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1 Some important processes

1.1 The Poisson process

1.1 Example. We count the number Nt of emissions of a radioactive substance
during the time interval [0, t] for t ∈ [0,∞). Since radioactivity is genuinely
random, Nt = Nt(ω) is a random variable with values in N0. We write Nt,
N(t), Nt(ω), N(t, ω) synonymously.

1.2 Definition. Let (Sk)k>1 be random variables on (Ω,F ,P) with 0 6
S1(ω) 6 S2(ω) 6 · · · for all ω ∈ Ω. Then N = (Nt, t > 0) with

Nt :=
∑
k>1

1(Sk 6 t), t > 0,

is called counting process (Zählprozess) with jump times (Sprungzeiten) (Sk).

1.3 Example. For the radioactive emissions physical modeling assumes that
on small time intervals the probability for more than one emission is negligible
and the probability for one emission is proportional to the length of the interval.
Moreover, the number of emissions during disjoint time intervals is independent
and its distribution only depends on the length of the time interval, not on the
time points itself. Hence, we model N as a Poisson process in the following
sense.

1.4 Definition. A counting process N is called Poisson process of intensity
λ > 0 if

(i) P(Nt+h −Nt = 1) = λh+ o(h) for h ↓ 0 and all t > 0;

(ii) P(Nt+h −Nt = 0) = 1− λh+ o(h) for h ↓ 0 and all t > 0;

(iii) (independent increments) (Nti−Nti−1)16i6n are independent for all n ∈ N
and 0 = t0 < t1 < · · · < tn;

(iv) (stationary increments) Nt −Ns
d
= Nt−s for all t > s > 0.

1.5 Remark. The ’small-o’ o(h) denotes a function f of h with limh↓0
f(h)
h = 0,

in other words (i) is equivalent to limh↓0
P(Nt+h−Nt=1)

h = λ. The notation X
d
= Y

means that X and Y have the same law, i.e. PX = PY .

1.6 Theorem. For a counting process N with jump times (Sk) the following
are equivalent:

(a) N is a Poisson process;

(b) N satisfies conditions (iii),(iv) of a Poisson process and Nt ∼ Poiss(λt)
holds for all t > 0 (setting Poiss(0) = δ0);

(c) T1 := S1, Tk := Sk − Sk−1, k > 2, are i.i.d. Exp(λ)-distributed random
variables;
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(d) Nt ∼ Poiss(λt) holds for all t > 0 and the law of (S1, . . . , Sn) given
{Nt = n} has for all n ∈ N the density

f(x1, . . . , xn) = n!
tn1(0 6 x1 6 · · · 6 xn 6 t), x1, . . . , xn ∈ R . (1.1)

(e) N satisfies condition (iii) of a Poisson process, E[N1] = λ and (1.1) is
the density of (S1, . . . , Sn) given {Nt = n} for all n ∈ N, t > 0.

1.7 Remark. Let U1, . . . Un ∼ U([0, t]) i.i.d. and consider their order statistics
U(1), . . . , U(n), i.e. U(1) = mini Ui, U(2) = min({U1, . . . , Un} \ {U(1)}) etc. Then
(U(1), . . . , U(n)) has exactly density (1.1) IControl.

The characterisations give rise to three simple methods to simulate a Poisson
process: (i) The definition gives an approximation for small h (forgetting the
o(h)-term) and we may recursively use N(k+1)h ≈ Nkh + εk with independent
Bin(1, λh)-distributed random variables εk. (ii) Part (c) just uses exponentially
distributed inter-arrival times Tk and we may setNt =

∑
k>1 1(T1+· · ·+Tk 6 t).

(iii) By part (d) we simulate NT ∼ Poiss(λT ) at a specified right-end point
T > 0 and then use NT independent U([0, T ])-distributed random variables as
jump times in-between. Note that (c) ensures also the existence of a Poisson
process because we can construct a probability space with independent Exp(λ)-
distributed random variables (Tk)k>1, giving rise to (Sk)k>1 and thus N .

Proof. We prove the equivalence by a circular argument.

(a)⇒(b) Put pn(t) = P(Nt = n). By (i), (ii), (iii) we infer

p0(t+ h) = P(Nt = 0, Nt+h −Nt = 0) = p0(t)(1− λh+ o(h)),

which implies

p′0(t) = lim
h↓0

p0(t+ h)− p0(t)

h
= −λp0(t), t > 0.

In view of p0(0) = 1 (from (iv) with t = s) we obtain p0(t) = e−λt.

Similarly, we have for n > 1:

pn(t+ h) = P({Nt+h = n} ∩ ({Nt 6 n− 2} ∪ {Nt = n− 1} ∪ {Nt = n}))
= P(Nt 6 n− 2)o(h) + P(Nt = n− 1)(λh+ o(h))

+ P(Nt = n)(1− λh+ o(h))

= pn−1(t)λh+ pn(t)(1− λh) + o(h).

This implies p′n(t) = −λpn(t) + λpn−1(t). Using pn(0) = 0 we deduce

inductively pn(t) = (λt)n

n! e−λt.
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(b)⇒(c) Let 0 = b0 6 a1 < b1 6 · · · 6 an < bn and calculate

P
( n⋂
k=1

{ak < Sk 6 bk}
)

= P
( n−1⋂
k=1

{Nak −Nbk−1
= 0, Nbk −Nak = 1} ∩ {Nan −Nbn−1 = 0, Nbn −Nan > 1}

)
(iii),(iv)

=
( n−1∏
k=1

P(Nak−bk−1
= 0)P(Nbk−ak = 1)

)
P(Nan−bn−1 = 0)P(Nbn−an > 1)

=
( n−1∏
k=1

λ(bk − ak)e−λ(bk−ak)−λ(ak−bk−1)
)
e−λ(an−bn−1)(1− e−λ(bn−an))

= λn−1
( n−1∏
k=1

(bk − ak)
)

(e−λan − e−λbn).

Taking derivatives with respect to b1, . . . , bn we obtain the density of
(S1, . . . , Sn):

fS1,...,Sn(b1, . . . , bn) = λne−λbn1(0 6 b1 6 b2 6 · · · 6 bn),

noting the order S1 6 · · · 6 Sn which implies the indicator function.
Consequently, (T1, T2, . . . , Tn) = (S1, S2 − S1, . . . , Sn − Sn−1) has density
λne−λ(x1+···+xn)1(x1, . . . , xn > 0) (density transformation IControl). The
product density form implies that T1, . . . , Tn are independent (Stochastik
I!) and that each Ti is Exp(λ)-distributed.

(c)⇒(d) We find P(Nt = 0) = P(S1 > t) = e−λt and

P(Nt = n) = P(Nt > n)− P(Nt > n+ 1) = P(Sn 6 t)− P(Sn+1 6 t).

Since Sn = T1 + · · ·+ Tn is Γ(λ, n)-distributed (Stochastik I !), we obtain

P(Nt = n) =

∫ t

0

( λnxn−1

(n− 1)!
−λ

n+1xn

n!

)
e−λxdx =

(λx)n

n!
e−λx

∣∣∣t
x=0

=
(λt)n

n!
e−λt

for n > 1 and we conclude Nt ∼ Poiss(λt). By density transformation the
joint density of (S1, . . . , Sn+1) is for sn+1 > sn > · · · > s1 > s0 = 0

fS1,...,Sn+1(s1, . . . , sn+1) =

n+1∏
k=1

λe−λ(sk−sk−1) = λn+1e−λsn+1 .

Noting {Nt = n} = {Sn 6 t, Sn+1 > t} we consider 0 6 a1 < b1 6 · · · 6
an < bn 6 t and obtain the conditional law of the jump times via

P(S1 ∈ [a1, b1], . . . , Sn ∈ [an, bn] |Nt = n)

=
P(S1 ∈ [a1, b1], . . . , Sn ∈ [an, bn], Sn+1 > t)

(λt)n

n! e−λt

=

∫ b1

a1

· · ·
∫ bn

an

n!

tn
1(0 6 s1 6 · · · 6 sn 6 t) dsn · · · ds1
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(use
∫∞
t λn+1e−λsn+1dsn+1 = λne−λt), which identifies the integrand as

the conditional density.

(d)⇒(e) E[N1] = λ is direct from the assumption. For 0 = t0 < t1 < · · · tn = t
and k1, . . . , kn ∈ N0 consider with K :=

∑n
l=1 kl

P(∀l = 1, . . . , n : Ntl −Ntl−1
= kl)

= P(Nt = K)P(∀l = 1, . . . , n : Ntl −Ntl−1
= kl |Nt = K)

=
(λt)K

K!
e−λt P(Sk1 6 t1 < Sk1+1, . . . , SK 6 tn < SK+1 |Nt = K)

=
(λt)K

K!
e−λt

K!

tK

n∏
l=1

(tl − tl−1)kl

kl!
=

n∏
l=1

(
λ(tl − tl−1)

)kl
kl!

e−λ(tl−tl−1)

=

n∏
l=1

P(Ntl −Ntl−1
= kl).

The last identity follows from the marginal probability

P(Ntl0
−Ntl0−1

= kl0) =

(
λ(tl0 − tl0−1)

)kl0
kl0 !

e−λ(tl0−tl0−1), l0 = 1, . . . , n,

obtained from the previous calculation by summing P(∀l = 1, . . . , n :
Ntl −Ntl−1

= kl) over kl ∈ N0 for all l 6= l0. Hence, (Ntl −Ntl−1
)l>1 are

independent (the joint counting density is the product of the marginal
counting densities).

(e)⇒(a) For 0 = t0 < t1 < · · · tn = t and k1, . . . , kn ∈ N0, h > 0, m >
k1 + · · ·+ kn =: K note the shift invariance

P(∀l = 1, . . . , n : Ntl+h −Ntl−1+h = kl |Nt+h = m)

=
m!

(t+ h)m
hm−K

(m−K)!

m∏
l=1

(tl + h− (tl−1 + h))kl

kl!

= P(∀l = 1, . . . , n : Ntl −Ntl−1
= kl |Nt+h = m),

where we used that the first conditional probability is the probability that
for m independent U([0, t+ h])-distributed random variables m−K end
up in [0, h] and kl in [tl−1 + h, tl + h] for each l by the order statistics
interpretation of Remark 1.7. We thus have

P(∀l : Ntl+h−Ntl−1+h = kl, Nt+h = m) = P(∀l : Ntl−Ntl−1
= kl, Nt+h = m)

and summing up over all m > k1 + · · ·+ kn yields identity in law:

(Nt1+h −Nt0+h, . . . , Ntn+h −Ntn−1+h)
d
= (Nt1 −Nt0 , . . . , Ntn −Ntn−1).

This gives (iv) (put n = 1 and observe N0 = 0 a.s. due to the existence
of a density for S1) and for 0 < h < 1

P(Nh = 0) =
∞∑
k=0

P(N1 = k)P(N1−Nh = k |N1 = k) =
∞∑
k=0

P(N1 = k)(1−h)k.
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Because of
∑∞

k=0 P(N1 = k)k = E[N1] = λ < ∞ the function p(h) :=
P(Nh = 0) is differentiable in [0, 1] with p′(0) = −λ. We conclude

P(Nh = 0) = P(N0 = 0)− λh+ o(h) = 1− λh+ o(h).

By a similar argument, P(Nh = 1) equals

∞∑
k=1

P(N1 = k)P(N1−Nh = k− 1 |N1 = k) =

∞∑
k=1

P(N1 = k)k(1−h)k−1h,

and this implies P(Nh = 1) = λh+ o(h).

B Control questions

(a) Replace in the definition of a Poisson process conditions (i), (ii) by
P(Nt+h −Nt = 1) = λh2 + o(h2), P(Nt+h −Nt = 0) = 1− λh2 + o(h2) and
show P(Nt = 0) = 1 for such a process N .

This follows as in the proof for the implication (a)⇒(b): we have p′0(t) =

limh↓0
P(Nt+h−Nt=0)

h = 0 and with p0(0) = 1 this implies p0(t) = 1 for all
t > 0. In fact, the condition P(Nt+h − Nt = 0) = 1 − o(h) suffices for this.
So, one could define a Poisson process of intensity λ = 0 to be a process with
Nt = 0 all the time.

(b) Write down explicitly the density transformation step from (S1, . . . , Sn) to
(T1, . . . , Tn) in proof part (b)⇒(c).

If we write T = (T1, . . . , Tn)>, S = (S1, . . . , Sn)>, then T = g(S) holds with
a linear function g whose inverse is g−1(t) = (t1, t1 + t2, . . . , t1 + · · ·+ tn)>.
By the density transformation formula, we have for the densities fT (x) =
fS(g−1(x))|det(Dg−1(x))| with the Jacobi matrix (Dg−1(x))i,j = 1(j 6
i). Consequently, det(Dg−1(X)) = 1 holds and the result follows from
(g−1(x))n = x1 + · · ·+ xn and (g−1(x))i 6 (g−1(x))i+1 ⇐⇒ xi+1 > 0.

(c) Derive the density of the order statistics U(1), . . . , U(n) for independent Ui ∼
U([0, 1]) by showing for all 0 6 t1 < t1 + h1 6 t2 < t2 + h2 6 · · · 6 tn <
tn + hn 6 1:

P(U(1) ∈ [t1, t1 + h1], . . . , U(n) ∈ [tn, tn + hn])

=
∑
π∈Sn

P(Uπ(1) ∈ [t1, t1 + h1], . . . , Uπ(n) ∈ [tn, tn + hn]) = n!

n∏
i=1

hi

with the set Sn of all permutations π of {1, . . . , n}.

Define the random permutation Π ∈ Sn via UΠ(i) = U(i) for i = 1, . . . , n.
Π is almost surely uniquely defined (P(Ui = Uj) = 0 for i 6= j) and called
inverse rank. Then {U(1) ∈ [t1, t1 + h1], . . . , U(n) ∈ [tn, tn + hn]} equals
{UΠ(1) ∈ [t1, t1 + h1], . . . , UΠ(n) ∈ [tn, tn + hn]}. We obtain

P(U(1) ∈ [t1, t1 + h1], . . . , U(n) ∈ [tn, tn + hn])

=
∑
π∈Sn

P(Uπ(1) ∈ [t1, t1 + h1], . . . , Uπ(n) ∈ [tn, tn + hn]; Π = π).
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In the last probability we may omit the condition Π = π because this follows
from Uπ(1) 6 · · · 6 Uπ(n). Moreover, by independence this probability equals∏n
i=1 P(Uπ(i) ∈ [ti, ti + hi]) =

∏n
i=1 hi, implying

P(U(1) ∈ [t1, t1 + h1], . . . , U(n) ∈ [tn, tn + hn]) = n!

n∏
i=1

hi.

This equals the density integral
∫ t1+h1

t1
· · ·
∫ tn+hn
tn

fdx for f(x) = n!1(0 6
x1 6 · · · 6 xn 6 1). In view of the ordering U(1) 6 · · ·U(n) this suffices to
identify f as the density of the order statistics (compare class).

1.2 Markov chains

1.8 Example. In many models we can consider a process as memoryless in the
sense that the future evolution only depends on the present value of the process
and not on its history (the way it has developed before). The Poisson process
is a typical example because at present time t > 0 its law at the future time
t + h, h > 0, given the past and present values only depends on the present
value, formally for any 0 < t1 < · · · < tn < t with t0 =, i0 = 0, tn+1 = t:

P(Nt+h = k |Nt1 = i1, . . . , Ntn = in, Nt = in+1)

= P(Nt+h −Nt = k − in+1 |Nt1 = i1, . . . , Ntn+1 = in+1)

= P(Ntn+1+h −Ntn+1 = k − in+1 |Nt1 −Nt0 = i1 − i0, . . . , Ntn+1 −Ntn = in+1 − in)

= P(Ntn+1+h −Ntn+1 = k − in+1)

= P(Ntn+1+h = k |Ntn+1 = in+1),

where we have only used (iii) and (iv) that a Poisson process has independent
incrementsIControl. The values i1, . . . , in, i, k are chosen so that all expressions
are well defined. This property of memorylessness in law is called Markovianity
and plays the same role as ordinary differential equations in analysis, compared
to more general delay differential equations.

1.9 Definition. Let T = N0 (discrete time) or T = [0,∞) (continuous time)
and S be a countable set (state space). Then random variables (Xt)t∈T with
values in (S,P(S)) form a Markov chain if for all n ∈ N, t1 < t2 < · · · < tn+1,
i1, . . . , in+1 ∈ S, satisfying P(Xt1 = i1, . . . , Xtn = in) > 0, the Markov property
is satisfied:

P(Xtn+1 = in+1 |Xt1 = i1, . . . , Xtn = in) = P(Xtn+1 = in+1 |Xtn = in).

1.10 Remark. P(S) = {A |A ⊆ S} denotes the power set of S.

1.11 Definition. For a Markov chain X and t1 6 t2, i, j ∈ S

pij(t1, t2) := P(Xt2 = j |Xt1 = i) (or zero if not well-defined)

defines the transition probability to reach state j at time t2 from state i at time
t1. The transition matrix is given by

P (t1, t2) := (pij(t1, t2))i,j∈S .
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The transition matrix and the Markov chain are called time-homogeneous if
P (t1, t2) only depends on t2− t1 (whenever well-defined). We then set pij(t) :=
pij(t1, t1 + t), P (t) := P (t1, t1 + t).

1.12 Example. As the discussion of the Poisson process shows, every process
with independent increments is a Markov process (this is true in general, here
we restrict to countable state space like S = Z). Moreover, the Markov chain
is time homogeneous. A discrete-time example is the random walk

Sn =
n∑
i=1

Xi with i.i.d. integer-valued random variables Xi

for n > 1, S0 = 0. Then the increments Sn−Sn−1, . . . , S1−S0 equal Xn, . . . , X1

and are by assumption independent and identically distributed, hence station-
ary IControl. A specific example is the simple (asymmetric) random walk with
P(Xi = +1) = p, P(Xi = −1) = q = 1 − p, for which the first two transition
matrices read

P (1) =



. . .

q 0 p

. . .
. . .

. . .

q 0 p

. . .


, P (2) =



. . .

q2 0 2pq 0 p2

. . .
. . .

. . .
. . .

. . .

q2 0 2pq 0 p2

. . .


with all other entries zero. Using the Markov property (where?), we calculate

P (2)i,k = P(Sn+2 = k |Sn = i)

=
∑
j∈Z

P(Sn+1 = j |Sn = i)P(Sn+2 = k |Sn+1 = j) =
∑
j∈Z

P (1)i,jP (1)j,k.

The important observation is that the two-step transition matrix P (2) satisfies
P (2) = P (1)P (1) in terms of (infinite) matrix multiplication, which we now
show in general.

1.13 Proposition. The transition matrices of a Markov chain satisfy the
Chapman-Kolmogorov equation

∀t1 6 t2 6 t3 : P (t1, t3) = P (t1, t2)P (t2, t3) (matrix multiplication).

In the time-homogeneous case this gives the semigroup property

∀t, s ∈ T : P (t+ s) = P (t)P (s),

in particular P (n) = P (1)n for n ∈ N.

1.14 Remark. For an infinite state space S the matrix multiplication is well
defined because all entries are in [0, 1], the sum in each row is one (or smaller
if some entries are not well defined) and thus

∑
j∈S P (t1, t2)i,jP (t2, t3)j,k is

absolutely summable.
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Proof. By definition we obtain in case P(Xt1 = i) > 0

P (t1, t3)ij = P(Xt3 = j |Xt1 = i)

=
∑
k∈S

P(Xt3 = j,Xt2 = k |Xt1 = i)

=
∑

k∈S:P(Xt1=i,Xt2=k)>0

P(Xt3 = j |Xt1 = i,Xt2 = k)P(Xt2 = k |Xt1 = i)

Markov
=

∑
k∈S:P(Xt1=i,Xt2=k)>0

P(Xt3 = j |Xt2 = k)P(Xt2 = k |Xt1 = i)

=
∑
k∈S

P (t2, t3)kjP (t1, t2)ik

= (P (t1, t2)P (t2, t3))ij .

In case P(Xt1 = i) = 0 we have P (t1, t3)i,j = P (t1, t2)i,k = 0 for all j, k and the
formula holds as well.

For time-homogeneous Markov chains this reduces to P (t3 − t1) = P (t2 −
t1)P (t3 − t2) and substituting t = t2 − t1, s = t3 − t2 yields the assertion.

1.15 Example (Ehrenfest model, 1907). We consider a model for the physical
diffusion of gas. N gas molecules are contained in two containers, which are
connected by an (infinitesimally) small tube. In every time step, one molecule
is picked at random and leaves its container via the tube to the other one. Let
Xn denotes the number of molecules in container 1 at time n. Then at time
n + 1 the probability that a molecule of container 1 is picked equals Xn/N ,
which then leads to Xn+1 = Xn − 1. This way we obtain a Markov chain (Xn)
on S = {0, 1, . . . N} with transition probabilities

P(Xn+1 = i− 1 |Xn = i) = i/N, P(Xn+1 = i+ 1 |Xn = i) = (N − i)/N

for 0 6 i 6 N . It is time-homogeneous with tri-diagonal transition matrix

P (1) =



0 N/N
1/N 0 (N − 1)/N

. . .
. . .

. . .

(N − 1)/N 0 1/N
N/N 0


∈ R(N+1)×(N+1)

and all other entries zero.

1.16 Definition. For a time-homogeneous Markov chain (Xt) a probability
measure µ on (S,P(S)) is called invariant initial distribution if the transition
matrices satisfy ∑

i∈S
µ({i})P (t)i,j = µ({j}) for all j ∈ S, t ∈ T.

8



1.17 Remark. If µ is the law of X0 (initial distribution of (Xn)), then

P(Xt = j) =
∑
i∈S

P(X0 = i)P(Xt = j |X0 = i) =
∑
i∈S

µ({i})P (t)i,j

holds (convention: 0•x := 0 even if x is not well-defined or infinity) and for an
invariant initial distribution µ the Xt have law µ for all t ∈ T , that is PXt is
invariant in time t.

1.18 Lemma. In discrete time, µ is already an invariant initial distribution of
(Xn) if ∑

i∈S
µ({i})P (1)i,j = µ({j}) for all j ∈ S.

This condition is equivalent to the row vector ~µ = (µ({j}))j∈S being an eigen-
vector of P (1) for the eigenvalue 1: ~µP (1) = ~µ.

Proof. The last assertion is just row-vector matrix multiplication: (~µP (1))j =∑
i∈S ~µiP (1)i,j . In this formulation the Chapman-Kolmogorov equation yields

for all n > 1

~µP (n) = (~µP (1))P (1)n−1 = ~µP (n− 1) = · · · = ~µ,

which is the vector-matrix formulation of the defining condition for an invariant
initial distribution.

1.19 Example (Ehrenfest model II). In the Ehrenfest model the Binomial
law µ = Bin(N, 1/2) with µ({j}) =

(
N
j

)
2−N is an invariant initial distribution

because

N∑
i=0

µ({i})P (1)i,j =

(
N

j − 1

)
2−N

N − (j − 1)

N
+

(
N

j + 1

)
2−N

j + 1

N
=

(
N

j

)
2−N ,

using
(
N−1
j−1

)
+
(
N−1
j

)
=
(
N
j

)
and considering the border cases j ∈ {0, N} sepa-

rately. Note that the law of the molecule numbers Xn in container 1 remains
constant in time, while the actual realisations of Xn change dynamically!

B Control questions

(a) Give precise arguments for each identity in the derivation of the Markov
property for the Poisson process.

The first identity follows from the definition of conditional probabilities (the
intersections of events are the same). For the second identity the conditioning
events are identical. Independence of increments yields the third identity. The
fourth identity follows as identities 1 to 3 by omitting the conditions involving
Ntj , j = 1, . . . , n.

(b) Show that a discrete-time process (Sn)n>0 starting in S0 = 0 has stationary
and independent increments if and only if it can be written as Sn =

∑n
i=1Xi

with i.i.d. random variables Xi. What about processes with independent

9



increments only?

If Sn =
∑n
i=1Xi with i.i.d. random variables Xi holds, then Sti−ti−1 =∑ti

j=ti−1+1Xj for integers 0 = t0 < t1 < · · · < tn are independent as mea-

surable functions of independent (partitioned) Xj (proposition in Stochastik

I). The increments are also stationary because
∑ti
j=ti−1+1Xj is distributed as∑ti−ti−1

j=+1 Xj for i.i.d. Xj . Conversely, define Xi := Si − Si−1 for a process
(Sn) with independent, stationary increments and S0 = 0. Then in particular
(S1 − S0, . . . , Sn − Sn−1) = (X1, . . . , Xn) are independent and equal in law,
hence i.i.d. By Stochastik I this means that the sequence (Xi) is i.i.d. because
n is arbitrary.

(c) Let (Xt)t>0 be a time-continuous homogeneous Markov chain where the
transition matrices are differentiable in time with generator A := P ′(0).
Derive P ′(t) = AP (t) = P (t)A and P (t) = exp(At) (matrix exponential).
What is A for the Poisson process?

By the Chapman-Kolmogorov equation we have P (t + h) − P (t) = (P (h) −
P (0))P (t) = P (t)(P (h)− P (0)) so that taking derivatives P ′(t) = AP (t) =
P (t)A follows. For the matrix exponential exp(At) =

∑∞
m=0

tm

m!A
m we also

obtain (exp(At))′ = A exp(At) = exp(At)A. Since P (0) = exp(A0) = I
(identity matrix) holds and the solution to the matrix differential equation is
unique (proven as in the scalar case, at least for finite S), this shows P (t) =
exp(At). For the Poisson process we have P (t)i,j = pj−i(t)1(j > i) with
pn(t) = P(Nt = n) as above. By properties (i), (ii) of a Poisson process we
infer p′0(t) = −λ, p′1(t) = λ and p′n(t) = 0 for n > 2. The Poisson process
generator is therefore given by Ai,i = −λ, Ai,i+1 = λ and all other entries
Ai,j = 0, i, j ∈ N0.

2 General theory of stochastic processes

2.1 Basic notions

2.1 Definition. A family X = (Xt, t ∈ T ) of random variables on a common
probability space (Ω,F ,P) is called stochastic process. We call X time-discrete
if T = N0 and time-continuous if T = R+

0 = [0,∞). If all Xt take values in
(S,S ), then (S,S ) is the state space (Zustandsraum) of X. For each fixed ω ∈
Ω the mapping t 7→ Xt(ω) is called sample path (Pfad), trajectory (Trajektorie)
or Realisation (Realisierung) of X.

2.2 Lemma. For a stochastic process (Xt, t ∈ T ) with state space (S,S ) the
mapping X̄ : Ω → ST with X̄(ω)(t) := Xt(ω) is a (ST ,S ⊗T )-valued random
variable.

2.3 Remark. Later on, we shall also consider smaller function spaces than ST ,
e.g. C(R+) instead of RR+

. IExercise

Proof. We have to show measurability. Since S ⊗T is generated by the pro-
jections πt : ST → S, t ∈ T , onto the t-th coordinate, X̄ is measurable if all
compositions πt ◦ X̄ : Ω → S are measurable, but by definition πt ◦ X̄ = Xt,
t ∈ T , are measurable as random variables.
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2.4 Definition. Given a stochastic process (Xt, t ∈ T ), the laws of the random
vectors (Xt1 , . . . , Xtn) with n > 1, t1, . . . , tn ∈ T are called finite-dimensional
distributions of X. We write PXt1,...,tn := P(Xt1 ,...,Xtn ).

2.5 Definition. Two processes (Xt, t ∈ T ), (Yt, t ∈ T ) on (Ω,F ,P) are called

(a) indistinguishable (ununterscheidbar) if P(∀ t ∈ T : Xt = Yt) = 1;

(b) versions or modifications (Versionen, Modifikationen) of each other if we
have ∀ t ∈ T : P(Xt = Yt) = 1.

2.6 Remarks.

(a) Obviously, indistinguishable processes are versions of each other. The
converse is in general false. For instance, defining counting processes via
Nt =

∑∞
k=1 1(Sk < t) yields left-continuous sample paths and the left- and

right-continuous Poisson processes are versions of each other,IControlbut
clearly distinguishable.

(b) If X is a version of Y , then X and Y share the same finite-dimensional
distributions because countable intersections of sets of measure one have
measure one and thus P(Xt1 = Yt1 , . . . , Xtn = Ytn) = 1. Processes with
the same finite-dimensional distributions need not even be defined on the
same probability space and will in general not be versions of each other.

(c) If T is countable, then a version Y of X is also indistinguishable from X
because countable intersections of 1-sets are 1-sets. Suppose (Xt, t > 0)
and (Yt, t > 0) are real-valued stochastic processes with right-continuous
sample paths. Then they are indistinguishable already if they are versions
of each other. IExercise

2.7 Definition. A process (Xt, t > 0) is called continuous if all sample paths
are continuous. It is called stochastically continuous, if tn → t always implies

Xtn
P−→ Xt (convergence in probability).

2.8 Remark. Every continuous process is stochastically continuous since al-
most sure convergence implies stochastic convergence. On the other hand, the
Poisson process is stochastically continuous, but obviously not continuous:

∀ε ∈ (0, 1) : lim
tn→t

P(|Nt −Ntn | > ε) = lim
tn→t

(1− e−λ|t−tn|) = 0.

Note that for stochastically continuous processes the finite-dimensional distri-
butions vary continuously in time with respect to convergence in distribution.

2.9 Proposition. Let C([0,∞)) be equipped with the topology of uniform con-
vergence on compacts using the metric d(f, g) :=

∑
k>1 2−k(supt∈[0,k]|f(t) −

g(t)| ∧ 1). Then:

(a) (C([0,∞)), d) is a complete and separable metric space.

(b) The Borel σ-algebra is the smallest σ-algebra such that all coordinate pro-
jections πt : C([0,∞))→ R, t > 0, are measurable.
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(c) For any continuous stochastic process (Xt, t > 0) on (Ω,F ,P) the map-
ping X̄ : Ω→ C([0,∞)) with X̄(ω)t := Xt(ω) is Borel-measurable.

(d) The law of X̄ is uniquely determined by the finite-dimensional distribu-
tions of X.

Proof. IExercise

2.2 Polish spaces and Kolmogorov’s consistency theorem

2.10 Definition. A metric space (S, d) is called Polish space if it is separable
and complete. More generally, a separable topological space which is metrizable
with a complete metric is called Polish. Canonically, it is equipped with its Borel
σ-algebra BS , generated by the open sets.

2.11 Example. In analysis it is shown that Rd with any norm,
(C([a, b];R), ‖•‖∞), `p(N) and Lp(R), Lp([a, b]) for p ∈ [1,∞) are separable
Banach (complete normed) spaces and thus Polish. The rational numbers Q
with Euclidean distance are not complete, the spaces `∞, L∞([a, b]) are exam-
ples of non-separable Banach spaces.

The Euclidean distance d on the set (−1, 1) is not complete (the Cauchy
sequence (1 − 1/n)n>1 does not converge), but it generates a Polish topology:
convergence is the same as under the metric(!) d̃(x, y) = |tan(xπ/2)−tan(yπ/2)|
and this metric is complete (it maps (−1, 1) homeomorphically to R). Since
Borel σ-algebras are generated by the open sets, they are the same under the
metrics d and d̃. One can show (see e.g. Bauer, Measure and Integration
Theory) that all closed and all open subsets of a Polish space are Polish.

2.12 Definition. For finitely or countably many metric spaces (Sk, dk)
the product space

∏
k Sk is canonically equipped with the product metric

d((sk), (tk)) :=
∑

k 2−k(dk(sk, tk) ∧ 1), which generates the product topology,
in which a vector/sequence converges iff all coordinates converge.

2.13 Lemma. Let (Sk, dk) be separable (resp. complete) metric spaces, then
the finite or countably infinite product space

∏
k Sk with the product metric is

again a separable (resp. complete) metric space.

Proof. Separability: Choose for each k a countable dense set Dk ⊆ Sk. Then∏
kDk is countable and dense in

∏
k Sk because dk(sk, tk) < ε for all k implies

d(s, t) < ε.
Completeness: For a Cauchy sequence (s(n))n>1 in (

∏
k Sk, d) each coordi-

nate sequence (s
(n)
k )n>1 is Cauchy in (Sk, dk) by dk(sk, tk) 6 2kd(s, t). So by

completeness of Sk, for each k there is sk ∈ Sk with s
(n)
k → sk. This implies

s(n) → s in (
∏
k Sk, d) and thus completeness of (

∏
k Sk, d).

2.14 Lemma. Let (Sk, dk), k > 1, be separable metric spaces, then the Borel σ-
algebra of the product satisfies B∏K

k=1 Sk
=
⊗K

k=1 BSk , B∏
k>1 Sk

=
⊗

k>1 BSk .
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Proof. Put S =
∏
k>1 Sk and assume without loss of generality that infinitely

many Sk are given (for finitely many S1, . . . , SK the proof is even easier). Then⊗
k>1 BSk is the smallest σ-algebra such that the coordinate projections πi :

S → Si, i > 1, are measurable. Analogously, the product topology on S is the
coarsest topology such that all πi are continuous. Consequently, each πi is in
particular BS-measurable, which implies BS ⊇

⊗
k>1 BSk .

S is separable by Lemma 2.13, and any open set O ⊆ S is a countable union
of open balls in S. Any such ball Br(s) = {t ∈ S |

∑
k 2−k(dk(sk, tk) ∧ 1) <

r} can be represented as a countable union of cylinder sets (sets of the form
(π1, . . . , πK)−1(BK) with BK ∈

⊗K
k=1 BSk):

Br(s) =
⋃
K∈N

{
t ∈ S

∣∣∣ K∑
k=1

2−k(dk(sk, tk) ∧ 1) < r − 2−K
}
.

By definition, cylinder sets lie in
⊗

k>1 BSk (they even form a generator) and
thus O ∈

⊗
k>1 BSk holds, proving BS ⊆

⊗
k>1 BSk .

2.15 Remark. The ⊇-relation holds for all topological spaces and products of
any cardinality with the same proof. The ⊆-property can already fail for the
product of two non-separable spaces, see e.g. Elstrodt, Maß- und Integrations-
theorie, § III.5.3.

2.16 Definition. A probability measure P on a metric space (S,BS) is called

(a) tight (straff) if ∀ε > 0 ∃K ⊆ S compact : P(K) > 1− ε,

(b) regular (regulär) if ∀ε > 0, B ∈ BS ∃K ⊆ B compact : P(B \K) 6 ε and
∀ε > 0, B ∈ BS ∃O ⊇ B open : P(O \B) 6 ε.

2.17 Remark. Regularity and tightness have appeared already in Stochastik I
for S = R, either explicitly or implicitly during the construction of Lebesgue and
Lebesgue-Stieltjes measures. We see that tight probability measures P can be
approximated by their values inside compact sets via P(B) = supK compact P(B∩
K), which will allow compactness arguments. Similarly, regular P are deter-
mined by their values on compact and open sets:

P(B) = sup
K⊆B compact

P(K) and P(B) = inf
O⊇B open

P(O).

Verify this for Lebesgue measure on [0, 1] and B = Q∩[0, 1]IControl.

2.18 Proposition. Every probability measure on a Polish space is tight.

Proof. Let (sn)n>1 be a dense sequence in S and consider for any radius ρ > 0
the closed balls B̄ρ(sn) around sn. Then S =

⋃
n>1 B̄ρ(sn) and σ-continuity

imply

lim
N→∞

P
( N⋃
n=1

B̄ρ(sn)
)

= 1.
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Now select for ε > 0 and every ρ = 1/k an index Nk such that

P
( Nk⋃
n=1

B̄1/k(sn)
)
> 1− ε2−k.

Then K :=
⋂∞
k=1

⋃Nk
n=1 B̄1/k(sn) is a closed subset, hence complete. Since for

any δ > 0 there is a finite cover of K by balls B̄1/k(sn) of diameter less than δ
(K is totally bounded), any sequence in K has a subsequence which is Cauchy.
By completeness, the Cauchy sequence converges and K is compact. By con-
struction,

P(S \K) = P
( ∞⋃
k=1

Nk⋂
n=1

B̄1/k(sn)C
)
6
∞∑
k=1

ε2−k = ε

holds. This shows tightness.

B Control questions

(a) Show that the left- and right-continuous definitions of a Poisson process yield
indeed versions of each other.

Let (Nt, t > 0) denote the usual right-continuous Poisson process and (Ñt, t >
0) the left-continuous Poisson process. Then P(Nt 6= Ñt) equals the probabil-
ity P(∃k : Sk = t) that there is a jump at time t. Since Sk = T1 + · · · + Tk
holds with independent Exp(λ)-distributed Ti, the law of Sk is continuous (a
Gamma-distribution) and P(Sk = t) = 0 holds. The union of nullsets is a
nullset so that P(∃k : Sk = t) = 0 follows.

(b) Why is a continuous process always stochastically continuous?

This follows directly from the fact that (almost) sure convergence implies con-
vergence in probability.

(c) For Lebesgue measure λ find compact sets Kn ⊆ Q∩[0, 1]
with λ(Kn) → λ(Q∩[0, 1]) and open sets On ⊇ Q∩[0, 1] with
λ(On)→ λ(Q∩[0, 1]).

