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1 Time series

1.1 Stationary processes

Idea: A process is stationary if its law is invariant with respect to time shifts.

1.1 Examples.

• Annual rainfall,

• EUR-USD-exchange rate,

• car accidents,

• heartbeat of a healthy person.

1.2 Counterexamples.

• Tide level at Hamburg harbour,

• stock price of Siemens since 1960,

• population of ladybirds per year.

Taking out trends/cycles this might still yield stationary time series.

1.3 Definition. Let T ⊆ R with t, s ∈ T ⇒ t+ s ∈ T be a time set, mostly
T ∈ {N0, Z, R+

0 , R}. A family (Xt, t ∈ T ) of random variables on some prob-
ability space (Ω,F ,P) is a stochastic process. For T ∈ {N0, Z} we call X also
time series. X is called (strictly) stationary if

∀n ∈ N, t1, . . . , tn, t ∈ T : (Xt1 , . . . , Xtn)
d
= (Xt1+t, . . . , Xtn+t),

i.e. ∀A ∈ BRn : P((Xt1 , . . . , Xtn) ∈ A) = P((Xt1+t, . . . , Xtn+t) ∈ A).

If X is in L2, i.e. E[X2
t ] < ∞ for all t ∈ T , then X is called weakly stationary

(second order stationary) if the expectation function t 7→ µ(t) := E[Xt] is
constant and the covariance function satisfies Cov(Xu, Xs) = Cov(Xu+t, Xs+t)
for all u, s, t ∈ T . In that case t 7→ c(t) := Cov(Xs, Xs+t) (s ∈ T arbitrary) is
called autocovariance function.

1.4 Example. If (Xt)t∈T are i.i.d., then X is strictly stationary.

1.5 Lemma. We have: X is L2 and strictly stationary ⇒ X is weakly station-
ary.

Proof. Identity in law and L2-property imply identity of expectations and co-
variances.

Problem 1

(a) Find a weakly stationary process that is not strictly stationary.
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(b) Prove that for a Gaussian process both notions of stationarity are equi-
valent.

First statistical problem: Let X be a weakly stationary time series with
expectation µ = E[Xt]. Estimate µ from observations X1, . . . , Xn.
A natural approach is the empirical mean

µ̂n :=
1

n

n∑
i=1

Xi.

Note that µ̂n is a measurable function of the observations (X1, . . . , Xn) and as
such a random variable. We call µ̂n an estimator. For realisations x1, . . . , xn
of (X1, . . . , Xn), i.e. xk = Xk(ω0) for some ω0 ∈ Ω, the value (real number)
µ̂n(ω0) = 1

n

∑n
i=1 xi is called estimated value. Here, we see that µ̂n is an

unbiased (erwartungstreu) estimator of µ:

E[µ̂n] =
1

n

n∑
i=1

E[Xi]
station.

= µ.

1.6 Examples.

(a) If c(t) = 0 for t 6= 0 (Xt and Xs are uncorrelated for t 6= s), then by the
weak law of large numbers (LLN) µ̂n → µ in probability as n→∞.

(b) Take some Y ∈ L2 and set Xi := Y for all i ∈ N0. Then (Xi)i∈N0 is
weakly stationary (µ = E[Y ], c(t) = Cov(Xi, Xi+t) = Var(Y )). We see
immediately that µ̂n = Y does not converge (in probability) to µ, unless
P(Y = µ) = 1.

1.7 Proposition. If (Xt, t ∈ Z) is weakly stationary with autocovariance func-
tion c and mean µ, then we have for µ̂n := 1

n

∑n
i=1Xi:

(a) Var(µ̂n)→ 0 if lim
n→∞

c(n) = 0, in particular µ̂n → µ in probability and in

L2;

(b) nVar(µ̂n)→
∞∑

k=−∞
c(k) if

∞∑
k=−∞

|c(k)| <∞.

Proof. (a)

lim
n→∞

c(n) = 0⇒ Var(µ̂n) =
1

n2

n∑
i,j=1

c(i−j)︷ ︸︸ ︷
Cov(Xi, Xj) =

n−1∑
k=−(n−1)

n− |k|
n2

c(k)

≤ 1

n

n−1∑
k=−(n−1)

|c(k)| = 2n− 1

n

(
1

2n− 1

n−1∑
k=−(n−1)

|c(k)|
)

Césaro mean−→ 0.

E[(µ̂n − µ)2]
µ̂nunbiased

= Var(µ̂n)→ 0⇐⇒ µ̂n
L2

→ µ⇒ µ̂n
P→ µ.
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(b) ∑
k∈Z
|c(k)| <∞⇒ sup

n
(nVar(µ̂n))

by (a)

≤ sup
n

n−1∑
k=−(n−1)

|c(k)| <∞.

Dominated convergence theorem (DCT):

lim
n→∞

(nVar(µ̂n))
by (a)

= lim
n→∞

n−1∑
k=−(n−1)

(
1− |k|

n

)
︸ ︷︷ ︸

→1

c(k) =
∑
k∈Z

c(k).

1.8 Remarks. Part (a) shows in particular that µ̂n is a consistent estimator:

µ̂n
P→ µ. Part (b) shows that the rate of convergence is 1√

n
:
√
n(µ̂n − µ) is

bounded in L2 (and then also in probability).
If
∑

k∈Z |c(k)| is finite, the time series is said to have short range dependence,
otherwise it is called long range dependent.

Question: Do we even have µ̂n
a.s.→ µ? What if X is strictly stationary, but

Xt ∈ L1\L2? (cf. strong LLN)

Tool: Birkhoff’s ergodic theorem (T left shift on sequence space,
J T -ivariant σ-algebra):

µ̂n =
1

n

n∑
i=1

X ◦ T i a.s., L1

−→ E[X|J ].

If T (respectively (Xt)) is ergodic, i.e. J is trivial, then E[X|J ]
a.s.
= E[X] = µ.

Problem 2: Let (Xn, n ∈ N0) be a strictly stationary process.
Construct another strictly stationary process (X̃m, m ∈ Z) such that

(X̃m+n, n ∈ N0)
d
= (Xn, n ∈ N0) for all m ∈ Z. X̃ is the canonical extension of

X from N0 to Z.

Problem 3: Consider a weakly stationary process (Xt, t ∈ R) such that
(t, ω) 7→ Xt(ω) is BR ⊗ F -measurable (i.e. X is a measurable process).
Construct an estimator µ̂T of µ = E[Xt] based on observing (Xt, t ∈ [0, T ])
(analogous to µ̂n). Study its mean and asymptotic variance under suitable
conditions for c.

For statistical inference, e.g. confidence intervals, an (asymptotic) distribu-
tion of

√
n(µ̂n − µ) in the previous proposition would be desirable.

Conjecture:
√
n(µ̂n − µ)→ N(0,

∑
k∈Z c(k)) under suitable conditions.

Even if we had such a result, a priori we do not know the asymptotic variance∑
k∈Z c(k) and we need to estimate it. Alternative approach is a resampling/

bootstrap approach.
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1.9 Lemma. The autocovariance function c : Z → R of a weakly stationary
process (Xt, t ∈ Z) satisfies:

(a) c is symmetric: c(−k) = c(k), k ∈ Z,

(b) c(0) ≥ 0 and |c(k)| ≤ c(0),

(c) c is positive semi-definite:

∀m ∈ N, a1, . . . , am ∈ R :
m∑

i,j=1

aiajc(i− j) ≥ 0.

Proof. (a) Cov(Xs, Xt) = Cov(Xt, Xs),

(b) c(0) = Var(Xt) ≥ 0,

c(k)2 = Cov(Xk, X0)2
Cauchy-Schwarz

≤ Var(Xk) Var(X0)
station.

= c(0)2,

(c)
∑m

i,j=1 aiajc(i− j) = Var(
∑m

i=1 aiXi) ≥ 0.

1.10 Definition. The ’canonical’ estimator ĉ(k) of the autocovariance function
at lag k from observing X1, . . . , Xn, n ≥ k, is given by

ĉ(k) =
1

n

n−k∑
l=1

(Xl − µ̂n)(Xl+k − µ̂n).

Set ĉ(−k) := ĉ(k). The empirical autocovariance matrix is then

Ĉn :=


ĉ(0) ĉ(1) . . . ĉ(n− 1)
ĉ(1) ĉ(0) . . . ĉ(n− 2)

...
. . .

. . .
...

ĉ(n− 1) . . . ĉ(1) ĉ(0)

 .

Problem 4:

(a) Verify the bias-variance decomposition for an estimator ϑ̂ of ϑ ∈ R with
E[ϑ̂2] <∞:

E[(ϑ̂− ϑ)2] = (E[ϑ̂]− ϑ)2︸ ︷︷ ︸
Bias2

+ Var(ϑ̂).

(b) Let Y1, . . . , Yn
i.i.d∼ N(µ, σ2) and σ̂2

α = α
n−1

∑n
i=1(Yi − µ̂n)2,

µ̂n = 1
n

∑n
i=1 Yi, α > 0. Show that σ̂2

α is unbiased iff α = 1 and determine
α = αopt > 0 such that E[(σ̂2

α − σ2)2] is minimal. How would you choose
α in practice?

