub-/super-martingale) if it is adapted, Xt ∈ L1(P) and
E[Xt |Fs] = Xs (E[Xt |Fs] > Xs, E[Xt |Fs] 6 Xs) for all 0 6 s 6 t;

(c) (Ft)-Brownian motion if it is adapted, continuous, X0 = 0, the increments
Xt−Xs are independent of Fs and Xt−Xs ∼ N(0, t−s) for all 0 6 s < t.

1.14 Proposition. If B is an (Ft)-Brownian motion, then the following pro-
cesses are (Ft)-martingales:

Bt; B2
t − t; exp(λBt − 1

2λ
2t) for any λ ∈ R .

1.15 Proposition. If B is a Brownian motion with respect to a filtration
(F 0

t )t>0, then also with respect to its right-continuous extension Ft = F 0
t+ :=⋂

s>t F
0
s .
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1.16 Definition. A random variable τ with values in [0,+∞] is called
(Ft)-stopping time if {τ 6 t} ∈ Ft holds for all t > 0. The σ-algebra of
τ -history is given by Fτ := {A ∈ F |A ∩ {τ 6 t} ∈ Ft for all t > 0}.

From now on we always assume a right-continuous filtration (Ft)t>0.

1.17 Lemma. For an adapted right-continuous process X and a finite stopping
time τ , the map ω 7→ Xτ(ω)(ω) is Fτ -measurable.

1.18 Theorem. Let (Xt, t > 0) be an adapted right-continuous process with
Xt ∈ L1(P) for all t > 0. Then the following are equivalent:

(a) X is a martingale;

(b) for any bounded stopping time τ we have E[Xτ ] = E[X0];

(c) for all bounded stopping times σ 6 τ we have E[Xτ |Fσ] = Xσ (optional
sampling);

(d) for all stopping times τ the process (Xt∧τ , t > 0) is a martingale (optional
stopping).

1.19 Corollary. For a right-continuous martingale (Mt, t > 0) and a finite
stopping time τ we have E[Mτ ] = E[M0] provided (Mt∧τ , t > 0) is uniformly
integrable (e.g. dominated or bounded).

1.20 Proposition. For a Brownian motion (Bt, t > 0) and the stopping time
τa,b := inf{t > 0 |Xt /∈ (a, b)} of first hitting a < 0 or b > 0 we have

P(Bτa,b = b) =
|a|
|a|+ b

, P(Bτa,b = a) =
b

|a|+ b
, E[τa,b] = |a|b.

1.21 Proposition. For a Brownian motion (Bt, t > 0) and the passage time
τb := inf{t > 0 |Xt = b} at b > 0 we have

E[e−λτb ] = e−b
√
2λ, λ > 0,

which yields (using inverse Laplace transfrom) that τb has the density

fb(t) =
1√

2πt3
e−b

2/(2t), t > 0.

1.22 Theorem. Brownian motion B is a strong Markov process in the sense
that for any finite stopping time τ the process B̃t := Bτ+t −Bτ , t > 0, is again
a Brownian motion, independent of Fτ .

1.23 Corollary. (Reflection principle) We have P(max06s6tBs > b) =
2P(Bt > b) for a Brownian motion B and t, b > 0.

1.24 Corollary. The random variables Mt = max06s6tBt, |Bt| and Mt − Bt
have the same distribution for a Brownian motion B and t > 0.
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2 Continuous martingales and stochastic integration

2.1 Local martingales and simple stochastic integrals

2.1 Definition. An (Ft)-adapted continuous process (Mt, t > 0) is called
continuous local martingale if there are (Ft)-stopping times τ1 6 τ2 6 · · ·
with τn ↑ +∞ a.s. such that M τn

t := Mt∧τn , t > 0, are (Ft)-martingales for all
n > 1. The sequence (τn) is called localising sequence of stopping times for M .

2.2 Definition. A piecewise constant process (Xt, t > 0) of the form

Xt(ω) =
∞∑
k=0

ξk(ω)1(τk(ω),τk+1(ω)](t), t > 0, ω ∈ Ω,

is a simple process if 0 = τ0 6 τ1 6 · · · are (Ft)-stopping times with τk ↑ ∞
a.s. and each ξk is an (Fτk)-measurable (real) random variable. For any other
adapted process (Yt, t > 0) we call∫ t

0
XsdYs :=

∞∑
k=0

ξk(Yt∧τk+1
− Yt∧τk), t > 0,

the stochastic integral of X with respect to Y .

2.3 Proposition. If X is a simple bounded process and M a continuous L2-
martingale, then (

∫ t
0 XsdMs, t > 0) is a continuous L2-martingale as well.

If X is a simple process and M is a continuous martingale, then
(
∫ t
0 XsdMs, t > 0) is a continuous local martingale.

2.4 Proposition. Let Xt =
∑∞

k=0 ξk1(τk,τk+1](t) be a bounded simple process
with |Xt| 6 C for all t > 0 and a deterministic constant C > 0. If M is a
continuous L2-martingale, then

E
[( ∫ t

0
XsdMs

)2]
=

∞∑
k=0

E
[
ξ2k E[M2

t∧τk+1
−M2

t∧τk |Ft∧τk ]
]
6 C2 E[M2

t ].

2.2 Quadratic variation

2.5 Definition. From now on we always suppose that the filtration (Ft) con-
tains all null sets (it is completed). Together with right-continuity it fulfills the
’usual conditions’.

M 2
T denotes the space of all continuous (Ft)-martingales (Mt, 0 6 t 6 T )

with M0 = 0, MT ∈ L2(P). For M,N ∈ M 2
T we set ‖M‖M 2

T
:= ‖MT ‖L2(P),

〈M,N〉M 2
T

:= 〈MT , NT 〉L2(P) = E[MTNT ].

2.6 Proposition. (M 2
T , 〈•, •〉M 2

T
) is a Hilbert space, i.e. a complete space with

scalar product, if indistinguishable M,M ′ ∈M 2
T are identified.

2.7 Theorem. Suppose the martingale M ∈ M 2
T has finite variation, i.e.

VT (M) = supn>1

∑mn
i=1|Mt

(n)
i

−M
t
(n)
i−1

| < ∞ a.s. for partitions = 0 = t
(n)
0 <

t
(n)
1 < · · · < t

(n)
mn = T with maxi|t(n)i − t

(n)
i−1| → 0. Then M = 0 a.s.
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