Since every atom {x}, x ∈ [0, 1], is a λ-null set, so is every countable subset of
[0, 1]. Hence, λ(Q) = 0 and λ(K) = 0 for any subset K ⊆ Q, in particular any
compact subset K. If we write Q∩[0, 1] = {qn |n > 1} for an enumeration of
the elements qn of Q∩[0, 1], the sets Oε :=

⋃
n>1(qn − ε2−n, qn + ε2−n) ∩

[0, 1] are open in [0, 1] (union of open sets). Their Lebesgue measure satisfies
λ(Oε) 6

∑
n>1 2ε2−n = 2ε. We thus have O1/m ⊇ Q∩[0, 1] and λ(O1/m)→

0 = λ(Q∩[0, 1]) as m→∞.

2.19 Theorem (Ulam, 1939). Every probability measure on a Polish space
(S, d) is regular.

Proof. We consider the family of Borel sets

D :=
{
B ∈ BS

∣∣∣ P(B) = sup
K⊆B compact

P(K) = inf
O⊇B open

P(O)
}
.
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Consider any closed set F ⊆ S. By tightness, for any ε > 0 there is a
compact set Kε with P(Kε) > 1− ε. Then F ∩Kε ⊆ F is compact with

P(F \ (F ∩Kε)) 6 P(KC
ε ) 6 ε.

This shows P(F ) = supK P(K) with K ⊆ F compact. The open sets On :=
{s ∈ S | infx∈F d(s, x) < 1/n} satisfy F =

⋂
n>1On. By σ-continuity, we infer

P(F ) = infN>1 P(
⋂N
n=1On). Since finite intersections of open sets are open, we

have shown the second regularity property and thus F ∈ D.
FurthermoreIExercise, D is closed under set differences and countable unions.

Since S ∈ D as a closed set, D is a σ-algebra containing the open sets, which
implies D = BS , as asserted.

2.20 Lemma. Let (Xt, t ∈ T ) be a stochastic process with state space (S,S )
and denote by πJ→I : SJ → SI for I ⊆ J ⊆ T the coordinate pro-
jection πJ→I((sj)j∈J) = (sj)j∈I . Then the finite-dimensional distributions
(PXJ )J⊆T finite satisfy the following consistency condition:

∀ I ⊆ J ⊆ T with I, J finite ∀A ∈ S ⊗I : PXJ (π−1
J→I(A)) = PXI (A). (2.1)

Proof. We just write with X̄ from Lemma 2.2:

PXI (A) = P((Xt)t∈I ∈ A) = P(X̄ ∈ π−1
T→I(A))

= P(X̄ ∈ (πJ→I ◦ πT→J)−1(A)) = P((Xt)t∈J ∈ π−1
J→I(A))

= PXJ (π−1
J→I(A)).

2.21 Definition. Let T 6= ∅ be an index set and (S,S ) be a measurable
space. Let for each finite subset J ⊆ T a probability measure PJ on the product
space (SJ ,S ⊗J) be given. Then (PJ)J⊆T finite is called projective family if the
following consistency condition is satisfied:

∀I ⊆ J ⊆ T finite, A ∈ S ⊗I : PI(A) = PJ(π−1
J→I(A)).

2.22 Remark. The preceding lemma shows that the consistency condition is
a necessary condition for the finite-dimensional distributions of a stochastic
process. The main message of the next theorem is that it is also sufficient for
the construction of a stochastic process on the product space of a Polish state
space with prescribed finite-dimensional distributions.

2.23 Theorem (Kolmogorov’s consistency/extension theorem; Daniell 1919,
Kolmogorov 1933). Let (S,BS) be a Polish space, T 6= ∅ an index set and let
(PJ) be a projective family of probability measures for S and T . Then there
exists a unique probability measure P on the product space (ST ,B⊗TS ) satisfying

∀J ⊆ T finite, B ∈ B⊗JS : PJ(B) = P(π−1
T→J(B)).
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Proof. Let A :=
⋃
J⊆T finite π

−1
T→J(B⊗JS ) be the algebra (check!) of cylinder sets

on ST , which generates B⊗TS . Since A is ∩-stable, P is uniquely determined by
its values on the cylinder sets.

The existence of P follows from Caratheodory’s extension theorem if P on
A, as defined in the theorem, is a pre-measure (has all measure properties, but
σ-additivity only if the countable union is again in A). The consistency of (PJ)
ensures that P is well-defined on A and additive: for disjoint A,B ∈ A there are
a finite J ⊆ T and disjoint A′, B′ ∈ B⊗JS with A = π−1

T→J(A′), B = π−1
T→J(B′).

Since PJ is a probability measure and standard set operations commute with
taking preimages, we conclude

P(A ∪B) = PJ(A′ ∪B′) = PJ(A′) + PJ(B′) = P(A) + P(B).

Trivially, also P(ST ) = PJ(SJ) = 1 holds, using any finite J ⊆ T . It remains
to show that P is σ-additive on A, which is (under finite additivity) equivalent
to P(Bn) → 0 for any sequence Bn ↓ ∅ of sets Bn ∈ A (i.e. Bn+1 ⊆ Bn with⋂
n>1Bn = ∅; σ-continuity at ∅).

We can write Bn = π−1
T→Jn(An) for some finite Jn ⊆ T , An ∈ B⊗JnS . Without

loss of generality we shall assume Jn ⊆ Jn+1 for all n. Now let Kn ⊆ An
be compact with PJn(An \ Kn) 6 ε2−n by Ulam’s Theorem. Then K ′n =⋂n−1
l=1 π

−1
Jn→Jl(Kl) ∩ Kn is compact in SJn as a closed subset of a compact set

and Cn = π−1
T→Jn(K ′n) =

⋂n
l=1 π

−1
T→Jl(Kl) ⊆ Bn satisfies also Cn ↓ ∅. Below we

prove that there is already an n0 ∈ N with Cn0 = ∅. From this and the decay
of P(Bn) we conclude

lim
n→∞

P(Bn) 6 P(Bn0) = P(Bn0 \ Cn0) 6
n0∑
l=1

PJl(Al \Kl) 6 ε.

Since ε > 0 was arbitrary, this shows P(Bn)→ 0, as desired.
We prove the claim ∃n0 : Cn0 = ∅ via reductio ad absurdum and a compact-

ness argument, assuming that for all n ∈ N there is a yn ∈ Cn. Since K ′n is com-

pact in SJn , we can find a subsequence (n
(1)
l ), such that (πT→J1(y

n
(1)
l

))l>1 con-

verges in K ′1, a further subsequence (n
(2)
l ) such that (πT→J2(y

n
(2)
l

))l>1 converges

in K ′2 and so on. Along the diagonal sequence (n
(l)
l )l>1 then (πT→Jm(y

n
(l)
l

))l>1

converges in K ′m for all m > 1. Hence, (πT→∪m>1Jm(y
n
(l)
l

))l>1 converges in the

product topology (metric) to some z ∈ S∪m>1Jm (note:
⋃
m>1 Jm is countable).

As Cn+1 ⊆ Cn, n > 1, are nested, this implies z ∈ πT→∪m>1Jm(Cn) for all n > 1
and thus z ∈ πT→∪m>1Jm(

⋂
n>1Cn). This contradicts

⋂
n>1Cn = ∅ and the

claim is proved.

2.24 Corollary. For any Polish space (S,BS) and any index set T 6= ∅ there
exists to a prescribed projective family (PJ), J ⊆ T finite, a stochastic process
(Xt, t ∈ T ) whose finite-dimensional distributions are given by (PJ).

Proof. By Kolmogorov’s consistency theorem construct the probability measure
P on (ST ,B⊗TS ) which satisfies P(π−1

T→{t1,...,tn}(A)) = P{t1,...,tn}(A) for all n ∈ N,
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t1, . . . , tn ∈ T , A ∈ B⊗nS . Define X to be the coordinate process on (ST ,B⊗TS ,P)
via Xt((sτ )τ∈T ) := st. Then Xt is measurable for every t ∈ T and

P((Xt1 , . . . , Xtn) ∈ A) = P(π−1
T→{t1,...,tn}(A)) = P{t1,...,tn}(A)

for all A ∈ B⊗nS .

2.25 Example (Markov chains). Let (S,P(S)) be a countable state space. Let
an initial distribution µ(0) on P(S) and transition probabilities (pij)i,j∈S be
given, that is a stochastic matrix P = (pij)i,j∈S with non-negative entries and
row sum equal to one. Then we want to construct a discrete time-homogeneous
Markov chain (Xn, n > 0) with PX0 = µ0 and P(Xn = j |Xn−1 = i) = pij
whenever P(Xn−1 = i) > 0. Note first that (S,P(S)) becomes Polish if we
consider the discrete metric d(s, t) = 1(s 6= t) such that BS = P(S)IControl.
Consider

µn(A) =
∑
i0∈S
· · ·
∑
in∈S

1A(i0, . . . , in)µ
(0)
i0
pi0i1 · · · pin−1in , A ⊆ Sn+1.

Then, letting T := N0 and µt1,...,tn(B) := µtn(π−1
{0,1,...,tn}→{t1,...,tn}(B)) we see by

induction that (µJ)J⊆T is a projective family iff µn+1(π−1
{0,...,n+1}→{0,...,n}(A)) =

µn(A) holds for all n > 0, A ⊆ Sn+1. The latter is easily verified IControl and
by the consistency theorem such a Markov chain always exists.

B Control questions

(a) Simplify, wherever possible, the proof of Kolmogorov’s extension theorem in
the case T = {0, 1 . . . , N} finite (think of a Markov chain until time N).

This is trivial, just take P = PT which is prescribed because T ⊆ T is finite.
The defining property of P is given exactly by the consistency condition of the
projective family (PJ). The construction of the finite-dimensional distributions
is assumed by Kolmogorov’s consistency theorem and must be done for each
special case, compare the Markov chain and Gaussian process examples.

(b) Check that the discrete metric on a countable set S generates a Polish space
with BS = P(S).

For the discrete metric d(s, t) = 1(s 6= t) the sets {t ∈ S | d(t, s) < 1/2} =
{s}, s ∈ S, are open. This shows BS = P(S) for countable S. Furthermore,
every countable metric space is separable. Finally, a Cauchy sequence with
respect to the discrete topology must be eventually constant (consider the
Cauchy criterion with ε = 1/2) and thus converges. This proves that (S, d) is
Polish.

(c) Prove in detail that (µJ)J⊆T is a projective family in the preceding example.
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Let J ⊆ J ′ ⊆ N0. Then by definition, setting |J |∞ := maxt∈J t, NJ :=
{0, 1, . . . , |J |∞}, πm→n := π{0,...,m}→{0,...,n}

µJ(B) = µ|J|∞(π−1
NJ→J(B))

=
∑
i0∈S
· · ·

∑
i|J|∞∈S

1B
(
πNJ→J(i0, . . . , i|J|∞)

)
µ

(0)
i0
pi0,i1 · · · pi|J|∞−1,i|J|∞

=
∑
i0∈S
· · ·

∑
i|J′|∞∈S

1B
(
πNJ′→J(i0, . . . , i|J′|∞)

)
µ

(0)
i0
pi0,i1 · · · pi|J′|∞−1,i|J′|∞

=
∑
i0∈S
· · ·

∑
i|J′|∞∈S

1B
(
πJ′→J(πNJ′→J′(i0, . . . , i|J′|∞)

)
µ

(0)
i0
pi0,i1 · · · pi|J|∞−1,i|J′|∞

= µ|J′|∞(π−1
NJ′→J′(π

−1
J′→J(B)))

= µJ′(π
−1
J′→J(B)),

where the second identity follows from the fact that
∑
j∈S pi,j = 1 holds for

transition probabilities pi,j . This gives the consistency condition.

2.26 Example (Gaussian processes). Let T 6= ∅ be an index set, e.g. N0, Z,
R+ or R, and µ : T → R be any function, c : T 2 → R any symmetric, positive
semi-definite function, that is c(t, s) = c(s, t) and

∑n
i,j=1 c(ti, tj)αiαj > 0 for

all t, s ∈ T , n ∈ N, t1, . . . , tn ∈ T , α1, . . . , αn ∈ R. Then there exists a process
(Xt, t ∈ T ) whose finite-dimensional distributions are Gaussian:

PXt1,...,tn = N((µ(t1), . . . µ(tn))>, (c(ti, tj))i,j=1,...,n

)
.

Here, we understand N(µ,Σ) as the law of Y = µ+Σ1/2Z for a standard-normal
random vector Z or equivalently via the characteristic function ϕN(µ,Σ)(u) =
exp(i〈u, µ〉 − 〈Σu, u〉/2), u ∈ Rn. The consistency condition follows from
AY ∼ N(Aµ,AΣA>) for any linear transformation (in particular, coordinate
projection) A : Rn → Rm: for m 6 n, B ∈ BRm , µn = (µ(t1), . . . µ(tn))>,
Cn = (c(ti, tj))i,j=1,...,n, Zn ∼ N(0, En) etc. we have

PXt1,...,tn(π−1
{t1,...,tn}→{t1,...,tm}(B)) = P (µn + C1/2

n Zn ∈ π−1
{t1,...,tn}→{t1,...,tm}(B))

= P (π{t1,...,tn}→{t1,...,tm}(µn) + π{t1,...,tn}→{t1,...,tm}(C
1/2
n Zn) ∈ B)

= P (Y ∈ B) for Y ∼ N(µm, π{t1,...,tn}→{t1,...,tm}Cnπ
>
{t1,...,tn}→{t1,...,tm}).

The covariance matrix of Y just evaluates to Cm and so the last line equals
PXt1,...,tm(B). This Gaussian process thus exists by the consistency theorem. µ
is called expectation function and c covariance function of X.

2.27 Corollary. For any family (Pi)i∈I of probability measures on (S,S )
there exists the product measure

⊗
i∈I Pi on (SI ,S ⊗I). In particular, a family

(Xi)i∈I of independent random variables with prescribed laws PXi exists.

Proof for (S,S ) Polish: for finite product measures the consistency condition
holds because for all B ∈ B⊗JS , J ⊆ J ′:(⊗

j∈J ′
Pj
)

(π−1
J ′→J(B)) =

(⊗
j∈J

Pj
)

(B)•
( ⊗
j∈J ′\J

Pj
)

(SJ
′\J) =

(⊗
j∈J

Pj
)

(B).
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Define Xi : SI → S by Xi((sj)j∈I) := si. Then the assertion follows from the
preceding corollary. For general measure spaces (S,S ) the proof is similar to
that of Kolmogorov’s consistency theorem, see e.g. Bauer, Probability Theory.

2.28 Remark. Kolmogorov’s consistency theorem (proved by Kolmogorov for
S = R and countable T ) does not hold for general measure spaces (S, S), cf.
the counterexample by Sparre Andersen, Jessen (1948), contrary to what the
famous Joseph Doob had claimed before. The Ionescu-Tulcea Theorem, how-
ever, shows the existence of the probability measure on general measure spaces
under a Markovian dependence structure, see e.g. Klenke (2008). Concerning
the achievements of Doob in developing the theory of stochastic processes and
also the coin tossing leading to the expression ’random variable’ the historical
survey https://arxiv.org/pdf/0909.4213.pdf by R. Getoor is worthwhile
reading.

3 The conditional expectation

3.1 Remark. Conditional probabilities P(A |B) are only well-defined if P(B) >
0. In particular, expressions like P(A |X = x) are not defined for continuously
distributed random variables X. Nevertheless, we shall give sense to these con-
ditional probabilities by first defining conditional expectations. We interprete
them as best L2-approximations, which requires to understand orthogonal pro-
jections in Hilbert spaces.

3.1 Orthogonal projections

3.2 Proposition. Let L be a closed linear subspace of the Hilbert space H.
Then for each x ∈ H there is a unique yx ∈ L with ‖x − yx‖ = dist(x, L) :=
infy∈L‖x− y‖.

Proof. For x ∈ L we have yx = x. Otherwise, there is a sequence (yn) ⊆ L with
‖x− yn‖ → dist(x, L). Let us show that (yn) is a Cauchy sequence. Note

‖yn − ym‖2 = 2‖x− ym‖2 + 2‖x− yn‖2 − 4‖x− (ym + yn)/2‖2.

Since (ym + yn)/2 ∈ L and ‖x − (ym + yn)/2‖ 6 (‖x − ym‖ + ‖x − yn‖)/2, we
see limm,n→∞‖x− (ym + yn)/2‖ = dist(x, L). From the identity above we thus
conclude limm,n→∞‖yn − ym‖2 = 0.

By completeness of H and closedness of L, the Cauchy sequence (yn) has a
limit yx ∈ L. By continuity of the norm, we deduce ‖x− yx‖ = dist(x, L). For
another element zx ∈ L with this property we obtain from the above identity

‖yx − zx‖2 = 4
(

dist(x, L)2 − ‖x− (yx + zx)/2‖2
)
.

Since by definition ‖x−(yx+zx)/2‖ > dist(x, L) holds, this shows ‖yx−zx‖ = 0
and uniqueness follows.
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3.3 Definition. For a closed linear subspace L of the Hilbert space H the
orthogonal projection PL : H → L onto L is defined by PL(x) = yx with yx
from the previous proposition.

3.4 Lemma. We have:

(a) PL ◦ PL = PL (projection property);

(b) ∀x ∈ H : (x − PLx) ∈ L⊥ = {y ∈ H | 〈y, z〉 = 0 for all z ∈ L} (orthogo-
nality).

Proof. By definition, x ∈ L⇒ PLx = x and PLy ∈ L such that PL(PLy) = PLy
for all y ∈ H and (a) holds. For all x ∈ H, y ∈ L we obtain

‖x− PLx‖2 6 ‖x− (PLx+ y)‖2 = ‖x− PLx‖2 + ‖y‖2 − 2〈x− PLx, y〉.

For all α ∈ R \{0} we therefore find

2〈x− PLx, αy〉 6 ‖αy‖2 ⇒ 2 sgn(α)〈x− PLx, y〉 6 |α|‖y‖2.

Letting α ↓ 0 and α ↑ 0, this implies 〈x− PLx, y〉 = 0 and thus (b).

3.5 Corollary. We have:

(a) Each x ∈ H can be decomposed uniquely as x = PLx + (x − PLx) in the
sum of an element of L and an element of L⊥;

(b) PL is selfadjoint: 〈PLx, y〉 = 〈x, PLy〉;

(c) PL is linear.

Proof. For (a) it remains to prove uniqueness. Writing x = y + z with y ∈ L,
z ∈ L⊥, we deduce y−PLx = (x−PLx)− z ∈ L∩L⊥ = {0} and thus y = PLx,
z = x − PLx. Properties (b) and (c) follow by using the decomposition in
(a).

3.2 Construction and properties

3.6 Definition. For a random variables X on (Ω,F ,P) with values in (S,S )
we introduce the σ-algebra (!) σ(X) := {X−1(A) |A ∈ S } ⊆ F , which is the
smallest σ-algebra on Ω for which X is measurable. For a family of random
variables Xi, i ∈ I, on (Ω,F ,P)we denote by σ(Xi, i ∈ I) the smallest σ-algebra
on Ω for which all Xi are measurable. For a given probability space (Ω,F ,P)
we set

M := M(Ω,F ) := {X : Ω→ R measurable};
M+ := M+(Ω,F ) := {X : Ω→ [0,∞] measurable};
Lp := Lp(Ω,F ,P) := {X ∈M(Ω,F ) | E[|X|p] <∞};
Lp := Lp(Ω,F ,P) := {[X] |X ∈ Lp(Ω,F ,P)}

where [X] := {Y ∈M(Ω,F ) | P(X = Y ) = 1}.
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3.7 Example. Suppose X and Y are real-valued random variables on the same
discrete probability space (Ω,P(Ω),P) with a positive counting density p. Then
A 7→ P(A |X = x) is a probability measure for all x ∈ X(Ω) (Stochastik I, note
P(X = x) > 0 because p > 0). Naturally, we can then define the conditional
expectation

ϕ(x) := E[Y |X = x] =

∫
Y dP(• |X = x) =

∑
ω∈Ω Y (ω)1(X(ω) = x)p(ω)∑

ω∈Ω 1(X(ω) = x)p(ω)
.

We claim E[(Y − ϕ(X))2] = minϕ̃ E[(Y − ϕ̃(X))2] for all functions ϕ̃ : S → R.
Indeed, we have

E[(Y − ϕ̃(X))2] =
∑

x∈X(Ω)

( ∑
ω:X(ω)=x

(Y (ω)− ϕ̃(x))2p(ω)
)

and the right-hand side is minimal in ϕ̃ whenever the inner sum is minimal for
any given x. The quadratic functional F (z) :=

∑
ω:X(ω)=x(Y (ω) − z)2p(ω) is

minimal when
∑

ω:X(ω)=x(Y (ω)− z)p(ω) = 0 holds, i.e for z = ϕ(x).
As a simple specific example consider S = X1 +X2 the sum of two (indepen-

dent and fair) dice with numbers X1, X2. What is E[S |X1 = k] for k = 1, . . . , 6?
Evaluating the above expression for ϕ in this case yields E[S |X1 = k] = k+3.5.
The calculation can be simplified by inserting S = X1 + X2 and splitting the
numerator, which yields E[S |X1 = k] = k+ E[X2]. Later, this will be a conse-
quence of linearity: E[X1 +X2 |X1] = X1 + E[X2] for X1, X2 independent.

The discrete example shows that the conditional expectation is the best
prediction of Y by a function ϕ̃ of X with respect to mean squared error E[(Y −
ϕ̃(X))2] = ‖Y −ϕ̃(X)‖2L2 . It is this property that allows to construct conditional
expectations beyond the discrete setting. First, we characterise functions of
the form ω 7→ ϕ̃(X(ω)), which will allow us to condition more generally on
σ-algebras instead of random variables X.

B Control questions

(a) Show that there exists a Gaussian process (Bt, t > 0) with expectation func-
tion E[Bt] = 0 (a centred process) and covariance function E[BtBs] = t ∧ s,
t, s > 0. B is called Brownian motion.
Hint: prove

∑n
i,j=1 αiαjti ∧ tj =

∑n
i=1(

∑n
k=i αk)2(ti − ti−1) for

0 = t0 < t1 < · · · < tn.

The formula follows inductively over n by looking at differences and using
partial summation:

n+1∑
i,j=1

αiαjti ∧ tj −
n∑

i,j=1

αiαjti ∧ tj = 2

n∑
i=1

αiαn+1ti + α2
n+1tn+1

=

n+1∑
l=1

(
2

n∑
i=l

αiαn+1(tl − tl−1) + α2
n+1(tl − tl−1)

)
=

n+1∑
l=1

(( n+1∑
i=l

αi

)2

−
( n∑
i=l

αi

)2)
(tl − tl−1).
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The formula then shows that (s, t) 7→ s ∧ t is a positive-semidefinite (and
symmetric) function. So, there exists a centred Gaussian process (Bt, t > 0)
with this covariance function. Later, we shall prove that we may even choose
a continuous version of (Bt, t > 0).

(b) What is an explicit expression for ϕ(X) in the preceding example, noting that
E[Y |X = X] is nonsense?

We write explicitly ϕ(X(ω)) and obtain

ϕ(X(ω)) = E[Y |X = x]|x=X(ω) =

∑
ω′∈Ω Y (ω′)1(X(ω′) = X(ω))p(ω′)∑

ω′∈Ω 1(X(ω′) = X(ω))p(ω′)
.

(c) Show for general Y ∈ L2 that E[(Y − µ)2] is minimal at µ = E[Y ]. Can you
extend this to minimise E[(Y − ϕ(X))2] in measurable ϕ when X and Y are
independent?

The quadratic functional E[(Y − µ)2] = E[Y 2] − 2µE[Y ] + µ2 is minimal at
µ = E[Y ] by basic calculus. Alternatively, use the bias-variance decomposition
from Stochastik I. For independent X,Y we have by Fubini’s Theorem E[(Y −
ϕ(X))2] =

∫ ∫
(y − ϕ(x))2 PY (dy)PX(dx). For each x the inner integral

is (by the same argument) minimal at ϕ(x) = E[Y ] so that the constant
function ϕ(x) = E[Y ] minimises E[(Y − ϕ(X))2]. This will later be the
identity E[Y |X] = E[Y ] for independent X,Y : there is no information in X
to predict Y better than with its expectation.

3.8 Proposition (Factorisation Lemma). Let X be a (S,S )-valued and Y a
real-valued random variable. Then Y is σ(X)-measurable if and only if there is
a (S ,BR)-measurable function ϕ : S → R such that Y = ϕ(X).

Proof. Since X is σ(X)-measurable, so is any composition Y = ϕ(X) with a
measurable function ϕ. This gives one direction.

Conversely, let Y be σ(X)-measurable. We argue via measure-theoretic
induction. For simple Y =

∑n
k=1 ak1Bk with ak ∈ R we can assume without

loss of generality (w.l.o.g.) that Bk ∩Bl = ∅ and ak 6= al for k 6= l. Then Bk =
Y −1({ak}) is in σ(X) (since Y is σ(X)-measurable) and thus Bk = X−1(Ak)
for some Ak ∈ S . Therefore ϕ :=

∑n
k=1 ak1Ak is S -measurable and satisfies

ϕ(X) = Y .
For Y ∈ M+(Ω, σ(X)) we can find simple nonegative Yn with Yn ↑ Y and

measurable ϕn : S → [0,∞) with Yn = ϕn(X). Let us define inductively ϕ̃1 =
ϕ1, ϕ̃n+1(x) = max(ϕn+1(x), ϕ̃n(x)). Since ϕn+1(X) = Yn+1 > Yn = ϕn(X),
we have ϕn+1(x) > ϕn(x) for all x ∈ X(Ω) and thus ϕ̃n(X) = ϕn(X) = Yn.
Moreover, ϕ̃n is measurable and ϕ̃n+1(x) > ϕ̃n(x) holds for all x. Then ϕ(x) :=
limn→∞ ϕ̃n(x) ∈ [0,∞] exists and is measurable. Hence, we have by definition
ϕ(X) = limn→∞ ϕ̃n(X) = Y .

For Y ∈ M(Ω, σ(X)) write Y = Y + − Y − with Y +, Y − ∈ M+(Ω, σ(X))
and Y + = ϕ+(X), Y − = ϕ−(X) with measurable ϕ+, ϕ−. Setting ϕ(x) =
(ϕ+(x)−ϕ−(x))1(ϕ+(x) <∞, ϕ−(x) <∞), we check that ϕ is measurable and
satisfies ϕ(X) = Y (note that Y +, Y − do not take on the value +∞).

3.9 Lemma. Let G be a sub-σ-algebra of F . Then L2(Ω,G ,P) is embedded as
closed linear subspace in the Hilbert space L2(Ω,F ,P).
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Proof. By definition, we have L 2(Ω,G ,P) ⊆ L 2(Ω,F ,P). For f, g ∈
L 2(Ω,G ,P) with f = g P-a.s. (i.e., [f ]G = [g]G ) we also have f, g ∈
L 2(Ω,F ,P) with f = g P-a.s. (i.e., [f ]F = [g]F ) and the equivalence classes
are embedded in a well defined and isometric way. Since L2(Ω,G ,P) is a com-
plete linear space (compare Stochastik I or Functional Analysis), its embedding
is a complete linear subspace of L2(Ω,F ,P) and hence also closed.

3.10 Remark. We now define the conditional expectation E[Y |X] as the best
prediction of Y by a measurable function of X with respect to mean squared
error. Due to the factorisation lemma this is equivalent to the best σ(X)-
measurable prediction of Y . We are thus lead to consider more generally best
G -measurable predictions of Y for a sub-σ-algebra G . This may be compared
to the best prediction of Y by a linear function of X in regression analysis,
compare Stochastik I.

3.11 Definition. Let X be a random variable on (Ω,F ,P). Then for Y ∈
L2(Ω,F ,P) the conditional expectation (bedingte Erwartung) of Y given X is
defined as the L2(Ω,F ,P)-orthogonal projection of Y onto L2(Ω, σ(X),P):

E[Y |X] := PL2(Ω,σ(X),P)Y.

If ϕ is a measurable function from the factorisation lemma with E[Y |X] = ϕ(X)
a.s., we write E[Y |X = x] := ϕ(x) (conditional expected value, bedingter
Erwartungswert).

More generally, for a sub-σ-algebra G the conditional expectation of Y ∈
L2(Ω,F ,P) given G is defined as

E[Y |G ] = PL2(Ω,G ,P)Y.

3.12 Remark. The conditional expectations E[Y |X] or E[Y |G ] are only P-
almost surely defined (as elements in L2). Similarly, E[Y |X = x] as a function
of x is PX -almost surely uniquely defined.

3.13 Example. There are two extreme cases: For G = F we obtain E[Y |F ] =
Y because PL2(Ω,F ,P ) is the identity. For G = {∅,Ω} we find E[Y |G ] = E[Y ]
because L2(Ω,G , P ) consists of P -a.s. constant random variables and E[Y ] =
argminc∈R E[(Y − c)2] (Stochastik I).

3.14 Lemma. (Properties of the L2-conditional expectation) For Y ∈
L2(Ω,F ,P) and a sub-σ-algebra G ⊆ F the conditional expectation satisfies:

(a) E[Y |G ] ∈ L2(Ω,F ,P) has a G -measurable version: there is Z ∈
L 2(Ω,G ,P) with E[Y |G ] = Z P-a.s.

(b) E[Y |G ] = argminZ∈L2(Ω,G ,P) E[(Y − Z)2];

(c) ∀α ∈ R, Z ∈ L2(Ω,F ,P) : E[αY + Z |G ] = αE[Y |G ] + E[Z |G ] a.s.;

(d) ∀Z ∈ L2(Ω,G ,P) : E[E[Y |G ]Z] = E[Y Z];

(e) Y > 0 P-a.s. implies E[Y |G ] > 0 P-a.s.
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Proof. Parts (a) and (b) follow immediately from the definition as an orthogonal
projection onto the embedding of L2(Ω,G ,P) into L2(Ω,F ,P). The linearity
of the projection implies (c). Its self-adjointness implies (d) via

E[E[Y |G ]Z] = 〈PL2(Ω,G ,P)Y,Z〉L2 = 〈Y, PL2(Ω,G ,P)Z〉L2 = E[Y Z]

for Z ∈ L2(Ω,G ,P). For (e) let G = {Z < 0} for a G -measurable version Z of
E[Y |G ]. Then G ∈ G and we deduce from (d) and Y > 0

E[Z1G] = E[Y 1G] > 0.

This shows Z > 0 P-a.s. and thus E[Y |G ] > 0 P-a.s.

3.15 Remark. The definition of the conditional expectation via orthogonal
projections for L2-random variables is for most cases sufficient. Note, however,
that L2 ( L1 and it would be natural to define conditional expectations for all
L1-random variables. To this end we first characterise the conditional expecta-
tion for Y ∈ L2 in a way which is well defined even for Y ∈ L1 and then extend
it from L2 to L1 by approximation.

3.16 Lemma. E[Y |G ] for Y ∈ L2(Ω,F ,P) is as an element of L2(Ω,F ,P)
uniquely determined by the following properties:

(a) E[Y |G ] has a G -measurable version;

(b) ∀G ∈ G : E[E[Y |G ]1G] = E[Y 1G].

Proof. By Lemma 3.14(a,d) parts (a) and (b) hold for E[Y |G ], noting Z =
1G ∈ L2(Ω,G ,P) for G ∈ G .

Now suppose Z ∈ L2(Ω,F ,P) satisfies (a) and (b). Then using (b) also for
E[Y |G ] gives

E[(Z − E[Y |G ])1G] = 0 for all G ∈ G .

Consider the events G> = {Z > E[Y |G ]} and G< = {Z < E[Y |G ]}, which are
in G if G -measurable versions according to (a) are taken. This implies

E[|Z − E[Y |G ]|1G>∪G< ] = E[(Z − E[Y |G ])1G> ]− E[(Z − E[Y |G ])1G< ] = 0.

We deduce |Z − E[Y |G ]| = 0 P-a.s., that is Z = E[Y |G ] P-a.s.

3.17 Theorem. (general conditional expectation) Let Y ∈ M+(Ω,F ) or Y ∈
L1(Ω,F ,P) and let G be a sub-σ-algebra of F . Then there is a P-a.s. unique
element E[Y |G ] in M+(Ω,G ) and L1(Ω,G ,P), respectively, such that

∀G ∈ G : E[E[Y |G ]1G] = E[Y 1G].

Proof. First, consider Y ∈ M+(Ω,F ). Then Yn := min(Y, n) ∈ L2(Ω,F ,P)
and Yn ↑ Y . For Yn the conditional expectation is well defined and by mono-
tonicity E[Yn+1 |G ] > E[Yn |G ], n > 1, holds P-a.s. Then also the limit
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E[Y |G ] := limn→∞ E[Yn |G ] exists P-a.s. and has a G -measurable version.
Monotone convergence implies for G ∈ G :

E[E[Y |G ]1G] = E
[

lim
n→∞

E[Yn |G ]1G

]
= lim

n→∞
E[E[Yn |G ]1G]

= lim
n→∞

E[Yn1G] = E
[

lim
n→∞

Yn1G

]
= E[Y 1G].

For Y ∈ L1(Ω,F ,P) write Y = Y + − Y − with Y +, Y − ∈M+(Ω,F ) and set

E[Y |G ] :=
(
E[Y + |G ]− E[Y − |G ]

)
1
(
E[Y + |G ] <∞,E[Y − |G ] <∞

)
.

It is straightforward to check that the asserted properties are satisfied.
Concerning uniqueness assume that there are Z, Z̃ ∈ M+(Ω,G ) with

E[Z1G] = E[Z̃1G] for all G ∈ G . Then for G> = {Z > Z̃} we deduce
E[(Z − Z̃)1G> ] = 0, hence P(G>) = 0. For G< = {Z < Z̃} the same ar-
gument yields P(G<) = 0 and thus P(Z = Z̃) = 1. The same lines also show
uniqueness in L1(Ω,G ,P).

3.18 Definition. For Y ∈M+(Ω,F ) or Y ∈ L1(Ω,F ,P) and a sub-σ-algebra
G of F the (general) conditional expectation of Y given G is defined as E[Y |G ]
from the preceding theorem. We put

E[Y | (Xi)i∈I ] := E[Y |σ(Xi, i ∈ I)]

for random variables Xi, i ∈ I.

B Control questions

(a) Verify the factorisation lemma for discrete random variables X, i.e. for
countable X(Ω).

If X is discrete, then σ(X) = σ(X−1({sk}), k > 1) when X(Ω) = {sk | k >
1} is an enumeration. If Y is σ(X)-measurable, then Y must be constant
on each set X−1({sk}) (because Y −1({y}) ∈ σ(X−1({sk}), k > 1) and all
X−1({sk}) are disjoint, y ∈ R). Call this constant yk and conclude Y (ω) =∑
k>1 yk1(X(ω) = sk), which is a measurable function of X.

(b) Consider L2([0, 1],B[0,1], λ) with the Lebesgue measure λ on [0, 1]
and G = σ([(k − 1)/n, k/n), k = 1, . . . , n). What are the elements
of L2([0, 1],G , λ) and what is the difference with its embedding into
L2([0, 1],B[0,1], λ)?

Since Lebesgue measure is positive for all events in G (union of intervals
[(k − 1)/n, k/n)) besides the empty set, the space L2([0, 1],G , λ) consists
of all piecewise constant functions on the intervals [(k − 1)/n, k/n) (or very
formally equivalence classes with just one element of that form). Its embedding
into L2([0, 1],B[0,1], λ) consists of all functions which are Lebesgue-almost ev-
erywhere equal to such a piecewise constant function (or more precisely, the
equivalence classes of that form). For instance f(x) = 1(x = 1/2) is not in
L2([0, 1],G , λ) or a member of an equivalence class of L2([0, 1],G , λ), but it
lies in its embedding into L2([0, 1],B[0,1], λ) (member of the equivalence class
[0]B[0,1]

).
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(c) Let Y ∈ L2 and H ⊆ G be sub-σ-algebras. How does the tower property
E[E[Y |G ] |H ] = E[Y |H ] follow from the projection property?

For orthogonal projections onto closed subspace V, V ′ with V ⊆ V ′ we have
PV PV ′ = PV which follows e.g. via selfadjointness and PV ′x = x for x ∈
V ⊆ V ′:

〈PV PV ′v, w〉 = 〈v, PV ′PV w〉 = 〈v, PV w〉 = 〈PV v, w〉 for all v, w.

Since L2(Ω,H ,P) ⊆ L2(Ω,G ,P) holds (as subspaces of L2(Ω,F ,P)), we
obtain

E[E[Y |G ] |H ] = PL2(Ω,H ,P)PL2(Ω,G ,P)Y = PL2(Ω,H ,P)Y = E[Y |H ].

3.19 Proposition. (Properties of the general conditional expectation) Let Y ∈
L1(Ω,F ,P) and let G be a sub-σ-algebra of F . Then:

(a) E[E[Y |G ]] = E[Y ];

(b) Y G -measurable ⇒ E[Y |G ] = Y a.s.;

(c) α ∈ R, Z ∈ L1(Ω,F ,P): E[αY + Z |G ] = αE[Y |G ] + E[Z |G ] a.s.;

(d) Y > 0 a.s.⇒ E[Y |G ] > 0 a.s.;

(e) Yn ∈ M+(Ω,F ), Yn ↑ Y a.s. ⇒ E[Yn |G ] ↑ E[Y |G ] a.s. (monotone
convergence);

(f) Yn ∈ M+(Ω,F ) ⇒ E[lim infn Yn |G ] 6 lim infn E[Yn |G ] a.s. (Fatou’s
Lemma);

(g) Yn ∈ M(Ω,F ), Yn → Y , |Yn| 6 Z with Z ∈ L1(Ω,F ,P): E[Yn |G ] →
E[Y |G ] a.s. (dominated convergence);

(h) H ⊆ G ⇒ E[E[Y |G ] |H ] = E[Y |H ] a.s. (projection/tower property);

(i) Z G -measurable, ZY ∈ L1: E[ZY |G ] = Z E[Y |G ] a.s.;

(j) Y independent of G : E[Y |G ] = E[Y ] a.s.