1.11 Lemma. Ĉn (or ĉ on {−n+ 1, . . . , n− 1}) is positive semi-definite:

∀a1, . . . , an ∈ R :

n∑
i,j=1

aiaj ĉ(i− j) ≥ 0.
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1.12 Remark. For this it is essential that the prefactor before the sum in ĉ(k)
does not depend on k.

Proof. Set Yi = (Xi − µ̂n)1(1≤i≤n), i ∈ Z.

n∑
i,j=1

aiaj ĉ(i− j) =
1

n

n∑
i,j=1

aiaj
∑
l∈Z

YlYl+|i−j|

=
1

n

∑
l∈Z

n∑
i,j=1

aiajYlYl+|i−j| =
1

n

∑
l′∈Z

n∑
i,j=1

aiajYl′−iYl′−j

=
1

n

∑
l′∈Z

( n∑
i=1

aiYl′−i

)2

≥ 0.

1.13 Example. If X is Gaussian and µ = 0 is known (i.e. µ̂n = µ = 0), then
E[ĉ(k)] = n−k

n c(k), nVar(ĉ(k))→
∑

l∈Z(c(l)2 + c(l + k)c(l − k)) if
(c(l))l∈Z ∈ `2 (see class notes  products of four Gaussian random variables).
 ĉ(k) has convergence rate 1√

n
as well (for k fixed).

1.2 Autoregressive and moving average processes

1.14 Definition. A weakly stationary process (εt, t ∈ Z) with mean 0 and

autocovariance function c(t) =

{
σ2, t = 0,

0, t 6= 0.
is called white noise,

εt ∼WN(0, σ2). If (εt) is even i.i.d. and (εt) ∼WN(0, σ2) we write
(εt) ∼ IID(0, σ2).

Consider discrete dynamical systems (with initial values x0, X0):

• xt = axt−1, t ∈ N  xt = atx0.

Asymptotics for large t :


a > 1 : xt →∞,
a = 1 : xt = x0,

0 < a < 1 : xt → 0,

a < 0 : similar cases.

• Xt = aXt−1 + εt, t ∈ N .
We obtain: Xt = atX0 +

∑t−1
i=0 a

iεt−i,
E[Xt] = at E[X0] ( deterministic dynamics),

Cov(Xt, Xs)
assume t≥s

= Cov(at−sXs +

t−s−1∑
i=0

aiεt−i, Xs)

= at−s Var(Xs) +
t−s−1∑
i=0

ai Cov(εt−i, Xs)
supp. ∀t: Cov(X0,εt)=0

= at−s Var(Xs).
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Moreover,

Var(Xs) = a2s Var(X0) + σ2
s−1∑
i=0

a2i a6=±1
= a2s Var(X0) + σ2a

2s − 1

a2 − 1
.

Asymptotics:

I |a| > 1: If E[X0] > 0, then E[Xt] → +∞ or −∞ for a > 1, a < −1
geometrically fast; Var(Xt)→∞ holds as well. After normalisation,
however, we have that E[Xtat ], Var

(
Xt
at

)
remain bounded (but usually

do not tend to zero)  unstable behaviour.

II a = ±1: a = 1: random walk, usually lim supt→∞Xt = +∞,
lim inft→∞Xt = −∞. a = −1: alternating random walk-type pro-
cess with similar asymptotic properties.

III |a| < 1: E[Xt]→ 0, Var(Xt)→ σ2

1−a2 (independent of X0).

Correlation for |a| < 1:

Corr(Xt, Xs)
t≥s
=

at−s Var(Xs)√
Var(Xs) Var(Xt)

for large t, s
≈ at−s.

More precisely: lims→∞Corr(Xs+m, Xs) = am. This means that for large
m Xs and Xs+m are nearly uncorrelated. The time series ’forgets the
initial condition’ as t→∞.

1.15 Definition. For white noise (εt) ∼ WN(0, σ2), p, q ∈ N;
ϕ1, . . . , ϕp, ϑ1, . . . , ϑq ∈ R and random variables X0, . . . , X−p+1 which are un-
correlated to (εt)

Xt = ϕ1Xt−1 + · · ·+ ϕpXt−p + εt + ϑ1εt−1 + · · ·+ ϑqεt−q, t ∈ N

defines an autoregressive-moving average process, ARMA(p, q)-process for
short.
With polynomials ϕ(z) := 1 − ϕ1z − · · · − ϕpzp, ϑ(z) := 1 + ϑ1z + · · · + ϑqz

q

and the backward shift operator BXt := Xt−1 (B2Xt = Xt−2, B0Xt = Xt etc.)

we obtain more concisely ϕ(B)Xt
(∗)
= ϑ(B)εt, t ∈ N.

Any process (Xt, t ∈ Z) solving (∗) is called an ARMA(p, q)-process on Z.
If ϑ(z) = 1, then X is called autoregressive process or AR(p)-process. If
ϕ(z) = 1, then X is called moving average process or MA(q)-process.

Problem 5: Consider the deterministic dynamics for xt ∈ C with ϕ(B)xt = 0.
Show that xt = at is a solution (for suitable initial values) if a−1 is a zero of
ϕ. Conclude that in the case where ϕ has p distinct zeroes, any solution can
be written as xt =

∑p
j=1 cja

t
j with c1, . . . , cp ∈ C and a−1

1 , . . . , a−1
p zeroes of ϕ.

What happens in the case of multiple zeroes?
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Problem 6:

(a) Let xt(x0, . . . , x−p+1) be the solution of ϕ(B)xt = 0, t ≥ 1, with initial
values x0, . . . x−p+1. Prove that the AR(p)-processX satisfies the variation
of constants formula

Xt = xt(X0, . . . , X−p+1) +
t∑

j=1

xt−j(1, 0, 0, . . . , 0)︸ ︷︷ ︸
’fundamental solution’

εj .

(b) Determine the solution and its expectation as well as its covariance func-
tion explicitly for the stochastic Fibonacci dynamics:

Xt = Xt−1 +Xt−2 + εt, X0 = X−1 = 1.

(c) Give an example of an AR(2)-process that admits a weakly stationary
solution.

1.16 Lemma. The AR(1)-process on Z (Xt, t ∈ Z) Xt = aXt−1 + εt, t ∈ Z,
has a weakly stationary solution if |a| 6= 1, For a ∈ (−1, 1) this solution has the
representation Xt =

∑∞
i=0 a

iεt−i, for |a| > 1 it has the representation
Xt = −

∑∞
i=1 a

−iεt+i.

Proof. The case |a| < 1 follows immediately from the formulas above when
inserting X0 =

∑∞
i=0 a

iε−i, cf. also the more general example from the class.
The case |a| > 1: note that

∑∞
i=1 a

−iεt+i is well-defined as a limit in L2 since∑
i≥1 a

−2i <∞. We then have aXt−1 = −
∑∞

i=1 a
1−iεt−1+i = −εt +Xt

⇒ X is AR(1)-process. Weak stationarity is checked by calculating expectation,
covariance function as for |a| < 1.

1.17 Definition. A weakly stationary ARMA(p, q)-process is called causal if
there is (ψi) ∈ `1 such that Xt =

∑∞
i=0 ψiεt−i, t ∈ Z. The latter is called an

infinite moving average representation (or MA(∞)).

1.18 Remarks.

(a) For the AR(1)-process above X is causal if |a| < 1 and not causal for
|a| > 1.

(b) Compare with the concept of adaptedness for stochastic processes.

Problem 7: Show that there is a weakly stationary solution of an MA(q)-
process. Discuss its expectation and autocovariance functions and simulate
some examples.

We are now prepared for the main theorem on causal ARMA(p, q)-processes.

First, we need some basic power series calculus for the backward shift operator
B.
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1.19 Lemma. If (Xt, t ∈ Z) is a process bounded in L1 (i.e. supt E[|Xt|] <∞)
and (aj)j∈Z in `1 then the series

a(B)Xt =
∑
j∈Z

ajB
jXt =

∑
j∈Z

ajXt−j

converges absolutely with probability one (=a.s.). If X is bounded in L2, then
the series is bounded in L2 and converges in L2 to the same limit.

Proof. By Tonelli theorem:

E[
∑
j∈Z
|aj ||Xt−j |] =

∑
j∈Z
|aj |E[|Xt−j |] ≤ ‖(aj)‖`1 sup

t
E[|Xt|] <∞.

It follows that P(
∑

j∈Z |aj ||Xt−j | < ∞) = 1 and the series converges a.s. abso-
lutely.
If X is L2-bounded, then for n > m > 0

E[
( ∑
m<|j|≤n

ajXt−j
)2

] =
∑

m<|j|,|k|≤n

ajak E[Xt−jXt−k]︸ ︷︷ ︸
C.-S.
≤ (E[X2

t−j ]E[X2
t−k])1/2

≤
( ∑
m<|j|≤n

|aj |
)2

︸ ︷︷ ︸
(aj)∈`1

sup
t

E[X2
t ]︸ ︷︷ ︸

<∞

m,n→∞−→ 0

Hence, the sum forms a Cauchy sequence in L2 and thus converges in L2, which
must be the same limit.

1.20 Lemma. If X is weakly stationary with autocovariance function cX and if
(aj) ∈ `1, then Yt = a(B)Xt =

∑
j∈Z ajXt−j , t ∈ Z, is again weakly stationary

with autocovariance function

cY (t) =
∑
j,k∈Z

ajakcX(t− j + k).

