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1 Construction and properties of Brownian motion

1.1 Motivation

1.1 Definition. A process (B, t > 0) on (§2,.%#,P) is called Brownian motion
(Brownsche Bewegung) if

(a) Bo=0and B; ~ N(0,t), t > 0, holds;

(b) the increments are stationary and independent: for 0 < tp <t1 < -+ <t
we have

(Bt, — Biy, .., B, — B, ) ~ N(0,diag(t; —to, ..., tm — tm—-1)).
(¢) B has continuous sample paths, i.e. t — By(w) is continuous (for P-almost
all w € Q).

1.2 Definition. Brownian motion (B, ¢ € [0,7]) induces an image measure
(law) PV := P(BotEl0T]) on the path space (C([0,T]), Bo(o,r)), called Wiener
measure.

1.3 Remark. Recall the construction of Brownian motion as a limit of rescaled,
interpolated random walks via Donsker’s invariance principle.

1.4 Lemma. Let (B, t > 0) be a Brownian motion. Then the following pro-
cesses are also Brownian motions:

(a) (=Bt > 0);
(b) (a=Y2By, t = 0) for any a > 0 (’time change’);
(c) (Xt,t > 0) with Xy = tBy, fort >0 and Xo = 0 ("time inversion’).

1.2 Construction of Brownian motion

1.5 Lemma. Brownian motion (B, t > 0) is a centred Gaussian process with
covariance function Cov(By, Bs) = t As, t,s = 0. Conversely, a continuous
Gaussian process (X¢, t > 0) with E[X;] =0, Cov(Xy, Xs) =tAs, t,s 20, is a
Brownian motion.

1.6 Definition. Two processes (X, t € T), (Yi, t € T') on (2,.7,P) are called
(a) indistinguishable (ununterscheidbar) if PVt € T: X, =Y;) = 1;

(b) versions or modifications (Versionen, Modifikationen) of each other if we
haveVteT: P(X;=Y;) = 1.

1.7 Theorem. (Kolmogorov, Centsov, 1956) Let (Xi)iejo,m) be a stochastic
process on (2, F,P). If there are constants C > 0, a, B > 0 such that

Vs,t € [0,T]: E[|X; — X,|% < C|t — s|'*P,
then X has a continuous version X, which has even v-Holder continuous paths
for any v € (0,8/a), i.e.
Vw € Q3IL(w) > 0Vt s € [0,T] : | Xi(w) — Xs(w)| < L(w)|t — s|7.

1.8 Corollary. Brownian motion exists and has a.s. v-Holder-continuous sam-
ple paths for any v € (0,1/2).




1.3 Properties of Brownian sample paths

1.9 Theorem. (Quadratic variation, Lévy) Let 7, = {t(on), ... ,t&’;i} with 0 =

t(()n) < < tﬁl}i =1, n > 1, be partitions of [0,1] with T, C Tp11 (refinement)
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and max;=1,. .m,| 7)1] — 0 as n — oo (asymptotically dense). Then for a

Brownian motion B
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holds in L? and almost surely.

1.10 Corollary. Brownian motion is a.s. mot of bounded variation on any
interval [0,t] and in particular not continuously differentiable.

1.11 Theorem. (Law of the iterated logarithm, Khinchine 1933) For Brownian
motion B we have almost surely:

| B —1;
(a) limsupy 2t log(log(t—1)) b

(b) liminf; o 1;

By - _
v/ 2tlog(log(t—1))
By

(C) lim SuptToo m = 1,'

(d) liminfyp, ——2—— = —

v/ 2t log(log(t))
1.12 Lemma. For Z ~ N(0,1) and a > 0 we have the bounds
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1.4 Brownian motion as a martingale and Markov process
1.13 Definition. A process (X, t > 0) is called
(a) adapted to a filtration (:#)i>0 if Xt is Fi-measurable for all ¢ > 0;

(b) (F)-martingale (sub-/super-martingale) if it is adapted, X; € L!(P) and
E[Xt | 95] = Xs (E[Xt ‘ fs] 2 XS, E[Xt ]fis] < XS) for all 0 < S < t,

(¢) (Z#)-Brownian motion if it is adapted, continuous, Xy = 0, the increments
X;— X, are independent of %5 and X; — X5 ~ N(0,t—s) forall 0 < s < t.

1.14 Proposition. If B is an (%#;)-Brownian motion, then the following pro-
cesses are (F)-martingales:

By, Bf —t; exp(AB; — $A\*) for any A € R.