Proof.

(a) Ω ∈ G implies E[E[Y |G ]1Ω] = E[Y 1Ω] and thus the claim.

(b) Y satisfies the defining properties of E[Y |G ].

(c) The right-hand side satisfies the defining properties of E[αY +Z |G ], using
linearity for the expectation.

(d) Let G = {E[Y |G ] < 0} ∈ G for a G -measurable version of the conditional
expectation. Y > 0 a.s. therefore implies

E[E[Y |G ]1G] = E[Y 1G] > 0⇒ P(G) = 0.
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(e) Using (c), (d), we infer E[Yn |G ] ↑ U for some U ∈M+(Ω,G ). Monotone
convergence for expectations shows

∀G ∈ G : E[U1G] = lim
n→∞

E[E[Yn |G ]1G] = lim
n→∞

E[Yn1G] = E[Y 1G].

We conclude U = E[Y |G ].

(f) IExercise

(g) IExercise

(h) The left-hand side satisfies the defining properties of E[Y |H ]. For Y ∈
L2 this is just the composition of orthogonal projections.IControl

(i) For Z = 1G′ , G
′ ∈ G , the right-hand side satisfies the defining properties

of E[ZY |G ]. Use measure-theoretic induction to extend the results to
simple G -measurable functions Z, to Y, Z ∈ M +(Ω,G ) and finally to
Y, Z ∈M(Ω,G ) with ZY ∈ L1.

(j) By independence of Y and 1G for G ∈ G and by Fubini’s theorem we see
that E[Y ] satisfies the defining properties of E[Y |G ].

3.20 Example. Consider the compound Poisson process Xt =
∑Nt

k=1 Yk with
a Poisson process Nt of intensity λ and i.i.d. random variables Yk ∈ L1, where
(Nt) and (Yk) are independent. What is E[Xt]? This follows easily by condi-
tioning on Nt:IControl

E[Xt] = E[E[Xt |Nt]] = E
[ Nt∑
k=1

E[Yk |Nt]
]

= E
[
Nt E[Y1]

]
= λtE[Y1].

3.21 Proposition (Jensen’s Inequality). If ϕ : R → R is convex and Y, ϕ(Y )
are in L1, then

ϕ(E[Y |G ]) 6 E[ϕ(Y ) |G ]

holds for any sub-σ-algebra G of F .

Proof. We know for convex ϕ (compare Stochastik I)

ϕ(y) = sup
x∈R

(
ϕ(x) + ϕ′(x+)(y − x)

)
, y ∈ R .

The monotonicity and linearity of conditional expectations, given by Proposi-
tion 3.19(c,d), imply for any x ∈ R

E[ϕ(Y ) |G ] > E
[
ϕ(x) + ϕ′(x+)(Y − x)

∣∣G ] = ϕ(x) + ϕ′(x+)
(
E[Y |G ]− x

)
.

Taking the supremum over all x ∈ R on the right-hand side yields the assertion.
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3.22 Definition. For a sub-σ-algebra G ⊆ F define the conditional probability
of A ∈ F given G as

P(A |G ) = E[1A |G ].

3.23 Remark. P(A |G ) is only P-a.s. defined. For fixed pairwise disjoint An ∈
F , n > 1, we have the σ-additivity P(

⋃
n>1An |G ) =

∑
n>1 P(An |G ) P-a.s.,

but there might be no version such that A 7→ P(A |G ) is indeed a probability
measure on all of F . For Polish spaces such a version, a so-called regular
conditional probability or Markov kernel, always exists, see e.g. Klenke. In
the case of densities, the conditional density gives a constructive way to define
conditional probabilities, see the next example and the exercises.

3.24 Example. Let fX,Y be the joint density of two random variables X,Y
with respect to some product measure µ ⊗ ν (like two-dimensional Lebesgue
measure). We claim that for any event B

P(Y ∈ B |X) =

∫
B f

X,Y (X, y)ν(dy)

fX(X)
with fX(x) =

∫
fX,Y (x, y)ν(dy) (3.1)

holds P-a.s., where the right-hand side is well defined P-almost surely. Since den-
sities are measurable the right-hand side is a measurable function in X, hence
σ(X)-measurable. We have P(fX(X) = 0) =

∫
1(fX(x) = 0)fX(x)µ(dx) = 0

and the denominator is P-almost surely strictly positive so that the right-hand
side in formula (3.1) is P-a.s. well defined.

Moreover, any G ∈ σ(X) can be written as G = X−1(F ) for an event F and
we check

E
[
1G

∫
B f

X,Y (X, y)ν(dy)

fX(X)

]
=

∫
1F (x)

∫
1B(y)fX,Y (x, y)ν(dy)

fX(x)
fX(x)µ(dx)

=

∫ ∫
1F (x)1B(y)fX,Y (x, y) ν(dy)µ(dx)

= E[1F (X)1B(Y )] = E[1G1B(Y )]

and the right-hand side in (3.1) is indeed a version of the conditional probability
P(Y ∈ B |X) = E[1B(Y ) |X].

4 Martingale theory

4.1 Martingales, sub- and supermartingales

4.1 Definition. A sequence (Fn)n>0 of sub-σ-algebras of F is called filtration
if Fn ⊆ Fn+1, n > 0, holds. (Ω,F ,P, (Fn)) is called filtered probability space.

4.2 Definition. A sequence (Mn)n>0 of random variables on a filtered probabil-
ity space (Ω,F ,P, (Fn)) forms a martingale (submartingale, supermartingale)
if:

(a) Mn ∈ L1, n > 0;

(b) Mn is Fn-measurable, n > 0 (adapted);
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(c) E[Mn+1 |Fn] = Mn (resp. E[Mn+1 |Fn] > Mn for submartingale, resp.
E[Mn+1 |Fn] 6Mn for supermartingale).

If Fn = σ(M0, . . . ,Mn) holds, then (Fn) is the natural filtration of M , notation
(FM

n ).

4.3 Remark.

(a) For martingales (Mn) the expectation is constant: E[Mn] =
E[E[Mn |Fn−1]] = E[Mn−1] = · · · = E[M0]. Similarly, for submartingales
the expectation is increasing and for supermartingales the expectation is
decreasing.

(b) Suppose (Mn) is even an L2-martingale (i.e., Mn ∈ L2 for all n > 0). Then
the martingale differences ∆nM := Mn+1 −Mn, ∆mM := Mm+1 −Mm

for m < n are uncorrelated:

E[∆mM∆nM ] = E
[
E[∆mM∆nM |Fm+1]

]
= E

[
∆mM E[∆nM |Fm+1]

]
= E

[
∆mM E

[
E[∆nM |Fn]

∣∣Fm+1

]]
= 0

since ∆mM is Fm+1-measurable, Fm+1 ⊆ Fn and E[∆nM |Fn] = 0 by
the martingale property.

It turns out that the martingale property is exactly the right generalisation
of sums of independent random variables to still provide a rich theory, e.g. a
law of large numbers. Many more complicated processes are analysed by a
decomposition or transformation using martingales.

4.4 Example.

(a) Let (Xk)k>1 be independent random variables with Xk ∈ L1, E[Xk] =
0, k > 1. Put S0 = 0, Sn =

∑n
k=1Xk. For n > 1 we have FS

n =
σ(X1, . . . , Xn) and (Sn)n>0 is a martingale with respect to its natural
filtration. Similarly, (Sn)n>0 is a submartingale if E[Xk] > 0 for all k > 1
and a supermartingale if E[Xk] 6 0 for all k > 1.

(b) Let (Xk)k>1 be independent random variables with Xk ∈ L1, E[Xk] =
1, k > 1. Put P0 = 1, Pn =

∏n
k=1Xk. For n > 1 we have FP

n ⊆
σ(X1, . . . , Xn) and (Pn)n>0 is a martingale with respect to its natural
filtration because E[Xn+1 |FP

n ] = E[Xn+1] by independence and thus

E[Pn+1 |FP
n ] = E

[ n+1∏
k=1

Xk

∣∣∣FP
n

]
= E[Xn+1 |FP

n ]
n∏
k=1

Xk = Pn.

In Stochastik I we have seen that for P(Xk = 3/2) = P(Xk = 1/2) = 1/2
we have Pn → 0 P-a.s. although E[Pn] = 1 for all n > 0.

(c) Let X ∈ L1 and (Fn) be any filtration, then Mn := E[X |Fn] defines a
martingale with respect to (Fn).IControl
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4.5 Definition. A martingale (Mn) with respect to a filtration (Fn) is called
closable (abschließbar), if there exists an X ∈ L1 with Mn = E[X |Fn], n > 0.

B Control questions

(a) Give all formal details for the calculation of E[Xt] in Example 3.20.

We write Xt =
∑∞
k=1 Yk1(k 6 Nt) and observe that the series converges a.s.

Hence, we obtain

E[Xt |Nt] = lim
K→∞

E
[ K∑
k=1

Yk1(k 6 Nt)
∣∣∣Nt] = lim

K→∞

K∑
k=1

E[Yk]1(k 6 Nt)

= Nt E[Y1]

by dominated convergence for conditional expectations. For this note that∑K
k=1 Yk1(k 6 Nt) is dominated by

∑∞
k=1|Yk|1(k 6 Nt) and monotone

convergence in the above equation line for |Yk| instead of Yk shows that this
has finite expectation λtE[|Y1|].

(b) What is called a martingale (Martingal) in real life?

This is part of the horse-gear to control the head movements of the horse.

(c) How does the martingale property of Mn = E[X |Fn] for X ∈ L1 and a
filtration (Fn) follow from the tower property of conditional expectations?

We have E[Mn+1 |Fn] = E[E[X |Fn+1] |Fn] = E[X |Fn] = Mn by the
tower property and (Mn) is a martingale.

4.6 Definition. A process (Xn)n>1 is predictable (vorhersehbar) (with respect
to a filtration (Fn)) if each Xn is Fn−1-measurable. For a predictable process
(Xn) and a martingale (or more general: adapted process) (Mn) the martingale
transform (or discrete stochastic integral) ((X•M)n)n>0 is defined by

(X•M)0 := 0, (X•M)n :=
n∑
k=1

Xk(Mk −Mk−1).

4.7 Remark. Any predictable process is adapted.

4.8 Proposition. For a predictable process (Xn) in Lp and an Lq-martingale
(Mn) (i.e., Xn ∈ Lp, Mn ∈ Lq for all n) with 1

p+ 1
q = 1 the process ((X•M)n)n>0

is again a martingale. If M is a submartingale instead of a martingale and in
addition Xn > 0 a.s., n > 1, then the process (X•M) is again a submartingale.

Proof. By Hölder’s inequality we have

E[|(X•M)n|] 6
n∑
k=1

E[|Xk||Mk−Mk−1|] 6
n∑
k=1

‖Xk‖Lp(‖Mk‖Lq+‖Mk−1‖Lq) <∞

and thus (X•M)n ∈ L1. By definition and adaptedness of X,M it follows that
(X•M) is adapted. By the predictability of X and the martingale property of
M we conclude

E[(X•M)n+1 − (X•M)n |Fn] = E[Xn+1(Mn+1 −Mn) |Fn]

= Xn+1 E[Mn+1 −Mn |Fn] = 0,
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hence E[(X•M)n+1 |Fn] = (X•M)n.
For a submartingale M and Xn+1 > 0 we note Xn+1 E[Mn+1−Mn |Fn] > 0

and we conclude by the same argument that (X•M)n forms a submartingale.

4.9 Remark. Interpreting the martingale as a fair game in the sense that
Mn −Mn−1 is the payoff in round n for a stake of 1 Euro, the result can be
interpreted as saying that under a predictable investment strategy of Xn Euros
in round n a fair game remains fair (the expected gain in round n given all
information until round n − 1 is zero). Obviously, this need not be the case if
Xn is not predictable, knowing future outcomes of M .

4.10 Lemma. If (Mn) is a martingale and ϕ : R→ R convex with ϕ(Mn) ∈ L1,
n > 0, then ϕ(Mn) is a submartingale. The same is true for a submartingale
(Mn) and an increasing convex function ϕ : R→ R.

In particular, (M2
n) is a submartingale for an L2-martingale (Mn).

Proof. By Jensen’s inequality E[ϕ(Mn+1) |Fn] > ϕ(E[Mn+1 |Fn]) = ϕ(Mn)
holds P-a.s. for a martingale (Mn) and a convex function ϕ. If (Mn) is a
submartingale, then E[Mn+1 |Fn] > Mn holds P-a.s. and the last equality
becomes an >-inequality for increasing ϕ. The last assertion follows from the
convexity of ϕ(x) = x2.

4.11 Theorem (Doob decomposition). Given a submartingale (Xn), there ex-
ists a martingale (Mn) and a predictable increasing (i.e., An+1 > An a.s.)
process (An) such that

Xn = X0 +Mn +An, n > 1; M0 = A0 = 0.

This decomposition is a.s. unique and An =
∑n

k=1 E[Xk −Xk−1 |Fk−1].

Proof. The process An :=
∑n

k=1 E[Xk − Xk−1 |Fk−1], n > 1, is by definition
predictable, in L1 and increasing (for this use that X is a submartingale). Now
define Mn := Xn −X0 − An, n > 1, M0 := 0. Then Mn is in L1 and adapted
since Xn, An are so. Moreover,

E[Mn+1 −Mn |Fn] = E[(Xn+1 −Xn)− (An+1 −An) |Fn] = 0

holds and A,M give a Doob decomposition of X.
To prove uniqueness, suppose Xn = X0 + M ′n + A′n is another Doob de-

composition of X. Then Mn − M ′n = A′n − An, n > 1, holds as well as
M0 − M ′0 = A′0 − A0 = 0. This shows that (Mn − M ′n)n>0 is a predictable
martingale starting in zero. Yet, a predictable martingale is easily shown to
be a.s. constantIControl and thus Mn −M ′n = 0 a.s. This shows Mn = M ′n,
An = A′n a.s.

4.12 Definition. The predictable process (An) in the Doob decomposition of
(Xn) is called compensator of (Xn). For an L2-martingale (Mn) the compen-
sator of the submartingale (M2

n) is called quadratic variation of (Mn), denoted
by 〈M〉n.
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4.13 Lemma. We have 〈M〉n =
∑n

k=1 E[(Mk −Mk−1)2 |Fk−1], n > 1.

Proof. Using the definition and martingale property of M we conclude

〈M〉n+1 − 〈M〉n = E[M2
n+1 −M2

n |Fn]

= E[(Mn+1 −Mn)2 + 2Mn(Mn+1 −Mn) |Fn]

= E[(Mn+1 −Mn)2 |Fn].

With 〈M〉0 = 0 the claim follows.

4.14 Example.

(a) Let (Xk)k>1 be independent random variables with Xk ∈ L2, E[Xk] = 0,
k > 1. Put S0 = 0, Sn =

∑n
k=1Xk. Then (Sn)n>0 is an L2-martingale

with respect to its natural filtration and with quadratic variation

〈S〉n =

n∑
k=1

E[X2
k |FS

k−1] =

n∑
k=1

E[X2
k ] = Var(Sn).

In particular, the quadratic variation of S is deterministic because S has
independent increments.

(b) For an L2q-martingale M and a predictable process X in L2p with 1
p + 1

q =

1 the martingale transform X•M can be checked to be an L2-martingale.
Its quadratic variation is

〈X•M〉n =
n∑
k=1

E[X2
k(Mk −Mk−1)2 |FX

k−1]

=
n∑
k=1

X2
k(〈M〉k − 〈M〉k−1) = (X2•〈M〉)n.

So, the quadratic variation of X•M is again represented as a discrete
stochastic integral with ’integrand’ X2 and ’integrator’ 〈M〉.

4.2 Stopping times

4.15 Definition. A map τ : Ω→ N0 ∪{∞} is called stopping time (Stoppzeit)
with respect to a filtration (Fn) if {τ = n} ∈ Fn holds for all n > 0.

4.16 Remark. A stopping time is a random time index which cannot look into
the future, as will become clear from the following properties and examples.

4.17 Lemma.

(a) A stopping time is an ([0,∞],B[0,∞])-valued random variable.

(b) A map τ : Ω→ N0 ∪{∞} is a stopping time if and only if {τ 6 n} ∈ Fn

for all n > 0.

(c) Every deterministic time τ(ω) = n0 is a stopping time.
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(d) For stopping times σ and τ also σ∧τ , σ∨τ and σ+τ are stopping times.

4.18 Remark. The open sets in [0,∞] are the open sets in [0,∞) and their
unions with sets of the form (x,∞] for x ∈ [0,∞). This defines the natural
convergence in [0,∞], in particular the notion of an →∞. The Borel-σ-algebra
B[0,∞] is then generated by these open sets and contains all Borel sets B of
[0,∞) as well as all B ∪ {∞}.

Proof.

(a) For m ∈ N0 we have τ−1({m}) = {τ = m} ∈ Fm ⊆ F and thus also
τ−1({∞}) = τ−1(N0){ ∈ F . For any B ∈ B[0,∞] we conclude τ−1(B) =⋃
m∈B∩(N0 ∪{∞}) τ

−1({m}) ∈ F .

(b) If {τ = k} ∈ Fk for all k > 0, then {τ 6 n} =
⋃n
k=0{τ = k} ∈ Fn for all

n > 0. Conversely, if {τ 6 k} ∈ Fk for all k > 0, then {τ = n} = {τ 6
n} \ {τ 6 n− 1} ∈ Fn for all n > 1 and {τ 6 0} = {τ = 0} trivially.

(c) We have {τ = n} = ∅ ∈ Fn for all n 6= n0 and also {τ = n0} = Ω ∈ Fn0 .

(d) Use part (b) to see {σ ∧ τ 6 n} = {σ 6 n} ∪ {τ 6 n} ∈ Fn and
{σ ∨ τ 6 n} = {σ 6 n} ∩ {τ 6 n} ∈ Fn. Moreover, {σ + τ = n} =⋃n
k=0{σ = k} ∩ {τ = n− k} ∈ Fn holds.

4.19 Example. Let (Xn)n>0 be an (Fn)-adapted (S,S )-valued process and
B ∈ S . Then the entrance time into B

τB := inf{n > 0 |Xn ∈ B} with inf ∅ :=∞

is an (Fn)-stopping time: {τB 6 n} =
⋃n
k=0{Xk ∈ B} ∈ Fn. For k ∈ N

also τB,k = inf{n > k |Xn−k ∈ B} = τB + k is a stopping time, but usually
τB,−k = inf{n > 0 |Xn+k ∈ B} is not a stopping time.

B Control questions

(a) Show that a predictable martingale is a.s. constant.

By predacibility E[Mn+1 |Fn] = Mn+1 so that the martingale property implies
Mn = Mn+1 a.s.

(b) Why can the quadratic variation be written as 〈M〉n =
∑n
k=1 Var(Mk |Fk−1)

in terms of conditional variances (compare exercises)? What is
Var(Mk |Fk−1) for martingales which are sums of independent random
variables?

We have E[Mk |Fk−1] = Mk−1 so that E[(Mk − Mk−1)2 |Fk−1] =
Var(Mk |Fk−1) holds. If Mk −Mk−1 is independent of Fk−1, then this for-
mula gives Var(Mk |Fk−1) = Var(Mk −Mk−1), compare Example 4.14(a).
This is a case where the conditional variance is much smaller than the variance!
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(c) What are examples of stopping times in an infinitely long coin tossing
experiment where Fn is generated by the first n coin tosses?

The first time, when head appears, is a stopping time or the first time three
times heads has appeared in a ’run’, but the time when a run of three heads
starts is not a stopping time.

4.20 Theorem (Optional Stopping). Let (Mn) be a (sub/super-)martingale
and τ a stopping time. Then the stopped process (M τ

n) := (Mτ∧n) is again a
(sub/super-)martingale.

Proof. Note first E[|Mτ∧n|] 6 E[
∑n

k=0|Mk|] < ∞. Put Cn := 1(τ > n), n > 1.

Then (Cn) is a bounded predictable process, noting {τ > n} = {τ 6 n− 1}{ ∈
Fn−1, and satisfies

(C•M)n =

n∑
k=1

Ck(Mk −Mk−1) =

τ∧n∑
k=1

(Mk −Mk−1) = Mτ∧n −M0.

If M is a martingale, then Proposition 4.8 shows that (C•M) is a martingale
and thus also M τ . Since Cn > 0, we can deduce in the submartingale case that
C•M is also a submartingale and so is M τ . For a supermartingale M consider
the submartingale −M and conclude.

4.21 Example (doubling strategy). Consider a fair game where you can win
or lose 1 Euro for a stake of 1 Euro in each round. We model this by i.i.d.
random variables (εk)k>1 with P(ε = +1) = P(ε = −1) = 1/2 ((εk) is called
a Rademacher sequence) and the martingale S0 := 0, Sn =

∑n
k=1 εk, n > 1,

with respect to its natural filtration (FS
n ). In each round we double the stake

and invest Cn = 2n−1 Euro (which is deterministic, hence predictable). We
obtain the martingale Mn = (C•S)n so that E[Mn] = E[M0] = 0. Now we
stop playing after the first win, hence consider τ = inf{k > 1 | εk = +1}.
Before τ we shall have lost

∑τ−1
k=1 2k−1 = 2τ−1 − 1 Euro, but in round τ we

win 2τ−1 Euro so that Mτ = 1 holds almost surely (τ is a.s. finite, i.e. P(τ <
∞) = 1, since it is geometrically distributed). These kind of examples where
in a fair game you can still win (and the other lose) with probability one,
have attracted a lot of attention and have become known as Sankt Petersburg
paradoxon (Daniel Bernoulli, 1738). This cannot happen if the number of games
is finite or equivalently the stopping time τ is a.s. bounded, i.e. P(τ 6 n) = 1
for some n ∈ N, because then E[Mτ ] = E[Mτ∧n] = E[Mτ∧0] = E[M0] = 0 by
optional stopping. In the sequel, we shall understand Mτ in more detail. Please
be aware of the difference between finite and bounded stopping times.

4.22 Definition. For a stopping time τ the σ-algebra of τ -history (τ -
Vergangenheit) is defined by Fτ := {A ∈ F | ∀n > 0 : A ∩ {τ 6 n} ∈ Fn}.

4.23 Remark. The definition of Fτ is quite implicit, but it encodes events
that occur until τ stopsIExercise. We just need some key properties.

4.24 Lemma. Fτ is a σ-Algebra and τ is Fτ -measurable.
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Proof. The axioms of a σ-algebra are checked directly. For all n > 0 the event
{τ = m}∩{τ 6 n} is either empty (if n < m) or equal to {τ = m} ∈ Fm ⊆ Fn

(if n > m). This shows {τ = m} ∈ Fτ and as in Lemma 4.17(a) for F we
conclude that τ is Fτ -measurable.

4.25 Lemma. For stopping times σ and τ with σ 6 τ we have Fσ ⊆ Fτ .

Proof. For A ∈ Fσ we have A∩{σ 6 n} ∈ Fn for all n > 0. Since {τ 6 n} ∈ Fn

holds by the stopping time property, we conclude from σ 6 τ that

A ∩ {τ 6 n} =
(
A ∩ {σ 6 n}

)
∩ {τ 6 n} ∈ Fn.

Hence, A ∈ Fτ .

4.26 Lemma. For an adapted (S,S )-valued process (Xn) and a finite stopping
time τ the random variable (!) Xτ is Fτ -measurable.

Proof. For any B ∈ S we have to check {ω ∈ Ω |Xτ(ω)(ω) ∈ B} ∈ Fτ , which
is equivalent to

∀n > 0 : {Xτ ∈ B} ∩ {τ 6 n} ∈ Fn.

Writing {Xτ ∈ B} ∩ {τ 6 n} =
⋃n
k=0({Xk ∈ B} ∩ {τ = k}) we see that

{Xk ∈ B}, {τ = k} lie in Fk ⊆ Fn for k 6 n and therefore {Xτ ∈ B} ∈ Fτ .

4.27 Remark. Because of Fτ ⊆ F wee see that Xτ is a random variable which
is not clear a priori because ω enters at two different places in ω 7→ Xτ(ω)(ω).

4.28 Theorem (Optional Sampling). Let (Mn) be a martingale (submartin-
gale) and σ, τ bounded stopping times with σ 6 τ (i.e., ∃R ∈ N ∀ω : σ(ω) 6
τ(ω) 6 R). Then E[Mτ |Fσ] = Mσ (resp. E[Mτ |Fσ] >Mσ) holds.

Proof. (martingale case) Because of τ 6 R we see from above Mτ = Mτ∧R ∈ L1.
We have to show E[Mσ1A] = E[Mτ1A] for all A ∈ Fσ. Putting ρ := σ1A+τ1A{ ,
we have

{ρ = n} = (A ∩ {σ = n}) ∪ (A{ ∩ {τ = n}) ∈ Fn,

using A{ ∈ Fσ ⊆ Fτ . Hence, ρ is a bounded stopping time as well and

E[Mρ] = E[Mρ∧R] = E[Mρ∧0] = E[M0] = E[Mτ∧R] = E[Mτ ]

by optional stopping implies E[Mρ − Mτ ] = 0. By definition of ρ, we have
Mρ −Mτ = (Mσ −Mτ )1A and E[Mσ1A] = E[Mτ1A] follows.

4.29 Proposition. Let (Mn) be a martingale and τ a finite stopping time.
Then E[Mτ ] = E[M0] holds under one of the following conditions:

(a) τ is bounded;

(b) (Mτ∧n)n>0 is dominated (|Mτ∧n| 6 Y for all n and some Y ∈ L1);

(c) E[τ ] <∞ and (E[|Mn+1 −Mn| |Fn])n>0 is uniformly bounded.

Proof.
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(a) There is some R ∈ N with τ 6 R. Optional stopping therefore yields
E[Mτ ] = E[Mτ∧R] = E[M0].

(b) We have Mτ∧n → Mτ as n → ∞ and dominated convergence together
with (a) implies E[Mτ ] = limn→∞ E[Mτ∧n] = limn→∞ E[M0] = E[M0].

(c) By a telescoping sum expansion we obtain

|Mτ∧n −M0| 6
τ∧n∑
k=1

|Mk −Mk−1| 6
∞∑
k=1

|Mk −Mk−1|1(k 6 τ) =: Z.

By assumption there is R ∈ N with E[|Mk −Mk−1|1(k 6 τ) |Fk−1] 6
R1(k 6 τ) for all k, noting {k 6 τ} ∈ Fk−1. We therefore deduce

E[Z] = E
[ ∞∑
k=1

E
[
|Mk −Mk−1|1(k 6 τ)

∣∣Fk−1

]]
6 E

[ ∞∑
k=1

R1(k 6 τ)
]
.

The right-hand side equals RE[τ ], which is finite by assumption. With
Y = Z + |M0| ∈ L1 we thus have |Mτ∧n| 6 Y for all n and applying part
(b) yields the assertion.

4.30 Example. If we consider a uniformly bounded predictable ’betting strat-
egy’ (Cn) in the martingale Mn = (C•S)n of Example 4.21 instead of the
unbounded Cn = 2n−1, then

E[|Mn+1 −Mn| |FS
n ] = Cn+1 E[|εn+1| |FS

n ] 6 Cn+1

holds (assuming Cn > 0) and part (c) of the proposition implies E[Mτ ] = 0
for any stopping time τ with finite expectation. The doubling strategy above
therefore also profits from the potentially infinite capital the gambler can spend.

4.31 Corollary (Wald’s Identity). Let (Xk)k>1 be (Fk)-adapted random vari-
ables such that supk E[|Xk|] < ∞, E[Xk] = µ ∈ R and Xk is independent of
Fk−1, k > 1. Then for Sn :=

∑n
k=1Xk, S0 = 0 and every (Fk)-stopping time

τ with E[τ ] <∞ we have E[Sτ ] = E[τ ]µ.

4.32 Remark. If additionally all Xk are in L2 and E[Xk] = 0, Var(Xk) = σ2,
k > 1, holds, then also the second Wald identity is valid: Var(Sτ ) = E[τ ]σ2; see
Bauer, Satz 17.7.

Proof. Mn = Sn − nµ, n > 0, forms an (Fn)-martingale due to E[Mn+1 −
Mn |Fn] = E[Xn+1 − µ] = 0. Moreover,

E[|Mn+1 −Mn| |Fn] = E[|Xn+1 − µ|] 6 sup
k>1

E[|Xk|] + |µ|

holds such that by Proposition 4.29(c) E[Mτ ] = 0, hence E[Sτ ] = E[τ ]µ.

4.33 Example.
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(a) Let (Xk) be i.i.d., Xk ∈ L1, and τ be an (FX
n )-stopping time. Then

Wald’s identity applies and gives E[Sτ ] = E[τ ]E[X1]. In the Rademacher
case P(Xk = 1) = P(Xk = −1) = 1/2 one can show that τ = inf{n >
0 |Sn = 1} is an almost surely finite stopping time IExercise. Then Sτ = 1
a.s., but E[X1] = 0 such that we conclude E[τ ] =∞.

(b) Let (Xk) be i.i.d., Xk ∈ L1, and τ be a random time independent of (Xk).
Then for the filtration Fn = σ(τ,X1, . . . , Xn) τ is an (Fn)-stopping time,
Wald’s identity applies and gives E[Sτ ] = E[τ ]E[X1] (compare Example
3.20 with the compound Poisson process). This is an example of a filtra-
tion which is not natural for X.

4.34 Example (random walk). Let (Xk)k>1 be independent with P(Xk = 1) =
p, P(Xk = −1) = q = 1 − p for p ∈ (0, 1) and define S0 = 0, Sn =

∑n
k=1Xk,

n > 1. Then (Sn)n>0 defines a simple random walk. Let a < 0 < b with a, b ∈ Z
be given and consider the (FX

n )-stopping time

τ = inf{n > 0 |Sn ∈ {a, b}}.

Let R = |a|+ b and observe that (SmR − S(m−1)R)m>1 are i.i.d. and P(SmR −
S(m−1)R = R) > 0. Hence, the time σ = inf{m > 1 |SmR − S(m−1)R = R} is
geometrically distributed and has finite expectation. From τ 6 Rσ we conclude
E[τ ] <∞.

Consider the asymmetric case p 6= 1/2 first. Then ((q/p)Sn)n>0 forms an
(FX

n )-martingale due to

E[(q/p)Sn+1 |FX
n ] = (q/p)Sn E[(q/p)Xn+1 ] = (q/p)Sn(p(q/p)+q(p/q)) = (q/p)Sn

(this is a typical example of a transformed process forming a martingale!).
Because of |Sτ∧n| 6 |a| ∨ b the Sτ∧n, n > 1, are dominated and by Proposition
4.29(b) we infer E[(q/p)Sτ ] = E[(q/p)S0 ] = 1. This gives the two equations

P(Sτ = a)(q/p)a + P(Sτ = b)(q/p)b = 1, P(Sτ = a) + P(Sτ = b) = 1.

We can thus calculate the probability whether Sn first hits a or b:

P(Sτ = a) =
(q/p)b − 1

(q/p)b − (q/p)a
, P(Sτ = b) =

1− (q/p)a

(q/p)b − (q/p)a
.

Using E[τ ] <∞, Wald’s identity gives E[Sτ ] = (p− q)E[τ ] and we can solve for
E[τ ]:

E[τ ] =
a((q/p)b − 1) + b(1− (q/p)a)

(p− q)((q/p)b − (q/p)a)
.

As a special case note that for p > q and a ↓ −∞ we find E[τ ] ↑ b
p−q . Using

a monotone convergence argument, this is the expectation for the one-sided
stopping time inf{n > 0 |Xn = b}.IControl

For the symmetric simple random walk with p = q = 1/2 Wald’s identity

yields directly E[Sτ ] = 0 and thus P(Sτ = a) = b
|a|+b , P(Sτ = b) = |a|

|a|+b . The

second Wald identity then gives Var(Sτ ) = E[τ ] and thus E[τ ] = |a|b. Note that
here E[τ ] ↑ ∞ as a ↓ −∞.
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B Control questions

(a) Consider the infinite Bernoulli experiment (Ω,F ,P) with Ω = {0, 1}N,
F = (P({0, 1}))⊗N and the natural filtration (FX

n ) of Xk(ω) = ωk,
k > 1 (kth coin toss). Find elementary events {ω} for ω ∈ Ω which do
and which do not lie in Fτ for τ = inf{n > 1 |Xn = 1} (first time of success).

We have {ω}∩{τ = n} = {ω} if ω1 = · · · = ωn−1 = 0, ωn = 1, otherwise the
intersection is empty. Since no elementary event {ω} lies in Fn (events in Fn

are determined by the first n coordinates only), we conclude that {ω} ∈ Fτ

holds if and only if ω = {0, . . . , } is the null sequence.

(b) How can the investment in the doubling strategy example be modified to
obtain even infinite gains on average, i.e. E[Mτ ] =∞?

Since τ is geometrically distributed (with parameter 1/2), We have Mτ =

Cτ −
∑τ−1
k=1 Ck and E[Mτ ] =

∑
n>1 2−n(Cn −

∑n−1
k=1 Ck). For Cn = 3n this

yields E[Mτ ] >
∑
n>1 2−n(3n − 3n/2) = ∞ and we win arbitrary much on

average.

(c) How is the precise argument to obtain E[inf{n > 0 |Xn = b}] = b
p−q in the

preceding example?

(d) Writing τa,b = inf{n > 0 |Sn ∈ {a, b}}, we have τa,b ↑ τb = inf{n > 0 |Sn =
b} ∈ [1,∞] as a → −∞. By monotone convergence therefore E[τa,b] ↑ E[τb]
follows. For p > q the terms (q/p)a dominate the explicit formula for a→ −∞
which gives E[τa,b] ↑ b/(p− q), hence E[τb] = b/(p− q).

4.3 Martingale inequalities and convergence

4.35 Remark. One of the key problems in stochastrics is to control the max-
imum over random variables. For martingales there are very tight bounds.

4.36 Proposition (Maximal inequality). Any submartingale (Mn) satisfies

∀α > 0, n > 0 : P
(

max
06k6n

Mk > α
)
6

1

α
E
[
Mn1

(
max

06k6n
Mk > α

)]
.

In particular, any martingale (Mn) satisfies

∀α > 0, n > 0 : P
(

max
06k6n

|Mk| > α
)
6 1

α E[|Mn|].

Proof. Put τ := inf{k > 0 |Mk > α}. Then τ is a stopping time with
{max06k6nMk > α} = {τ 6 n}. We obtain:

P
(

max
06k6n

Mk > α
)

= E[1(τ 6 n)] 6 E
[Mτ∧n

α
1(τ 6 n)

]
(4.1)

6
1

α
E[Mn1(τ 6 n)] =

1

α
E
[
Mn1

(
max

06k6n
Mk > α

)]
,

where the last bound follows by optional samplingIControl of the submartingale
(Mn)n>0 at times τ ∧ n and n. This gives the inequality for submartingales.

For martingales (Mn) apply the maximal inequality to the submartingale
(|M |n) (ϕ(x) = |x|) is convex) and bound the indicator bei one.
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4.37 Remark. Markov’s inequality (Stochastik I) just gives P(|Mn| > α) 6
1
α E[|Mn|] so that the maximal inequality bounds an a priori much larger event
by the same value.

4.38 Theorem (Doob’s Lp-inequality). Any Lp-martingale or positive Lp-
submartingale (Mn) (i.e. Mn ∈ Lp for all n) with p > 1 satisfies∥∥∥ max

06k6n
|Mk|

∥∥∥
Lp

6
p

p− 1
‖Mn‖Lp .

Proof. Write M∗n = max06k6n|Mk| and note that (|Mn|) is a submartingale un-
der our assumptions. Then by the maximal inequality for (|Mn|) of Proposition
4.36 and by Tonelli-Fubini’s theorem we obtain

1
p E[(M∗n)p] = E

[ ∫ M∗n

0
xp−1dx

]
=

∫ ∞
0

xp−1 P(M∗n > x) dx

6
∫ ∞

0
xp−2 E[|Mn|1(M∗n > x)] dx

= E
[
|Mn|

∫ M∗n

0
xp−2 dx

]
= 1

p−1 E[|Mn|(M∗n)p−1].

By Hölder inequality for p−1 + q−1 = 1 ⇐⇒ q = p/(p− 1) we thus have

E[(M∗n)p] 6 p
p−1 E[|Mn|(M∗n)p−1] 6 p

p−1 E[|Mn|p]1/p E[(M∗n)p](p−1)/p.

Dividing by E[(M∗n)p](p−1)/p, the assertion follows.

4.39 Example. An analogue of Doob’s Lp inequality cannot hold in the case
p = 1. On ([0, 1],B[0,1], λ) (with Lebesgue measure λ) consider Mn = 2n1[0,2−n).
Then (Mn) is a non-negative martingale with respect to its natural filtra-
tion (FMn )IControl. We have ‖Mn‖L1 = 1 for all n, but (sketch the function!)
‖max06k6nMk‖L1 = 2n2−n +

∑n−1
k=0 2k2−k−1 = 1 + n/2→∞ as n→∞.