Proof. Y is well-defined by the preceding lemma noting

E[X2
t ] = E[Xt]

2 + Var(Xt) = µ2
X + cX(0) <∞.

Hence,

E[Yt]
L2-conv.

= lim
n→∞

E[
n∑

j=−n
ajXt−j ] = lim

n→∞

n∑
j=−n

ajµX

= µX

∞∑
j=−∞

aj =: µY (independent of t),

E[YtYs]
L2-conv.

= lim
n→∞

E[(

n∑
j=−n

ajXt−j)(
n∑

k=−n
akXs−k)]

= lim
n→∞

∑
−n≤j,k≤n

ajak E[Xt−jXs−k]︸ ︷︷ ︸
cX(t−j−s+k)+µ2

X

=
( ∑
j,k∈Z

ajakcX(t− s− j + k)
)

+ µ2
Y .
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It is finite: ∑
j,k∈Z

∣∣∣ajakcX(t− s− j + k)
∣∣∣ ≤ cX(0)‖a‖2`1 <∞

and depends on (t, s) only via (t− s).
Consequently, Y is weakly stationary and cY is as asserted.

1.21 Remark. The lemma justifies the formal convolution algebra calculations
for (aj), (bj) ∈ `1:

a(B)b(B)Xt = c(B)Xt

with c(z) =
∑∞

j=0 cjz
j , cj =

∑
k∈Z akbj−k (c = a ∗ b = b ∗ a) for X L2-bounded.

1.22 Theorem. Let X be a weakly stationary ARMA(p, q)-process on Z with
no common zeroes of ϕ and ϑ on {z ∈ C ||z| ≤ 1}. Then X is causal if and
only if ϕ(z) 6= 0 for z ∈ C with |z| ≤ 1. In that case Xt =

∑∞
j=0 ψjεt−j holds

where ψ(z) :=
∑∞

j=0 ψjz
j = ϑ(z)

ϕ(z) for |z| ≤ 1. In particular, such a process X is
unique.

1.23 Remark. Note that ϕ(z) 6= 0 for z ∈ C with |z| ≤ 1 implies that all
solutions of the deterministic equation ϕ(B)xt = 0 are asymptotically stable,
i.e. limt→∞ xt = 0 (use Problem 5).

1.24 Corollary. Suppose ϕ(z) 6= 0 for z ∈ C with |z| ≤ 1 and define (for white
noise (εj)j∈Z ∼ WN(0, σ2)) Xk :=

∑∞
j=0 ψjεk−j for k = 0, . . . ,−p + 1 and

with ψ(z) = ϑ(z)
ϕ(z) . Then the ARMA(p, q)-process ϕ(B)Xt = ϑ(B)εt, t ≥ 1, with

initial values X0, . . . , X−p+1 is weakly stationary on N (or N∪{0, . . . ,−p+ 1})
with µ = 0, c(t) =

∑∞
j=0 ψjψt+j.

1.25 Remark. Often, e.g. in the Gaussian case, X0, X−1, . . . , X−p+1 can be
constructed explicitly without simulating all (εj)j≤0.

Proof of Corollary. Clear from Theorem.

Proof of Theorem.

’⇐’ Suppose ϕ(z) 6= 0 for |z| ≤ 1. Since ϕ has only finitely many zeroes, there
is an ε > 0 such that 1

ϕ(z) =
∑∞

j=0 ξjz
j = ξ(z) holds for |z| ≤ 1 + ε ( 1

ϕ is

holomorphic there).
This implies

∑∞
j=0 |ξj |(1 + ε

2)j <∞ ⇒ (ξj) ∈ `1.
By the previous lemma,

Xt = (ξϕ)︸︷︷︸
=1

(B)Xt = ξ(B)(ϑ(B)εt) = ψ(B)εt

with ψ(z) = ξ(z)ϑ(z) = ϑ(z)
ϕ(z) for |z| ≤ 1.

(εt) weakly stat.
=⇒ X is causal since ψ is holomorphic, (ψj) ∈ `1.
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’⇒’ Suppose X is causal, Xt =
∑∞

j=0 ψjεt−j for some (ψj) ∈ `1. Then

ϑ(B)εt = ϕ(B)Xt = ϕ(B)ψ(B)εt.

Since (εt) ∼WN(0, σ2), we have for s ≤ t

E[ (ϑ(B)εt)︸ ︷︷ ︸
=
∑
ϑkεt−k

εs] = σ2ϑt−s, E[(ϕψ)(B)εtεs] = σ2at−s

for a(z) = (ϕψ)(z) =
∑
ajz

j .
σ 6=0⇒ ϑt−s = at−s ⇒ ϑ(z) = a(z) = ϕ(z)ψ(z), |z| ≤ 1.
Since ϑ and ϕ do not have common zeroes on the unit disk, we cannot
have ϕ(z) = 0 for some |z| ≤ 1 (otherwise ϑ(z) = 0 follows by finiteness
of ψ on unit disk).

Statistical problem: Prediction/Forecasting
Focus on AR(p)-process Xt+1 = ϕ1Xt + · · · + ϕpXt−p+1 + εt+1 (t ∈ Z) and
observations X0, . . . , Xt (t ≥ p).

X̂t+1 = ϕ1Xt + · · ·+ ϕpXt−p+1 + E[εt+1]︸ ︷︷ ︸
=0

is the best linear predictor of Xt+1 based on X0, . . . , Xt:
E[(X̂t+1 −Xt+1)2|X0, . . . , Xt] is minimal for this choice (it equals σ2).
Best nonlinear predictor (in general):

X̂t+1 = E[Xt+1|X0, . . . , Xt].

They coincide if (εt) ∼ IID(0, σ2) (and X0, . . . , X−p+1 independent of (εt)t≥0).
In practice, we have to estimate ϕ1, . . . , ϕp.

Problem 8: See class notes.

Problem 9:

(a) Prove the optimality of X̂t+1 formally.

(b) What is the optimal k-step linear predictor X̂t+k?

(c) Show that X̂t+1 is also the best linear predictor of Xt+1 based on
Xt, . . . , Xt−p+1 for any weakly stationary process (not necessarily AR(p))
when ϕ1, . . . , ϕp solve Cpϕ = cp (see notation below).

1.3 The Yule-Walker estimator and a CLT for martingale dif-
ferences

Here we focus on causal (weakly stationary) AR(p)-processes on Z with

Xt = ϕ1Xt−1 + · · ·+ ϕpXt−p + εt, t ∈ Z, (εt) ∼WN(0, σ2).

Ansatz: Moment estimation method

10



1st moments: X has zero mean  no information on ϕk.

2nd moments: X has autocovariance function

c(k) = Cov(Xt, Xt−k) = Cov(ϕ1Xt−1 + · · ·+ ϕpXt−p + εt, Xt−k)

= ϕ1c(k − 1) + · · ·+ ϕpc(k − p) for k ≥ 1 and

c(0) = Cov(Xt, Xt) = Cov(ϕ1Xt−1 + · · ·+ ϕpXt−p + εt, Xt)

= ϕ1c(−1) + · · ·+ ϕpc(−p) + σ2

Hence, the autocovariance function satisfies a linear recurrence equation
and is uniquely determined by its initial values c(0), . . . , c(p−1), σ2, given
ϕ1, . . . , ϕp.

We can identify ϕ1, . . . , ϕp from p recurrence equations: (use c(−k) = c(k))

c(1) = ϕ1c(0) + · · ·+ ϕpc(p− 1)

...

c(p) = ϕ1c(p− 1) + · · ·+ ϕpc(0)

⇒ cp = Cpϕ

with cp = (c(1), . . . , c(p))T , Cp = (c(i− j))1≤i, j≤p, ϕ = (ϕ1, . . . , ϕp)
T .

If Cp ∈ Rp×p is positive definite (i.e. non-singular), then ϕ can be identified
from Cp, cp: ϕ = C−1

p cp.

Empirical version: Define ϕ̂ = (ϕ̂1, . . . , ϕ̂p)
T via Ĉpϕ̂ = ĉp with empirical

autocovariance ĉ(k) = 1
n

∑n−k
i=1 XiXi+k (knowing that E[Xt] = 0).

1.26 Definition. This ϕ̂ is called Yule-Walker estimator.

What about σ2?
The recurrence for k = 0 yields σ2 = c(0)− 〈ϕ, cp〉Rp
 standard estimator: σ̂2 = ĉ(0)− 〈ϕ̂, ĉp〉Rp .

1.27 Example (AR(1)).

ϕ̂1 = Ĉ−1
1 c1 =

∑n−1
i=1 XiXi+1∑n

i=1X
2
i

X is AR(1)
=

∑n−1
i=1 Xi(ϕ1Xi + εi+1)∑n

i=1X
2
i

= ϕ1

∑n−1
i=1 X

2
i∑n

i=1X
2
i

+

∑n−1
i=1 Xiεi+1∑n
i=1X

2
i

.

Look at ϕ∗1 ≈ ϕ̂1:

ϕ∗1 =

∑n−1
i=1 XiXi+1∑n−1
i=1 X

2
i

= ϕ1 +

∑n−1
i=1 Xiεi+1∑n−1
i=1 X

2
i

.