1.15 Proposition. If B is a Brownian motion with respect to a filtration
(F)i=0, then also with respect to its right-continuous extension F; = FL =

ns>t 3?50




1.16 Definition. A random variable 7 with values in [0,+o00] is called
(Z1)-stopping time if {r < t} € % holds for all ¢ > 0. The o-algebra of

T-history is given by #, :={A € F|AN{r <t} € F for all t > 0}.
From now on we always assume a right-continuous filtration (%#;)¢>0.

1.17 Lemma. For an adapted right-continuous process X and a finite stopping
time T, the map w — X, (,)(w) is Fr-measurable.

1.18 Theorem. Let (X;,t > 0) be an adapted right-continuous process with
Xy € LY(P) for allt > 0. Then the following are equivalent:

(a) X is a martingale;
(b) for any bounded stopping time T we have E[X ;] = E[X];

(¢c) for all bounded stopping times o < T we have E[X; |.%#,] = X, (optional
sampling);

(d) for all stopping times T the process (Xiar,t > 0) is a martingale (optional
stopping).

1.19 Corollary. For a right-continuous martingale (My,t > 0) and a finite
stopping time T we have E[M;] = E[My] provided (Mi-,t > 0) is uniformly
integrable (e.g. dominated or bounded).

1.20 Proposition. For a Brownian motion (By,t > 0) and the stopping time
Tap = 1nf{t > 0| X} ¢ (a,b)} of first hitting a < 0 or b > 0 we have

|al b
P(B, ,=b0)= ———, P(B,,=a)= ,
( a,b ) ‘a| + b ( a,b CL) |(l| _|_ b

E[7as] = [alb.

1.21 Proposition. For a Brownian motion (By,t > 0) and the passage time
Ty :=1inf{t > 0| X; = b} at b > 0 we have

E[e™ "] = e‘bm, A >0,

which yields (using inverse Laplace transfrom) that 1, has the density

1 —b2/(2t
fo(t) = —=e ACONE AN
V2rt3
1.22 Theorem. Brownian motion B is a strong Markov process in the sense
that for any finite stopping time T the process By := By, — B, t > 0, is again
a Brownian motion, independent of F.

1.23 Corollary. (Reflection principle) We have P(maxocs<t Bs = b) =
2P(B; = b) for a Brownian motion B and t,b > 0.

1.24 Corollary. The random variables M; = maxo<s<t By, |Bt| and My — By
have the same distribution for a Brownian motion B and t > 0.



2 Continuous martingales and stochastic integration

2.1 Local martingales and simple stochastic integrals

2.1 Definition. An (.%#;)-adapted continuous process (M;,t > 0) is called
continuous local martingale if there are (%#;)-stopping times 7 < 70 < ---
with 7, T 400 a.s. such that M/ := M., , t > 0, are (.%;)-martingales for all
n > 1. The sequence (7,) is called localising sequence of stopping times for M.

2.2 Definition. A piecewise constant process (X, t > 0) of the form

[o.¢]
Xi(w) =D &)l wyma@)t), t=0,we,
k=0
is a simple process if 0 = 79 < 71 < -+ are (.%;)-stopping times with 7, T oo

a.s. and each & is an (%, )-measurable (real) random variable. For any other
adapted process (Y, t > 0) we call

t oo
| XV = S Wiy~ Vi), 20,
0 k=0

the stochastic integral of X with respect to Y.

2.3 Proposition. If X is a simple bounded process and M a continuous L*-
martingale, then (fg XodM;,t > 0) is a continuous L>-martingale as well.

If X is a simple process and M is a continuous martingale, then
(f(f XsdMs,t > 0) is a continuous local martingale.

2.4 Proposition. Let X; = ) 2, EkL(ry70)(t) be a bounded simple process
with |X¢| < C for all t > 0 and a deterministic constant C > 0. If M is a
continuous L%-martingale, then

t 2 o
B[( [ xam)] = SE[fBM,,, — M, | Final] < CEMEL
k=0

2.2 Quadratic variation

2.5 Definition. From now on we always suppose that the filtration (.%#;) con-
tains all null sets (it is completed). Together with right-continuity it fulfills the
"usual conditions’.

A2 denotes the space of all continuous (.%;)-martingales (M, 0 < t < T)
with My = 0, My € L*(P). For M,N € .#3 we set ||M|| 42 := || M| r2(@),
<M, N>///72~ = <MT, NT>L2(IP’) = E[MTNT]

2.6 Proposition. (.72, (s, .)//,%) is a Hilbert space, i.e. a complete space with
scalar product, if indistinguishable M, M' € .//l% are identified.

2.7 Theorem. Suppose the martingale M € ///r_,% has finite variation, i.e.

V(M) = supy>y 302 (M ey — Moy | < 00 a.s. for partitions = 0 = tén) <
@ i—1

tgn) << tﬁﬁi =T with maxi|t§n) - tgﬁ)1| — 0. Then M =0 a.s.
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