4.40 Definition. The number of upcrossings (aufsteigende Überquerungen)

on an interval [a, b] by a process (Xk) until time n is defined by U
[a,b]
n :=

sup{k > 1 | τk 6 n}, where inductively τ0 := 0, σk+1 := inf{` > τk |X` 6 a},
τk+1 := inf{` > σk+1 |X` > b}.

4.41 Remark. Convince yourself that σ1 is the first time the process (Xk) has

been below a, τ1 is the first time after σ1 it is above b etc. So, U
[a,b]
n really

counts the number of times the process has moved from below a to above b.
We shall see that (sub)martingales only allow for a small number of upcrossings

U
[a,b]
n and that this will yield an almost sure convergence result.

4.42 Proposition (Upcrossing Inequality). The upcrossings of a submartingale

(Xn) satisfy E[U
[a,b]
n ] 6 1

b−a E[(Xn − a)+].

Proof. We shall assume in the sequel a = 0 and Xn > 0. This can be done
without loss of generality because otherwise it suffices to consider Yn = (Xn −
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a)+, n > 0, which forms by Jensen’s inequality also a submartingale with Yn > 0

and whose upcrossings on [0, b− a] equals U
[a,b]
n (upcrossings of X on [a, b]).

By definition of the upcrossing stopping times a telescoping sum yields

E[Xn] = E[Xσ1∧n] +
n∑
k=1

E[Xτk∧n −Xσk∧n] +
n∑
k=1

E[Xσk+1∧n −Xτk∧n].

Since (Xn) is a non-negative submartingale by assumption, optional sampling
shows that all summands in this decomposition are non-negative. From

n∑
k=1

(Xτk∧n −Xσk∧n) =

U
[0,b]
n∑
k=1

(Xτk −Xσk) > bU [0,b]
n

we thus infer E[Xn] > bE[U
[0,b]
n ], the upcrossing inequality for a = 0.

4.43 Theorem (First martingale convergence theorem). Let (Mn) be a (sub-
/super-)martingale with supn E[|Mn|] <∞ ((Mn) is L1-bounded). Then M∞ :=
limn→∞Mn exists a.s. and M∞ is in L1.

4.44 Remark. If (Mn) is a submartingale, it is L1-bounded already if
supn E[(Mn)+] is finite because

E[(Mn)−] = E[(Mn)+]− E[Mn] 6 E[(Mn)+]− E[M0]

holds. Let us also emphasize that (Mn) need not converge in L1 to M∞.

Proof. Let (Mn) be a submartingale. By monotonicity U
[a,b]
n converges to some

U [a,b] ∈ N0 ∪{∞} as n→∞ and by monotone convergence and the upcrossing
inequality

E[U [a,b]] 6
1

b− a
lim
n→∞

E[(Mn − a)+] 6
1

b− a

(
sup
n

E[|Mn|] + |a|
)
<∞.

This shows P(U [a,b] =∞) = 0. For a < b and the event

Λa,b =
{

lim sup
n→∞

Mn > b, lim inf
n→∞

Mn 6 a
}

this implies P(Λa,b) = 0 and thus

P
(

lim sup
n→∞

Mn > lim inf
n→∞

Mn

)
= P

( ⋃
a<b,a,b∈Q

Λa,b

)
= 0.

Hence, (Mn) converges P-almost surely to some M∞ with values in R∪{±∞}.
Fatou’s Lemma gives

E[|M∞|] = E
[

lim inf
n→∞

|Mn|
]
6 lim inf

n→∞
E[|Mn|] <∞.

This shows that M∞ is a.s. finite and in L1.
For supermartingales (Mn) apply the result to the submartingales (−Mn).
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4.45 Corollary. Each non-negative (super)martingale (Mn) converges P-a.s.
to some M∞ with E[M∞] 6 limn→∞ E[Mn] = infn E[Mn].

Proof. The decay E[Mn+1] 6 E[Mn] and Mn > 0 show supn E[|Mn|] = E[M0] <
∞. By the first martingale convergence theorem we obtain Mn → M∞ P-a.s.
By Fatou’s Lemma

E[M∞] 6 lim inf
n→∞

E[Mn] = lim
n→∞

E[Mn] = inf
n

E[Mn]

follows.

4.46 Example (A fair game where you lose in the long run). Consider the
multiplicative martingale P0 := 1, Pn =

∏n
i=1Xi, n > 1, with independent

random variables (Xi), satisfying P(Xi = 3/2) = P(Xi = 1/2) = 1/2. The
corollary ensures that (Pn) converges a.s. The strong law of large numbers
applied to 1

n log(Pn) shows more precisely Pn → P∞ = 0 P-a.s. (Stochastik I).
Yet, E[Pn] = 1 holds for all n > 0 and thus Pn → P∞ does not hold in L1.

4.47 Definition. A family (Xi)i∈I of random variables is uniformly integrable
(gleichgradig integrierbar) if

lim
R→∞

sup
i∈I

E[|Xi|1{|Xi|>R}] = 0.

4.48 Lemma.

(a) (Xi)i∈I is uniformly integrable if and only if (Xi)i∈I is L1-bounded and
∀ ε > 0 ∃ δ > 0 : P(A) < δ ⇒ supi∈I E[|Xi|1A] < ε.

(b) If (Xi)i∈I is Lp-bounded (supi∈I E[|Xi|p] < ∞) for some p > 1, then
(Xi)i∈I is uniformly integrable.

(c) If |Xi| 6 Y holds for all i ∈ I and some Y ∈ L1 ((Xi)i∈I is dominated),
then (Xi)i∈I is uniformly integrable.

Proof. For (a) see IExercise. For (b) note

E[|Xi|1{|Xi|>R}] 6 E[|Xi|(|Xi|/R)p−1] = R−(p−1)‖Xi‖pLp

where the right-hand side tends to zero for R→∞, uniformly over i. Part (c)
follows directly from |Xi|1{|Xi|>R} 6 Y 1{Y >R} and dominated convergence.

B Control questions

(a) How is the optional sampling theorem used precisely in the proof of the
maximal inequality?

We have to show E[Mτ∧n1(τ 6 n)] 6 E[Mn1(τ 6 n)] for a submartingale
(Mn). Adding E[Mn1(τ > n)] on both sides, this is equivalent to E[Mτ∧n] 6
E[Mn]. Since τ ∧n and n are bounded stopping times, optional sampling gives
Mτ∧n 6 E[Mn |Fτ∧n] and it remains to take expectations of both sides.
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(b) Show formally that (Mn) in Example 4.39 is a martingale.

We claim E[Mn+1 |FM
n ] = Mn. FM

n is generated by the intervals
[0, 2−n), [2−n, 2−n+1), . . . , [1/2, 1] so that E[Mn+1 |FM

n ] = c1[0,2−n) must
hold a.s. for some c ∈ R (Mn+1 vanishes on the complement). Taking expec-
tations, we see 1 = E[Mn+1] = c2−n so that c = 2n and the claim holds.

(c) Find an example of uniformly integrable (Xi)i>1 where Y := supi|Xi| is not
in L1, thus showing that condition (c) in the lemma is only sufficient, not
necessary.
Hint: Example 4.39 with a smaller factor.

Consider Mn = (n + 1)−12n1[0,2−n), n > 0, for q ∈ (1, 2) in Example 4.39.
Then E[|Mn|] = E[Mn] = (n + 1)−1 → 0 and (Mn)n>1 is uniformly in-

tegrable. On the other hand, we have supn>1|Mn| =
∑∞
n=1

∑n−1
k=0(k +

1)−12k1[2−n,2−n+1) a.e. and because of
∑n−1
k=0(k + 1)−12k > n−1(2n − 1)

we obtain E[supn>1|Mn|] >
∑∞
n=1 n

−1(1− 2−n) =∞.

4.49 Remark. From Stochastik I and measure theory we know the dominated
convergence theorem which ensures convergence of expected values or integrals.
The domination condition is quite strong, e.g. often it does not apply for prov-
ing that sums Sn of independent random variables with Sn → S∞ a.s. (or in
probability) satisfy E[Sn] → E[S∞] (when it is true). In view of the first mar-
tingale convergence theorem we know that L1-boundedness yields the almost
sure-convergence and it turns out that uniform integrability is a necessary and
sufficient condition to guarantee also L1-convergence, hence convergence of ex-
pected values. In functional analysis, the Dunford-Pettis Theorem asserts more
generally that a family (Xi)i∈I is weakly relatively compact in L1(P) if and only
if it is uniformly integrable.

4.50 Theorem (Vitali, 1907). Let (Xn)n>0 be random variables in L1(P) with

Xn
P−→ X (in probability). Then the following statements are equivalent:

(a) (Xn)n>0 is uniformly integrable;

(b) Xn → X in L1(P);

(c) E[|Xn|]→ E[|X|] <∞.

Proof. To show (a)⇒(b), we can assume w.l.o.g. that Xn → X P-a.s. by the

classical subsubsequence argument: if Xn
P−→ X, but (Xn) did not converge

to X in L1, then there would be a subsequence (nk) and ε > 0 such that
‖Xnk − X‖L1 > ε for all k and by Stochastik I a subsubsequence (nkl) such
that Xnkl

→ X P-a.s., for which, however, we now prove Xnkl
→ X in L1, a

contradiction to ‖Xnkl
−X‖L1 > ε.

Since (Xn) is L1-bounded, Fatou’s Lemma shows E[|X|] 6
lim infn→∞ E[|Xn|] < ∞. For ε > 0 we can choose by uniform integra-
bility some R > 0 with

sup
n

E[|Xn|1(|Xn| > R)] + E[|X|1(|X| > R)] <
ε

2
.

42



Put ϕR(x) = (−R)∨(x∧R) (clipping by −R and R). By dominated convergence
(use ‖ϕR‖∞ 6 R < ∞ and |ϕR(Xn) − ϕR(X)| → 0 a.s.) there is n0 ∈ N with
E[|ϕR(Xn)− ϕR(X)|] < ε/2 for all n > n0. Consequently,

E[|Xn−X|] 6 E[|ϕR(Xn)−ϕR(X)|]+E[|Xn|1(|Xn| > R)]+E[|X|1(|X| > R)] < ε

holds for all n > n0. Since ε > 0 was arbitrary, (b) follows.
The implication (b)⇒(c) follows immediately by the continuity of the L1-

norm via ||Xn| − |X|| 6 |Xn −X|.
For (c)⇒(a) put ψR(x) = |x| for |x| 6 R − 1, ψR(x) = 0 for |x| > R and

interpolate linearly on [−R,−R+ 1] and [R−1, R]. Then ψR is continuous and
satisfies ψR(x) 6 |x|1(|x| 6 R) such that for any n,R

E[|Xn|1(|Xn| > R)] 6 E[|Xn| − ψR(Xn)].

Since ψR is bounded and continuous and Xn → X in distribution (Stochastik
I), we have E[ψR(Xn)]→ E[ψR(X)]. Letting first n→∞ and then R→∞ we
thus have

lim
R→∞

lim sup
n→∞

E[|Xn|1(|Xn| > R)] 6 lim
R→∞

E[|X| − ψR(X)] = 0.

Using monotonicity, we obtain uniform integrability:

lim
R→∞

sup
n>1

E[|Xn|1(|Xn| > R)]

6 inf
R>0

inf
n0>1

( n0∑
n=1

E[|Xn|1(|Xn| > R)] + sup
n>n0

E[|Xn|1(|Xn| > R)]
)

= inf
n0>1

lim
R→∞

( n0∑
n=1

E[|Xn|1(|Xn| > R)] + sup
n>n0

E[|Xn|1(|Xn| > R)]
)

= inf
n0>1

inf
R>0

sup
n>n0

E[|Xn|1(|Xn| > R)]

= inf
R>0

inf
n0>1

sup
n>n0

E[|Xn|1(|Xn| > R)]

= inf
R>0

lim sup
n→∞

E[|Xn|1(|Xn| > R)] = 0,

where limR→∞ E[|Xn|1(|Xn| > R)] = 0 was used (dominated convergence be-
cause of Xn ∈ L1).

4.51 Theorem (Second martingale convergence theorem).

(a) If (Mn) is a uniformly integrable martingale, then (Mn) converges a.s.
and in L1 to some M∞ ∈ L1. (Mn) is closable with Mn = E[M∞ |Fn].

(b) If (Mn) is a closable martingale, with Mn = E[M |Fn] say, then (Mn)
is uniformly integrable and (a) holds with M∞ = E[M |F∞] where F∞ =
σ(Fn, n > 1).

Proof.
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(a) The first martingale convergence theorem in view of L1-boundedness
(Lemma 4.48(a)) and Vitali’s theorem ensure almost sure and then L1-
convergence. Furthermore, for any m > n > 1 and A ∈ Fn we have
E[Mn1A] = E[Mm1A]. L1-convergence implies

|E[Mm1A −M∞1A]| 6 ‖Mm −M∞‖L1 → 0 as m→∞,

hence E[M∞1A] = E[Mn1A]. This shows Mn = E[M∞ |Fn]. In fact, we
have shown the general fact that L1-convergence implies convergence of
the conditional expectations.

(b) Assume first M > 0 with E[M ] > 0. Then Mn = E[M |Fn] > 0 holds
a.s and M∞ = limn→∞Mn exists a.s. with E[M∞] 6 limn→∞ E[Mn] =
E[M ] (Corollary 4.45). On the other hand, dominated convergence and
E[M |Fn]∧R > E[M ∧R |Fn] (by monotonicity or by Jensen’s inequality
with x 7→ x ∧R concave) give for any R > 0

E[M∞ ∧R] = lim
n→∞

E[Mn ∧R] > E[M ∧R].

This implies E[M∞] > supR>0 E[M ∧ R] = E[M ], whence E[M∞] =
E[M ] = limn→∞ E[Mn]. By Vitali’s Theorem 4.50(c), we infer that (Mn)
is uniformly integrable and from part (a) that Mn = E[M∞ |Fn].

The limit M∞ is F∞-measurable and satisfies for any A ∈ Fn, n > 1:

E[M∞1A] = E[Mn1A] = E[E[M |Fn]1A] = E[M1A].

Hence, the probability measures(!) Q1(A) := E[M∞1A]/E[M ] and
Q2(A) := E[M1A]/E[M ], A ∈ F∞, coincide on

⋃
m>1 Fm. As the latter

is an ∩-stable generator of F∞, Q1 and Q2 agree everywhere. By defini-
tion, this means M∞ = E[M |F∞] a.s. This gives the result for M > 0
(if M > 0 and E[M ] 6 0, then Mn = M = 0 a.s. and it is trivial). For
general M consider M+

n := E[M+ |Fn], M−n := E[M− |Fn] separately.

4.52 Remark. The second martingale convergence theorem neatly character-
izes the uniformly integrable martingales as closable martingales. The following
result is very important in concrete situations. Note again that it is not valid
for p = 1.IControl

4.53 Corollary. Let p > 1. Every Lp-bounded martingale (Mn) (i.e.
supn E[|Mn|p] <∞) converges for n→∞ a.s. and in Lp, hence also in L1.

Proof. IExercise

4.54 Example. Recall from Analysis I the harmonic series
∑∞

k=1
1
k = ∞ and

the alternating harmonic series
∑∞

k=1(−1)k+1 1
k = log 2. What about ran-

dom signs in front of 1
k? The random harmonic sum Sn =

∑n
k=1

εk
k with a

Rademacher sequence (εk) (i.i.d., P(εk = 1) = P(εk = −1) = 1/2) forms an

L2-bounded martingale due to E[S2
n] =

∑n
k=1 k

−2 6
∑∞

k=1 k
−2 = π2

6 . Hence
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Sn → S∞ holds a.s. and in L2. More generally, for (ak) ∈ `2 deterministic we
have that Sn =

∑n
k=1 εkak is an L2-bounded martingale converging in L2 and

P-a.s., e.g. ak = k−α is eligible for any α > 1/2.
In the case of random (Ak) in Sn =

∑n
k=1 εkAk we could choose Ak = εk/k

and Sn =
∑n

k=1 k
−1 diverges. If (Ak) is predictable, however, and we set

Mn =
∑n

k=1 εk, then Sn =
∑n

k=1 εkAk = (A•M)n is an L2-martingale with
quadratic variation 〈S〉n = (A2•〈M〉)n =

∑n
k=1A

2
k. Using E[S2

n] = E[〈S〉n] =∑n
k=1 E[A2

k], we conclude that (Sn) is an L2-bounded martingale if and only if∑∞
k=1 E[A2

k] <∞. In the following we obtain a more precise convergence result
for L2-martingales.

4.55 Definition. For A,B ∈ F we write A ⊆ B P-a.s. if P(A \B) = 0.

4.56 Proposition. Let (Mn) be an L2-martingale. Then:{
lim
n→∞

〈M〉n <∞
}
⊆
{

lim
n→∞

Mn exists
}

P -a.s.

4.57 Remark. If the increments of (Mn) are uniformly bounded, then also the
relation ’⊇’ holds P-a.s., see Williams 12.13.

4.58 Example. The martingale Sn = (A•M)n with predictable (An) from the
previous example converges for P-almost all ω such that

∑∞
k=1Ak(ω)2 is finite.

Proof. W.l.o.g. assume M0 = 0 (otherwise consider the martingale (Mn −
M0)n>0). Since 〈M〉n is predictable, τk := inf{n > 0 | 〈M〉n+1 > k} are stopping
times for each k ∈ N. For later note 〈M〉τk 6 k in view of 〈M〉0 = 0. The
stopped quadratic variation 〈M〉τkn := 〈M〉τk∧n is predictable: for n > 1, B ∈
BR

{〈M〉τk∧n ∈ B} =
n−1⋃
l=0

{τk = l, 〈M〉l ∈ B} ∪ {τk > n, 〈M〉n ∈ B} ∈ Fn−1

holds. By definition and optional stopping (M2−〈M〉)τk∧n is a martingale such
that

E[(M τk
n+1)2 − 〈M〉τkn+1 |Fn] = E[(M2 − 〈M〉)τk∧(n+1) |Fn]

= (M2 − 〈M〉)τk∧n = (M τk
n )2 − 〈M〉τkn ,

Hence, 〈M〉τk is the quadratic variation of M τk : 〈M τk〉 = 〈M〉τk (the quadratic
variation of the stopped martingale is the stopped quadratic variation).

Now, E[(M τk
n )2] = E[〈M〉τkn ] 6 k holds for all n > 0 and (M τk

n )n is an L2-
bounded martingale. This shows that limn→∞M

τk
n exists a.s. for all k. The

identity {∃k > 1 : τk =∞} = {limn→∞〈M〉n <∞} implies the assertion.

B Control questions

(a) Let (fn)n>1 be probability densities on [0, 1] with fn(x)→ f(x) for Lebesgue-
almost all x ∈ [0, 1]. Why does Vitali’s Theorem show ‖fn − f‖L1 → 0 if
and only if f is a probability density itself? [Remark: in that case the laws

45



converge in total-variation distance!]

Probability densities are nonnegative and integrate to one. Interpreting
Lebesgue measure on [0, 1] as a uniform probability, Vitali’s Theorem shows

‖fn − f‖L1 → 0 if and only if
∫ 1

0
f(x)dx = 1. Since f is as a pointwise limit

also nonnegative and measurable, the last property is equivalent to f being a
probability density. This result is known as Scheffé’s Theorem.

(b) What is an example for M∞ 6= M in the second martingale convergence
theorem?

Let Fn = {∅,Ω} be trivial for all n. Then Mn = E[M |Fn] = E[M ] a.s. is
constant and M∞ = E[M ] as well. For a non-trivial random variable M this
implies M∞ 6= M a.s.

(c) Why does Corollary 4.53 not hold for p = 1?

The multiplicative martingale Pn =
∏n
k=1Xk with P(Xk = 3/2) = P(Xk =

1/2) = 1/2 from Example 4.4(b) satisfies E[Pn] = 1, but P∞ = 0 a.s. so that
(Pn) is L1-bounded (by one), but not uniformly integrable due to E[P∞] 6=
limn→∞ E[Pn].

4.59 Lemma (Kronecker’s Lemma). Let (an), (cn) be sequences of real
numbers with an ↑ ∞ and such that limN→∞

∑N
n=1

cn
an

exists. Then

limN→∞
1
aN

∑N
n=1 cn = 0 holds.

Proof. Set dN :=
∑N

n=1
cn
an

and bn := an − an−1 > 0, n > 1, where a0 := 0, and
let N be so large that aN > 0. Then partial summation gives for any 1 6 k < N

1

aN

∣∣∣ N∑
n=1

cn

∣∣∣ =
1

aN

∣∣∣ N∑
n=1

an(dn − dn−1)
∣∣∣ =

1

aN

∣∣∣− N∑
n=1

(an − an−1)dn−1 + aNdN

∣∣∣
=
∣∣∣ N∑
n=1

bn
aN

(dN − dn−1)
∣∣∣ 6 ∣∣∣ k∑

n=1

bn
aN

(dN − dn−1)
∣∣∣+ max

k6n6N
|dN − dn|,

using
∑N

n=k+1
bn
aN
∈ [0, 1]. Letting first N → ∞, then k → ∞ the right-hand

side tends to zero.

4.60 Example. Let (Xi)i>1 be i.i.d. random variables in L2 with E[Xi] =
0. Then Mn :=

∑n
i=1

Xi
i , M0 := 0, forms a martingale with E[M2

n] =∑n
i=1 i

−2 E[X2
i ] 6 π2

6 E[X2
1 ]. Consequently, (Mn) is an L2-bounded martin-

gale and converges by Corollary 4.53 almost surely. Kronecker’s Lemma with
an = n and cn = Xn(ω) thus shows that also 1

n

∑n
i=1Xi → 0 a.s. holds, which

is the strong law of large numbers. Next, we obtain a more general and more
precise result.

4.61 Lemma. Let (Mn)n>0 and (An)n>0 be processes, (An) non-negative and
increasing with An ↑ A∞ ∈ R∪{∞}. Then

{A∞ =∞} ∩
{

lim
n→∞

((1 +A)−1•M)n exists in R
}
⊆
{

lim
n→∞

Mn

An
= 0
}
.
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Proof. Put an = 1 +An(ω), cn = (Mn−Mn−1)(ω). Then by definition for all ω
in the left-hand side event an ↑ ∞ holds and

∑N
n=1 cn/an converges as N →∞.

Kronecker’s Lemma implies 1
aN

∑N
n=1 cn → 0. This means MN (ω)−M0(ω)

1+AN (ω) → 0

and thus (MN/AN )(ω)→ 0, as asserted.

4.62 Corollary (Strong law of large numbers for L2-martingales). An L2-
martingale (Mn) satisfies for any increasing function ρ : R+ → R+ with

∫∞
0 (1+

ρ(t))−2dt <∞{
lim
n→∞

〈M〉n =∞
}
⊆
{

lim
n→∞

Mn

ρ(〈M〉n)
= 0
}

P -a.s.

4.63 Remark. We may choose ρ(t) = tα for any α > 1/2 or even ρ(t) =√
t(log(1 + t))β for any β > 1.

Proof. Consider Xn = ((1 + ρ(〈M〉)−1•M)n. Then (Xn) is an L2-martingale
with

〈X〉n = ((1+ρ(〈M〉))−2•〈M〉)n =

n∑
k=1

〈M〉k − 〈M〉k−1

(1 + ρ(〈M〉k))2
6

n∑
k=1

∫ 〈M〉k
〈M〉k−1

(1+ρ(t))−2dt.

This shows limn→∞〈X〉n 6
∫∞

0 (1 + ρ(t))−2dt < ∞ P-a.s. Proposition 4.56
implies that (Xn) converges P-a.s. and Lemma 4.61 with An = ρ(〈M〉n) yields
the result.

4.64 Example. Let (Xi)i>1 be independent L2-random variables with E[Xi] =
0, Var(Xi) = σ2

i . Then Sn =
∑n

i=1Xi is an L2-martingale with 〈S〉n =
Var(Sn) =

∑n
i=1 σ

2
i . If

∑∞
i=1 σ

2
i =∞, then we conclude

∀β > 1 :
Sn − E[Sn]

Var(Sn)1/2(log(1 + Var(Sn))β/2
→ 0 P -a.s.

If Var(Xi) = σ2 > 0 independent of i, then n−1/2 log(n)−β/2(Sn − E[Sn]) → 0
a.s., that is Sn − E[Sn] converges ’almost’ with rate n−1/2 to zero. The law of
the iterated logarithm shows in the i.i.d. case that the critical scaling between
a.s. convergence and divergence is

√
n log(log n).

4.65 Remark. The scaling with ρ(t) = t1/2 gives rise to a martingale central
limit theorem. If (Mn) is an L2-martingale with M0 = 0, 〈M〉n →∞, then

Mn

〈M〉1/2n

d−→ N(0, 1)

holds, provided 〈M〉n/E[M2
n] → 1 and the conditional Lindeberg condition is

satisfied:

∀ε > 0 :
1

E[M2
n]

n∑
k=1

E
[
(Mk−Mk−1)21

(
(Mk−Mk−1)2 > ε2 E[M2

n]
) ∣∣∣Fk−1

]
P−→ 0,

cf. A. Shiryaev, Probability, Springer, Thm. VII.8.4.
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4.66 Definition. A process (M−n)n>0 is called backward martingale
(Rückwärtsmartingal) with respect to (F−n)n>0 with σ-algebras F−n−1 ⊆ F−n
if M−n ∈ L1, M−n is F−n-measurable and E[M−n |F−n−1] = M−n−1 hold for
all n > 0.

4.67 Remark. While a martingale (Mn) provides finer information for n→∞
because the filtration increases, a backward martingale (M−n) provides coarser
information as n→∞ and in case

⋂
n>0 F−n = {∅,Ω} a potential limit M−∞

must be necessarily constant (deterministic).

4.68 Theorem. Every backward martingale (M−n)n>0 converges for n → ∞
a.s. and in L1.

Proof. Denote by U
[a,b]
−n the upcrossings on [a, b] of (M−k, k = 0, . . . , n). The

upcrossing inequality gives E[U
[a,b]
−n ] 6 E[(M0− a)+]/(b− a) because it relies on

the martingale property for finitely many time indices only. With U
[a,b]
−n ↑ U [a,b]

as n ↑ ∞ monotone convergence shows E[U [a,b]] 6 E[(M0 − a)+]/(b − a) < ∞
for any a < b. Now, U [a,b] counts the upcrossings on [a, b] of (M−n, n > 0).
As in the first martingale convergence theorem this implies P-a.s. convergence
M−n →M−∞ for some random variable M−∞ ∈ L1. Now, M−n = E[M0 |F−n]
holds and the same argument as for the second martingale convergence theorem
shows that (M−n, n > 0) is uniformly integrableIControl. Vitali’s Theorem thus
implies M−n →M−∞ in L1.

4.69 Corollary. (Kolmogorov’s strong law of large numbers) For i.i.d. random
variables (Xi)i>1 in L1 we have

1

n

n∑
i=1

Xi
P -a.s. and L1

−−−−−−−−−→ E[X1].

Proof. Put S0 = 0, Sn =
∑n

i=1Xi, n > 1 and F−n = σ(Sk, k > n), n > 0.
Then F−n−1 ⊆ F−n holds for n > 0 and Sn is F−n-measurable. From

Sn = E[Sn |F−n] =

n∑
i=1

E[Xi |F−n]

and the fact that (Xi)i=1,...,n has the same law as (Xπ(i))i=1,...,n for any permu-
tation π of {1, . . . , n} ((Xi) are exchangeable), while Sk for k > n is invariant
under each π, we conclude that E[Xi |F−n] does not depend on i ∈ {1, . . . , n}
and thus equals Sn/n. By definition M−n := E[X1 |F−n] forms a backward
martingale. We conclude that Sn/n = M−n → M−∞ converges P-a.s. and in
L1. By Kolmogorov’s 0-1 law (Stochastik I, IExercise) the limit M−∞ must be
P-a.s. constant. From E[X1] = E[M−n] → E[M−∞] we infer M−∞ = E[X1]
P-a.s.

4.4 The Radon-Nikodym theorem and Kakutani’s dichotomy

4.70 Definition. Let µ and ν be measures on the measurable space (Ω,F ).
Then µ is absolutely continuous (absolutstetig) with respect to ν, notation
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µ� ν, if ∀A ∈ F : ν(A) = 0⇒ µ(A) = 0. µ and ν are equivalent (äquivalent),
notation µ ∼ ν, if µ � ν and ν � µ. If there is an A ∈ F with ν(A) = 0 and
µ(AC) = 0, then µ and ν are singular (singulär), notation µ ⊥ ν.

4.71 Example.

(a) A probability measure P on BRd with Lebesgue density f is absolutely
continuous with respect to Lebesgue measure λ: λ(A) = 0 ⇒ P(A) =∫
A f(x)λ(dx) = 0.

More generally, any measure µ with a ν-density f , i.e. µ(A) =
∫
A fdν,

satisfies µ � ν. If f > 0 ν-almost everywhere holds, then µ(A) = 0
implies

∫
f1Adν = 0 and thus ν(A) = ν({f1A > 0}) = 0. This shows

ν � µ, hence equivalence ν ∼ µ.

(b) The measures λ and δ0 on BR are singular: λ({0}) = 0, δ0({0}C) = 0.

B Control questions

(a) Why do we need 〈M〉n →∞ in the strong law for L2-martingales? Provide a
simple example where supn〈M〉n < ∞ and Mn/〈M〉n does not converge to
zero.

For an L1-random variable X we have that Mn = X is a (constant) martingale
with respect to Fn = F . Its quadratic variation is 〈M〉n = X2. Hence,
Mn/〈M〉n = X−1 does not convergence to zero (it even needs not be well-
defined)

(b) Why do we have for backward martingales (M−n) that M−n → E[M−1 |F−∞]
a.s. and in L1 with F−∞ =

⋂
n>1 F−n?

By the martingale property M−n = E[M−1 |F−n] and by backward martingale
convergence M−n →M−∞ a.s. and in L1 for some M−∞ ∈ L1 hold. By the
filtration property M−n is F−m-measurable for all n > m so that M−∞ is
also F−m-measurable for all m. This shows that M−∞ is F−∞-measurable.
For A ∈ F−∞ we have by L1-convergence

E[M−∞1A] = lim
n→∞

E[M−n1A] = lim
n→∞

E[E[M−11A |F−n]] = E[M−11A],

whence M−∞ = E[M−1 |F−∞] holds.

4.72 Lemma. A finite measure µ is absolutely continuous with respect to a
measure ν if and only if

∀ε > 0∃δ > 0 ∀A ∈ F : ν(A) < δ ⇒ µ(A) < ε.

Proof. To prove ’⇐’ suppose ν(A) = 0. Then ν(A) < δ holds for all δ > 0 and
thus µ(A) < ε for all ε > 0. This implies µ(A) = 0, hence µ� ν.

The implication ’⇒’ is shown by contradiction. Assume there are An ∈ F
and ε > 0 with ν(An) 6 2−n and µ(An) > ε. Consider the event A∞ =⋂
m>1

⋃
n>mAn that infinitely many events An occur. Then for all n0 ∈ N

ν(A∞) =

∫
lim sup
n→∞

1Andν 6
∫ ∑

n>n0

1Andν =
∑
n>n0

ν(An) 6
∑
n>n0

2−n = 2−n0
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holds, which for n0 → ∞ yields ν(A∞) = 0 (for ν = P this is Borel-Cantelli).
On the other hand, Fatou’s Lemma gives

µ(A∞) =

∫
lim sup
n→∞

(1−1ACn ) dµ > µ(Ω)−lim inf
n→∞

∫
1ACn dµ = lim sup

n→∞
µ(An) > ε.

This contradicts µ� ν.

4.73 Remark.

(a) It is necessary to ask for finite µ as the following counterexample shows:
take ν the Lebesgue measure on ((0, 1],B(0,1]) and µ(dx) = x−1dx. Then
µ� ν holds, while ν((0, δ)) = δ and µ((0, δ)) =∞ hold for all δ ∈ (0, 1).

(b) If F is the distribution function of a probability measure P on (R,BR),
absolutely continuous with respect to Lebesgue measure, then the lemma
says that there is for any ε > 0 a δ > 0 such that

∀n ∈ N; a1 6 b1 6 · · · 6 an 6 bn :

n∑
i=1

(bi−ai) < δ ⇒
n∑
i=1

(F (bi)−F (ai)) < ε.

In real analysis one says that the function F is absolutely continuous and
thus weakly differentiable with derivative f (the density or the Radon-
Nikodym derivative of P, see below). Note that for Cantor measure P the
distribution function F is continuous, but not absolutely continuous in
that sense.

(c) If a finite measure µ has a density f with respect to a probability measure
P, then the preceding lemma shows ∀ ε > 0 ∃ δ > 0 : P(A) < δ ⇒
EP[1Af ] < ε. In view of Lemma 4.48(a), the density f , considered as a
random variable under P, is uniformly integrable (which is clear for one
L1-random variable anywayIControl). The remarkable fact of the following
Radon-Nikodym Theorem is that absolute continuity suffices to ensure the
existence of a density. Its martingale proof is constructive in the sense
that we build the density iteratively for finitely generated σ-algebras and
then take the limit.

4.74 Theorem (Radon-Nikodym Theorem (Vitali 1905, Lebesgue 1910, Radon
1913, Nikodym 1930, von Neumann 1940)). Let ν be a σ-finite measure and µ
a measure on F with µ� ν, then there is an f ∈M+(Ω,F ) such that

µ(A) =

∫
A
f dν for all A ∈ F .

4.75 Definition. The function f in the Radon-Nikodym theorem is called
Radon-Nikodym derivative, density or likelihood function of µ with respect to

ν, notation f = dµ
dν .

Proof. We give the proof in the case µ finite, ν = P and F = σ(Fn, n > 1) for
some Fn ⊆ Ω (F separable, e.g. a Borel σ-algebra of a Polish space IControl);
see Williams for the general case.
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Put Fn = σ(F1, . . . , Fn). Then Fn consists of finitely many events only
(intersections of the Fi and finite unions). In particular, there are finitely many

’atoms’ A
(n)
1 , . . . , A

(n)
rn ∈ Fn with

⋃rn
i=1A

(n)
i = Ω, A

(n)
i ∩ A(n)

j = ∅ for i 6= j

and Fn = σ(A
(n)
1 , . . . , A

(n)
rn ). Then

µ(A
(n)
i )

P(A
(n)
i )

should be the P-density of µ on each

A
(n)
i , restricted to Fn. More precisely, we set

Mn :=

rn∑
i=1

(µ(A
(n)
i )

P(A
(n)
i )

1(P(A
(n)
i ) > 0)

)
1
A

(n)
i

.

Then Mn ∈M+(Ω,Fn) and for F ∈ Fn we have
∫
F MndP =

∑
i µ(A

(n)
i ∩F ) =

µ(F ). This shows indeed Mn =
dµ|Fn
dP |Fn

and (Mn) is an (Fn)-martingale because

E[Mn1F ] = µ(F ) = E[Mn+11F ] for F ∈ Fn means E[Mn+1 |Fn] = Mn.
From Lemma 4.72 with ν = P, A = {Mn > R} for any ε > 0 there is a δ > 0

such that P(Mn > R) < δ implies µ(Mn > R) < ε. By Markov’s inequality

this holds in particular for R > µ(Ω)/δ: P(Mn > R) 6 E[Mn]
R < δ. For this

R then supn E[Mn1(Mn > R)] = supn µ(Mn > R) < ε holds. We conclude
that (Mn) is uniformly integrable and hence forms a closable martingale with
Mn = E[M∞ |Fn] for M∞ = limn→∞Mn.

Define the finite measure ρ(A) =
∫
AM∞dP on F . For A ∈ Fn

ρ(A) = E[1A E[M∞ |Fn]] = E[1AMn] = µ(A)

follows. Consequently ρ and µ coincide on the ∩-stable generator
⋃
n>1 Fn of

F and have the same mass ρ(Ω) = µ(Ω). The uniqueness theorem for finite
measures gives ρ = µ on F and the theorem follows with f = M∞.

4.76 Corollary (Lebesgue decomposition). For σ-finite measures µ, ν on
(Ω,F ) we can decompose µ = µ1 + µ2 with σ-finite measures µ1 � ν and
µ2 ⊥ ν.

4.77 Remark. It is easy to see that this decomposition is unique unless ν = 0.

Proof. Put ρ = µ+ ν. Since ν � ρ and ρ is σ-finite, there is a Radon-Nikodym
derivative f = dν

dρ . Set µ1(A) := µ(A ∩ {f > 0}), µ2(A) := µ(A ∩ {f = 0}),
A ∈ F . Then µ = µ1 + µ2 holds and

ν({f = 0}) =

∫
{f=0}

f dρ = 0, µ2({f = 0}C) = µ(∅) = 0⇒ ν ⊥ µ2.

For A ∈ F with ν(A) = 0, on the other hand, we have∫
A
f dρ = 0⇒

∫
A∩{f>0}

f dµ = 0⇒ µ(A ∩ {f > 0}) = 0,

which implies µ1 � ν.

4.78 Theorem (Kakutani 1948). Let (Xk)k>1 be independent random variables
with Xk > 0 and E[Xk] = 1. Then Mn :=

∏n
k=1Xk, M0 = 1 is a non-

negative martingale converging a.s. to some M∞. The following statements are
equivalent:
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(a) E[M∞] = 1;

(b) Mn →M∞ in L1;

(c) (Mn) is uniformly integrable;

(d)
∏∞
k=1 E[X

1/2
k ] > 0;

(e)
∑∞

k=1(1− E[X
1/2
k ]) <∞.