If (εi) ∼ IID(0, σ2) and X causal ( εi+1 independent of Xi, Xi−1, . . . ,
εi, εi−1, . . . ),

ϕ∗1 = ϕ1 +
Mn

σ−2〈M〉n
,

11



where Mn =
∑n

i=2Xi−1εi, n ≥ 2, is an L2-martingale w.r.t. Fn = σ(εk, k ≤
n) (causality: Xk is Fk-measurable) and 〈M〉n =

∑n
i=2 E[(Mi −Mi−1)2|Fi−1]

where M0 = M1 = 0.

In Stochastics II: If 〈M〉n → ∞ a.s., then Mn
〈M〉αn

a.s.→ 0 for L2-martingales

(Mn) with E[Mn] = 0 and α > 1
2 .

We want to prove:

1.28 Theorem. Let X be a causal (weakly stationary) AR(p)-process with
(εt) ∼ IID(0, σ2). Then the Yule-Walker estimator ϕ̂(n) satisfies

√
n(ϕ̂(n) − ϕ)

d→ N(0, σ2C−1
p ),

Cp = (c(i− j))i, j=1,...,p.

1.29 Remark (CLT for Yule-Walker). If the order p is not known and we

estimate, assuming an AR(m)-process with m > p, then the coefficients ϕ̂
(n)
k ,

k = p + 1, . . . ,m, of ϕ̂(n) satisfy each
√
nϕ̂

(n)
k → N(0, σ2) and we can provide

an asymptotic level-α test for the hypothesis H0 that ϕk = 0 (using σ̂2 from
above and Slutsky’s Lemma):

P
(
|ϕ̂(n)
k | ≥

cασ̂√
n

)
→ α

if cα > 0 is chosen such that P (|Z| ≥ cα) = α for Z ∼ N(0, 1).

The fact that σ2 is the asymptotic variance of
√
nϕ̂

(n)
k follows from

(C−1
m )k, k = σ2 in the case m ≥ k > p, for this see Brockwell/Davies.

Other approaches to select the ’right’ order of the AR-process are based on
model selection criteria like AIC, BIC.

CLT for martingale differences
 recall standard CLT: (ξi)i≥1 i.i.d., E[ξi] = 0, ξi ∈ L2, Sn =

∑n
i=1 ξi ⇒

Sn
Var(Sn)1/2

d→ N(0, 1).

Questions

• What if (ξi) are not identically distributed?
→ Lindeberg CLT.

• What if (ξi) are uncorrelated?
→ no CLT: Y , (εi)i≥1 are independent random variables, E[Y ] = 0,
E[Y 2] = 1, εi ∼ N(0, 1), ξi = Y εi
 Sn

Var(Sn)1/2
= Y ε(n), ε(n) = 1√

n
(ε1 + · · ·+ εn) ∼ N(0, 1).

For arbitrary Y this is not Gaussian N(0, 1).

But: CLT holds if ξi are martingale differences:

ξi = Mi −Mi−1, E[Mi] = 0  E[ξiξj ]
i 6=j
= 0.

12



1.30 Definition. (ξi)i≥1 are called martingale differences w.r.t. (Fi)i≥1 if

• (Fi)i≥1 is a filtration, F0 = {∅,Ω},

• ξi is Fi-measurable, i ≥ 1,

• ξi ∈ L2, E[ξi|Fi−1] = 0, i ≥ 1.

The triangular array

ξ
(1)
1

ξ
(2)
1 ξ

(2)
2

...
. . .

ξ
(k)
1 . . . ξ

(k)
k

...
. . .

where (ξ
(n)
i )i=1,...,n are martingale differences w.r.t. (F

(n)
i )i=0,...,n for each n ∈ N

is called a martingale difference scheme (MDS). We set

(σ
(n)
i )2 = E[(ξ

(n)
i )2|Fi−1],

V 2
n, i =

i∑
j=1

(σ
(n)
j )2, 1 ≤ i ≤ n, V 2

n = V 2
n,n.

We say that (ξ
(n)
i )i, n satisfies the conditional Lindeberg condition if

n∑
i=1

E
[
(ξ

(n)
i )21

(|ξ(n)
i |>δ)

|F (n)
i−1

]
P→ 0 for all δ > 0.

Problem 10: The conditional Lindeberg condition implies max
1≤i≤n

σ
(n)
i

P→ 0

(’conditional Feller condition’).

1.31 Lemma. Q(x) = eix−1−ix+x2/2
x2/2

with Q(0) = 0, M(x) = x
3 ∧ 2,

N(x) = e−x − 1 + x satisfy for all x ∈ R:

|1−Q(x)| ≤ 1, |Q(x)| ≤M(|x|), |N(|x|)| ≤ x2

2 .

Proof. By hand.

1.32 Lemma. Let (ξn), (ηn) be random variables with ηn 6= 0 a.s. Suppose ϕ
is a characteristic function and λ0 ∈ R with ϕ(λ0) 6= 0. If

(a) limn→∞ E[η−1
n eiλ0ξn − 1] = 0,

(b) limn→∞ E[|η−1
n − ϕ(λ0)−1|] = 0,

then ϕξn(λ0) = E[eiλ0ξn ]→ ϕ(λ0) holds.

13



Proof.

|ϕξn(λ0)− ϕ(λ0)| = |ϕ(λ0)||E[eiλ0ξnϕ(λ0)−1 − 1]|
≤ ϕ(λ0) (|E[eiλ0ξnϕ(λ0)−1 − eiλ0ξnη−1

n ]|︸ ︷︷ ︸
≤E[|ϕ(λ0)−1−η−1

n |]

+ |E[eiλ0ξnη−1
n − 1]|︸ ︷︷ ︸

=|E[η−1
n −e−iλ0ξn ]|

)→ 0.

1.33 Theorem. Let ξ
(n)
i be a martingale difference scheme such that Vn

P→ 1
(’norming’) and the conditional Lindeberg condition are satisfied. Then

Sn =

n∑
i=1

ξ
(n)
i

d→ N(0, 1).

Proof.

1. Truncation:

Put η
(n)
j := ξ

(n)
j 1(V 2

n, j≤c)
for some c > 1, Tn =

∑n
i=1 η

(n)
i .

We shall show:

(i) Sn − Tn
P→ 0,

(ii) (η
(n)
i ,F

(n)
i ) is an MDS satisfying ’norming’, ’conditional Lindeberg’

and P(W 2
n ≤ c) = 1, where

W 2
n =

n∑
i=1

E[(η
(n)
i )2|F (n)

i−1].

Because of (i) it suffices to prove Tn
d→ N(0, 1) (Slutsky Lemma), i.e.

ϕTn(u)→ e−u
2/2 for all u ∈ R.

2. Prove (i):

Write T
(n)
i =

∑i
j=1 η

(n)
j , W 2

i, n =
∑i

j=1 E[(η
(n)
j )2|F (n)

j−1].

P(∀j = 1, . . . , n :ξ
(n)
j = η

(n)
j ) ≥ P(∀j = 1, . . . , n : V 2

j, n ≤ c)

≥ 1− P(|V 2
n − 1| > c− 1)

’norming’−→ 1− 0 = 1.

⇒ for ε > 0: P(|Sn − Tn| > ε) ≤ P(∃j = 1, . . . , n : ξ
(n)
j 6= η

(n)
j )→ 0

⇒ Sn − Tn
P→ 0.

3. Prove (ii):
MDS:

E[η
(n)
i |F

(n)
i−1]

V 2
n, i is F

(n)
i−1-mb.

= 1(V 2
n, i≤c)

E[ξ
(n)
i |F

(n)
i−1] = 0. (∗)
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’Conditional Lindeberg’ follows directly from |η(n)
i | ≤ |ξ

(n)
i |.

’Norming’:

|W 2
n−V 2

n | = |
n∑
j=1

E[(η
(n)
j )2−(ξ

(n)
j )2|F (n)

j−1]| ≤ V 2
n︸︷︷︸

P→1

1
(∃j=1,...,n:ξ

(n)
j 6=η

(n)
j )︸ ︷︷ ︸

P→0

P→ 0.

⇒ W 2
n → 1.

W 2
n =

n∑
j=1

E[(ξ
(n)
j )21(V 2

j, n≤c)
|F (n)

j−1]
a.s.
=

n∑
j=1

(σ
(n)
j )21(V 2

j, n≤c)
by def.
≤ c (a.s.)

4. CLT for Tn:

Apply the 2nd lemma above with ϕ(λ) = e−λ
2/2, ξn = Tn, ηn = e−λ

2W2
n/2.

To conclude Tn
d→ N(0, 1), we have to show

(a) E[eiλTn+λ2W2
n/2 − 1]→ 0 for all λ ∈ R,

(b) E[|eλ
2W2

n/2 − eλ
2/2|]→ 0 for all λ ∈ R.

Part (b) follows immediately from Wn
P→ 1, the continuity of x 7→ eλx

2/2

(continuous mapping theorem) and the fact that 0 ≤W 2
n ≤ c a.s. (DCT).

5. Prove (a):
Let WLOG λ 6= 0, 1 ≤ k ≤ n, set

ζ
(n)
k = eiλT

(n)
k−1+ 1

2
λ2W 2

n, k (eiλη
(n)
k − e−

1
2
λ2(τ

(n)
k )2

),

T
(n)
0 = η

(n)
0 := 0, (τ

(n)
k )2 := E

[
(η

(n)
k )2

∣∣∣F (n)
k−1

]
. Then

n∑
k=1

ζ
(n)
k = eiλTn+ 1

2
λ2W 2

n − 1 (telescoping sum).