If one (then all) statement fails to hold, then M∞ = 0 holds a.s. (Kakutani’s
dichotomy).

4.79 Remark. Here, we use constantly the martingale property for products
from Example 4.4(b) and the Corollary 4.45 to the first martingale convergence
theorem. Note also the concrete application to the case P(Xk = 3/2) = P(Xk =
1/2) = 1/2 from Example 4.4(b).

Proof. First note ak := E[X
1/2
k ] 6 E[Xk]

1/2 = 1 by Jensen’s inequality and

ak = E[X
1/2
k ] > 0 from P(Xk > 0) > 0 due to E[Xk] = 1. In particular, the

product
∏∞
k=1 ak converges always to a limit in [0, 1] due to 0 < ak 6 1. The

equivalence (a) ⇐⇒ (b) ⇐⇒ (c) is due to Vitali’s Theorem. The equivalence

(d)⇐⇒ (e) is shown in analysis (consider log(
∏
k E[X

1/2
k ])IControl).

(a)⇒(d): Define ak := E[X
1/2
k ] and Nn :=

∏n
k=1 a

−1
k X

1/2
k , n > 1, N0 = 1.

Then (Nn) is a non-negative martingale with M
1/2
n /

∏n
k=1 ak = Nn → N∞

P-a.s. for some N∞ ∈ L1. Since the nonnegative martingale (Mn) satisfies
Mn →M∞ P-a.s. with E[M∞] = 1 by (a), we have

M∞ = N2
∞

∞∏
k=1

a2
k P -a.s.⇒ E

[
N2
∞

( ∞∏
k=1

ak

)2]
= 1⇒

∞∏
k=1

ak > 0.

(d)⇒(a): The martingale (Nn) from above satisfies under (d) E[N2
n] =

E[Mn]/
∏n
k=1 a

2
k 6

∏∞
k=1 a

−2
k < ∞. As an L2-bounded martingale it converges

in L2 and E[N2
n]→ E[N2

∞] = E[M∞]
∏∞
k=1 a

−2
k . This implies E[Mn]→ E[M∞].

If (a)-(e) do not hold, then
∏∞
k=1 ak = 0 and the argument in (d)⇒(a) shows

M∞ = N2
∞
∏∞
k=1 a

2
k = 0 P-a.s.

B Control questions

(a) Why is a finite family (Xi)16i6n of L1-random variables Xi always uniformly
integrable?

Dominated convergence shows for Xi ∈ L1 that limR→∞ E[|Xi|1(|Xi| >
R)] = 0. We conclude by

lim
R→∞

max
16i6n

E[|Xi|1(|Xi| > R)] 6 lim
R→∞

n∑
i=1

E[|Xi|1(|Xi| > R)] =

n∑
i=1

0 = 0.
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(b) Why is BR and more generally the Borel-σ-algebra of a Polish space always
separable?

Let D be a countable dense set of the Polish space, then the set of open
balls E := {Br(d) d ∈ D, r ∈ Q+} is countable and clearly inside the Borel
σ-algebra. For any open set O and any x ∈ O there is an r > 0 with
B2r(x) ⊆ O. This radius r can be chosen rational in Q+. Moreover, by
denseness there is a d ∈ D with x ∈ Br(d) and thus Br(d) ⊆ B2r(x) ⊆ O.
This shows O =

⋃
n>1Brn(dn) for suitable rn ∈ Q+ and dn ∈ D. Hence, all

open sets are in σ(E ) and E generates the Borel-σ algebra.

(c) Show
∏∞
k=1 ak > 0 ⇐⇒

∑∞
k=1(1 − ak) < ∞ for real numbers ak ∈ (0, 1]

and thus establish equivalence between (d) and (e) in Kakutani’s Theorem.

Taking logarithms we have
∏∞
k=1 ak > 0 ⇐⇒

∑∞
k=1 log(ak) > −∞. By

concavity of the log-function we have log(ak) 6 ak−1. Therefore,
∏∞
k=1 ak >

0 implies
∑∞
k=1(1 − ak) < ∞. Conversely, if

∑∞
k=1(1 − ak) < ∞, then

limk→∞(1 − ak) = 0 and limk→∞
− log(ak)

1−ak = limx→0
− log(1−x)

x = 1 (use

L’Hôpital’s rule). This implies that also −
∑∞
k=1 log(ak) converges to a finite

value (’limit comparison test’), hence
∏∞
k=1 ak > 0.

4.80 Definition. Let P and Q be probability measures with densities p = dP
dµ ,

q = dQ
dµ for some dominating measure µ (e.g. µ = P+Q). Then their Hellinger

distance is defined as

H(P,Q) :=
(∫

(
√
p−√q)2dµ

)1/2
= ‖√p−√q‖L2(µ).

4.81 Remark. One can show that this definition does not depend on the
dominating measure µ. H defines a metric on the set of all probability measures
on (Ω,F ).

4.82 Lemma. The formula H2(P,Q) = 2(1 −
∫ √

pq dµ) holds and if Q � P
then H2(P,Q) = 2(1− EP[(dQdP )1/2]).

Proof. The first identity follows from the binomial formula:

H2(P,Q) =

∫ (
p− 2

√
pq + q

)
dµ = 1− 2

∫
√
pq dµ+ 1.

For Q� P consider µ = P and substitute q = dQ
dP , p = 1.

4.83 Theorem. Let (Pn)n>1, (Qn)n>1 be two sequences of probability measures
on (Ω,F ) with Qn � Pn, n > 1. Then for the product measures on (ΩN,F⊗N)
we have

∞⊗
n=1

Qn �
∞⊗
n=1

Pn ⇐⇒
∞∑
n=1

H2(Pn,Qn) <∞.

Otherwise, we have singularity
⊗∞

n=1 Qn ⊥
⊗∞

n=1 Pn (Kakutani’s dichotomy).

4.84 Example. In particular, for Pn = P and Qn = Q with P 6= Q the infinite
product measures P⊗N and Q⊗N are singular. Note H(P,Q) > 0 for P 6= Q.
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Proof. Introduce the coordinate projections Xn : ΩN → Ω, Xn((ωm)m) := ωn
and recall that under P =

⊗∞
n=1 Pn the Xn are independent random variables

with laws Pn. Introduce the product densities

Λn(ω) =
d(Q1⊗ · · · ⊗Qn)

d(P1⊗ · · · ⊗ Pn)
(ω1, . . . , ωn) =

n∏
k=1

dQk

dPk
(Xk(ω)), ω ∈ ΩN.

Then Λn =
∏n
k=1

dQk
dPk (Xk) forms a non-negative martingale with respect to

Fn = σ(X1, . . . , Xn) under P as in Kakutani’s Theorem 4.78. Lemma 4.82
yields

EP

[(dQn

dPn
(Xn)

)1/2]
= EPn

[(dQn

dPn

)1/2]
= 1− 1

2H
2(Pn,Qn),

The condition in Theorem 4.78(e) is satisfied if and only if
∑∞

n=1H
2(Pn,Qn) <

∞. In that case (Λn) is a closable martingale with Λn = E[Λ∞ |Fn]. Set

Q(A) :=

∫
A

Λ∞ dP, A ∈ F⊗N.

Then Q is a probability measure (note EP[Λ∞] = 1 by Kakutani) and for A ∈
Fn, i.e. A = (X1, . . . , Xn)−1(B) for some B ∈ F⊗n, we have

Q(A) = EP[EP[Λ∞|Fn] 1A] = EP[Λn1B(X1, . . . , Xn)]

= EP1⊗···⊗Pn

[d(Q1⊗ · · · ⊗Qn)

d(P1⊗ · · · ⊗ Pn)
1B

]
= (Q1⊗ · · · ⊗Qn)(B).

Consequently, Q satisfies the definition of the product measure
⊗∞

n=1 Qn

(Stochastik 1) and by uniqueness (
⋃
n Fn is an ∩-stable generator of F⊗N)

Q =
⊗∞

n=1 Qn follows. With Λ∞ we have exhibited its density with respect to
P such that Q� P holds.

In the case
∑∞

n=1H
2(Pn,Qn) =∞ Kakutani’s Theorem 4.78 gives Λ∞ = 0

P-a.s. Consider

Λ′n :=
n∏
k=1

(dQk

dPk
(Xk)

)−1
1
(dQk

dPk
(Xk) > 0

)
.

Then (Λ′n) forms a non-negative supermartingale with respect to Q =
⊗∞

n=1 Qn

and (Fn) due to the independence of (Xk) and

EQ

[(dQk

dPk
(Xk)

)−1
1
(dQk

dPk
(Xk) > 0

)]
= EPk

[(dQk

dPk

)−1
1
(dQk

dPk
> 0
)dQk

dPk

]
= Pk

(dQk

dPk
> 0
)
∈ [0, 1].

By the first martingale convergence Theorem 4.43, Λ′n → Λ′∞ holds Q-a.s. with
some Λ′∞ ∈ L1(Q). Because of

Q
(dQk

dPk
(Xk) = 0

)
= Qk

(dQk

dPk
= 0
)

=

∫
{ dQk
d Pk

=0}

dQk

dPk
dPk = 0,

we have Λ′nΛn = 1 Q-a.s. This implies Q(Λn → 0) = Q(Λ′n → ∞) = 0.
Together with Λ∞ = 0 P-a.s., i.e. P(Λn → 0) = 1, this shows P ⊥ Q.
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4.85 Example. Consider i.i.d. random variables (Xk)k>1 and (Yk)k>1 with
laws PX := PXk , PY := PYk , which are different, but equivalent. Then∑∞

k=1H
2(PXk ,PYk) = ∞ holds and the proof shows that we have by symme-

try Λn := dP(Y1,...,Yn)

dP(X1,...,Xn) → 0 P(Xk)k -a.s. and Λn → ∞ P(Yk)k -a.s. The likelihood

process (Λn) for n observations is therefore a natural criterion to discriminate
between P(Xk)k and P(Yk)k (it gives even rise to optimal tests, compare the
Neyman-Pearson Lemma in statistics).

B Control questions

(a) Assume even Pn ∼ Qn in Corollary 4.83. Show that Λ′n in the proof is the
density of

⊗n
k=1 Pk with respect to

⊗n
k=1 Qk. Can you interpret Λ′n without

this assumption as a density of some measure? Hint: Lebesgue decomposition.

Since Λn is the density of
⊗n

k=1 Qk with respect to
⊗n

k=1 Pk IExercise shows
that Λ′n = Λ−1

n is
⊗n

k=1 Qk-a.s. the density of
⊗n

k=1 Pk with respect to⊗n
k=1 Qk. More generally, the Lebesgue decomposition shows that Pk =

Pk,1 +Pk,2 with Pk,1 � Qk, Pk,2 ⊥ Qk and Pk,1(A) = Qk(A∩{dQk /dPk >
0}) (compare the proof and note Qk � Pk). Hence,

⊗n
k=1 Pk,1 has the

density
∏n
k=1(dQkd Pk 1(dQkd Pk > 0))−1 = Λ′n with respect to

⊗n
k=1 Qk. We can

interpret Λ′∞ as the density of the infinite product measure
⊗∞

k=1 Pk,1 with
respect to

⊗∞
k=1 Qk.

5 Ergodic theory and Markov chains

5.1 Example (Ehrenfest model III). Recall the Ehrenfest model (Xn, n > 0) on
the state space S = {0, 1, . . . , N} from Examples 1.15 and 1.19. The Binomial
distribution µ = Bin(N, 1/2) is an invariant initial distribution for this Markov
chain, but the Xn fluctuate randomly in n. The so called ergodic hypothesis in
physics is that the relative frequencies (or the time average) 1

T

∑T−1
t=0 1(Xt =

j), T ∈ N, nevertheless converges for T → ∞ almost surely to the invariant
probability (or space average) µ({j}) for all states j ∈ S. Note that starting
with the initial distribution µ we clearly have E[ 1

T

∑T−1
t=0 1(Xt = j)] = µ({j}),

but the Xt are neither independent nor martingale differences. We thus need
to establish a type of strong law for large numbers under a different concept
called ergodicity.

What is more, under additional assumptions, satisfied by the Ehrenfest
model, the T -step transition probabilities pij(T ) = P(XT = j |X0 = i) converge
to µ({j}) as T → ∞ regardless of the initial condition X0 = i. These Markov
chains forget their initial condition asymptotically and their laws approximate
the invariant distribution for large T , which is exploited by Markov chain Monte
Carlo (MCMC) methods.

5.1 Stationary and ergodic processes

5.2 Definition. A stochastic process (Xt, t ∈ T ) with T ∈ {N0,Z,R+,R} is

stationary (stationär) if (Xt1 , . . . , Xtn)
d
= (Xt1+s, . . . , Xtn+s) (equality of the

laws) holds for all n > 1, t1, · · · , tn ∈ T and s ∈ T .
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5.3 Example.

(a) A time-homogeneous Markov chain is stationary if and only if its initial
distribution is invariant. IExercise

(b) Let Xt = A sin(ωt+U), t > 0, with A,ω ∈ R and U ∼ U([0, 2π]) (periodic
signal with random phase). Then Xt = Im(Zt) holds with Zt = Aei(ωt+U)

and
(Zt1+s, . . . , Ztn+s) = Aei(ωs+U)(eiωt1 , . . . , eiωtn).

Since ei(ωs+U) d
= eiU is uniformly distributed on the unit sphere S1, we

conclude (Zt1+s, . . . , Ztn+s)
d
= (Zt1 , . . . , Ztn) and (Zt) is stationary. This

implies that also (Xt) is stationary.

(c) Let (Xt, t ∈ T ) be a Gaussian process with expectation function µ(t)

and covariance function c(t, s). If (Xt) is stationary, then Xt
d
= Xs im-

plies µ(t) = µ(s) and µ must be constant. Furthermore, (Xt, Xt+u)
d
=

(Xs, Xs+u) implies c(t, t + u) = c(s, s + u) and the covariance function
satisfies c(t, s) = c(0, |t − s|). It is easy to see that these properties of µ
and c conversely imply that (Xt) is stationary.

More generally, any process (Xt) with Xt ∈ L2, constant expectation
function µ(t) and covariance function c(t, s) = c(0, |t−s|), only depending
on the distance of time points, is called weakly stationary. It need not be
stationary in our (strict) sense IControl.

5.4 Definition. A measurable map T : Ω→ Ω on a probability space (Ω,F ,P)
is called measure-preserving (maßerhaltend) if P(T−1(A)) = P(A) holds for all
A ∈ F .

5.5 Remark. The next lemma shows that measure-preserving maps generate
stationary processes and stationary processes induce a measure-preserving left
shift on path space.

5.6 Lemma. Let (S, S) be a measurable space.

(a) Every S-valued stationary process X = (Xn, n > 0) induces a measure-
preserving transformation ϑ on (SN0 , S⊗N0 ,PX) via

ϑ((x0, x1, x2, . . .)) = (x1, x2, . . .) (left shift).

(b) For an S-valued random variable Y and a measure-preserving map T on
(Ω,F ,P) the process Xn(ω) := Y (Tn(ω)), n > 0, (T 0 := Id) is stationary.

Proof.

(a) Let π{0,...,n}((ωk)k>0) = (ω0, . . . , ωn) denote the projection onto the first

(n+ 1) coordinates. Consider a cylinder set A = π−1
{0,...,n}(Bn) with Bn ∈

S⊗(n+1). Then

PX(A) = P((X0, . . . , Xn) ∈ Bn)
!

= P((X1, . . . , Xn+1) ∈ Bn) = P(ϑ◦X ∈ A)
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follows from (X0, . . . , Xn)
d
= (X1, . . . , Xn+1). Since the cylinder sets form

an ∩-stable generator of S⊗N0 the probability measures PX and Pϑ◦X co-
incide on S⊗N0 and ϑ is measure-preserving, writing PX(A) = Pϑ◦X(A) =
P(ϑ ◦X ∈ A) = P(X ∈ ϑ−1(A)) = PX(ϑ−1(A)).

(b) We obtain for A ∈ S⊗n and 0 6 t1 < · · · < tn, using measure preservation
P(T−m(•)) = P(•):

P((Xt1+m, . . . , Xtn+m) ∈ A) = P((Y ◦ T t1+m, . . . , Y ◦ T tn+m) ∈ A)

= P(T−m((Y ◦ T t1 , . . . , Y ◦ T tn)−1(A)))

!
= P((Y ◦ T t1 , . . . , Y ◦ T tn)−1(A))

= P((Xt1 , . . . , Xtn) ∈ A).

5.7 Definition. An event A is (almost) invariant with respect to a measure-
preserving map T on (Ω,F ,P) if T−1(A) = A P-a.s., that is P(T−1(A)∆A) = 0
holds with the symmetric difference A1∆A2 := (A1 \A2) ∪ (A2 \A1).

The σ-algebraIControl of all (almost) invariant events is denoted by IT . T is
ergodic if IT is trivial, i.e. IT = {A ∈ F | P(A) ∈ {0, 1}} holds. A stationary
process whose left shift ϑ in Lemma 5.6(a) is ergodic will be called ergodic
process.

5.8 Remark. Null and one sets are always invariant events. An ergodic trans-
formation leaves no other events fixed.

5.9 Example. Consider Ω = {1, 2, 3, 4, 5}, F = P(Ω) and the permutation T ∈
S5 with cycles T = (1, 2, 3)(4, 5) (i.e., 1

T7→ 2
T7→ 3

T7→ 1 and 4
T7→ 5

T7→ 4). Then
T preserves the measure P whenever P({1}) = P({2}) = P({3}) and P({4}) =
P({5}). If all probabilities are non-zero, then IT = {∅,Ω, {1, 2, 3}, {4, 5}}
holds. For Xn(ω) := 1{1,4}(T

n(ω)) we have

lim
n→∞

1

n

n−1∑
i=0

Xi(ω) =

{
1/3, if ω ∈ {1, 2, 3},
1/2, if ω ∈ {4, 5}.

Note that the limit can be written as E[X0 |IT ]. This is a first concrete example
of an ergodic theorem.

5.10 Lemma. Let IT be the invariant σ-algebra with respect to some measure-
preserving transformation T on (Ω,F ,P). Then:

(a) A (real-valued) random variable Y is IT -measurable if and only if it is
P-a.s. invariant, i.e. P(Y ◦ T = Y ) = 1. In particular, T is ergodic if
and only if each P-a.s. invariant and bounded random variable is P-a.s.
constant.

(b) For each invariant event A ∈ IT there exists a strictly invariant event B
(i.e. with T−1(B) = B exactly) such that P(A∆B) = 0. In particular, T
is ergodic if P(B) ∈ {0, 1} holds for any strictly invariant set B.
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Proof. IExercise

5.11 Example.

(a) Suppose (Xn)n>0 are i.i.d. (S,S )-valued random variables. Then they
form a stationary process X. Moreover, ϑ−1(A) = A for the left shift ϑ on
(SN0 , S⊗N0 ,PX) implies A ∈ σ(πk, k > n) for all n ∈ N with the projection
πk on the k-th coordinate because for ϑn = ϑ◦ · · · ◦ϑ (n-fold composition,
n-fold left shift) we have ω ∈ ϑ−1

n (A) ⇐⇒ (πn(ω), πn+1(ω), . . .) ∈ A and
thus A = ϑ−1(A) = · · · = ϑ−1

n (A) ∈ σ(πk, k > n). This means that A lies
in the terminal (asymptotic) σ-algebra of (πn). Since (πn) under PX are
distributed as (Xn) under P, they are independent and Kolmogorov’s 0-1
law implies P(A) ∈ {0, 1}. By Lemma 5.10(b) ϑ is ergodic.

(b) Let Ω = [0, 1), F = BΩ, P Lebesgue measure on [0, 1) and T (ω) = (ω+r)
mod 1 for some fixed r ∈ R (model for rotation by an angle 2πr; note x
mod 1 := x− bxc is the non-integer part of x). Translation invariance of
Lebesgue measure ensures that T is measure-preserving. There are two
cases:

(i) r = p/q ∈ Q rational with p, q ∈ N: Consider A =
⋃q−1
k=0[k/q, (k +

1/2)/q). Then A = (A + p/q) mod 1 and A is T -invariant, but
P(A) = 1/2 holds. T is not ergodic (it is periodic).

(ii) r ∈ R \Q irrational: Let f : [0, 1) → R be bounded, measurable
and P-a.s. invariant, i.e. f ◦ T = f Lebesgue-almost everywhere.
Since f ∈ L2([0, 1)) holds, there is a Fourier series expansion f(x) =∑

k∈Z cke
2πikx in L2([0, 1)) with coefficients (ck) ∈ `2. This gives

f ◦ T (x) =
∑
k∈Z

cke
2πik(x+r) =

∑
k∈Z

(cke
2πikr)e2πikx.

The invariance f = f ◦ T and the uniqueness of the Fourier coeffi-
cients (ck) implies ck = cke

2πikr for all k ∈ Z. Due to e2πikr 6= 1 for
k ∈ Z \{0} (r is irrational!), we infer ck = 0 for k 6= 0 and f must
be P-a.s. constant. By Lemma 5.10(a) T is ergodic. This is Weyl’s
Equidistribution Theorem (1909), which has many connections to
number theory, harmonic analysis and pseudo-random number gen-
eration.

B Control questions

(a) Find a weakly stationary process which is not (strictly) stationary in our sense.
Hint: Use random variables with the same expectation and variance, but
different laws.

Take X2m ∼ Exp(1) and X2m+1 ∼ N(1, 1), m > 0, all independent. Then
E[Xn] = 1, Var(Xn) = 1 and Cov(Xn, Xn+k) = 0 for all n, k > 0 and
(Xn)n>0 is a weakly stationary process. It is not (strictly) stationary because
Xn and Xn+1 have different laws.
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(b) Check that IT forms a σ-algebra.

Obviously, Ω ∈ IT and for A ∈ IT we have T−1(AC) = (T−1(A))C = AC

P-a.s. and thus AC ∈ IT . Finally, for An ∈ IT the rules for preimages give
T−1(

⋃
nAn) =

⋃
n T
−1(An) =

⋃
nAn P-a.s. and IT is indeed a σ-algebra.

(c) For which measures P is T in Example 5.9 ergodic? Conclude that then
1
n

∑n−1
i=0 Xi → E[X0] P-a.s.

Hint: Lemma 5.10(b).

The strictly invariant events are ∅,Ω, {1, 2, 3}, {4, 5} and they have 0-1 prob-
ability if and only if P({1, 2, 3}) ∈ {0, 1}. Hence, there are two probability
measure P rendering T ergodic: P1({1}) = P1({2}) = P1({3}) = 1/3 and
P2({4}) = P2({5}) = 1/2, all other probabilities being zero. Under P1 we

start in {1, 2, 3} almost surely and 1
n

∑n−1
i=0 Xi → 1/3 = E1[X0] holds P1-a.s.

In the same manner P2(ω ∈ {4, 5}) = 1 and 1
n

∑n−1
i=0 Xi → 1/2 = E2[X0]

holds P2-a.s.

5.2 Recurrence, transience and ergodicity of Markov chains

In this section (Xn, n > 0) always denotes a time-homogeneous Markov chain
with discrete state space (S,P(S)), realized as coordinate process on Ω = SN0

with product σ-algebra F = P(S)⊗N0 , filtration Fn = σ(X0, . . . , Xn) and
measure Pµ, where µ denotes the initial distribution of X0. We write short
Px := Pδx for a Markov chain starting in x ∈ S. In particular, we have Pi(Xn =
j) = pij(n), the n-step transition probability from i to j.

5.12 Proposition (Generalised Markov property). For a non-negative random
variable Y : Ω→ R and the n-fold left shift ϑn = ϑn on Ω we have

Eµ[Y ◦ ϑn |Fn] = h(Xn) Pµ-a.s. for h(x) := Ex[Y ].

5.13 Remark. This abstract formulation generalises the Markov property from
probabilities to expectations and allows in particular that Y may depend on
all future values of Xn, not only on finitely many. The result extends to Y ∈⋂
x∈S L

1(Px) (then also Y ∈ L1(Pµ)). From now on we shall write h(Xn) =
EXn [Y ].

Proof. First let Y = 1(X0 = i0, . . . , Xm = im) for some i0, . . . , im ∈ S. Then
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for A ∈ Fn, i.e. A = {(X0, . . . , Xn) ∈ B} for some B ⊆ Sn+1:

Eµ[(Y ◦ ϑn)1A] = Eµ[1(Xn = i0, . . . , Xm+n = im)1((X0, . . . , Xn) ∈ B)]

=
∑

(b0,...,bn)∈B

Pµ(X0 = b0, . . . , Xn = bn)×

Pµ(Xn = i0, . . . , Xm+n = im |X0 = b0, . . . , Xn = bn)

=
∑

(b0,...,bn)∈B

Pµ(X0 = b0, . . . , Xn = bn)Pµ(Xn = i0, . . . , Xm+n = im |Xn = bn)

=
∑

(b0,...,bn)∈B

Pµ(X0 = b0, . . . , Xn = bn)Pbn(X0 = i0, . . . , Xm = im)

=
∑

(b0,...,bn)∈B

Eµ[1(X0 = b0, . . . , Xn = bn)Ebn [Y ]]

=
∑

(b0,...,bn)∈B

Eµ[1(X0 = b0, . . . , Xn = bn)EXn [Y ]] = Eµ[EXn [Y ]1A],

where we used the Markov property in line 3 and the time homogeneity in line 4.
Taking sums over all elements of Dm ⊆ Sm+1, the identity extends to Y = 1Cm
with Cm = (X0, . . . , Xm)−1(Dm) ∈ Fm:

Eµ[(1Cm ◦ ϑn)1A] = Eµ[EXn [1((X0, . . . , Xm) ∈ Dm)]1A] = Eµ[EXn [1Cm ]1A].

Therefore the finite measures C 7→ Eµ[(1C ◦ ϑn)1A] and C 7→ Eµ[EXn [1C ]1A],
C ∈ F , coincide on the ∩-stable generator

⋃
m>0 Fm, containing the full set

Ω. By the uniqueness theorem for measures, they are equal. This establishes
Eµ[Y ◦ ϑn |Fn] = EXn [Y ] for all indicators Y = 1C , C ∈ F . It remains to
apply measure-theoretic induction (take linear combinations, monotone limits)
to obtain the result for any non-negative measurable Y .

5.14 Remark. What will become very useful in the sequel is that the preceding
result also extends to stopping times τ , in its easiest form we shall obtain
Eµ[f(Xτ+1) |Fτ ] = EXτ [f(X1)], letting Yn = f(X1) below, which intuitively
means that after τ the Markov chain evolves by the standard transitions starting
from the initial value Xτ .

5.15 Proposition (Strong Markov property). For a stopping time τ , the σ-
algebra Fτ of τ -history and a non-negative random variable Y : Ω → R we
have

Eµ[Y ◦ ϑτ |Fτ ] = EXτ [Y ] Pµ-a.s. on {τ <∞},

i.e. Eµ[(Y ◦ ϑτ )1(τ <∞) |Fτ ] = EXτ [Y ]1(τ <∞) Pµ-a.s.

Proof. Let A ∈ Fτ . Then splitting into the events {τ = n} we obtain due to
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A ∩ {τ = n} ∈ Fn by definition of Fτ :

Eµ[(Y ◦ ϑτ )1(A∩{τ <∞})] =
∞∑
n=0

Eµ[(Y ◦ ϑn)1(A ∩ {τ = n})]

=
∞∑
n=0

Eµ[E[Y ◦ ϑn |Fn]1(A ∩ {τ = n})]

=

∞∑
n=0

Eµ[EXn [Y ]1(A ∩ {τ = n})]

= Eµ
[
EXτ [Y ]1(A∩{τ <∞})

]
,

using the generalised Markov property, which yields the assertion.

5.16 Definition. For y ∈ S let τ0
y := 0 and for k > 1

τky := inf{n > τk−1
y |Xn = y} ∈ N∪{+∞}

the time of the kth return to y, setting τy := τ1
y . For x, y ∈ S define

ρxy := Px(τy <∞)

and call the state y recurrent if ρyy = 1 and transient if ρyy < 1.

5.17 Remark. Note that τy = inf{n > 1 |Xn = y} is the first time after time
zero to return to y. A Markov chain starting in a recurrent state y almost surely
returns to it. The next result below, which is essentially based on the strong
Markov property, shows that the Markov chain then even returns infinitely
often to y and that states x with a positive probability of being visited after
y will then also be recurrent (recurrence is infectious). Later we shall see that
stationary Markov chains only visit recurrent states.

5.18 Example. Consider a Markov chain on S = {1, 2, 3} with one-step
transition matrix

P (1) =

∗ ∗ 0
0 ∗ ∗
0 ∗ ∗

 where ∗ denotes a non-zero entry.

Then the state 1 is transient because from states 2 and 3 the chain does not
return to 1: P1(τ1 = ∞) > P1(X1 = 2) > 0. The states 2 and 3 are recurrent,
e.g P2(τ2 = ∞) = P2(∀n > 1 : Xn = 3) = limN→∞ p23(1)

∏N
n=2 p33(1) = 0

because p33(1) = 1 − p32(1) < 1. We note further ρ12 = ρ13 = ρ23 = 1,
ρ21 = ρ31 = 0IControl.

5.19 Theorem. Consider states x, y ∈ S and let N(y) :=
∑∞

n=1 1(Xn = y) be
the number of visits to y. Then:

(a) Px(τky < ∞) = ρxyρ
k−1
yy , in particular Py(Xn = y infinitely often) = 1

holds for recurrent y.
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(b) If y is transient, then Ex[N(y)] =
ρxy

1−ρyy < ∞ holds for all x. If y is

recurrent, then Ey[N(y)] =∞ holds.

(c) If y is recurrent and ρyx > 0, then x is recurrent and ρxy = ρyx = 1.

5.20 Remark. While the formal proof is relatively abstract, the results are
very intuitive: (a) says that for visiting y k times after start in x we have first
to go to y once and then k − 1 times from y to y; from that it follows that the
probability of visiting y at least k times is ρxyρ

k−1
yy and summing over k yields

the expected value in (b); for (c) we remark that for recurrent y and ρyx > 0
we must return from x to y a.s. (ρxy = 1 to avoid going from y to x without
ever returning to y) and then we shall also return from x to x via y a.s.

B Control questions

(a) How does the original Markov property follow from the generalised Markov
property?

Put Y = 1(X1 = j) for some j ∈ S. Then:

Eµ[1(Xn+1 = j) |X0, . . . , Xn] = Eµ[Y ◦ϑn |Fn] = EXn [Y ] = PXn(X1 = j).

Evaluating the conditional expectation on (X0 = i0, . . . , Xn = in) yields

P(Xn+1 = j |X0 = i0, . . . , Xn = in) = P(X1 = j |X0 = in)

= P(Xn+1 = j |Xn = in),

where we omit the subscript µ, only looking at values i0 with Pµ(X0 = i0) > 0
so that everything is well defined.

(b) For the state space S = {1, 2, 3} construct examples of Markov chains with k
recurrent and 3− k transient states for k = 0, 1, 2, 3 whenever possible.

Example 5.18(a) can be used for k = 2. Example 5.18(c) proves that there is
always a recurrent state so that k = 0 cannot happen. For k = 3 take a Markov
chain where all states are connected, i.e. ρxy > 0 for all x, y ∈ S (simplest
example pxy = 1/3 for all x, y). For k = 1 let p13 = p2,3 = p3,3 = 1 and all
other transition probabilities zero. Then the states 1 and 2 are transient, while
3 is recurrent.

(c) Check the values of ρxy in Example 5.18(a).

Abstractly, this follows from Theorem 5.19. Concretely, we can argue that
1−ρ12 = 1−ρ13 = P1(∀n : Xn = 1) = limN→∞ pN11 = 0 since p11 = 1−p12 <
1. Similarly, 1 − ρ23 = P2(∀n : Xn = 2) = 0 holds. On the other hand,
ρ21 = P2(∃n : Xn = 1) = 0 holds and also ρ31 = P3(∃n : Xn = 1) = 0 since
there is no path from state 2 or 3 to 1. A more formal argument would rely on
the Chapman-Kolmogorov equations which give ((1, 0, 0)> is an eigenvector)

P (n) = P (1)n =

∗ ∗ ∗0 ∗ ∗
0 ∗ ∗

 , n > 2,

thus implying for the n-step transition probabilities p21(n) = p31(n) = 0,
n > 1, and hence P2(∃n : Xn = 1) = P3(∃n : Xn = 1) = 0.
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Proof.

(a) Since the result for k = 1 is just the definition, we suppose k > 2. Let
Y = 1(∃n > 1 : Xn = y) = 1(τy <∞). Then

Y ◦ ϑτk−1
y

= 1(∃n > 1 : Xn+τk−1
y

= y) = 1(τky <∞)

holds. The strong Markov property implies on {τk−1
y <∞}

Ex[Y ◦ ϑτk−1
y
|Fτk−1

y
] = EX

τk−1
y

[Y ] = Ey[Y ] = Py(τy <∞) = ρyy.

Taking expectations and noting 1(τky < ∞) = 1(τky < ∞)1(τk−1
y < ∞)

yield

Px(τky <∞) = Ex
[
Ex[1(τky <∞) |Fτk−1

y
]1(τk−1

y <∞)
]

= Ex
[
Ex[Y ◦ ϑτk−1

y
|Fτk−1

y
]1(τk−1

y <∞)
]

= Ex[ρyy1(τk−1
y <∞)] = ρyy Px(τk−1

y <∞).

The claimed identity now follows by induction using Px(τ1
y < ∞) = ρxy.

If y is recurrent, then Py(τky <∞) = ρkyy = 1 for all k > 1. By intersection

Py(Xn = y infinitely often) = Py(∀k > 1 : τky <∞) = 1 follows.

(b) We note the identity {N(y) > k} = {τky <∞} and conclude for transient
y by (a)

Ex[N(y)] =
∞∑
k=1

Px(N(y) > k) =
∞∑
k=1

Px(τky <∞) =
∞∑
k=1

ρxyρ
k−1
yy =

ρxy
1− ρyy

.

If y is recurrent, then by (a) N(y) =∞ holds Py-a.s. so that Ey[N(y)] =
∞.

(c) Consider the non-trivial case x 6= y and set τ = τx ∧ τy. We use τy =
∞ ⇐⇒ ∀n > 0 : Xn+τ 6= y on {τ <∞}, condition on Fτ and obtain by
the strong Markov property

0 = Py(τy =∞) > Py(τy =∞, τ <∞)

= Ey[Ey[1(∀n > 0 : Xn ◦ ϑτ 6= y) |Fτ ]1(τ <∞)]

= Ey[EXτ [1(∀n > 0 : Xn 6= y)]1(τ <∞)]

= Ey[Ex[1(∀n > 0 : Xn 6= y)]1(τx <∞)]

= Px(τy =∞)Py(τx <∞) = (1− ρxy)ρyx,

where we used that τ = τy implies

EXτ [1(∀n > 0 : Xn 6= y)] = Ey[1(∀n > 0 : Xn 6= y)] = 0

such that only the case τ = τx contributes to the expectation. Hence,
ρyx > 0 implies ρxy = 1.
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Starting in y we can split the chain in excursions between τk−1
y and τky ,

k > 1, and obtain by the strong Markov property and Py(τk−1
y <∞) = 1

Ey[N(x)] =
∑
k>1

Ey
[∑τky

n=τk−1
y +1

1(Xn = x)
]

=
∑
k>1

Ey
[(∑τy

n=1 1(Xn = x)
)
◦ ϑτk−1

y

]
=
∑
k>1

Ey
[∑τy

n=1 1(Xn = x)
]
∈ {0,∞}.

By assumption we have Py(N(x) > 1) = ρyx > 0 so that Ey[N(x)] = ∞
holds. Part (b) implies that x cannot be transient. Hence, x is recurrent
and reversing the roles of x and y then also yields ρyx = 1.

5.21 Example.

(a) Let S0 = x, Sn = Sn−1 + Xn for n > 1 with independent (Xn)n>1 and
P(Xi = 1) = p, P(Xi = −1) = 1− p be a simple random walk starting in
x ∈ Z. If p > 1/2, then by the strong law of large numbers 1

n(Sn − x)→
E[X1] > 0 a.s., hence Sn → +∞ a.s. This implies that Sn visits x only
finitely many times and by Theorem 5.19(a) below this means that x is
transient. A symmetric argument shows that also for p < 1/2 all states x
are transient. For the symmetric random walk with p = 1/2, however, we
shall see that all states are recurrent. We have Px(τy <∞) = 1 for all y >
x IExercise(put b = y − x in the problem) and symmetrically for all y < x.
This shows in particular Px(∃n+, n− > 1 : Sn+ = x+ 1, Sn− = x− 1) = 1,
but due to Sn − Sn−1 ∈ {−1,+1} this means that almost surely there is
some n ∈ N between n+ and n− with Sn = x such that x is recurrent.

(b) In the Ehrenfest model we have ρxy > 0 for all x, y ∈ S = {0, . . . , N}
(there is a monotone path from x to y in |x − y| steps). If all
states y ∈ S were transient, then Theorem 5.19(b) below would imply∑

y∈S Ex[N(y)] <∞. By definition, however,
∑

y∈S N(y) =
∑

n>1 1 =∞
holds, a contradiction. Hence, there exists a recurrent state y. By Theo-
rem 5.19(c) we conclude that all states are recurrent.

Remark that in (b) we have derived the general result that on a finite state
space there always exists at least one recurrent state, which by Example (a) is
not always true on infinite state spaces.

5.22 Proposition. If there exists an invariant initial distribution π, then all
transient states y satisfy π({y}) = 0.

Proof. By Theorem 5.19(b) we have for transient y

Eπ[N(y)] =
∑
x∈S

π({x})Ex[N(y)] =
∑
x∈S

π({x}) ρxy
1− ρyy

6
1

1− ρyy
<∞
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because ρxy 6 1 and π is a probability measure. By definition of N(y) and
invariance of π, however,

Eπ[N(y)] =
∞∑
n=1

Eπ[1(Xn = y)] =
∞∑
n=1

π({y}) ∈ {0,∞}

and Eπ[N(y)] is finite only if π({y}) = 0.

5.23 Remark. A stationary Markov chain thus almost surely only visits re-
current states. Transient states are only visited finitely often by any Markov
chain so that their probability must decrease during the evolution of the chain.
Note that recurrence is a property of the transition probabilities, not the ini-
tial distribution. For the existence of an invariant initial distribution recur-
rence of all states does clearly not suffice as the symmetric random walk on Z
demonstratesIControl.

We shall now investigate the σ-algebra Iϑ of invariant events for the left-
shift ϑ of a stationary Markov chain. By the preceding result, we can restrict
to recurrent Markov chains in the following sense.

5.24 Definition. We call a Markov chain recurrent if all its states are recurrent.
For two recurrent states x, y ∈ S we write x ∼ y if ρxy > 0 (by Theorem 5.19(c)
equivalent to ρxy = ρyx = 1) and then say that x and y are connected (or
communicate). If all states are pairwise connected, then the Markov chain is
called irreducible.

5.25 Remark. By definition of recurrence x ∼ x holds and Theorem 5.19(c)
shows symmetry x ∼ y ⇐⇒ y ∼ x. By the strong Markov propertyIControl we
also have transitivity x ∼ y, y ∼ z ⇒ x ∼ z such that ∼ defines an equivalence
relation with equivalence classes (or connected components) [x] := {y ∈ S | y ∼
x}. By definition, we have X0 ∈ [x] ⇒ Xn ∈ [x] a.s. for all n ∈ N, a recurrent
Markov chain remains in one connected component all the time. If there are
several equivalence classes, we can thus reduce the complete dynamics to one
class depending on the initial state. This explains the notion of irreducibility.

5.26 Theorem. Let (Xn, n > 0) be a recurrent Markov chain with invariant
initial distribution π and the σ-algebra Iϑ of invariant events for the left shift
ϑ on SN0. For A ∈ Iϑ define B := {x ∈ S |Px(A) = 1}. Then A = {X0 ∈
B} = {[X0] ⊆ B} holds Pπ-a.s.

5.27 Remark. In more detail, the identities A = {(Xn)n>0 |X0 ∈ B} =
{(Xn)n>0 | [X0] ⊆ B} hold Pπ-a.s. In particular, the theorem shows that up
to Pπ-null sets the invariant events A are contained in F0: modulo null sets
an invariant event just describes the connected components in which the chain
starts.

Proof. Suppose A = ϑ−1(A), that is A is strictly invariant, which suffices for
the proof by Lemma 5.10(b). Then 1A = 1A ◦ ϑn holds for the n-fold left shift
ϑn. The Markov property yields

Eπ[1A |Fn] = Eπ[1A ◦ ϑn |Fn] = EXn [1A] = PXn(A), n > 0.
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The left-hand side defines a bounded martingale. By the second martingale
convergence theorem and F = σ(

⋃
n∈N Fn) it converges Pπ-a.s. for n→∞ to

1A (Lévy’s 0-1 law). This shows

lim
n→∞

PXn(A) = 1A((Xn)n>0) ∈ {0, 1} Pπ-a.s.

By recurrence we have Px(Xn = y infinitely often) = 1 for all y ∈ [x]. The
convergence can therefore only take place if π({x}) > 0 and y ∈ [x] imply
Py(A) = Px(A). Consequently, x 7→ Px(A) is π-a.s. constant on all equivalence
classes and there equal to zero or one. With B = {x ∈ S | Px(A) = 1} the limit
of the convergence yields 1A((Xn)n>0) = 1B(X0) = 1([X0] ⊆ B) Pπ-a.s.

5.28 Corollary. A recurrent Markov chain with invariant initial distribution
π is ergodic if and only if π-almost all states are connected (π([x]) = 1 for some
x ∈ S).

In particular, a recurrent and irreducible stationary Markov chain is ergodic.

Proof. If π-almost all states are connected, then Pπ(C ⊆ [X0]) = 1 holds for
the deterministic set C = {x ∈ S |π({x}) > 0}. By Theorem 5.26 any invariant
set A satisfies Pπ(A = {[X0] ⊆ B}) = 1 with deterministic B ⊆ S. This implies
Pπ(A) = 1(C ⊆ B) ∈ {0, 1} and the Markov chain is ergodic.

If there is a connected component [x] with π([x]) ∈ (0, 1), consider the
event A := {[X0] = [x]}. Then A = {[X1] = [x]} Pπ-a.s. by connectivity and
A is ϑ-invariant with Pπ(A) = π([x]) ∈ (0, 1). Hence, the Markov chain is not
ergodic.

B Control questions

(a) Assume that π is an invariant initial distribution for the symmetric random
walk on Z. Why does that mean π({x}) = π({y}) for all x, y ∈ Z, implying
that π cannot exist?

If π is invariant, then π({x}) = π({x − 1})px−1,x + π({x + 1})px+1,x =
1
2 (π({x−1})+π({x+1}) holds for all x ∈ Z. This shows π({x+1})−π({x}) =
π({x})−π({x−1}) and x 7→ π({x+1})−π({x}) is constant. If this constant
were non-zero, then π would become negative at some x ∈ Z. If it was zero,
then x 7→ π({x}) would be constant, but this cannot give a probability measure
on Z (total mass is zero or infinity).

(b) Show ρxy = ρyz = 1⇒ ρxz = 1 and thus transitivity of ∼.

We have τz 6 τy + τz ◦ ϑτy (the right-hand side is the time to reach z via y).
By assumption Px(τy < ∞) = ρxy = 1 and by the strong Markov property
(using Px(τy <∞) = 1 and Xτy = y Px-a.s.)

Px(τz ◦ ϑτy <∞) = Ex[Ex[1(τz ◦ ϑτy <∞) |Fτy ]] = Ex[PXτy (τz <∞)]

= Py(τz <∞) = ρyz = 1.

We conclude ρxz = Px(τz <∞) = 1.
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(c) Why is the set Iϑ of invariant events huge for the left shift ϑ and does still
have the simple structure of the preceding theorem?
Note: {lim supn→∞Xn ∈ B} is strictly ϑ-invariant for any Borel set B.

The assertion that {lim supn→∞Xn ∈ B} is strictly ϑ-invariant for any Borel
set B follows as in the first step of the proof for Birkhoff’s ergodic theorem.
Hence, Iϑ has at least the cardinality of the Borel-σ-algebra, which is uncount-
able. Most invariant sets, however, will have Pπ-probability zero because they
cannot be reached by a Markov chain. An example would be B = {x} above
for some x ∈ S. Then by recurrence {lim supn→∞Xn = x} = {X0 ∈ [x]}
Pπ-a.s. if y 6 x holds for all y ∈ [x]. If there is a y > x with y ∼ x, then
Pπ(lim supn→∞Xn = x) = 0. The Markov structure and recurrence are suf-
ficient to describe the invariant events already by the connected component
[X0] of the initial value up to null sets.

5.29 Example. Consider a Markov chain on S = {1, 2, 3} with one-step tran-
sition matrix

P (1) =

1 0 0
0 1/2 1/2
0 1/2 1/2

 .

Then the Markov chain is recurrent with connected components {1} and {2, 3}.
An initial distribution π is invariant if and only if π({2}) = π({3})IControl. Then
an invariant A ∈ Iϑ can a.s. be written as {[X0] ⊆ B}. So, the invariant events
are {∅,Ω, {X0 = 1}, {X0 ∈ {2, 3}}} up to null sets. The Markov chain is ergodic
if π({1}) = 1 or if π({2, 3}) = 1. Otherwise, the chain is not ergodic. Note,
however, that all invariant distributions π are obtained as convex combinations
of the two ergodic initial distributions: π = αδ1+(1−α) δ2+δ3

2 for some α ∈ [0, 1],
which holds in wider generality, see below.

5.30 Remark. So far, we have established that an ergodic Markov chain is
recurrent and irreducible modulo null sets. The example of the symmetric
random walk shows that these conditions are not sufficient for ergodicity. There
is a complete characterisation available, see e.g. Klenke.

A recurrent state x ∈ S is called positive-recurrent if Ex[τx] < ∞. For an
irreducible Markov chain one can show equivalence between:

(a) all states are positive-recurrent;

(b) there is a positive-recurrent state;

(c) there is an invariant initial distribution;

(d) there is exactly one invariant initial distribution;

(e) the Markov chain is ergodic under the invariant initial distribution.

In that case the invariant initial distribution satisfies π({x}) = 1
Ex[τx] for all

x ∈ S. For a finite state space S all five properties are always satisfied.
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5.3 Ergodic theorems

5.31 Remark. We come to the main results for measure-preserving trans-
formations and thus stationary processes. The following lemma is not very
intuitive, but provides the key ingredient for the proof of the ergodic theorem.

5.32 Lemma (Maximal ergodic lemma). Let Y ∈ L1 and T be measure-
preserving on (Ω,F ,P). Denoting Sn :=

∑n−1
k=0 Y ◦ T k, S0 := 0 and Mn :=

max{S0, . . . , Sn}, we have E[Y 1{Mn>0}] > 0.

Proof. We have

Y +Mn ◦ T = max
06k6n

(Y + Sk ◦ T ) = max(S1, . . . , Sn+1).

Because of S0 = 0 we obtain further

(Y +Mn ◦ T )1(Mn > 0) = max(S0, S1, . . . , Sn+1)1(Mn > 0) >Mn1(Mn > 0).

Since T is measure-preserving, this yields

E[(Y +Mn ◦ T )1(Mn > 0)] > E[Mn1(Mn > 0)] = E[Mn] = E[Mn ◦ T ].

From this E[Y 1(Mn > 0)] > 0 follows, using (Mn ◦ T )1(Mn 6 0) > 0.

5.33 Theorem (Birkhoff’s ergodic theorem, 1931). Let X ∈ L1 and T be
measure-preserving on (Ω,F ,P). Then:

lim
n→∞

1

n

n−1∑
k=0

X ◦ T k = E[X |IT ] P-a.s. and in L1.

If T is even ergodic, then

lim
n→∞

1

n

n−1∑
k=0

X ◦ T k = E[X] P-a.s. and in L1.

Proof. We set An := 1
n

∑n−1
k=0 X ◦T k, A := lim supn→∞An, A := lim infn→∞An

and split the proof in several steps.

A,A are (strictly) T -invariant: We have n+1
n An+1 = An ◦ T + 1

nX. From
1
nX → 0 we deduce

A = lim sup
n→∞

An+1 = lim sup
n→∞

n+1
n An+1 = lim sup

n→∞
An ◦ T = A ◦ T.

Analogously, A = A ◦ T follows.

A = A P-a.s.: Apply the maximal ergodic lemma to Y = (X− b)1(A < a,A >
b) for some a < b. In the notation of the lemma we have

lim
n→∞

1(Mn > 0) = 1
(

sup
n>1

Sn > 0
)

= 1
(

sup
n>1

1
nSn > 0

)
= 1

(
sup
n>1

(An − b)1(A < a,A > b) > 0
)

= 1
(
A < a,A > b

)
.
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By the maximal ergodic lemma and dominated convergence we deduce

0 6 E
[
(X−b)1(A < a,A > b)1(Mn > 0)

]
→ E

[
(X−b)1(A < a,A > b)

]
.

Consequently, the limit is non-negative and

E[X1(A < a,A > b)] > bP(A < a,A > b).

The analogous argument for Y = (a−X)1(A < a,A > b) yields

E[X1(A < a,A > b)] 6 aP(A < a,A > b),

implying P(A < a,A > b) = 0. Taking the union of all these null events
with a, b ∈ Q and a < b, we conclude P(A < A) = 0 and thus A = A
P-a.s.

(An) is uniformly integrable: Since T is measure-preserving, X ◦T k has the
same distribution as X such that (X ◦T k)k>0 is uniformly integrable. By
Lemma 4.48(a) there is a δ > 0 for given ε > 0 such that P(B) < δ implies
E[|X ◦ T k|1B] < ε for all k > 0. Then by triangle inequality for events B
with P(B) < δ

sup
n

E[|An|1B] 6 sup
n

1

n

n−1∑
k=0

E[|X ◦ T k|1B] < ε

follows. Noting E[|An|] 6 E[|X|], we conclude that (An) is uniformly
integrable.

Convergence to E[X |IT ]: Since An → A P-a.s. and (An) is uniformly in-
tegrable, the convergence also holds in L1. Moreover, L1-convergence
implies L1-convergence of the conditional expectations:

E
[
|E[An |IT ]− E[A |IT ]|

]
6 E[E[|An −A| |IT ]] = ‖An −A‖L1 → 0.

We have E[X ◦ T k |IT ] = E[X |IT ], checking for B ∈ IT

E[(X ◦ T k)1B] = E[(X ◦ T k)(1B ◦ T k)] = E[X1B].

We conclude E[X |IT ] = E[An |IT ] → E[A |IT ] = A in L1 an thus
A = E[X |IT ] P-a.s.

T ergodic implies E[X |IT ] = E[X] P-a.s.: For ergodic T events B ∈ IT

satisfy P(B) ∈ {0, 1} and thus E[E[X]1B] = E[X1B].

5.34 Example. The Ehrenfest model under the invariant initial distribution
π = Bin(N, 1/2) is an irreducible and recurrent stationary Markov chain. By
Corollary 5.28 the chain is ergodic and Birkhoff’s ergodic theorem yields

1

n

n−1∑
k=0

f(Xk)→ Eπ[f(X0)] =
N∑
i=0

(
N

i

)
2−Nf(i)

69



for any function f : {0, . . . , N} → R. We have shown that the physicists’
ergodic hypothesis applies in this case.

Let f : R → R be a 1-periodic measurable function with
∫ 1

0 |f(x)|dx < ∞.

Then for all r ∈ R and Lebesgue-almost all x ∈ R the average 1
n

∑n−1
k=0 f(x+kr)

converges. If r = p/q with p, q ∈ N is rational, then the limit is 1
q

∑q−1
l=0 f(x +

lp/q). If r is irrational, then the limit is
∫ 1

0 f(y)dy. This follows from Example
5.11(b) and Birkhoff’s ergodic theorem by noting f(x+kr mod 1) = f(x+kr)
for 1-periodic f and by evaluating E[f(X0) |IT ]IControl.

B Control questions

(a) How does the derivation of the invariant initial distributions in Example 5.29
work precisely?

~πP (1) = ~π is equivalent to the equations π({1}) = π({1}), 1
2 (π({2}) +

π({3}) = π({2}) = π({3}). By Lemma 1.18 this gives all invariant initial
distributions.

(b) Extend Lemma 5.10(a) to unbounded random variables Y .

We know from the lemma that T measure-preserving gives P(Y = Y ◦ T ) = 1
for any IT -random variable Y . If Y is not P-a.s. constant, then there is a Borel
set B with P(Y ∈ B) ∈ (0, 1). Now, A := {Y ∈ B}, T−1(A) = {Y ◦ T ∈ B}
and Y = Y ◦ T P-a.s imply A = T−1(A) P-a.s. and A is invariant. Hence T
is not ergodic. The contraposition then asserts that for ergodic T , Y must be
P-a.s. constant. The proof in this direction never uses that Y is bounded.

(c) Evaluate E[f(X0) |IT ] for the shift by r in Example 5.34.

A Borel set B ⊆ [0, 1) is strictly invariant if B = {x − r mod 1 |x ∈ B}.
Similarly to Lemma 5.10(a), a function f is then IT -measurable if and only if
f(x) = f((x+r) mod 1) for Lebesgue-almost all x ∈ [0, 1). For r = p/q ∈ Q
and 1-periodic f we see that g(x) := 1

q

∑q−1
l=0 f(x + lr) is IT -measurable.

Moreover, for any bounded IT -measurable function h (extended to be 1-
periodic on R) we have

E[g(X0)h(X0)] =
1

q

q−1∑
l=0

∫ 1

0

f(x+ lr)h(x) dx =
1

q

q−1∑
l=0

∫ 1

0

f(x+ lr)h(x+ lr)dx

=

∫ 1

0

f(x)h(x) dx = E[f(X0)h(X0)].

This shows g(X0) = E[f(X0) |IT ]. Of course, the ergodic theorem follows in
this case directly from the periodicity of the arguments (and even surely).

5.35 Theorem (Lp-ergodic theorem, L2-version by von Neumann 1932). For
X ∈ Lp, p > 1, and measure-preserving T on (Ω,F ,P) we have

lim
n→∞

1

n

n−1∑
k=0

X ◦ T k = E[X |IT ] P-a.s. and in Lp.

Proof. IExercise
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5.36 Corollary. Let (Xk, k > 0) be an ergodic process in L1 (i.e. Xk ∈ L1

and the left shift on (RN0 ,B⊗N0
R ,PX) is ergodic). Then

lim
n→∞

1

n

n−1∑
k=0

Xk = E[X1] P-a.s. and in L1.

In particular, Kolmogorov’s strong law of large number for (Xn) in L1 follows.

Proof. Combine Example 5.11(a) and the Ergodic Theorems 5.33, 5.35.

5.37 Corollary. A measure-preserving transformation T on (Ω,F ,P) is er-
godic if and only if

∀A,B ∈ F : lim
n→∞

1

n

n−1∑
k=0

P(A ∩ T−k(B)) = P(A)P(B).

Proof. IExercise

5.38 Remark. We change perspective, fix a transformation T and consider
the set of all probability measures that render T measure-preserving. This set
of invariant probabilities has a very nice geometric structure, which we saw
already in Example 5.29: it is convex and at its extremal points T is ergodic.

5.39 Definition. Let T : Ω → Ω be measurable on (Ω,F ). Each probability
measure µ on F with µ(T−1(A)) = µ(A) for all A ∈ F is called invariant with
respect to T . If T is even ergodic on (Ω,F , µ), then also µ is called ergodic.
The set of all T -invariant probability measures is denoted by MT .

5.40 Lemma. MT is convex (maybe empty).

Proof. For µ1, µ2 ∈ MT , α ∈ (0, 1) consider µ = αµ1 + (1 − α)µ2. Then µ is
again a probability measure and satisfies for A ∈ F

µ(T−1(A)) = αµ1(T−1(A))+(1−α)µ2(T−1(A)) = αµ1(A)+(1−α)µ2(A) = µ(A).

Hence, µ ∈MT and MT is convex.

5.41 Proposition. If µ and ν are distinct ergodic measures, then they are
singular: µ ⊥ ν.

Proof. Choose A ∈ F with µ(A) 6= ν(A). The ergodic theorem implies

1

n

n−1∑
k=0

1A ◦ T k →

{
µ(A), µ-a.s.,

ν(A), ν-a.s.

Hence, for Ωµ = {limn→∞
1
n

∑n−1
k=0 1A◦T k = µ(A)} we have µ(Ωµ) = 1, ν(Ωµ) =

0.

5.42 Definition. A point x in a convex set C is called extremal if x is not a
strict convex combination of other points in C: x, y, z ∈ C and x = αy+(1−α)z
for α ∈ (0, 1) implies y = z = x.
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5.43 Example. The corners of a triangle and more generally of any convex
polygon are exactly the extremal points. The sphere is the set of extremal
points of the ball.

5.44 Theorem. The ergodic measures form exactly the extremal points of the
convex set MT .

Proof. Suppose first that µ is not ergodic. Then there is some strictly invariant
A ∈ F with T−1(A) = A and µ(A) ∈ (0, 1) by Lemma 5.10(b). Introduce the
probability measures µ1 = µ(• |A), µ2 = µ(• |AC). Then µ = αµ1 + (1− α)µ2

holds with α = µ(A) ∈ (0, 1). Moreover,

µ1(T−1(B)) =
µ(T−1(B) ∩A)

µ(A)
=
µ(T−1(B ∩A))

µ(A)
=
µ(B ∩A)

µ(A)
= µ1(B)

for B ∈ F shows that µ1 is T -invariant. Similarly, µ2 is T -invariant. Therefore
µ is a strict convex combination of µ1, µ2 ∈MT and thus not extremal.

Next, let us show that µ, ν ∈ MT , ν � µ and µ ergodic implies µ = ν.
Indeed, the ergodic theorem yields µ-a.s. and because of ν � µ also ν-a.s.

∀A ∈ F :
1

n

n−1∑
k=0

1A ◦ T k → µ(A).

Dominated convergence yields µ = ν:

∀A ∈ F : ν(A) =

∫ ( 1

n

n−1∑
k=0

1A ◦ T k
)
dν →

∫
µ(A) dν = µ(A).

Now, if µ is ergodic and µ = αµ1 + (1 − α)µ2 holds with µ1, µ2 ∈ MT ,
α ∈ (0, 1), then we have µ1, µ2 � µ, thus implying µ1 = µ2 = µ. This shows
that µ is an extremal point of MT .

5.45 Corollary. If T possesses exactly one invariant probability measure µ,
then µ is ergodic.

Proof. µ is an extremal point of MT = {µ}.

5.46 Remark. The same geometric structure is present for the set of invariant
distributions of a recurrent Markov chain. It is convex, the ergodic invariant
distributions have positive probability exactly on one connected component
and each invariant distribution is a (possibly infinite) convex combination of
the ergodic invariant distributions IExercise. In particular, an irreducible and
recurrent Markov chain has at most one invariant distribution, which is then
ergodic.

5.4 Convergence of Markov chains and MCMC

In continuation of Section 5.2 we consider time-homogeneous Markov chains on
the canonical path space Ω = SN0 . In addition, we focus on finite state spaces
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S = {1, . . . ,M}. Then P (n) ∈ RM×M is the matrix of n-step transition prob-
abilities pij(n), satisfying the Chapman-Kolmogorov equation P (n) = P (1)n.
For an invariant initial distribution π we have ~πP (1) = ~π for the row vector
~π = (π({1}), . . . π({M})) by Lemma 1.18 and ~π is a left eigenvector of P (1)
with eigenvalue one.

5.47 Theorem. Let x ∈ S be a recurrent state and S be finite. Then

πx({y}) :=
Ex[
∑τx−1

n=0 1(Xn = y)]

Ex[τx]
, y ∈ S,

is an invariant initial distribution.

5.48 Remark. In the proof we show Ex[τx] < ∞ for finite state space S. In
general, this is not true for any recurrent state and states with this property
are called positive recurrent. πx({y}) is the expected number of visits to y on
an excursion of the Markov chain from x relative to the expected length of the
excursion. If there is only one invariant measure π, then π = πx holds for all
recurrent x ∈ S and in particular for a recurrent Markov chain the identity
π({y}) = 1

Ey [τy ] , y ∈ S, follows.

Proof. Consider y ∈ S, y 6= x, with ρxy > 0. Then both, Px(τx > τy) > 0 and
Py(τx < τy) > 0 hold because otherwise starting in x the chain would a.s. never
visit y. By the strong Markov property we have

Ey
[ τx−1∑
n=0

1(Xn = y)
]

= 1 + Ey
[
1(τx > τy)

τx−1∑
n=τy

1(Xn = y)
]

= 1 + Py(τx > τy)Ey
[ τx−1∑
n=0

1(Xn = y)
]

and consequently

Ey
[ τx−1∑
n=0

1(Xn = y)
]

=
1

Py(τx < τy)
<∞.

The same argument for start in x 6= y yields

E(y) := Ex
[ τx−1∑
n=0

1(Xn = y)
]

= Px(τx > τy)Ey
[ τx−1∑
n=0

1(Xn = y)
]

=
Px(τx > τy)

Py(τx < τy)
.

For y ∈ S with ρxy = 0 the chain never visits y and E(y) = 0, while E(x) = 1
by definition. This yields Ex[τx] =

∑
y∈S E(y) <∞ and πx is well-defined.

To show invariance, we deduce for z 6= x

E(z) = Ex
[ τx∑
n=1

∑
y∈S

1(Xn−1 = y,Xn = z)
]

=
∑
y∈S

pyz(1)Ex
[ τx∑
n=1

1(Xn−1 = y)
]

=
∑
y∈S

E(y)pyz(1),
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while for z = x

E(x) = 1 = Ex
[ τx∑
n=1

1(Xn = x)
]

= Ex
[ τx∑
n=1

∑
y∈S

1(Xn−1 = y,Xn = x)
]

=
∑
y∈S

pyx(1)Ex
[ τx∑
n=1

1(Xn−1 = y)
]

=
∑
y∈S

E(y)pyx(1).

In the calculations we can take out the transition probabilities pyz(1), pyx(1) by
writing 1(n 6 τx) =

∏n−1
k=1 1(Xk 6= x). Since the denominator in the definition

of πx does not depend on y, this implies the invariance of πx.

5.49 Lemma. An irreducible Markov chain on a finite state space is recurrent
and has exactly one invariant initial distribution π, which is ergodic.

5.50 Remark. Here we need not assume recurrence for the definition of irre-
ducibility in the sense that we only require ρxy > 0 for all x, y ∈ S.

Proof. By the argument in Example 5.18(c) there is at least one recurrent state.
By irreducibility, all states are connected so that Theorem 5.19(c) shows that all
states are recurrent. Theorem 5.47 gives the existence of an invariant measure.
By Corollary 5.28 an irreducible recurrent Markov chain starting in an invariant
initial distribution is ergodic. This invariant distribution is unique by Corollary
5.28, compare Remark 5.46.

B Control questions

(a) Consider the translation T by r = 1/2 in Example 5.11(b). What are invariant
measures besides the Lebesgue measure? Can you determine MT and the
ergodic measures?

Let P1 be a probability measure on the Borel sets of [0, 1/2) and define
P2(B) := P1(B − 1/2) for the Borel sets of [1/2, 1). Then P(A) =
(P1(A∩ [0, 1/2))+P2(A∩ [1/2, 1)))/2 is a probability measure on [0, 1], which
is invariant for T (x) = (x+ 1/2) mod 1 (T translates [0, 1/2) to [1/2, 1) and
vice versa). It is easily seen that all invariant measures P have this form using
for B ⊆ [1/2, 1) that P(B) = P(T−1(B)) = P(B−1/2). The extremal points
are the point measures P = (δx+δx+1/2)/2 for x ∈ [0, 1/2), which are ergodic:
if B is strictly invariant under T , then x ∈ B ⇐⇒ (x + 1/2) ∈ B and thus
P(B) ∈ {0, 1}.

(b) Is the set MT closed in the finite case |Ω| < ∞, when representing invariant

measures µ on Ω as vectors in R|Ω|?

Yes: if µn ∈MT satisfy µn({ω})→ µ({ω}) for all ω ∈ Ω, then

µ(T−1(A)) = lim
n→∞

µn(T−1(A)) = lim
n→∞

µn(A) = µ(A)

follows for all events A. In fact, the argument shows that more generally MT

is sequentially closed for the topology of pointwise convergence for probability
measures. This is stronger than weak convergence which requires a metric on
Ω (and then provides a rich theory for continuous T !).
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(c) Is the following true: If vP = λv holds for P ∈ RM×M , a left (row)
eigenvector v ∈ Rm and an eigenvalue λ, then there is a right (column)
eigenvector w ∈ RM with Pw = λw and vice versa?

Yes, because v(P − I) = 0 with the identity matrix I and v 6= 0 means
that P − I cannot have full rank (v> is not in its image) and thus by linear
algebra it must have a non-trival kernel of dimension 1 or larger, which forms
an eigenspace for the eigenvalue 1 of P . The converse is also true. More
abstractly, v> is an eigenvector of the adjoint P> and P and P> share the
same eigenvalues (e.g., consider the characteristic equation det(λI − P ) =
det(λI − P>) = 0).

5.51 Definition. Let π be the invariant distribution of an irreducible Markov
chain (Xn) on S = {1, . . . ,M}. Then with K = R or K = C

‖f‖π :=
( M∑
x=1

π(x)|f(x)|2
)1/2

= Eπ[|f(X0)|2]1/2, f : S → K

defines the L2(π)-norm of f and (Pf)(x) :=
∑M

y=1 pxy(1)f(y) = Ex[f(X1)] is
the (Markov) transition operator.

5.52 Remark. Since the chain is irreducible, ρxy > 0 for an x ∈ S with
π({x}) > 0 implies Px(Xn = y) > 0 for some n and thus by invariance π({y}) =
Pπ(Xn = y) > 0 for all y. Hence, L2(π) = L 2(π) = {f : S → R} holds for finite
S (there are no non-empty π-null sets and all functions are measurable). Any
function f : S → K is characterised by the vector ~f = (f(1), . . . , f(M))> ∈ KM

and we have P (1)~f =
−→
Pf , that is Pf is obtained by matrix-vector multiplica-

tion. Yet, the stochastic interpretation Pf(x) = Ex[f(X1)] is easier to formulate
for functions. We shall profit from the linear algebra approach to Markov chains
and it is convenient throughout to interpret column vectors as functions (and
row vectors as probability measures) on S = {1, . . . ,M}.

5.53 Example. The transition operator P for the Ehrenfest model on S =
{0, . . . , N} satisfies (Pf)(x) = x

N f(x − 1) + N−x
N f(x + 1) for x ∈ S, setting

f(−1) := f(N + 1) := 0 (or arbitrary). This shows that Pf at x is just an
average of f at its neighbours x − 1, x + 1. For functions f with Pf = f we
conclude that f(x) is an average of f(x−1) and f(x+1) for all x, hence f must
be constant on S (e.g., consider maxx f(x)). Consequently, 1 is an eigenvalue
of P and the constant functions are the only associated eigenfunctions.

5.54 Lemma (Properties of the Markov transition operator P ).

(a) ‖Pf‖π 6 ‖f‖π holds for all f ∈ L2(π) and all eigenvalues λ of P satisfy
|λ| 6 1.

(b) If λ ∈ C is an eigenvalue of P with |λ| = 1, then there is a smallest
number d ∈ N with λd = 1 (λ is a dth-unit root) and pxx(n) = 0 holds for
all x ∈ S and all n that are not multiples of d.

(c) λ = 1 is always an eigenvalue of P with multiplicity one. Its eigenspace
consists of the constant functions f = c1 with c ∈ R (or C).
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Proof.

(a) Use the definitions and the Cauchy-Schwarz inequality to bound

‖Pf‖2π = Eπ[|EX0 [f(X1)]|2] 6 Eπ[EX0 [|f(X1)|2]] = Eπ[|f(X1)|2] = ‖f‖2π.

From Pf = λf for some non-zero function f we infer ‖Pf‖π = |λ|‖f‖π
and thus |λ| 6 1 by the inequality.

(b) Let λ be an eigenvalue of P with eigenfunction f , i.e. Pf = λf , f 6=
0 and |λ| = 1. Then ‖Pf‖π = ‖f‖π implies equality in the Cauchy-
Schwarz inequality. This holds only if f(X1) is Px-a.s. constant for all x ∈
SIControl. Fix some state x with f(x) 6= 0. Then Pf(x) = Ex[f(X1)] =
λf(x) implies f(y) = λf(x) for all y with pxy(1) > 0. From Pnf(x) =
Ex[f(Xn)] = λnf(x) we equally deduce f(y) = λnf(x) for all states y
with pxy(n) > 0. Since x is irreducible, for each y ∈ S there is an ny with
pxy(ny) > 0 and thus f(y) = λnyf(x) 6= 0. The case y = x yields λnx = 1.
For d := min{n ∈ N |λn = 1} 6 nx and i = 1, . . . , d− 1, k ∈ N0 we have
f(x) 6= λif(x) = λkd+if(x)⇒ pxx(kd+ i) = 0.

(c) For constant functions f = c1 we clearly have (Pf)(x) = Ex[f(X1)] =
c = f(x), hence Pf = f , and 1 is an eigenvalue with eigenfunction f . The
argument in (b) shows conversely that for an eigenfunction f with eigen-
value 1, we have f(y) = 1nf(x) = f(x) if pxy(n) > 0. By irreducibility,
there is such an n for all x, y ∈ S so that f must be constant.

5.55 Example.

(a) Consider the rotation with transitions px,x+1 = 1, x = 1, . . . ,M − 1,
pM,1 = 1, where you go deterministically 1 7→ 2 7→ · · · 7→ S 7→ 1. This is
an irreducible Markov chain with uniform invariant distribution π({x}) =
1
M . The transition operator is Pf(x) = f((x mod M) + 1). For an
eigenvalue λ with eigenfunction f we derive from PMf = f that λM = 1.
We claim that λj = e2πij/M for j = 0, . . . ,M − 1 are eigenvalues of P .

Indeed, for fj(x) = λxj , x = 1, . . . ,M , we obtain Pfj(x) = λ
(x mod M)+1
j =

λx+1
j = λjfj(x). Obviously, pxx(n) > 0 is equivalent to n = kM for k ∈ N

and the chain is M -periodic.

(b) In the Ehrenfest model let λ be an eigenvalue of P with |λ| = 1 and
eigenfunction f . Then λf(x) = x

N f(x− 1) + N−x
N f(x+ 1) holds. Taking

absolute values shows |f(x)| 6 x
N |f(x− 1)|+ N−x

N |f(x+ 1)|. In extension
of Example 5.53 this can only happen if equality holds (consider again
maxx|f(x)|) and |f | is constant on S. Moreover, the equality |α1z1 +
α2z2| = α1|z1|+α2|z2| for α1, α2 > 0, z1, z2 ∈ C only holds if z1 = |z1|eiϕ,
z2 = |z2|eiϕ with the same angle ϕ ∈ [0, 2π). This shows that f(x)
is constant for all odd x and for all even x, respectively. By a short
reflection, we conclude that the eigenvalue must be λ = 1 with constant
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eigenfunction f or λ = −1 with eigenfunction f(x) = c(−1)x for some
c ∈ C. Obviously, we have pxx(n) > 0 if and only if n is even so that the
chain is 2-periodic..

(c) For a Markov chain where each transition pxy(1) for x 6= y has positive
probability and |S| > 3, we have pxx(n) > 0 for all x ∈ S and n > 2 via
a path x 7→ x1 7→ · · · 7→ xn−1 7→ x with xi 6= xi+1 and x 6∈ {x1, xn−1}.
The same holds for any Markov chain when the probability pxx(1) > 0 to
stay in a state is positive for all x ∈ S, compare Google PageRank. For
these Markov chains the transition operator has eigenvalues λ with |λ| < 1
except for the trivial eigenvalue λ = 1. They are aperiodic according to
the definition below.

5.56 Definition. An irreducible Markov chain is called aperiodic if the greatest
common divisor (größter gemeinsamer Teiler) of {n ∈ N | pxx(n) > 0} equals 1
for some state x.

5.57 Remark. By Lemma 5.54(b) λ = 1 is the only eigenvalue of the transition
operator P with |λ| = 1 for an aperiodic Markov chain. For aperiodic Markov
chains the n-step transition matrix P (n) = Pn then has the trivial eigenvalue
1 and all other eigenvalues have the form λn for |λ| < 1. This makes the
convergence limn→∞(Pnf)(x) = 0 for f with Eπ[f ] = 0 plausible, at least for
diagonalisable P . Next, a version of this is proved rigorously.

5.58 Theorem (Convergence for aperiodic chains). For an irreducible and
aperiodic Markov chain on a finite state space S

lim
n→∞

pxy(n) = π({y}), x, y ∈ S,

holds with the invariant initial distribution π. The convergence is exponentially
fast in n.

Proof. By Remark 5.57 the eigenvalues λ of the transition operator P of an
irreducible and aperiodic Markov chain satisfy |λ| < 1 or λ = 1 (with eigen-
function 1). Observe that Eπ[f(X0)] = 0 implies Eπ[f(X1)] = 0 by in-
variance, in other words 〈f,1〉π = 0 ⇒ 〈Pf,1〉π = 0. This means that
L2

0(π) := {f : S → R | 〈f,1〉π = 0} is invariant under P : P (L2
0(π)) ⊆ L2

0(π).
Then all eigenvalues λ of the restriction P |L2

0(π) satisfy |λ| < 1. The spectral

radius result from linear algebra gives for f ∈ L2
0(π)

lim sup
n→∞

‖Pnf‖1/nπ 6 max{|λ| |λ is eigenvalue of P |L2
0(π)} < 1

(if the eigenvectors diagonalise P , then this is clear, otherwise consider the

Jordan form; observe ‖f‖1/nπ → 1 for f 6= 0). For any g : S → K we obtain
f := g − 〈g,1〉π1 ∈ L2

0(π) and thus

‖Png − Eπ[g(X0)]‖π = ‖Pn(g − 〈g,1〉π1)‖π → 0 exponentially fast.

For g = 1{y} we obtain in particular
∑

x∈S π(x)(pxy(n)−π({y}))2 → 0, whence
pxy(n)→ π({y}) follows for all x, y ∈ S.
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B Control questions

(a) Why does |Ex[f(X1)]|2 = Ex[|f(X1)|2] imply that f(X1) = Ex[f(X1)] is
constant Px-a.s.?