⇒
∣∣∣E [ζ(n)

k

∣∣∣F (n)
k−1

]∣∣∣ N,Q from lemma,
=
(∗)

∣∣∣eiλT (n)
k−1+ 1

2
λ2W 2

n, k

∣∣∣
·
∣∣∣E [1

2
λ2(η

(n)
k )2Q(λη

(n)
k )
∣∣∣F (n)

k−1

]
−N

(1

2
λ2(τ

(n)
k )2

)∣∣∣
≤ e

1
2
λ2c
(
E
[1

2
λ2(η

(n)
k )2M(|λη(n)

k |)
∣∣∣F (n)

k−1

]
+

1

2

(1

2
λ2(τ

(n)
k )2)2

)

⇒|E[eiλTn+ 1
2
λ2W 2

n − 1]| ≤
n∑
k=1

E[|E[ζ
(n)
k |F

(n)
k−1]|]

≤ 1

2
λ2e

1
2
λ2c
( n∑
k=1

E[(η
(n)
k )2M(|λη(n)

k |)] +
1

4
λ2cE[ max

j=1,...,n
(τ

(n)
j )2]

)
.
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Problem 10 implies that max
j=1,...,n

(τ
(n)
j )2 P→ 0. Moreover, τ

(n)
j ≤ c such that

2nd term → 0.
By conditional Lindeberg for any δ > 0:

n∑
k=1

E[(η
(n)
k )2M(|λη(n)

k |)]

≤
n∑
k=1

(
2E[E[(η

(n)
k )21

(|η(n)
k |>δ)

|F (n)
k−1]]︸ ︷︷ ︸∑

(... )
cond. Lind., DCT→ 0

+
δ|λ|

3
E[(η

(n)
k )2]︸ ︷︷ ︸∑

(... )
’norming’→ δ|λ|

3

)
.

Since this is true for all δ > 0, we conclude (a).

Problem 11: Show that the conditional Lyapunov condition

∃ε > 0 :

n∑
j=1

E
[
|ξ(n)
j |

2+ε
∣∣∣F (n)

j−1

]
P→ 0

implies ’conditional Lindeberg’.

Problem 12:

(a) Let (Mn) be an L2-martingale, (sn) be deterministic such that 〈M〉n
s2n

P→ 1

and
n∑
i=1

E
[∣∣Mi −Mi−1

sn

∣∣21
(
∣∣Mi−Mi−1

sn

∣∣>δ)∣∣∣Fi−1

]
P→ 0.

Then Mn
sn

d→ N(0, 1). (Show that sn →∞.)

Do we then also have Mn

〈M〉
1/2
n

d→ N(0, 1)?

(b) Formulate and prove by Cramér-Wold device a multivariate MDS-CLT.

(c) Give counterexamples of L2-martingales where (a) does not hold.

Proof (CLT for Yule-Walker).

1. AR(p)-process: Xt = ϕ1Xt−1 + · · ·+ ϕpXt−p + εt, (εt) ∼ IID(0, σ2).
Rewrite it in ’regression language’ as Y = Xϕ+ε with Y = (X1, . . . , Xn)T ,
design matrix

X =


X0 X−1 . . . X1−p
X1 X0 X2−p
...

. . .
...

Xn−1 Xn−2 . . . Xn−p

 ∈ Rn×p,

16



ε = (ε1, . . . , εn)T .
Standard Least-Squares estimator:

ϕ∗n = (XTX)−1XTY.

1

n
(XTX)i, j =

1

n

n∑
k=1

Xk−iXk−j ≈ ĉ(i− j) = (Ĉp)i, j ,

1

n
(XTY )i =

1

n

n∑
k=1

Xk−iXk ≈ ĉ(i), i, j = 1, . . . p.

This means: ϕ∗n ≈ ϕ̂(n), Yule-Walker.
We have ϕ∗n = ϕ+ (XTX)−1XT ε.

2. We have ϕ∗n − ϕ̂(n) = oP(n−1/2) (i.e. n1/2(ϕ∗n − ϕ̂(n))
P→ 0)

1

n
XTY − ĉp =

1

n
(

n∑
k=1

Xk−iXk −
n−i∑
k=1

XkXk+i)i =
1

n
(

i∑
k=1

Xk−iXk︸ ︷︷ ︸
≤p summands

)i.

Weak stationarity implies that

E[‖ 1

n
XTY − ĉp‖] ≤

c· p
n

for some c > 0

⇒ ‖ 1

n
XTY − ĉp‖ = OL1

( 1

n

)
⇒
√
n‖ 1

n
XTY − ĉp‖

P→ 0, i.e. ‖ 1

n
XTY − ĉp‖ = oP(n−

1/2).

Similarly,

1

n
XTX − Ĉp =

1

n
(

n∑
k=1

Xk−iXk−j −
n−|i−j|∑
k=1

XkXk+|i−j|)i, j

= OL1(n−1) = oP(n−
1/2).

Use continuous mapping theorem to conclude that ϕ∗n− ϕ̂(n) = oP(n−1/2).
We note for ϕ∗n − ϕ = (XTX)−1XT ε that

M (i)
n := (XT ε)i = X1−iε1 + · · ·+Xn−iεn (i = 1, . . . , p)

is a martingale in n w.r.t. Fn = σ(ε1, . . . , εn, X0, . . . , X−p+1):

• Xk ∈ L2, (εi) ∈ L2 ⇒ M
(i)
n ∈ L1

(M
(i)
n is even in L2: E[(Xk−iεk)

2]
indep.

= E[X2
k−i]E[ε2

k] <∞),

• E[M
(i)
n |Fn−1] = X1−iε1 + · · ·+Xn−1−iεn−1 + E[εn|Fn−1]︸ ︷︷ ︸

=E[εn]=0

= M
(i)
n−1
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with quadratic variation

〈M (i)〉n =
n∑
k=1

E[(M
(i)
k −M

(i)
k−1)2|Fk−1] = σ2

n∑
k=1

X2
k−i = σ2(XTX)i, i.

Now, Mn = (M
(1)
n , . . . ,M

(p)
n )T is a vector-valued martingale. Its quadratic

covariation matrix 〈M〉n ∈ Rp×p satisfies

〈M〉n =
n∑
k=1

E[(Mk −Mk−1)(Mk −Mk−1)T |Fk−1] = σ2(XTX).

Hence, ϕ∗n − ϕ = σ2〈M〉−1
n Mn.

From the chapter on autocovariances we know that ĉ(k)
P→ c(k) (empirical

covariances are consistent) if (c(k))k∈Z decays sufficiently. Here c(k) even
decays with geometric rate in k such that this holds (since X is causal).

This means Ĉp
P→ Cp and thus

1

n
XTX = Ĉp + (

1

n
XTX − Ĉp)︸ ︷︷ ︸

P→0

P→ Cp.

We define the following martingale difference scheme:

ξ
(n)
i := (n·σ2·Cp)−

1/2(Mi −Mi−1) ∈ Rp, 1 ≤ i ≤ n.

It has conditional covariance matrix

Vn = Vn, n = (nσ2Cp)
−1 〈M〉n︸ ︷︷ ︸

σ2XTX

P→ Ep = diag(1, . . . , 1) ∈ Rp×p

such that the norming condition is satisfied.
Check the conditional Lindeberg condition

n∑
i=1

E[‖(nσ2Cp)
−1/2(Mi −Mi−1)‖21(‖(nσ2Cp)−1/2(Mi−Mi−1)‖>δ)|Fi−1]

P→ 0.

We even have L1-convergence because of

n∑
i=1

E[‖(nσ2Cp)
−1/2(Mi −Mi−1)‖21(‖(nσ2Cp)−1/2(Mi−Mi−1)‖>δ)]

X stat.
= E[‖(σ2Cp)

−1/2(M1 −M0)‖2︸ ︷︷ ︸
E[... ]<∞

1(‖(σ2Cp)−1/2(M1−M0)‖>δ
√
n)︸ ︷︷ ︸

→0 and ≤1

]
DCT→ 0.

Hence, we can apply a vector version of the CLT for MDS. It yields

(nσ2Cp)
−1/2Mn

d→ N(0, Ep).

18



We write

σ−2(ϕ∗n − ϕ) = 〈M〉−1
n Mn = 〈M〉−1

n (nσ2Cp)︸ ︷︷ ︸
P→Ep

(nσ2Cp)
−1Mn

Then by Slutsky’s lemma

⇒ σ−2(nσ2Cp)
1/2(ϕ∗n − ϕ)

d→ N(0, Ep)

⇒ n
1/2(ϕ∗n − ϕ)

d→ N(0, σ4(σ2Cp)
−1) = N(0, σ2C−1

p ).

3. Fine point: Cp is non-singular, i.e. Cp > 0. For a ∈ Rp:

〈Cpa, a〉 =

p∑
k, l=1

c(k − l)akal = Var(

p∑
k=1

akXk)

X is AR(p)
= Var(

p−1∑
k=1

akXk + ap(ϕ1Xp−1 + · · ·+ ϕpX0 + εp))

ε indep. of Xk, k<p= Var(

p−1∑
k=1

akXk + ap(ϕ1Xp−1 + · · ·+ ϕpX0)) + a2
pσ

2.

Hence, 〈Cpa, a〉 = 0 ⇒ ap = 0 and continuing in the same way we obtain
ap = ap−1 = · · · = a1 = 0 ⇔ a = 0 and thus Cp > 0 and Cp non-singular.

Problem 13: Consider the Yule-Walker estimator of an AR(1)-process
Xt = ϕ1Xt−1 + εt, (εt) ∼ IID(0, σ2) and show that in the ’exploding case’
|ϕ1| > 1 the estimator converges to ϕ1 (in probability) with geometric speed

in n, i.e. ϕ̂
(n)
1 − ϕ = oP(rn) for some r ∈ (0, 1).

Problem 14: Consider the causal (weakly stationary) AR(1)-process with
(εt) ∼ N(0, σ2). Determine the Maximum-Likelihood estimator (MLE) of ϕ1.
Discuss its difference to the Yule-Walker estimator.

Question: Is there another sequence of estimators ϕ̃(n) of ϕ based on
X1, . . . , Xn which is better in the sense that ϕ̃(n) converges with faster rate
than n−1/2 to ϕ (in probability) or

√
n(ϕ̃(n) − ϕ)

d→ N(0, V )

with V < σ2C−1
p (i.e. σ2C−1

p −V is positive semi-definite and σ2C−1
p −V 6= 0)?

Tool: Fisher information.
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Excursion: Suppose ĝ : Ω → R is an unbiased estimator of g(ϑ) (g : Θ → R),
i.e. ĝ is measurable on (Ω, F , (Pϑ)ϑ∈Θ), Θ non-empty index set, Eϑ[ĝ] = g(ϑ)
for all ϑ ∈ Θ, and that ĝ ∈ L2(Pϑ), ϑ ∈ Θ. Moreover, suppose that (Pϑ)ϑ∈Θ is
dominated by a σ-finite measure µ on (Ω, F ), i.e. Pϑ � µ for all ϑ ∈ Θ, and
let pϑ = dPϑ

dµ be the densities (Radon-Nikodym derivatives). We want to derive
a lower bound on

Eϑ[(ĝ − g(ϑ)︸︷︷︸
Eϑ[ĝ]

)2] = Varϑ(ĝ).

For each H ∈ L2(Pϑ) Cauchy-Schwarz inequality yields

Eϑ[(ĝ − g(ϑ))H]2 ≤ Eϑ[(ĝ − g(ϑ))2]Eϑ[H2]

⇒ Eϑ[(ĝ − g(ϑ))2] ≥ Eϑ[(ĝ − g(ϑ))H]2

Eϑ[H2]
for all H ∈ L2(Pϑ).

Goal: find H such that the numerator is independent of ĝ.

Fisher’s idea: Hϑ = d
dϑ(log pϑ)1(pϑ>0) =

d
dϑ
pϑ
pϑ

1(pϑ>0), ϑ ∈ Θ ⊆ Rd .
Then formally:

Eϑ0 [Hϑ0 ] =

∫
Ω

Hϑ0 pϑ0dµ︸ ︷︷ ︸
dPϑ0

=

∫
{pϑ0>0}

d

dϑ
pϑ

∣∣∣∣
ϑ=ϑ0

dµ

=

(
d

dϑ

∫
{pϑ0

>0}

pϑdµ

)∣∣∣∣
ϑ=ϑ0

=

(
d

dϑ

∫
{pϑ>0}

pϑdµ

︸ ︷︷ ︸
=1

)∣∣∣∣
ϑ=ϑ0

= 0.

For the change of the integration boundary above note:

G(ϑ) :=

∫
Ω

1(pϑ0
=0)pϑdµ. If G ∈ C1, then G′(ϑ0) = 0.

Hence,

Eϑ0 [(ĝ − g(ϑ0))Hϑ0 ] = Covϑ0(ĝ, Hϑ0) = Eϑ0 [ĝ(Hϑ0 − Eϑ0 [Hϑ0 ])]

=

∫
ĝ

d
dϑpϑ

∣∣
ϑ=ϑ0

pϑ0

1(pϑ0
>0)pϑ0dµ =

d

dϑ

( ∫
{pϑ0

>0}

ĝpϑdµ
)∣∣∣∣
ϑ=ϑ0

.

Since ĝ is unbiased, we have∫
ĝpϑdµ = Eϑ[ĝ] = g(ϑ)

⇒ d

dϑ

( ∫
ĝpϑdµ

)∣∣∣∣
ϑ=ϑ0

=
d

dϑ
g(ϑ)

∣∣
ϑ=ϑ0

= g′(ϑ0)

 numerator = g′(ϑ0)2.
Cramér-Rao inequality:

Eϑ0 [(ĝ − g(ϑ0))2] ≥ g′(ϑ0)2

Eϑ0 [( d
dϑ(log pϑ)

∣∣
ϑ=ϑ0

)2]
=:

g′(ϑ0)2

I(ϑ0)
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where I(ϑ0) = Eϑ0 [( d
dϑ(log pϑ)

∣∣
ϑ=ϑ0

)2] is the Fisher information at ϑ = ϑ0.

(This holds for unbiased estimators ĝ of g(ϑ) under regularity conditions on
(pϑ) and ĝ).
 Formal versions and proofs:

• Lehmann/Casella: Theory of Point Estimation ([5]),

• van der Vaart: Asymptotic Statistics ([8]).

1.34 Remark. If ĝ is biased, i.e. Eϑ[ĝ] = g(ϑ) + b(ϑ) for some b, we obtain
from above in terms of g̃(ϑ) = g(ϑ) + b(ϑ):

Varϑ(ĝ) ≥ g̃′(ϑ)2

I(ϑ)
.

The bias-variance decomposition thus yields

Eϑ[(ĝ − g(ϑ))2] ≥ b(ϑ)2 +
(g′(ϑ) + b′(ϑ))2

I(ϑ)
.

Problem 15: Formulate and prove the Cramér-Rao inequality for ϑ ∈ Θ ⊆ Rd,
i.e. for d ≥ 2 (with g : Θ→ R).

Asymptotic efficiency lower bound:
Hajek-Le Cam convolution theorem: If the statistical model is (asymptot-
ically) regular (e.g. LAN), then any ’reasonable’ estimator ĝ(n) of g(ϑ) satisfies√

I(n)(ϑ0)(ĝ(n) − g(ϑ0))
d→ Qϑ0

for some limit distribution Qϑ0 and we have

Qϑ0 = N(0, g′(ϑ0)2) ∗Rϑ0

for some law Rϑ0 (∗ denotes the convolution).

Interpretation: Since convolution of measures spreads the probability distribu-
tion (e.g. increases variance if it exists), the most concentrated limit law we can
obtain is N(0, g′(ϑ0)2) (meaning Rϑ0 = δ0). Therefore, estimators (ĝ(n)) with√

I(n)(ϑ0)(ĝ(n) − g(ϑ0))
d→ N(0, g′(ϑ0)2)

are called asymptotically efficient.

Superficial similarity to Cramér-Rao bound:

ĝ(n) − g(ϑ0)
d
≈ N

(
0,

g′(ϑ0)2

I(n)(ϑ0)

)
.

Note that ĝ(n) was not supposed to be unbiased.
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Let us now look at the Yule-Walker estimator for a causal AR(1)-process

Xt = ϑXt−1 + εt, ϑ ∈ (−1, 1), (εt)
i.i.d.∼ N(0, σ2).

Here Θ = (−1, 1), g(ϑ) = ϑ, g′(ϑ) = 1. Write µϑ for the Lebesgue density of
X0 under Pϑ. One can prove that this AR(1)-model is indeed ’regular’.
The random vector (X0, . . . , Xn) has Lebesgue density (µ = λRn+1):

p
(n)
ϑ (x0, . . . , xn) = µϑ(x0)ϕ0, σ2(x1 − ϑx0)· . . . ·ϕ0, σ2(xn − ϑxn−1)

with ϕµ, σ2 density of N(µ, σ2), i.e. εi has density ϕ0, σ2 .

Log-Likelihood:

log p
(n)
ϑ (x0, . . . , xn) = log(µϑ(x0)) +

n∑
k=1

log(ϕ0, σ2(xk − ϑxk−1)).

Score function:

d

dϑ
log p

(n)
ϑ (x0, . . . , xn) =

d

dϑ
log(µϑ(x0)) +

n∑
k=1

(
− 1

σ2

)
xk−1(xk − ϑxk−1).

Eϑ0 [(
d

dϑ
log p

(n)
ϑ (X0, . . . , Xn)

∣∣
ϑ=ϑ0

)2]

= Eϑ0 [(
d

dϑ
log(µϑ(X0))

∣∣
ϑ=ϑ0

+
n∑
k=1

(
− 1

σ2

)
Xk−1εk)

2]

(∗)
= Varϑ0(

d

dϑ
log(µϑ(X0))

∣∣
ϑ=ϑ0

) +
n∑
k=1

1

σ4
Eϑ0 [X2

k−1]σ2

X stat.
= Varϑ0(

d

dϑ
log(µϑ(X0))

∣∣
ϑ=ϑ0

) +
n

σ2
Eϑ0 [X2

0 ]︸ ︷︷ ︸
=cϑ0

(0)

.