Just use the variance (here real case): Varx(f(X1)) = Ex[f(X1)2] −
Ex[f(X1)]2 = 0 implies Px(f(X1) = Ex[f(X1)]) = 1, see Stochastik I.

(b) Consider an invariant, but not ergodic distribution π for the non-irreducible
Markov chain of Example 5.29. Show that the eigenspace to the eigenvalue 1
of the transition operator P is two-dimensional. Can you generalise?

Any function f with f(2) = f(3) satisfies Pf(x) = f(x), x = 1, 2, 3, and is
thus an eigenfunction of P to the eigenvalue 1. More generally, any function
which is constant on each connected component of a recurrent Markov chain
remains invariant. So, λ = 1 has multiplicity 1 as an eigenvalue of P if and
only if a recurrent Markov chain is irreducible if and only if there is only one
invariant distribution.

(c) If (Xn, n > 0) is the 2-periodic Markov chain of the Ehrenfest model, is the
embedded Markov chain (X2n, n > 0) aperiodic?
Yes, that is trivially the case because Px(X2 = x) > 0 for all x (go to the next
state and then back). So, the transition probabilities pxy(2n) along the even
steps converge to the invariant distribution on {y ∈ S | |y− x| is even}, which
is also a Binomial distribution. In fact, the Ehrenfest model ’forgets’ the initial
state asymptotically except for its property of being even or odd.

5.59 Remark. In linear algebra symmetric matrices have additional struc-
ture. This can be exploited for the transition matrix / operator of a Markov
chain. Interestingly, it turns out that this leads to the property that the law

of the Markov chain is the same when time is reversed, that is (X0, . . . , Xn)
d
=

(Xn, . . . , X0).

5.60 Definition. An initial distribution µ of a Markov chain with one-step
transition probabilities px,y(1) is called reversible if

∀x, y ∈ S : µ({x})pxy(1) = µ({y})pyx(1).

Then the Markov chain is said to be (time) reversible or in detailed balance.

5.61 Proposition. A reversible initial distribution π is invariant and the
Markov chain (Xn) satisfies

Pπ(X0 = x0, . . . , Xn = xn) = Pπ(X0 = xn, . . . , Xn = x0)

for all x0, . . . , xn ∈ S. The associated transition operator P is self-adjoint:

∀f, g : S → R : 〈Pf, g〉π = 〈f, Pg〉π.

Proof. IExercise

5.62 Remark. A reversible transition matrix P (1) itself is usually not sym-
metric, but its (basis) transformation diag(~π)1/2P (1) diag(~π)−1/2 with entries
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π({x})1/2pxy(1)π({y})−1/2 = π({y})1/2pyx(1)π({x})−1/2 is symmetric, pro-
vided π({x}) > 0 for all x. A better viewpoint is that the linear map P (defined
via P (1)) can be represented by a symmetric matrix in any L2(π)-orthonormal
basis.

From linear algebra we know that then P can be diagonalised with real
eigenvalues and an L2(π)-orthonormal basis of eigenvectors. Lemma 5.54 shows
for reversible irreducible Markov chains that the eigenvalues λ of P satisfy
λ ∈ [−1, 1] and that λ = −1 can only occur if pxx(2n − 1) = 0 holds for all
x ∈ S, n ∈ N (the chain is 2-periodic). Otherwise the Markov chain can be
shown to be aperiodic.

5.63 Example. Let π be the uniform distribution on S. Then π is reversible
whenever the transition matrix P (1) is symmetric: pxy(1) = pyx(1) for all
x, y ∈ S. Consider a reflected random walk on S = {1, . . . ,M} with pxy(1) > 0
only if |x− y| 6 1 (you can only go left, go right or stay). If the chain satisfies
px,x+1(1) = px,x−1(1) in the interior (x = 2, . . . ,M − 1), then by symmetry
all these probabilities coincide and are equal to some q ∈ [0, 1/2]. Symmetry
implies then also at the boundary p12(1) = pM,M−1(1) = q and we must thus
have pxx(1) = 1 − 2q for x = 2, . . . ,M − 1 and pxx(1) = 1 − q for x ∈ {1,M}.
This gives a reversible Markov chain where the uniform distribution is invariant.

5.64 Lemma. Let (Xn) be a reversible irreducible Markov chain with invariant
distribution π. Consider the undirected graph G = (S,E) with vertices x ∈ S
and edge set E = {{x, y} |x, y ∈ S,Pπ(X0 = x,X1 = y) > 0}. Assign the
probability p̃{x,y} := Pπ(X0 = x,X1 = y) to each edge {x, y} ∈ E. Then (p̃e)e∈E
defines uniquely the law of the Markov chain via

π({x}) =
∑

y∈S:{x,y}∈E

p̃{x,y}, pxy(1) =
p̃{x,y}

π({x})
, x, y ∈ S. (5.1)

Proof. Note that π({x}) > 0 holds for all x because (Xn) is irreducible, compare
Remark 5.52. By definition of reversibility, we have p̃{x,y} = π({x})pxy(1) and
the formulas follow from

∑
y∈S pxy(1) = 1.

5.65 Example. For the reversible random walk of Example 5.63 with q ∈
(0, 1/2) we have E = {{x, y} |x, y ∈ S, |x − y| 6 1} and p̃{x,x+1} = M−1q for
x = 1, . . . , S − 1, p̃{0} = p̃{M} = M−1(1− q) as well as p̃{x} = M−1(1− 2q) for
x = 2, . . . , S − 1.

5.66 Lemma. Let (p̃e)e∈E be any (counting density of a) probability dis-
tribution on the edge set E of an undirected graph G = (S,E) with∑

y:{x,y}∈E p̃{x,y} > 0 for all x ∈ S. Then equations (5.1) define a reversible
(not necessarily irreducible) Markov chain on S.

Proof. By assumption, π({x}) > 0 follows for all x ∈ S and thus π({x})pxy(1) =
p̃{x,y} = π({y})pyx(1). Hence, π is reversible.

5.67 Remark. The basic idea of Markov chain Monte Carlo (MCMC) meth-
ods is to construct an irreducible aperiodic Markov chain (Xn, n > 0) for a

79



given invariant distribution π and to simulate π-distributed random variables
approximately by X(n) for an arbitrary starting value x ∈ S and large n be-

cause by the convergence in Theorem 5.58 we know X(n)
d−→ π as n → ∞. In

typical applications like Bayesian posterior computation or energy functionals
in statistical physics the distribution π is only known up to a norming constant
(whose numerical computation would require a summation over a huge state
space S).

The prominent Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth,
Teller, Teller 1953) starts off with an irreducible ’proposal’ Markov chain with
transition matrix Q(1) = (qxy(1))x,y∈S and obtains a π-reversible Markov chain
by changing the transition probabilities from qxy(1) to pxy(1) by an ’accept-
reject step’ which involves only the ratio π({y})/π({x}) and is thus independent
of a norming constant.

The idea is quite intuitive: Assume qxy(1) > 0 ⇐⇒ qyx(1) > 0 for all x, y ∈
S. Consider the undirected graph G = (S,E) with E = {{x, y} | qxy(1) > 0}.
Each edge {x, y} ∈ E with x 6= y is assigned the probability

p̃{x,y} := min
(
π({x})qxy(1), π({y})qyx(1)

)
∈ [0, 1],

which enforces the symmetry for π-reversible transitions, when we assign all
remaining transition probability from x to the loop probability pxx(1).

More algorithmically, when the proposal Markov chains proposes to go from
x to y 6= x we go to y (’accept’) or stay in x (’reject’) because by Formula

(5.1) pxy(1) = min(qxy(1), π({y})
π({x})qyx(1)) 6 qxy(1) for x 6= y and we accept

a transition to y with probability pxy(1)/qxy(1) ∈ [0, 1] (by an independent
random experiment). This is formalised in the next statement, where we say
that a transition matrix is aperiodic if the generated Markov chain is aperiodic.

5.68 Theorem (Metropolis Markov chain). Consider a distribution π on S
with π({x}) > 0 for all x ∈ S and an irreducible Markov chain on S with
transition probabilities qxy(1), x, y ∈ S, satisfying qxy(1) > 0 if and only if
qyx(1) > 0 for x, y ∈ S. Then the Markov chain with transition probabilities

pxy(1) :=

{
min

(
qxy(1), π({y})

π({x})qyx(1)
)
, if x 6= y,

1−
∑

z 6=x pxz(1), if x = y

is reversible with respect to π and irreducible. If the transition matrix Q(1)
is aperiodic or if π is not reversible with respect to Q(1), then the transition
matrix P (1) is aperiodic.

Proof. IExercise

5.69 Example. Suppose X is a Bin(n, p)-distributed random variable where
the success probability p is itself drawn at random from a discrete set S ⊆ (0, 1)
according to a distribution µ on S. Then the joint law of (X, p) is given by

P(X = k, p = ρi) = µ({ρi})
(
n

k

)
ρki (1− ρi)n−k, k = 0, . . . , n; ρi ∈ S.
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In Bayesian statistics we observe X and prescribe the prior distribution µ for
the unknown parameter p. We base our inference (estimation, testing, credible
intervals) on the posterior distribution of p given the observation of X. By the
Bayes formula (’∝’ means proportional to)

π({ρi}) := P(p = ρi |X = k) =
P(X = k, p = ρi)∑
j P(X = k, p = ρj)

∝ µ({ρi})ρki (1− ρi)n−k

holds with a constant independent of i, where k is the observed value of X.
Let us suppose now that ρi = (i− 1/2)/M , i = 1, . . . ,M and µ({ρi}) = 1/M is
a discretisation of the uniform distribution U([0, 1]). Then we obtain π as the
invariant distribution of a Metropolis chain with transition probabilities (i 6= j)

pρiρj (1) = min
(
qρiρj (1),

ρkj (1−ρj)n−k

ρki (1−ρi)n−k
qρjρi(1)

)
.

If the proposal Markov chain is the symmetric random walk on S, interpreted
as torus with ρ0 = ρM , ρM+1 = ρ1, we have qρiρi±1(1) = 1/2 and the transition
probabilities pρiρi±1(1) simplify to

pρiρi±1(1) =
1

2
min

(
1,
(

1± 1

i− 1/2

)k(
1± −1

M − i+ 1/2

)n−k)
, i = 2, . . . ,M−1,

and similarly at the boundary i ∈ {1,M}. This yields an aperiodic irreducible
chain which is easy to simulate IExercise.

B Control questions

(a) Simplify the proof of Theorem 5.58 for reversible irreducible Markov chains by
expressing P in an orthonormal basis of eigenfunctions (=eigenvectors).

Since P is self-adjoint on L2(π) there is an L2(π)-orthonormal basis
(f1, . . . , fM ) of eigenfunctions with Pfi = λifi. We choose λ1 = 1, f1 = 1
(an eigenpair we know already) and observe |λi| < 1 for i > 2 by ape-
riodicity. In the basis (f1, . . . , fM ) we have the diagonal matrix represen-
tation P = diag(λ1, . . . , λM ) and Pn = diag(λn1 , . . . , λ

n
M ). This shows

Pn → diag(1, 0, . . . , 0) (entrywise or in any matrix norm). We obtain for

f =
∑M
i=1〈f, fi〉πfi ∈ L2(π) that Pnf → 〈f, f1〉π = Eπ[f ]. For f = 1{y}

this yields Pnf(x) = Ex[1{y}(Xn)] = pxy(n)→ Eπ[f(X0)] = π({y}), noting
π({x}) > 0 for all x.

(b) Let π be the invariant initial distribution of an irreducible Markov chain
(Xn, n > 0) with transition probabilities pxy(1). Show that the time-reversed

process X̃n = XN−n, n = 0, . . . , N , is a Markov chain with initial distribution

π and transition probabilities p̃xy(1) = π({y})
π({x})pyx(1).

We have for x0, . . . , xN ∈ S

Pπ(X̃0 = x0, . . . , X̃N = xN ) = Pπ(X0 = xN , . . . , XN = x0)

= π({xN})
N∏
i=1

pxi,xi−1
(1) = π({xN})

N∏
i=1

(π({xi−1})
π({xi})

p̃xi−1,xi(1)
)

= π({x0})
N∏
i=1

p̃xi−1,xi(1),

which yields the claim.
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(c) Give an example of a 2-periodic, reversible, irreducible Markov chain, i.e
pxx(2n − 1) = 0 for all x ∈ S, n ∈ N. Is λ = −1 an eigenvalue of P and if
so, what is a corresponding eigenfunction?

Consider the symmetric random walk on S = {1, . . . ,M}, M even and S
interpreted as a torus, with px,x±1(1) = 1/2 (identifying 1−1 = S, S+1 = 1).
This is obviously a 2-periodic, reversible and irreducible Markov chain with
transition operator

Pf(x) = 1
2 (f(x− 1) + f(x+ 1)).

We have Pf = −f iff f(x) = − 1
2 (f(x − 1) + f(x + 1)) for all x ∈ S. This

implies f(x) = 1
4 (f(x−2)+f(x)+f(x+2)), hence f(x) = 1

2 (f(x−2)+f(x+
2)). From this we conclude that f is constant on all even x and on all odd x
(e.g. consider the maximum n these x). Hence, the functions f(x) = c(−1)x,
c ∈ R, form the one-dimensional eigenspace of P to the eigenvalue λ = −1.

5.70 Remark. At the end of this chapter it is worthwhile to see the usage of
MCMC methods in practice, e.g. https://www.youtube.com/watch?v=h1NOS_
wxgGg.

6 Weak and functional convergence

6.1 Fundamental properties

Throughout (S,BS) denotes a metric space with Borel σ-algebra. The space of
all bounded continuous and real-valued functions on S is denoted by Cb(S).

6.1 Definition. Probability measures Pn converge weakly (schwach) to a prob-
ability measure P on (S,BS) if

∀f ∈ Cb(S) : lim
n→∞

∫
S
f dPn =

∫
S
f dP

holds, notation Pn
w−→ P. (S,BS)-valued random variables Xn converge in

distribution (or in law, in Verteilung) to some random variable X if PXn w−→ PX
holds, i.e.

∀f ∈ Cb(S) : lim
n→∞

E[f(Xn)] = E[f(X)].

Notation Xn
d−→ X or Xn

d−→ PX .

6.2 Example. For xn → x in S the point measures δxn converge weakly to δx.
Note that for xn 6= x, n > 1, we have 0 = δxn({x}) 6→ δx({x}) = 1. In general,
we cannot expect that Pn

w−→ P implies Pn(A)→ P(A) for an event A.

6.3 Lemma (Continuous mapping). If g : S → T is continuous, T another

metric space, then: Xn
d−→ X ⇒ g(Xn)

d−→ g(X).

Proof. For f ∈ Cb(T ) we have f ◦ g ∈ Cb(S). Hence, Xn
d−→ X implies

E[f(g(Xn))]→ E[f(g(X))] and therefore g(Xn)
d−→ g(X).
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6.4 Example. If real-valued random variables Xn satisfy Xn
d−→ N(0, 1), then

aXn + b
d−→ N(b, a2) follows from aZ + b ∼ N(b, a2) for Z ∼ N(0, 1). Fur-

thermore, X2
n

d−→ χ2
1 (χ2-distribution with one degree of freedom) follows from

Z2 ∼ χ2
1 for Z ∼ N(0, 1).

6.5 Definition. Let (Xn), X be random variables with values in a Polish space
(S,BS). Then (Xn) converges in probability or stochastically to X, notation

Xn
P−→ X, if

∀ ε > 0 : lim
n→∞

P(d(Xn, X) > ε) = 0.

6.6 Remark. We need that S is Polish (separable suffices) to justify that

d(Xn, X) is a real-valued random variable IExercise. Note that Xn
P−→ X is

therefore equivalent to the stochastic convergence d(Xn, X)
P−→ 0 for real-valued

random variables. This allows to transfer many results for stochastic conver-
gence from R to general Polish S. In particular, stochastic convergence is

metrisable and Xn
P−→ X implies Xn

d−→ X IExercise.

6.7 Theorem (Portmanteau Theorem, Alexandrov 1940). For probability mea-
sures (Pn)n∈N, P on (S,BS) the following are equivalent:

(a) Pn
w−→ P;

(b)
∫
f dPn →

∫
f dP holds for all bounded Lipschitz-continuous functions

f : S → R;

(c) ∀U ⊆ S open : lim infn→∞ Pn(U) > P(U);

(d) ∀F ⊆ S closed : lim supn→∞ Pn(F ) 6 P(F );

(e) ∀A ∈ BS with P(∂A) = 0 : limn→∞ Pn(A) = P(A).

6.8 Remark. Recall that f is Lipschitz-continuous if there is a constant L >
0 with |f(x) − f(y)| 6 Ld(x, y) for all x, y ∈ S. The topological boundary
∂A = Ā \ A◦ is the difference between the closure Ā and the interior A◦ of
A. Intuitively, under weak convergence Pn

w−→ P probability mass of Pn can
move continuously and thus for open sets U it might get lost at the boundary:
P(U) 6 lim infn→∞ Pn(U), while P(Ū) > lim supn→∞ Pn(U) (put F = Ū ⊇ U
in (d)).

For probability measures on (R,BR) the Portmanteau Theorem shows that
Pn

w−→ P implies Fn(x) := Pn((−∞, x])→ P((−∞, x]) = F (x) for all x ∈ R with
P(∂(−∞, x]) = P({x}) = 0. These x are exactly the continuity points of the
distribution function F of P and we find back the result from Stochastik I on
the pointwise convergence of the distribution functions at continuity points.

Observe that on (Rd,BRd) the convergence of the characteristic functions
suffices already to ensure weak convergence (Stochastik I), that is convergence
for the specific test functions f(x) = cos(〈u, x〉) and f(x) = sin(〈u, x〉), u ∈ Rd,
which form a small subclass of bounded Lipschitz-continuous functions.
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Proof. (a)⇒(b): This follow directly from the definition because Lipschitz-
continuous functions are continuous.

(b)⇒(c): Let U ⊆ S be open, F = S \ U . Then x 7→ distF (x) =
infy∈F d(x, y) is Lipschitz-continuous: for arbitrary x, z ∈ S and yn ∈ F with
d(x, yn)→ distF (x) deduce by triangle inequality

distF (z) 6 inf
n>1

d(z, yn) 6 inf
n>1

(d(z, x) + d(x, yn)) = d(z, x) + distF (x),

so that by symmetry |distF (z)−distF (x)| 6 d(x, z) follows. Therefore fm(x) :=
(m distF (x)) ∧ 1, m ∈ N, are bounded Lipschitz-continuous functions which
satisfy fm ↑ 1U as m ↑ ∞. From (b) we deduce for any m ∈ N

lim inf
n→∞

Pn(U) > lim inf
n→∞

∫
fm dPn =

∫
fm dP .

Monotone convergence gives limm→∞
∫
fmdP =

∫
1UdP = P(U) and thus (c).

(c)⇐⇒ (d) follows directly by taking complements.
(c,d)⇒(e): For all A ∈ BS we have by (c) and (d)

P(A◦) 6 lim inf
n→∞

Pn(A◦) 6 lim inf
n→∞

Pn(A)

6 lim sup
n→∞

Pn(A) 6 lim sup
n→∞

Pn(Ā) 6 P(Ā).

If P(∂A) = P(Ā)− P(A◦) = 0 holds, then we have equality everywhere and (e)
follows.

(e)⇒ (a): Let f ∈ Cb(S). Since the preimages (f−1({y}))y∈R are pairwise
disjoint, there are at most countably many y with P(f−1({y})) > 0IControl.
Without loss of generality assume P(f−1({0})) = 0 and consider

Bk,ε = f−1([kε, (k + 1)ε)), k ∈ Z, ε > 0.

By continuity of f , we have ∂Bk,ε ⊆ f−1({kε}) ∪ f−1({(k + 1)ε}) and there
are only countably many pairs (k, ε) with P(∂Bk,ε) > 0. Consequently, we can
choose a sequence εm ↓ 0 with P(∂Bk,εm) = 0 for all m, k. Using∑

k

kεm1Bk,εm 6 f 6
∑
k

(k + 1)εm1Bk,εm ,

where k runs through the finite set {k ∈ Z | |k| 6 ‖f‖∞/εm + 2}, we use
Pn(Bk,εm)→ P(Bk,εm) by (e) and obtain∫
f dP−εm 6

∑
k

kεm P(Bk,εm) = lim
n→∞

∑
k

kεm Pn(Bk,εm)

6 lim inf
n→∞

∫
f dPn 6 lim sup

n→∞

∫
f dPn 6 lim

n→∞

∑
k

(k + 1)εm Pn(Bk,εm)

=
∑
k

(k + 1)εm P(Bk,εm) 6
∫
f dP+εm.

With εm ↓ 0 we obtain limn→∞
∫
f dPn =

∫
f dP.
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6.9 Remark.

(a) The proof yields a simple argument why the limit for weak convergence is
unique. We have constructed for open sets U functions fm ∈ Cb(S) with
fm ↑ 1U . Consequently, if Pn

w−→ P and Pn
w−→ Q, then limn→∞

∫
fmdPn =∫

fmdP =
∫
fmdQ holds. By monotone convergence in m this shows∫

1UdP =
∫

1UdQ so that P and Q agree on all open sets. Open sets
form an ∩-stable generator of the Borel σ-algebra and the uniqueness
theorem for probability measures yields P = Q.

(b) Convergence in distribution is not compatible with addition or multipli-

cation: Xn
d−→ X, Yn

d−→ Y does not(!) imply Xn + Yn
d−→ X + Y or

XnYn
d−→ XY because the joint distribution of (X,Y ) cannot be inferred.

A simple counterexample is given by Xn = X, Yn = −X for X ∼ N(0, 1)

satisfying Xn
d−→ X, Yn

d−→ X, while Xn +Yn = 0 does not converge in law
to X + X ∼ N(0, 4) and XnYn = −X2 does not converge in law to X2.
Slutsky’s Lemma, which often refers just to the corollary below, yields an
important sufficient condition to conclude the convergence of sums and
products.

6.10 Lemma (Slutsky, 1925). Let (S, d) be Polish. We have for (S,Bs)-valued
random variables (Xn), (Yn), X

Xn
d−→ X, d(Xn, Yn)

P−→ 0⇒ Yn
d−→ X.

Proof. Let f ∈ Cb(S) be Lipschitz-continuous with Lipschitz constant L. Then
for any ε > 0

lim sup
n→∞

|E[f(Xn)]− E[f(Yn)]| 6 lim sup
n→∞

E[|f(Xn)− f(Yn)|]

6 lim sup
n→∞

E[|f(Xn)− f(Yn)|1(d(Xn, Yn) > ε)] + Lε

6 2‖f‖∞ lim sup
n→∞

P(d(Xn, Yn) > ε) + Lε = Lε.

With ε ↓ 0 we conclude limn→∞|E[f(Xn)]− E[f(Yn)]| = 0. This yields

lim
n→∞

E[f(Yn)] = lim
n→∞

E[f(Xn)] = E[f(X)].

By the Portmanteau Theorem 6.7, we obtain Yn
d−→ X.

6.11 Corollary (Slutsky’s Lemma). Consider (S,Bs)-valued random variables
(Xn), (Yn), X and a ∈ S for (S, d) Polish. Then

Xn
d−→ X, Yn

P−→ a⇒ (Xn, Yn)
d−→ (X, a)

holds. In particular, for S = R we have XnYn
d−→ aX and Xn + Yn

d−→ X + a.

85



Proof. Note that the space S2, equipped with the product metric
d2((x1, x2), (y1, y2)) = d(x1, y1) + d(x2, y2), is again Polish. On one hand, we

have d2((Xn, Yn), (Xn, a)) = d(Yn, a)
P−→ 0 due to Yn

P−→ a. On the other hand,

(Xn, a)
d−→ (X, a) follows from

f ∈ Cb(S2)⇒ f(•, a) ∈ Cb(S)⇒ E[f(Xn, a)]→ E[f(X, a)].

Applying Slutsky’s Lemma to the S2-valued random variables (Xn, Yn) and

(Xn, a), we conclude (Xn, Yn)
d−→ (X, a).

Noting that (x, y) 7→ x + y, (x, y) 7→ xy are both continuous from R2

to R, the continuous mapping theorem shows that (Xn, Yn)
d−→ (X, a) implies

Xn + Yn
d−→ X + a, XnYn

d−→ Xa.

6.2 Tightness

6.12 Definition. A family (Pi)i∈I of probability measures on (S,BS) is called
(weakly) relatively compact if each sequence (Pik)k>1 has a weakly convergent
subsequence. This means that there is a probability measure P (not necessarily
in (Pi)i∈I) and a subsequence (ikl) such that Pikl

w−→ P as l→∞.
The family (Pi)i∈I is (uniformly) tight (straff) if for any ε > 0 there is a

compact set Kε ⊆ S such that Pi(Kε) > 1− ε for all i ∈ I.

6.13 Remarks. One can show that the set M(S) of all probability measures
on a Polish space (S,BS) under weak convergence is metrisable, see IExercise. In
particular, sequential compactness and compactness are identical and ’relatively
compact’ just means that the closure is compact. Compare with the Heine-Borel
Theorem which says that bounded subsets are relatively compact in Rd.

Ulam’s Theorem (already Proposition 2.18) shows that on a Polish space one
probability measure is always tight and thus also any finite family (P1, . . . ,Pn).

In Stochastik I we have proved Helly’s Theorem that probability measures
on BR are weakly relatively compact if and only if they are tight. We prove
this for general Polish spaces, which requires more (topological) work.

B Control questions

(a) Find examples of probability measures and sets U,F where strict inequality
holds in the Portmanteau Theorem 6.7(c,d).

For xn → x and xn 6= x we have seen above 0 = δxn(F ) < δx(F ) = 1 for the
closed set F = {x}. Obviously, the complement U = R \{x} is an example
for the reverse inequality.

(b) Let (By)y∈R be pairwise disjoint events. Prove that P(By) > 0 can only hold
for countably many y.
Hint: show first that P(By) > 1/n, n ∈ N, holds only for finitely many y.

Let Yn = {y ∈ R | P(By) > 1/n}. Since the By are pairwise disjoint, we
have 1 = P (Ω) >

∑
y∈Yn P(By) > |Yn|n−1 and Yn has at most n elements

(formally, you should reduce uncountable Yn to a countable subset Yn first).
This implies that

⋃
n>1 Yn = {y ∈ R | P(By) > 0} is at most countably

infinite.
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(c) When do we have Xn
d−→ X, Yn

P−→ a⇒ Xn/Yn
d−→ X/a?

This holds whenever a 6= 0. This follows from Slutsky’s Lemma by setting

Zn = Y −1
n 1(Yn 6= 0) and checking Zn

P−→ a−1.

6.14 Theorem. Any weakly relatively compact family of probability measures
on a Polish space is tight.

Proof. Similar to Ulam’s Theorem IExercise.

6.15 Theorem (Prohorov, 1956). Any tight family (Pi)i∈I of probability mea-
sures on a separable metric space is weakly relatively compact.

Proof. Note first that it suffices to prove that there is a weakly converging
subsequence in (Pi)i∈I because for any sequence (Pin)n>1 in (Pi)i∈I we can then
consider I ′ = {in |n > 1}.

By tightness we may choose nested compact sets Km ⊆ Km+1 with
Pi(Km) > 1 − m−1 for m ∈ N, i ∈ I. In particular limm→∞ Pi(Km) = 1
holds. Let D be a countable dense subset of S and consider an open set G.
Then for each x ∈ G there is a d ∈ D and r ∈ Q+ with x ∈ Br(d) ⊆ Br(d) ⊆ G,
where Br(d) is the open ball with diameter r around d. Introduce the countable
family

H :=
{ ⋃
j=1,...,J

Brj (dj) ∩Km

∣∣∣ J > 1, dj ∈ D, rj ∈ Q+, m > 1
}
∪ {∅}.

Then Pi(G) = limm→∞ Pi(G ∩ Km) = supH∈H ,H⊆G Pi(H), i ∈ I, follows by
σ-continuity of Pi.

By compactness of [0, 1], for H ∈ H and any sequence (in) in I there
is a subsequence (iHn ) of (in) such that PiHn (H) converges for n → ∞. By a
diagonal sequence argument there is thus a subsequence (Pn)n>1 of (Pi)i∈I with
limn→∞ Pn(H) = α(H) for all H ∈ H and some α : H → [0, 1]. Below we
construct a probability measure P on BS with P(G) = supH∈H ,H⊆G α(H) for
open sets G. From this we conclude

P(G) = sup
H∈H ,H⊆G

α(H) = sup
H∈H ,H⊆G

lim
n→∞

Pn(H)

6 lim inf
n→∞

sup
H∈H ,H⊆G

Pn(H) = lim inf
n→∞

Pn(G).

By the Portmanteau Theorem 6.7 we conclude weak convergence Pn
w−→ P and

(Pi)i∈I is weakly relatively compact.
The following construction of P relies on Caratheodory’s Theorem and is

optional for this course. First observe that α : H → [0, 1] satisfies

H1 ⊆ H2 ⇒ α(H1) ⊆ α(H2) (monotone),

H1 ∩H2 = ∅⇒ α(H1 ∪H2) = α(H1) + α(H2) (finitely additive),

H1, H2 ∈H arbitrary⇒ α(H1 ∪H2) 6 α(H1) + α(H2) (sub-additive).
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For open sets G define β(G) := supH∈H ,H⊆G α(H). Then β is monotone with
β(∅) = 0. For arbitrary M ⊆ S set γ(M) := infM⊆G,G open β(G) so that
γ(G) = β(G) for open sets G and γ is monotone. We shall prove that γ is
an outer measure and that all closed sets F are γ-measurable. This shows by
Caratheodory’s Theorem that P := γ|BS is a measure. It is even a probability
measure because by compactness Km ∈ H (Km can be covered by finitely
many balls Br(d)) and thus

1 > γ(S) = β(S) > sup
m>1

α(Km) > sup
m>1

(1−m−1) = 1.

For γ to be an outer measure it remains to prove γ(
⋃
n>1An) 6

∑
n>1 γ(An)

for arbitrary An ⊆ S.
First, we show that for closed F , open G and H ∈H with F ⊆ G∩H there

is H0 ∈ H with F ⊆ H0 ⊆ G. For every x ∈ F choose dx ∈ D, rx ∈ Q+ with
x ∈ Brx(dx) ⊆ Brx(dx) ⊆ G. Since H ⊆ Km for some m ∈ N, F ⊆ H ⊆ Km

is compact as a closed subset of a compact set and there is a finite set X with
F ⊆

⋃
x∈XBrx(dx) ∩ Km. Then H0 :=

⋃
x∈XBrx(dx) ∩ Km ∈ H satisfies

F ⊆ H0 ⊆ G.
Second, we show β(G1 ∪ G2) 6 β(G1) + β(G2) for open sets G1, G2. For

H ∈H with H ⊆ G1 ∪G2 the sets

F1 := {x ∈ H | distGC1
(x) > distGC2

(x)} ⊆ G1,

F2 := {x ∈ H | distGC2
(x) > distGC1

(x)} ⊆ G2

are closed (F1 = H ∩ (distGC1
−distGC2

)−1([0,∞)) and the preimage of a closed

set under a continuous functions is closed, F2 analogously). By the first step
F1 ⊆ H1 ⊆ G1 and F2 ⊆ H2 ⊆ G2 hold for some H1, H2 ∈H . We deduce

α(H) = α(F1 ∪ F2) 6 α(H1) + α(H2) 6 β(G1) + β(G2).

This shows β(G1 ∪G2) = supH∈H ,H⊆G1∪G2
α(H) 6 β(G1) + β(G2).

In a third step we prove β(
⋃
n>1Gn) 6

∑
n>1 β(Gn) for open sets Gn. This

follows from H ⊆
⋃
n>1Gn and H ∈H by H ⊆

⋃N
n=1Gn for some N ∈ N due

to compactness of H and

α(H) 6 β
( N⋃
n=1

Gn

)
6

N∑
n=1

β(Gn) 6
∑
n>1

β(Gn).

Finally, we prove γ(
⋃
n>1An) 6

∑
n>1 γ(An) for any An ⊆ S. Choose open

sets Gn ⊇ An with β(Gn) < γ(An) + ε2−n. Then by step 3

γ
( ⋃
n>1

An

)
6 β

( ⋃
n>1

Gn

)
6
∑
n>1

β(Gn) <
∑
n>1

γ(An) + ε.

It remains to let ε→ 0 and γ is confirmed to be an outer measure.
At last, we must check that any closed set F is γ-measurable, that is

∀M ⊆ S : γ(M) > γ(M ∩ F ) + γ(M ∩ FC).
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Let G be open and ε > 0. Choose H0, H1 ∈ H with H1 ⊆ FC ∩ G, α(H1) >
β(FC ∩G)− ε and H0 ⊆ HC

1 ∩G, α(H0) > β(HC
1 ∩G)− ε. Then H0 ∩H1 = ∅

and H0 ∪H1 ⊆ G so that

β(G) > α(H0 ∪H1) = α(H0) + α(H1) > β(HC
1 ∩G) + β(FC ∩G)− 2ε

> γ(F ∩G) + γ(FC ∩G)− 2ε.

Letting ε→ 0 we see β(G) > γ(F ∩G) + γ(FC ∩G). This yields

γ(M) = inf
G⊇M open

β(G) > inf
G⊇M open

(γ(F∩G)+γ(FC∩G)) > γ(F∩M)+γ(FC∩M).

Therefore all closed sets F are γ-measurable and by Caratheodory’s Theorem
also the generated σ-algebra of Borel sets.

6.16 Corollary (Prohorov). On a Polish space a family of probability measures
is weakly relatively compact if and only if it is tight.

Proof. Combine Theorems 6.14 and 6.15.

6.3 Weak convergence on C([0, T ]), C(R+)

In the sequel C stands for C([0, T ]) = {f : [0, T ] → R | f continuous} or
C(R+) = {f : [0,∞) → R | f continuous}, equipped with the supremum norm
and the uniform convergence on compact sets (fn → f if supt∈[0,T ]|fn(t) −
f(t)| → 0 for all T > 0), respectively. Then C forms a Polish space. By
an exercise the Borel σ-algebra BC is generated by the coordinate projections
πt : C → R, πt(f) = f(t) for all t ∈ [0, T ] and t > 0, respectively. Hence,
a probability measure P on C is uniquely determined by its finite-dimensional
distributions (Pπt1,...,tm )m∈N,06t1<···<tm with πt1,...,tm(f) = (f(t1), . . . , f(tm)).

6.17 Theorem. A sequence (Pn) of probability measures on BC converges
weakly to P if and only if all finite-dimensional distributions Pπt1,...,tmn converge
weakly to Pπt1,...,tm and (Pn) is tight.

Proof. Since C is Polish, (Pn) is weakly relatively compact if and only if it is
tight by Prohorov’s Theorem. Therefore, Pn

w−→ P implies that (Pn) is tight.
Since all πt1,...,tm : S → Rm are continuous, the continuous mapping theorem,

applied to probability measures, gives Pπt1 ,...,πtmn
w−→ Pπt1,...,tm .

Conversely, suppose (Pn) is tight and consider the set Q of all probability
measures Q such that Pnk

w−→ Q for some subsequence (nk). By tightness, Q

is not empty. By continuous mapping, also the finite-dimensional distributions
of Pnk converge to those of Q. By assumption, they converge to the finite-
dimensional distributions of P. By the above uniqueness result, we infer Q = {P}
and P is the only accumulation point of (Pn). This proves already Pn

w−→ P by
a general result for compact metric spacesIControl, but we provide a concrete
proof by contradiction.

If Pn
w−→ P were not true, then there would be a subsequence (nk) and

some ε > 0, f ∈ Cb(S) such that |
∫
f dPnk −

∫
f dP| > ε for all k. From (nk),

however, we could extract by tightness a subsubsequence (nkl) with Pnkl
w−→ P

and thus |
∫
f dPnkl −

∫
f dP| → 0. This contradiction proves Pn

w−→ P.
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6.18 Remark. The previous theorem is the workhorse for proving convergence
in law for continuous processes (Xn(t), t > 0) to (X(t), t > 0). One shows

finite-dimensional convergence (Xn(t1), . . . , Xn(tm))
d−→ (X(t1), . . . , X(tm)) for

any 0 6 t1 < · · · < tm, which is often easy, and then establishes tight-
ness of the laws PXn in C, which is usually more involved and for which
we shall study criteria in the following. Note that convergence in law in C
allows asymptotic results for many path-dependent functionals, for example

max06t6T Xn(t)
d−→ max06t6T X(t) follows from Xn

d−→ X in C and the continu-
ity of f 7→ max06t6T f(t), f ∈ C, via the continuous mapping theorem.

B Control questions

(a) Do fn : R+ → R with fn(x) = ex/n converge pointwise, uniformly on
compact sets and/or uniformly on R+?

We have fn → f uniformly on compacts for f(x) = 1: supx∈[0,R]|fn(x) −
f(x)| = eR/n − 1 → 0 for all fixed R > 0. Yet, ‖fn − f‖∞ = ∞ on the
positive axis and there cannot be uniform convergence.

(b) Find an example of continuous processes (Xn(t), t ∈ [0, 1]) whose finite-
dimensional distributions converge to those of (X(t), t ∈ [0, 1]), but whose
laws in C do not converge.
Hint: Look at the deterministic situation.