(For (∗) regularity conditions are required  regular model.)

⇒ I(n)(ϑ0) =
2

ϑ2
0

(1−ϑ2
0)2 + σ2ncϑ0(0)

σ4

⇒ I(n)(ϑ0)

n
→ cϑ0(0)

σ2
.

This means that an estimator (ϑ̃(n)) with

√
n(ϑ̃(n) − ϑ)

d→ N
(

0,
σ2

cϑ0(0)

)
is asymptotically efficient. This is the case for the Yule-Walker estimator.
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Problem 16: Investigate whether the Yule-Walker estimator for causal AR(p)-
processes, p ≥ 2, is also asymptotically efficient (in a natural generalisation).

Final remark: In the ’explosive’ case (e.g. AR(1) with |ϑ| > 1) the Fisher
information grows geometrically in n and the Yule-Walker estimator also
converges with geometric rate in n.

2 Statistics for continuous-time processes

2.1 Diffusion processes

2.1 Definition. A (time-inhomogeneous) diffusion process in Rd is a process
(Xt, t ≥ 0) solving the stochastic differential equation (SDE)

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, t ≥ 0, (∗)

with initial condition X0 = X(0). Here b : Rd×R+ → Rd, σ : Rd×R+ → Rd×m
and W is m-dimensional Brownian motion.

The intuition is that (after ’division by dt’)

Ẋt =
dXt

dt
= b(Xt, t) + σ(Xt, t)Ẇt,

where Ẇt is Gaussian white noise (’equivalent of i.i.d. N(0, 1)-random variables
in continuous time’). Since white noise can only be defined in a distributional
sense, the Itô interpretation in terms of integrated quantities is nowadays
preferred.

Rigorous definition: X is a strong solution of the SDE (∗), where W is defined
on some (Ω,F ,P)and X(0) is independent of W on (Ω,F ,P), if

(a) (Xt, t ≥ 0) is adapted to the completion by null sets of

F 0
t = σ(Ws, 0 ≤ s ≤ t; X(0));

(b) X is a continuous process;

(c) P(X0 = X(0)) = 1;

(d) P(
t∫

0

(‖b(Xs, s)‖ + ‖σ(Xs, s)‖2)ds < ∞) = 1 for all t > 0 (with ‖· ‖ any

norm);

(e) With probability one:

∀t ≥ 0 : Xt = X0 +

t∫
0

b(Xs, s)ds+

t∫
0

σ(Xs, s)dWs.
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The stochastic integral is taken in Itô’s sense and obtained as the limit of sums

0 = t0 < t1 < · · · < tm = t :
m∑
i=1

σ(Xti−1 , ti−1)(Wti −Wti−1)

where ∆ := maxi |ti − ti−1| → 0.

2.2 Theorem (Standard existence and uniqueness result for SDEs). Suppose
the drift coefficient b and the diffusion coefficient σ satisfy the global Lipschitz
and linear growth conditions

(i) ‖b(x, t)− b(y, t)‖+ ‖σ(x, t)− σ(y, t)‖ ≤ K‖x− y‖,

(ii) ‖b(x, t)‖+ ‖σ(x, t)‖ ≤ K(1 + ‖x‖)

for all x, y ∈ Rd, t ≥ 0 and some constant K. Then the SDE (∗) has a strong
solution which is also unique, provided X(0) ∈ L2.

If (Xt, t ∈ [0, T ]) is observed (continuous-time observations), then by taking
refined partitions, we can calculate the quadratic (co-)variation

t∫
0

σ(Xs, s)σ(Xs, s)
Tds

for all t ∈ [0, T ]:

m∑
i=1

(Xti −Xti−1)(Xti −Xti−1)T
∆→0→
a.s.

t∫
0

σ(Xs, s)σ(Xs, s)
Tds.

By taking the derivative in t, we thus identify (σσT )(Xt, t) ∈ Rd×d for all t ∈
[0, T ]. Note that we cannot hope for more: if x is not visited by (Xt, t ∈ [0, T ])
there is no chance to learn about (σσT )(x, t) for some t.
Moreover, we cannot find out more about σ ∈ Rd×m itself, because X also
solves an SDE of the form:

dXt = b(Xt, t) + (σσT )
1/2(Xt, t)dW̃t

with W̃ a d-dimensional Brownian motion.

Résumé: Continuous-time observations identify the diffusion part as far as
possible and the main interest is the drift part.

Main tool for drift statistics: Girsanov theorem to obtain the likelihood.
[Liptser/Shiryaev: Statistics of Random Processes ([6])]

2.3 Theorem (Theorem 7.19 in [6]). Let (Xt, t ∈ [0, T ]), (Yt, t ∈ [0, T ]) be
two real diffusion processes with

dXt = bX(Xt, t)dt+ σ(Xt, t)dWt,

dYt = bY (Yt, t)dt+ σ(Yt, t)dWt
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and X0 = Y0 a.s.
Suppose for Y there is a unique strong solution and (bX − bY )(x, t) = 0 if
σ(x, t) = 0. If

P(

T∫
0

1(σ(Xs, s)>0)
(b2X + b2Y )(Xs, s)

σ2(Xs, s)
ds <∞)

= P(

T∫
0

1(σ(Ys, s)>0)
(b2X + b2Y )(Ys, s)

σ2(Ys, s)
ds <∞) = 1,

then the laws PXT , PYT of X and Y on C([0, T ]) (with Borel-σ-algebra) are
equivalent with Radon-Nikodym derivative/density/likelihood:

dPYT
dPXT

((Xt)t∈[0, T ])

= exp

{ T∫
0

1(σ(Xs, s)>0)

(
bY − bX
σ2

)
(Xs, s)dXs −

1

2

T∫
0

1(σ(Xs, s)>0)

(
b2Y − b2X
σ2

)
(Xs, s)ds

}
.

2.4 Examples.

1. Brownian motion with drift:
bX(Xt, t) = bX(t), bY (Xt, t) = bY (t), σ(Xt, t) = σ > 0, X(0) = 0, i.e.

Xt =

t∫
0

bX(s)ds+ σdWt,

Yt =

t∫
0

bY (s)ds+ σdWt

 all conditions above are satisfied and

dPYT
dPXT

(X) = exp

{ T∫
0

(bY − bX)(s)

σ2
dXs −

1

2

T∫
0

(b2Y − b2X)(s)

σ2
ds

}
.

 if bY , bX are constant in t, then XT is a sufficient statistics, i.e. for
all statistical puropses it suffices to use XT , not the trajectory (XT , t ∈
[0, T ]),
 enormous data reduction without loss of information on bX , bY .
Example: MLE for dXt = ϑdt+ σdWt, ϑ ∈ R unknown, is ϑ̂MLE = XT

T .

2. Ornstein-Uhlenbeck process:
It is the solution of the SDE

dXt = aXtdt+ σdWt
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for some initial value X(0).
Variation of constants formula gives

Xt = eatX(0) +

t∫
0

ea(t−s)σdWs.

If X(0) is Gaussian or deterministic, then (Xt) is a Gaussian process.
It is easy to see that all conditions in Girsanov’s theorem are satisfied for
bY (x, t) = ax, bX(x, t) = 0 (for a = 0) and thus

dPYT
dPXT

= exp

{ T∫
0

aXs

σ2
dXs −

1

2

T∫
0

a2X2
s

σ2
ds

}
.

Writing PaT instead of PYT , we have

dPYT
dPXT

=
dPaT
dP0

T

(
=

dPaT
dPσWT

)
=: L (a).

The MLE is then

âT =

T∫
0

XsdXs

T∫
0

X2
sds

plug in X
=

T∫
0

Xs(aXsds+ σdWs)

T∫
0

X2
sds

=a+

T∫
0

XsσdWs

T∫
0

X2
sds

= a+
MT

σ−2〈M〉T

with Mt =
t∫

0

XsσdWs.

Problem 17:

(a) Show that a strictly stationary solution of dXt = aXtdt + σdWt

exists if a < 0. It has the representation (cf. MA(∞)-representation
of AR(1))

Xt = σ

t∫
−∞

ea(t−s)dW̃s

where (W̃s, s ∈ R) is two-sided Brownian motion, i.e. (W̃t, t ≥ 0)
and (W̃−t, t ≥ 0) are independent Brownian motions.
If a ≥ 0, then no weakly stationary solution exists.

(b) Consider the observations (X0, X∆, . . . , Xn∆) with ∆ > 0 and
T = n∆ (discrete observations). Estimate a by discretising the
continuous-time MLE âT and secondly by identifying (Xk∆, k ≥ 0)
as an AR(1)-process and using the Yule-Walker estimator.
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3. Cox-Ingersoll-Ross (Bessel) process:
It solves

dXt = (ϑ1 − ϑ2Xt)dt+ σ
√
XtdWt,

X(0) > 0; ϑ1, ϑ2, σ > 0.
One can show that there is a unique strong solution (although diffusion
coefficient is not Lipschitz at Xt = 0) with Xt ≥ 0 for all t a.s. If 2ϑ1 > σ2,
then even Xt > 0 for all t a.s.
Assuming 2ϑ1 > σ2 and 2ϑ

(0)
1 > σ2 and considering PϑT (ϑ = (ϑ1, ϑ2)) as

the law of (Xt) on C([0, T ]) we have

dPϑT
dPϑ(0)

T

= exp

{ T∫
0

(ϑ1 − ϑ(0)
1 )− (ϑ2 − ϑ(0)

2 )Xs

σ2Xs
dXs

− 1

2

T∫
0

(ϑ1 − ϑ2Xs)
2 − (ϑ

(0)
1 − ϑ

(0)
2 Xs)

2

σ2Xs
ds

}
by Girsanov’s theorem (σ(Xs, s) > 0).