The standard example from analysis is Xn(t) = tn which converges pointwise
to X(t) = 1{1}(t), t ∈ [0, 1].

(c) Show that a sequence (xn) in a compact metric space with exactly one
accumulation point x converges to x.

For εm ↓ 0 consider a finite cover
⋃Nm
n=1Bεm(xn,m) of the compact space K

with open balls of radius εm. Suppose w.l.o.g. x ∈ Bεm(x1,m) for all m. Then
K\Bεm(x1,m) can only contain finitely many sequence elements xn (otherwise
there would be another accumulation point away from x). This shows that for
each m there is some nm ∈ N with xn ∈ B2εm(x) for all n > nm. This
proves xn → x. One could, of course, also apply a subsubsequence argument
as above in the proof.

6.19 Definition. For f ∈ C([0, T ]) and δ > 0 the modulus of continuity
(Stetigkeitsmodul) is defined as

ωδ(f) := max{|f(s)− f(t)| | s, t ∈ [0, T ], |s− t| 6 δ}.

6.20 Theorem (Arzelà-Ascoli). A subset A ⊆ C([0, T ]) is relatively compact
if and only if

(a) supf∈A|f(0)| <∞ and

(b) limδ→0 supf∈A ωδ(f) = 0 (equi-continuity, gleichgradige Stetigkeit).

Relative compactness in C(R+) holds if (a) holds and (b) is satisfied for all
T > 0, i.e. limδ→0 supf∈A max{|f(s)− f(t)| | s, t ∈ [0, T ], |s− t| 6 δ} = 0 holds
for all T > 0.
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Proof. See e.g. H. Heuser, Lehrbuch der Analysis I, Teubner or T. Bühler, D.
Salamon, Functional Analysis, AMS Graduate Studies in Mathematics.

6.21 Example. Suppose A ⊆ C([0, T ]) consists of functions f with ‖f‖∞ 6 R
and |f(s) − f(t)| 6 L|s − t| for all 0 6 s, t 6 T and some constants R,L > 0,
that is A is uniformly bounded and has a uniform Lipschitz constant. Then A
is relatively compact because supf∈A|f(0)| 6 R and supf∈A ωδ(f) 6 Lδ → 0
for δ → 0. Note that by the mean value theorem differentiable functions f
have Lipschitz constant L = supt∈[0,T ]|f ′(t)| so that in particular any family of
uniformly bounded functions with uniformly bounded derivatives is relatively
compact in C([0, T ]).

6.22 Corollary. A sequence (Pn)n>1 of probability measures on BC([0,T ]) is
tight if and only if

(a) limR→∞ lim supn→∞ Pn({|f(0)| > R}) = 0 and

(b) limδ→0 lim supn→∞ Pn({ωδ(f) > ε}) = 0 for all ε > 0.

6.23 Remark. Events {f ∈ C | some property of f} ⊆ C are, as usually in
stochastics, abbreviated by {some property of f}. We keep, however, the braces
within probabilities.

Proof. If (Pn) is tight, then for η > 0 there is a compact set Kη with Pn(Kη) >
1− η, n > 1. By the Arzelà-Ascoli Theorem, for any ε > 0 we have

Kη ⊆ {|f(0)| < Rη, ωδη,ε(f) < ε}

for sufficiently large Rη > 0 and small δη,ε > 0. With η ↓ 0 we deduce

lim
R→∞

sup
n

Pn({|f(0)| > R}) = 0, lim
δ→0

sup
n→∞

Pn({ωδ(f) > ε}) = 0,

which implies (a), (b) due to lim sup 6 sup.
Conversely, given (a), (b) and η > 0 choose R > 0 with

lim sup
n→∞

Pn({|f(0)| > R}) 6 η/2

and for each k ∈ N some δk > 0 with

lim sup
n→∞

Pn({ωδk(f) > 1/k}) 6 η2−k−1.

By the other direction in the Arzelà-Ascoli Theorem, the set Kη =
{|f(0)| 6 R} ∩

⋂
k>1{ωδk(f) 6 1/k} is relatively compact and satisfies

lim supn→∞ Pn(KC
η ) 6 η/2 +

∑
k>1 η2−k−1 = η. This shows for the compact

set Kη: lim infn→∞ Pn(Kη) > 1− η. Pick n0 ∈ N such that for n > n0 we have
Pn(Kη) > 1− 2η and then some compact set Cη with Pn(Cη) > 1− 2η for the
finitely many indices n = 1, . . . , n0−1. Then infn>1 Pn(Kη∪Cη) > 1−2η holds
with the compact set Kη ∪ Cη. This shows tightness.

6.24 Lemma. A sequence (Pn)n>1 of probability measures on BC([0,T ]) is al-
ready tight if
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(a) limR→∞ lim supn Pn({|f(0)| > R}) = 0 and

(b’) for all ε > 0

lim
r→∞

lim sup
n→∞

sup
t∈[0,T−2−r]

2r Pn
({

max
s∈[t,t+2−r]

|f(s)− f(t)| > ε
})

= 0.

6.25 Remark. Tightness on BC(R+) follows if conditions (a), (b’) are satisfied
for all T > 0. The main advantage of (b’) compared to (b) is that the maximum
over t is pulled out of the probability at the cost of the additional factor 2r.

Proof. To prove (b’)⇒ (b) in Corollary 6.22, let ε, η > 0 and choose r, n0 ∈ N
with

∀n > n0, t ∈ [0, T − 2−r] : 2r Pn
({

max
s∈[t,t+2−r]

|f(s)− f(t)| > ε/2
})

6
η

2T
.

Suppose ω2−r−1(f) > ε for some f ∈ C([0, T ]). Then there are t < s 6 t+2−r−1

with |f(t) − f(s)| > ε. For k ∈ {0, . . . , d2r+1T e − 2} with k2−r−1 6 t < s 6
(k+ 2)2−r−1 this implies |f(t)− f(k2−r−1)| > ε/2 or |f(s)− f(k2−r−1)| > ε/2.
Consequently, we obtain for n > n0

Pn({ω2−r−1(f) > ε}) 6
d2r+1T e−2∑

k=0

Pn
({

max
s∈[k2−r−1,(k+2)2−r−1]

|f(s)− f(k2−r−1)| > ε/2
})

6 2r+1T2−r
η

2T
= η.

For η ↓ 0, noting the monotonicity of δ 7→ Pn({ωδ(f) > ε}), this gives condition
(b).

6.26 Theorem (Kolmogorov, Centsov 1956). Let (Xn(t), 0 6 t 6 T ), n > 1,
be continuous processes. Then their laws PXn are tight on C([0, T ]) if

(a) limR→∞ lim supn P({|Xn(0)| > R}) = 0 and

(b”) ∃α, β > 0, K > 0 ∀n > 1, s, t ∈ [0, T ] : E[|Xn(s)−Xn(t)|α] 6 K|s−t|1+β.

6.27 Remark. Condition (b”) is usually much easier to check than (b) or (b’).
In particular, for even integers α we may neglect the absolute value. Below, we
shall apply it for α = 4 and β = 1.

Observe that for Lipschitz continuous processes Xn, i.e. |Xn(s)−Xn(t)| 6
Ln|s − t| with real random variables Ln for all s, t, the Kolmogorov-Centsov
Theorem yields tightness as soon as supn>1 E[Lαn] <∞ for some α > 1 (choose
β = α− 1 in (b”)) and (a) hold.

Proof. Putting Pn = PXn , condition (a) in Lemma 6.24 is verified directly.
For notational simplicity let us consider in condition (b’) the probability
Pn({maxs∈[t,t+2−r]|f(s) − f(t)| > ε}) for t = 0 only. All arguments will re-
main valid for general t if s is replaced by s− t in the sequel.
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We apply the famous chaining argument. Consider D = {k2−m |m ∈ N, k ∈
N0} (dyadic numbers) and γ = (β− δ)/α > 0 for some δ ∈ (0, β). By Markov’s
inequality and the assumption, we obtain for c > 0

P(|Xn(k2−j)−Xn((k − 1)2−j)| > c2−γj)

6 E
[
|Xn(k2−j)−Xn((k − 1)2−j)|α

]
c−α2αγj 6 c−αK2−(1+δ)j .

For s ∈ [0, 2−r) ∩D we write s =
∑m

l=r+1 bl2
−l for some m ∈ N and bl ∈ {0, 1}.

Introducing sj =
∑j

l=r+1 bl2
−l for j 6 m, we note |sj+1 − sj | 6 2−(j+1) and

sm = s. With sr := 0 we have the telescoping sum

Xn(s)−Xn(0) =
m∑

j=r+1

(Xn(sj)−Xn(sj−1)).

If |Xn(sj)−Xn(sj−1)| < c2−γj with c = 2− 21−γ holds for all j, then |Xn(s)−
Xn(0)| < c

∑
j>r 2−γj = 2−γr follows by evaluating the geometric series. This

shows⋃
s∈[0,2−r)∩D

{
|Xn(s)−Xn(0)| > 2−γr

}
⊆

⋃
j>r+1

16k62j−r

{
|Xn(k2−j)−Xn((k−1)2−j)| > c2−γj

}
.

Using that D is dense and Xn is continuous, we conclude

P
(

max
s∈[0,2−r]

|Xn(s)−Xn(0)| > 2−γr
)
6 P

( ⋃
s∈[0,2−r)∩D

{
|Xn(s)−Xn(0)| > 2−γr

})

6
∑
j>r+1

2j−r∑
k=1

P
(
|Xn(k2−j)−Xn((k − 1)2−j)| > c2−γj

)

6
∑
j>r+1

2j−r∑
k=1

c−αK2−(1+δ)j = c−αK2−r
∑
j>r+1

2−δj = c−αK2−r
2−δ(r+1)

1− 2−δ
.

Thus, uniformly over n ∈ N and t ∈ [0, T − 2−r] we obtain

2r P
(

max
s∈[t,t+2−r]

|Xn(s)−Xn(t)| > 2−γr
)
6 c−αK(2δ − 1)−12−δr → 0

as r → ∞. By monotonicity, this convergence continues to hold if ’> 2−γr’
inside the probability is replaced by ’> ε’ for some fixed ε > 0, which yields
condition (b’) to be proved.

6.28 Remark. By the Arzelà-Ascoli Theorem for C(R+), the Kolmogorov-
Centsov Theorem extends to the case C(R+), when the conditions hold for all
T > 0, that is the moment condition is satisfied for all s, t > 0.

B Control questions
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(a) Suppose (Xn(t), t > 0) are uniformly γ-Hölder continuous in the
sense that there are deterministic α ∈ (0, 1), L > 0 such that a.s.
|Xn(t) − Xn(s)| 6 L|t − s|γ for all s, t > 0, n ∈ N. Are the laws of
(Xn(t), t > 0) tight in C(R+)?

Yes, if we assume tightness of (Xn(0))n>1, that is condition (a) of Corollary
6.22. This follows from supn ωδ(Xn) 6 Lδγ a.s. so that condition (b) of
Corollary 6.22 is satisfied.

(b) The Kolmogorov-Centsov Theorem does not hold in the case β = 0. Try to
find yourself or in the literature a counterexample.

The Poisson process N(t) of intensity λ satisfies E[|N(t)−N(s)|] = λ|t− s|.
This remains to hold for linear interpolations. We can choose linear inter-
polations Ñn(t) of N(t) in the neighbourhood of the jumps of N(t) so that
limn→∞ Ñn(t) = N(t) follows. Hence, the laws of Ñ do not converge in
C(R+) to a law of a continuous process. Tightness fails.

(c) Deduce from the proof of the Kolmogorov-Centsov Theorem that the processes
Xn must be a.s. γ-Hölder continuous with γ ∈ (0, β/α).

By a union bound the last display in the proof (line −4) implies
P(maxs,t:t6s6t+δr |Xn(s)−Xn(t)| > 2δγr )→ 0 for δr → 0. From this one can
deduce by a contradiction argument that Xn must have γ-Hölder continuous
paths.

7 Invariance principle and the empirical process

7.1 Invariance principle and Brownian motion

7.1 Definition. A process (Bt, t > 0) is called Brownian motion (Brownsche
Bewegung) if

(a) B0 = 0 and Bt ∼ N(0, t), t > 0, holds;

(b) the increments are stationary and independent: for 0 6 t0 < t1 < · · · < tm
we have

(Bt1 −Bt0 , . . . , Btm −Btm−1) ∼ N(0, diag(t1 − t0, . . . , tm − tm−1)).

(c) B has continuous sample paths.

7.2 Remark. The existence of Brownian motion is non-trivial. Without the
continuity assumption this follows from the construction of Gaussian processes
by Kolmogorov’s consistency theorem. Yet, one can show that the set of con-
tinuous paths is not even measurable with respect to the product σ-algebra.

We had seen that discrete-time processes with stationary and independent
increments are exactly given by random walks Sn =

∑n
k=1Xk with i.i.d. random

variables Xk. If we assume that the Xk are in L2 and standardised (E[Xk] = 0,
Var(Xk) = 1), we have E[Sn] = 0 and Var(aSbn) = a2bn for a, b > 0 with
bn ∈ N0. This means that we can rescale the random walk by a shrinking
factor a = n−1/2 in space to obtain Var(n−1/2Sbn) = b for all n ∈ N. Rescaling
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also time Yn(t) := n−1/2Snt, the central limit theorem then even shows Yn(t)
d−→

N(0, t) for rational numbers t > 0 and along a sequence n→∞ with nt ∈ N0.
Obviously, the Yn have still independent and stationary increments (for all t
where defined). In short, by rescaling space and time of a random walk, we zoom
away from the original and obtain processes Yn(t) which have asymptotically
the law of Brownian motion. We make this precise by using interpolations of
Yn in the sequel.

Below, we shall prove existence of Brownian motion as a by-product of the
result that laws of the interpolated Yn converge in C([0, 1]) or C(R+) towards
a limit law under which the coordinate projections form a Brownian motion.

7.3 Lemma. Suppose (Xk)k>1 are i.i.d., Xk ∈ L2, E[Xk] = 0, Var(Xk) = 1.
Consider Sn :=

∑n
k=1Xk, S0 = 0 and the rescaled, linearly interpolated random

walk

Yn(t) :=
1√
n

(
Sbntc + (nt− bntc)Xbntc+1

)
, t > 0.

Then the finite-dimensional distributions of Yn converge to those of a Brownian
motion.

Proof. Because of Yn(0) = B0 = 0 we just consider increments along 0 = t0 <
t1 < . . . < tm. We write

Yn(tj) =

j∑
i=1

Z
(n)
i +

ntj − bntjc√
n

Xbntjc+1 with Z
(n)
i =

1√
n

bntic∑
k=bnti−1c+1

Xk.

The central limit theorem yields for n→∞
√
n√

bntic − bnti−1c
Z

(n)
i

d−→ N(0, 1).

Since
√
n√

bntic−bnti−1c
→ 1√

ti−ti−1
holds, Slutsky’s Lemma and scalings of the

normal distribution imply Z
(n)
i

d−→ Z̄i ∼ N(0, ti − ti−1). Now observe that

Z
(n)
1 , . . . , Z

(n)
m are independent for each n. A consequence of weak convergence is

that then (Z
(n)
1 , . . . , Z

(n)
m )

d−→ (Z̄1, . . . , Z̄m) holds with independent Z̄1, . . . , Z̄m.
By continuous mapping, we conclude

(Z
(n)
1 , Z

(n)
1 + Z

(n)
2 , . . . , Z

(n)
1 + · · ·+ Z(n)

m )
d−→ (Z̄1, Z̄1 + Z̄2, . . . , Z̄1 + · · ·+ Z̄m)

d
= (Bt1 , Bt2 , . . . , Btm).

Let us remark that this step follows more easily by the multivariate central
limit theorem.

Finally, observe E[(
ntj−bntjc√

n
Xbntjc+1)2] 6 1

n E[X2
1 ] → 0 such that an-

other application of Slutsky’s Lemma gives (Yn(t1), Yn(t2), . . . , Yn(tm))
d−→

(Bt1 , Bt2 , . . . , Btm).
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7.4 Theorem (Invariance principle, functional CLT, Donsker 1951). Suppose
(Xk)k>1 are i.i.d., Xk ∈ L2, E[Xk] = 0, Var(Xk) = 1 and set Sn :=

∑n
k=1Xk,

S0 = 0. The rescaled, linearly interpolated random walk

Yn(t) :=
1√
n

(
Sbntc + (nt− bntc)Xbntc+1

)
, t > 0,

satisfies Yn
d−→ B with a Brownian motion (Bt, t > 0) and convergence in

distribution on (C(R+),BC(R+)). In particular, Brownian motion exists.

Proof. Here we give the proof under the additional assumption Xk ∈ L4, which
permits an application of the Kolmogorov-Centsov criterion. Due to Yn(0) =
B0 = 0 and Lemma 7.3 it suffices to check tightness via

∃K > 0 ∀ s, t > 0 : E[(Yn(t)− Yn(s))4] 6 K(t− s)2.

From tightness it follows in particular that the limit law (so-called Wiener
measure) exists on (C(R+),BC(R+)). Under this law Bt(ω) = ω(t) for ω ∈
Ω = C(R+) is clearly continuous in t and has the correct finite-dimensional
distributions such that (Bt, t > 0) forms a Brownian motion. Let us write for
t > s

Yn(t)− Yn(s) =
1√
n

(Sbntc − Sbnsc) +
nt− bntc√

n
Xbntc+1 −

ns− bnsc√
n

Xbnsc+1.

We shall use (A + B)4 6 23(A4 + B4) several times, but in general just write
Ci, i = 1, . . . for some numerical constants.

In the case t−s > 1
n we have E[(nt−bntc√

n
Xbntc+1)4] 6 n−2 E[X4

1 ] 6 C1(t−s)2

and similarly for the term in s instead of t. By the independence of (Xk) and
E[Xk] = 0 we have for L > l

E[(SL − Sl)4] =
L∑

k=l+1

E[X4
k ] + 2

∑
l+16k1<k26L

E[X2
k1 ]E[X2

k2 ]

= (L− l)E[X4
1 ] + (L− l)(L− l + 1)E[X2

1 ]2 6 C2(L− l)2.

For n(t− s) > 1 this shows

E[( 1√
n

(Sbntc − Sbnsc))4] 6 C2n
−2(bntc − bnsc)2 6 C3(t− s)2.

We conclude E[(Yn(t)− Yn(s))4] 6 C4(t− s)2 provided t− s > 1
n .

If t− s < 1
n and bntc = bnsc holds, then Yn(t)− Yn(s) =

√
n(t− s)Xbntc+1.

This gives E[(Yn(t)− Yn(s))4] 6 C5n
2(t− s)4 6 C5(t− s)2.

If t − s < 1
n and bntc = bnsc + 1 holds, then we have Yn(t) − Yn(s) =

nt−bntc√
n

Xbntc+1 + bntc−ns√
n

Xbntc. This implies

E[(Yn(t)− Yn(s))4] 6 C6

((nt− bntc)4

n2
E[X4

1 ] +
(bntc − ns)4

n2
E[X4

1 ]
)

6 C7n
−2(nt− ns)4 6 C7(t− s)2.

With K = C4 ∨ C5 ∨ C7 the Kolmogorov-Centsov criterion is satisfied.
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B Control questions

(a) Show that X(t) = a−1/2Bat, t > 0, for a Brownian motion B and a > 0 is
again a Brownian motion (scale invariance).

Obviously, X has again stationary and independent increments and X(0) = 0
holds. Since X(t) ∼ N(0, a−1at) = N(0, t) and X is again continuous, it is a
Brownian motion.

(b) Show that BT − BT−t, 0 6 t 6 T , is also again a Brownian motion on the
interval [0, T ] (time reversal).

t 7→ BT − BT−t is continuous and zero for t = 0. Its increments are BT −
BT−t1 , BT−t1−BT−t2 , . . . , BT−tm−1

−BT−tm for 0 6 t1 < · · · < tm 6 T and

hence again independent and stationary. Finally, BT − TT−t
d
= Bt ∼ N(0, t)

holds and we obtain again a Brownian motion.

(c) Show that (B1(t) +B2(t))/
√

2, t > 0, for two independent Brownian motions
B1 and B2 is again a Brownian motion. Can you check this also via random
walks and Donsker’s Theorem?

(B1(t) +B2(t))/
√

2 starts in zero, has stationary and independent increments
and is continuous. Because of E[(B1(t)+B2(t))2/2] = t we also have (B1(t)+
B2(t))/

√
2 ∼ N(0, t) and thus again a Brownian motion.

Via Donsker’s Invariance Principle one could argue that two independent inter-
polated random walks Y1,n(t), Y2,n(t) converge (by independence) jointly to
the law of two independent Brownian motions (B1(t), B2(t))t>0. On the other
hand, (Y1,n(t) + Y2,n(t))/

√
2 is also an interpolated random walk converging

to the law of some Brownian motion B(t). By continuous mapping we must

have (B1(t) +B2(t))/
√

2
d
= B(t) in C(R+).

7.5 Proposition (Reflection principle for simple random walk). Consider the
simple symmetric random walk Sn =

∑n
k=1Xk with independent random vari-

ables (Xk)k>1 and P(Xk = 1) = P(Xk = −1) = 1/2. Then its running maxi-
mum Mn = max(S1, . . . , Sn), n > 1, satisfies

P(Mn > a) = 2P(Sn > a) + P(Sn = a), a ∈ N .

7.6 Remark. It is remarkable that the law of the maximum Mn can be found
so simply and that the maximum is not so much larger. Note that by symmetry
we obtain P(Mn > a) = P(|Sn| > a) + P(Sn = a) as well.

The intuition is that after the first time τa where (Sm)m>0 reaches the level
a the random walk Sm = a + (Sm − a) between τa and n and its reflection
a − (Sm − a) have the same law. From this we derive P(Sn > a, τa < n) =
P(Sn < a, τa < n) = 1

2(P(τa < n)− P(Sn = a, τa < n)). Adding ±P(τa = n) on
the right-hand side, P(Sn > a) = P(Sn > a, τa < n) = 1

2(P(τa 6 n)−P(Sn = a))
follows. The proof is just more detailed.

Proof. Consider the stopping time τa := inf{k > 1 |Sk = a} ∧ (n + 1) so that
{Mn > a} = {τa 6 n} holds. Moreover, Sn − Si is independent of (X1, . . . , Xi)
and hence of the event {τa = i} for 1 6 i < n. By symmetry we have P(Sk >
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0) = P(Sk < 0) = 1
2(1 − P(Sk = 0)) for all k ∈ N. With S0 := 0 we obtain the

result:

P(Sn > a) = P(Sn > a, τa 6 n) =
n∑
i=1

P(Sn > a, τa = i)

=
n∑
i=1

P(Sn − Si > 0, τa = i) =
n∑
i=1

P(Sn − Si > 0)P(τa = i)

=
n∑
i=1

P(Sn−i > 0)P(τa = i) =
n∑
i=1

1
2 P(Sn−i 6= 0)P(τa = i)

=
1

2

n∑
i=1

(
1− P(Sn−i = 0)

)
P(τa = i)

=
1

2

(
P(τa 6 n)−

n∑
i=1

P(Sn = a, τa = i)
)

= 1
2 P(Mn > a)− 1

2 P(Sn = a, τa 6 n) = 1
2 P(Mn > a)− 1

2 P(Sn = a).

More abstractly, we can view (Sn) as a Markov chain and use the strong
Markov property for an alternative proof.

Let F (t, (sm)m>0) := 1(t 6 n)(1(sn−t > a) + 1
21(sn−t = a)) and note

F (τa, (Sτa+m)m>0) = 1(Sn > a) + 1
21(Sn = a)

due to Sn > a ⇒ τa 6 n. Moreover, Ea[F (t, (Sm)m>0)] = 1/2 holds for t 6 n
by the above symmetry argument. With Ex denoting the expectation when
starting in x, we use that τa is Fτa-measurable and the strong Markov property
to arrive at

P(Sn > a) + 1
2 P(Sn = a) = E0[E[F (τa, (Sτa+m)m>0) |Fτa ]]

= E0[E[F (t, (Sm)m>0 ◦ ϑτa) |Fτa ]|t=τa ]

= E0[Ea[F (t, (Sm)m>0)]|t=τa ]

= E0[1
21(τa 6 n)] = 1

2 P(Mn > a).

This is again the result.

7.7 Remark. The preceding result extends to all symmetric random walks.
Can we generalise this result to other random walks, at least approximately?
The invariance principle will allow to obtain the same formula asymptotically
for P(Mn >

√
na). Moreover, it yields the law of the running maximum of

Brownian motion.

7.8 Proposition (Reflection principle). Let (Xk)k>1 be a sequence of i.i.d.
random variables in L2 with E[Xk] = 0, E[X2

k ] = 1. Set Sn :=
∑n

k=1Xk,

M̃n := 1√
n

max16i6n Si. Then M̃n
d−→ |B1| holds with B1 ∼ N(0, 1). For the

Brownian motion B we have max06t61Bt
d
= |B1|.
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Proof. With the linear interpolations Yn from Theorem 7.4 M̃n =
max06t61 Yn(t) holds (the maximum is attained at some t = i/n and not at
the interpolated values). Since f 7→ max06t61 f(t) is continuous on C([0, 1]) (or
C(R+)), the continuous mapping device yields

M̃n
d−→ max

06t61
B(t)

for a Brownian motion B. The latter is independent of the random walk speci-
fication (that is the invariance principle) and we may in particular consider the
simple symmetric random walk.

Proposition 7.5 and Remark 7.6 state for
√
nx ∈ N

P(M̃n > x) = P(|Yn(1)| > x) + P(Yn(1) = x).

This extends to all real x > 0 because M̃n and Yn(1) only take values in
n−1/2 Z = {n−1/2k | k ∈ Z} and the probabilities do not change for x ∈
((k − 1)n−1/2, kn−1/2]. Again by continuous mapping and Donsker’s theorem,

|Yn(1)| d−→ |B(1)| follows. This implies (recall B(1) ∼ N(0, 1))

P(|Yn(1)| > x)→ P(|B(1)| > x), P(Yn(1) = x)→ P(B(1) = x) = 0.

So, P(M̃n > x) → P(|B(1)| > x) follows for all x > 0. We conclude M̃n
d−→

|B(1)| and therefore |B(1)| d= max06t61B(t).

7.2 Empirical process and Brownian bridge

7.9 Definition. For i.i.d. real-valued random variables X1, . . . , Xn with dis-
tribution function F the (random) function

Fn(x) :=
1

n

n∑
k=1

1(Xk 6 x), x ∈ R,

is called empirical distribution function (empirische Verteilungsfunktion). The
associated empirical process (empirischer Prozess) is given by

Gn(x) :=
√
n(Fn(x)− F (x)), x ∈ R .

7.10 Lemma. For x1, . . . , xm ∈ R and n→∞ we have

(Gn(x1), . . . , Gn(xm))
d−→ N(0,Σ) with Σ =

(
F (xi ∧xj)−F (xi)F (xj)

)
i,j=1,...,m

.

Proof. We have (Gn(x1), . . . , Gn(xm)) = 1√
n

∑n
k=1 Yk with i.i.d. random vec-

tors Yk = (1(Xk 6 xi)− F (xi))i=1,...,m. We obtain E[Yk] = 0 and

E[(Yk)i(Yk)j)] = E[1(Xk 6 xi)1(Xk 6 xj)]− F (xi)F (xj)

= F (xi ∧ xj)− F (xi)F (xj).

Consequently, Yk has covariance matrix Σ and the standard multivariate central
limit theorem (compare Stochastik I) yields the claim.
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7.11 Definition. The Brownian bridge (B0
t , t ∈ [0, 1]) is the centred and con-

tinuous Gaussian process with Cov(B0
s , B

0
t ) = s ∧ t− st for s, t ∈ [0, 1].

7.12 Remark. The lemma shows that the finite-dimensional distributions of
the empirical process (Gn(x), 0 6 x 6 1) in the case Xk ∼ U([0, 1]) i.i.d. and
F (x) = x converge to those of the Brownian bridge B0. The empirical process,
however, is not continuous and we shall use a continuous interpolation G̃n to
prove even functional convergence in C([0, 1]).

A continuous Brownian bridge process can be constructed as B0
t = Bt−tB1,

t ∈ [0, 1], with a Brownian motion B. To see this, it suffices to check the
covariances using Cov(Bs, Bt) = s ∧ t. One can show that a Brownian bridge
has the law of a Brownian motion on [0, 1] conditional on the event {B1 = 0}.

7.13 Theorem (Donsker Theorem for empirical processes). For independent
U([0, 1])-distributed random variables X1, . . . , Xn consider the linear interpo-
lation F̃n : [0, 1] → [0, 1] of the empirical distribution function Fn satisfying
F̃n(Xk) = Fn(Xk), k = 1, . . . , n, F̃n(0) = 0, F̃n(1) = 1.

For the interpolated empirical process G̃n =
√
n(F̃n−F ) we have convergence

to a Brownian bridge B0 in distribution on C([0, 1]): G̃n
d−→ B0.

7.14 Corollary (Kolmogorov-Smirnov). Let X1, . . . , Xn be i.i.d. random vari-
ables with continuous distribution function F . Then their empirical distribution
function Fn satisfies with a Brownian bridge B0

sup
x∈R

√
n|Fn(x)− F (x)| d−→ max

06t61
|B0

t |.

Proof. Since F is continuous, Uk = F (Xk), k = 1, . . . , n, are independent
U([0, 1])-distributed random variables and thus a.s.

Fn(x) =
1

n

n∑
k=1

1(Uk 6 F (x)) = FUn (F (x)),where FUn (t) :=
1

n

n∑
k=1

1(Uk 6 t).

Even more, the maximum of the modulus of the empirical process is the same
for (Xk) and (Uk):

sup
x∈R
|Fn(x)− F (x)| = sup

x∈R
|FUn (F (x))− F (x)| = sup

t∈[0,1]
|FUn (t)− t|.

Using ‖G̃Un −GUn ‖∞ 6 n−1/2 for the interpolated and original empirical process
of the (Uk), we thus arrive at

sup
x∈R

√
n|Fn(x)− F (x)| = sup

t∈[0,1]
|GUn (t)| = sup

t∈[0,1]
|G̃Un (t)|+O(n−1/2).

By Theorem 7.13, continuous mapping and Slutsky’s Lemma we conclude

sup
x∈R

√
n|Fn(x)− F (x)| d−→ sup

t∈[0,1]
|B0

t |.

Since B0 is continuous, the supremum is actually a maximum, as asserted.
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7.15 Remark. This is the basis of the Kolmogorov-Smirnov goodness-of-fit
test where we test the null hypothesis that the cumulative distribution function
is given by F , using the test

ϕn := 1
(

sup
x∈R

√
n|Fn(x)− F (x)| > κα

)
for some critical value κα > 0 depending on the desired level α of the test.
Usually, κα is chosen as a quantile of the law of the limit max06t61|B0

t |. The
maximum of a Brownian bridge can be shown to be described by the Kolmogorov
distribution and κα is calculated from

α = P
(

max
06t61

|B0
t | > κα

)
= 1−

∑
j∈Z

(−1)je−2j2κ2α .

Proof of Donsker’s Theorem for empirical processes. Lemma 7.10 together
with Slutsky’s Lemma due to ‖G̃n−Gn‖∞ = n−1/2 (the jumps of Gn have size
n−1/2) show that the finite-dimensional distributions of G̃n converge to those
of a Brownian bridge. We shall establish tightness via the Kolmogorov-Centsov
criterion by showing for some constant K > 0

E[(G̃n(t)− G̃n(s))4] 6 K(t− s)2, s, t ∈ [0, 1]. (7.1)

By Theorem 6.17 this yields the convergence in law in C([0, 1]). In the sequel
C1, C2, . . . denote some numerical constants.

First case: t− s > n−1. Then ‖G̃n −Gn‖∞ = n−1/2 implies

E[(G̃n(t)− G̃n(s))4] 6 C1

(
E[(Gn(s)−Gn(t))4] + n−2

)
6 C1

(
E[(Gn(s)−Gn(t))4] + (t− s)2

)
.

We can write Gn(t)−Gn(s) = n−1/2
∑n

k=1(Zk−E[Zk]) with independent Zk =
1(s < Xk 6 t) ∼ Bin(1, t− s). By expanding the fourth power of the sum and
noting that the expectation of Zk − E[Zk] vanishes, we obtain

E[(Gn(t)−Gn(s))4] =
n

n2
E[(Z1 − E[Z1])4] +

n2 − n
n2

E[(Z1 − E[Z1])2]2

6 n−1(t− s) + (t− s)2 6 2(t− s)2.

This yields (7.1) in this first case.
Second case: 0 6 t− s 6 n−1. For h = (t− s)1/2 introduce the events

Ak = {Fn(t+ h/2)− Fn(s− h/2) = k/n}, k ∈ N0 .

On A0 there is no Xk in (s− h/2, t+ h/2] and F̃n is linear there with maximal
slope n−1(t− s+ h)−1 so that

F̃n(t)− F̃n(s) 6 n−1(t− s+ h)−1(t− s) on A0.

On A1 there is exactly one sample point Xk in (s−h/2, t+h/2] and F̃n(t)−F̃n(s)
is maximal when this Xk is in the center (s+ t)/2 of the interval. This shows

F̃n(t)− F̃n(s) 6 2n−1(t− s+ h)−1(t− s) on A1.
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Generally we obtain

F̃n(t)− F̃n(s) 6
(k + 1)(t− s)
n(t− s+ h)

on Ak.

With Z := #{Xk ∈ (s−h/2, t+h/2] | k = 1, . . . , n} ∼ Bin(n, t− s+h) we thus
find

E[(F̃n(t)− F̃n(s))4] 6 E[(Z + 1)4]
(t− s)4

n4(t− s+ h)4
.

Noting E[Z(Z − 1) · · · (Z −m + 1)] = (n(n − 1) · · · (n −m + 1))(t − s + h)m,
m ∈ N, we have

E[(Z + 1)4] 6 C2(E[Z4] + 1) 6 C3

4∑
m=0

nm(t− s+ h)m 6 C4

(
n4(t− s+ h)4 + 1

)
.

Inserting also h = (t− s)1/2, we arrive at

E[(F̃n(t)− F̃n(s))4] 6 C5

(
(t− s)4 +

(t− s)2

n4

)
.

Due to F (t) − F (s) = t − s and n2 6 (t − s)−2 this yields for the empirical
process

E[(G̃n(t)− G̃n(s))4] 6 C6

(
n2(t− s)4 + n−2(t− s)2

)
6 2C6(t− s)2

and establishes (7.1) also in the second case.
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Markus Reiß

Course Stochastic Processes
Winter 2023/24
Humboldt-Universität zu Berlin

List of exam-related questions

(a) Formulate and give main steps in the proof: Chapman-Kolmogorov equa-
tion, Ulam’s Theorem, Kolmogorov’s consistency theorem, Factorisation
Lemma, existence and properties of conditional expectations, Doob de-
composition and quadratic variation, optional stopping and optional sam-
pling theorems, Wald identity, martingale inequalities, 1st martingale con-
vergence theorem, Vitali’s Theorem, 2nd martingale convergence theorem,
strong law for L2-martingales, backward martingale convergence theorem,
Radon-Nikodym theorem, Lebesgue decomposition, Kakutani’s Theorem,
strong Markov property, recurrence and transience of Markov chains, con-
dition for ergodicity of Markov chains, Birkhoff’s ergodic theorem, prop-
erties of Markov transition operator, convergence theorem for aperiodic
Markov chains, Continuous Mapping Theorem, Portmanteau Theorem,
Slutsky Lemma, Prokhorov Theorem, Kolmogorov-Centsov criterion for
weak convergence in C([0, T ]), Donsker Theorems.

(b) Which ways exist to construct a Poisson process? What is the Markov
property? Why can a stochastic process be considered as an (ST ,S ⊗T )-
valued random variable? Why is the law of a continuous process deter-
mined by its finite dimensional distributions? What are different notions
of equality for stochastic processes? How is the conditional expectation in
L2 constructed? What is the meaning of E[Y |X = x]? What is (X•M)n
for X predictable, M martingale and what are its properties? When does
E[Mτ ] = E[M0] hold for M martingale, τ stopping time? What are suf-
ficient conditions for uniform integrability? Does uniform integrability
imply tightness of the laws? How many ways do you know to prove the
classical strong law of large numbers? What are equivalent characteri-
sations for T being ergodic? What do irreducible, recurrent, transient,
aperiodic, reversible, invariant mean for a Markov chain, its states or
its initial distribution? How do we obtain a Metropolis Markov chain?
What is the relationship between tightness and compactness? What is the
implication of the Portmanteau Lemma for distribution functions of real-
valued random variables? What is the relationship between Pn

w−→ P for
laws on C([0, T ]) and convergence of the finite-dimensional distributions?
How can we prove existence of Brownian motion?
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(c) Give examples and counter-examples for: Polish spaces, (sub-/super-)
martingales, predictable processes, stopping times, uniformly integrable
random variables, absolutely continuous and singular measures, station-
ary and ergodic processes, irreducible and aperiodic Markov chains, re-
current, transient states, invariant initial distributions, weak convergence,
tight laws.

(d) Review all major examples of the lecture like Poisson process, Ehrenfest
model, simple random walk, different martingales, Gaussian processes,
etc.

(e) For each result in point (a) find examples and possibly counter-examples
where assertions do not hold. Where do the conditions in the theorems
enter in the proof?

(f) Consider again in detail the exercise problems!
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