The MLE ϑ̂ = (ϑ̂1, ϑ̂2) is obtained from 5ϑ log

(
dPϑT

dPϑ(0)

T

)
= 0:

ϑ̂1 =

T∫
0

1
Xs

dXs

T∫
0

Xsds−
T∫
0

1ds
T∫
0

1dXs

T∫
0

1
Xs

ds
T∫
0

Xsds−
( T∫

0

1ds
)2 ,

ϑ̂2 =

T∫
0

1ds
T∫
0

1
Xs

dXs −
T∫
0

1dXs

T∫
0

1
Xs

ds

T∫
0

1
Xs

ds
T∫
0

Xsds−
( T∫

0

1ds
)2 .

4. General linear parametrisation:
Consider

dXt = 〈ϑ, b(Xt, t)〉dt+ σ(Xt, t)dWt,

X0 = X(0) with ϑ = (ϑ1, . . . , ϑk)
T ∈ Θ ⊆ Rk (unknown parameter),

b : R×R+ → Rk such that all conditions for Girsanov’s theorem are
satisfied; suppose 0 ∈ Θ and σ(x, t) > 0. Then

dPϑT
dP0

T

= exp

{ T∫
0

〈ϑ, b(Xt, t)〉
σ2(Xt, t)

dXt −
1

2

T∫
0

〈ϑ, b(Xt, t)〉2

σ2(Xt, t)
dt

}
.

MLE is obtained from 5ϑ log

(
dPϑT
dP0

T

)
:

ϑ̂MLE
T =

( T∫
0

(
b· bT

σ2

)
(Xt, t)dt

︸ ︷︷ ︸
=:IT∈Rk×k

)−1
T∫

0

(
b

σ2

)
(Xt, t)dXt

︸ ︷︷ ︸
∈Rk

∈ Rk,
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provided the matrix is non-singular.
Under the law Pϑ0

T we then obtain:

ϑ̂MLE
T = I−1

T

( T∫
0

b(Xt, t)b(Xt, t)
Tϑ0dt+ b(Xt, t)σ(Xt, t)dWt

σ2(Xt, t)

)

= ϑ0 + I−1
T

( T∫
0

(
b

σ

)
(Xt, t)dWt

︸ ︷︷ ︸
=:MT

)
= ϑ0 + 〈M〉−1

T︸ ︷︷ ︸
=I−1

T

MT .

If there is a deterministic sequence AT ∈ Rk×k, AT strictly positive de-

finite, with A−1
T 〈M〉T

P→ Ek and the conditional Lindeberg condition is
satisfied, then

A
1/2
T (ϑ̂T − ϑ0)

under Pϑ0
T→ N(0, Ek).

If (Xt) is strictly stationary and ergodic, then we can take AT = T · I1

where I1 is the Fisher information matrix for observations (Xt, t ∈ [0, 1]).
In particular, then ϑ̂T − ϑ0 is of order OP(T−1/2).

Problem 18: Consider the stationary Ornstein-Uhlenbeck process

dXt = aXtdt+ σdWt,

a < 0, and the estimator

âT =

T∫
0

XtdXt

T∫
0

X2
t dt

.

Prove that
√
T (âT − a) is asymptotically normal. By calculating the Fisher

information prove that it is even efficient.

2.2 Nonparametric drift estimation

Suppose we observe a time-homogeneous diffusion process

dXt = b(Xt)dt+ σ(Xt)dWt,

X0 = X(0),

on [0, T ], we know the diffusion coefficient σ, but we do not know b and do
not want to impose a particular parametric form on b. We merely assume that
x 7→ b(x) has a certain Hölder smoothness:

|b(x)− b(y)| ≤ R|x− y|α
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for all x, y ∈ R, α ∈ (0, 1].
Idea: The drift b(x) is the mean of the infinitesimal increment of Xt given
Xt = x:

b(x) = lim
h↓0

E
[
Xt+h −Xt

h

∣∣∣∣Xt = x

]
.

Hence we should use dXt for estimating b.
 Nadaraja-Watson-type estimator:

b̂T, h(x) =

T∫
0

1[x−h, x+h](Xt)dXt

T∫
0

1[x−h, x+h](Xt)dt

.

Note:

b̂T, h(x) =

T∫
0

1[x−h, x+h](Xt)b(Xt)dt

T∫
0

1[x−h, x+h](Xt)dt︸ ︷︷ ︸
=
T∫
0

1̃[x−h, x+h](Xt)b(Xt)dt

+

T∫
0

1[x−h, x+h](Xt)σ(Xt)dWt

T∫
0

1[x−h, x+h](Xt)dt

with 1̃[x−h, x+h](Xt) ∝ 1[x−h, x+h](Xt),
T∫
0

1̃[x−h, x+h](Xt)dt = 1.

T∫
0

1̃[x−h, x+h](Xt)b(Xt)dt is a convex combination of values b(y) for y ∈ [x −

h, x+ h], hence it lies in [ min
|y−x|≤h

b(y), max
|y−x|≤h

b(y)]. Since b ∈ Cα,

∣∣ T∫
0

1̃[x−h, x+h](Xt)b(Xt)dt− b(x)
∣∣ ≤ Rhα,

which is a deterministic bound. It tends to zero when h ↓ 0.

We look at the stochastic error term

T∫
0

1[x−h, x+h](Xt)σ(Xt)dWt

T∫
0

1[x−h, x+h](Xt)dt

.
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Suppose that (Xt) is stationary, then the numerator satisfies

E
[( T∫

0

1[x−h, x+h](Xt)σ(Xt)dWt

)2]
Itô isometry

=

T∫
0

E[1[x−h, x+h](Xt)
2σ(Xt)

2]dt

X stat.
= T E[1[x−h, x+h](X0)σ(X0)2]

µ inv. Lebesgue
=

dens. of X0

T

x+h∫
x−h

σ2(y)µ(y)dy ≤ 2Th||σ2µ||∞ ∼ Th.

Stationarity of X, existence of the invariant Lebesgue density µ and finiteness
of σ2 are necessary assumptions.
For the denominator:

E[

T∫
0

1[x−h, x+h](Xt)dt]
X stat.,

=
Fubini

T E[1[x−h, x+h](X0)]

µ invar.
=

density
2Th

(
1

2h

x+h∫
x−h

µ(y)dy

)
.

Hope: The denominator ’concentrates’ around 2Thµ(x) as T →∞, h→ 0 such

that the stochastic error is of order (in probability) OP

(√
Th
Th

)
= OP

(
1√
Th

)
.

2.5 Proposition (Durrett: Stochastic Calculus ([2])). If

G :=

∞∫
−∞

1

σ2(x)
exp

( x∫
0

2b

σ2
(z)dz

)
dx <∞

and the SDE has a strong solution for any initial condition, then there is a
stationary solution X of the SDE with invariant Lebesgue density

µ(x) =
1

Gσ2(x)
exp

( x∫
0

2b

σ2
(z)dz

)
, x ∈ R .

2.6 Proposition. Suppose there are A, γ > 0 such that sgn(x) 2b
σ2 (x) ≤ −γ for

all x with |x| > A, that b is bounded on [−A, A] and σ2 := inf
x∈R

σ2(x) > 0, then

there is a stationary solution X of the SDE and for any function f : R → R
with E[f(X0)] = 0 and f ∈ L1(R) we have

E
[( T∫

0

f(Xt)dt

)2]
≤ ||f ||2L1(C + C ′T )

with constants C, C ′ > 0 depending only on A, γ, σ2, sup
|x|≤A

b(x).
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2.7 Remark. The condition sgn(x) 2b
σ2 (x) ≤ −γ (∗) means for x > 0 that the

drift is negative for x > A and strong enough to push the diffusion process back
to the direction of the origin such that an equilibrium can be obtained. For
x < 0 the situation is symmetric. An easy example is the Ornstein-Uhlenbeck
process with b(x) = ax and a < 0.

Proof.

1. Condition (∗) implies G < ∞, using that 2b
σ2 is bounded in [−A, A] and

1
σ2 is bounded on R.

2. Find F such that LF = f with the Markov generator

LF (x) =
σ2(x)

2
F ′′(x) + b(x)F ′(x).

Then by Itô’s formula

dF (Xt) = F ′(Xt)dXt +
1

2
F ′′(Xt)d〈X〉t

= (F ′(Xt)b(Xt) +
1

2
F ′′(Xt)σ

2(Xt)︸ ︷︷ ︸
=LF (Xt)=f(t)

)dt+ F ′(Xt)σ(Xt)dWt.

⇒
T∫

0

f(Xt)dt = F (XT )− F (X0)−
T∫

0

F ′(Xt)σ(Xt)dWt

⇒ E[(

T∫
0

f(Xt)dt)
2] ≤ 3

(
E[F (XT )2] + E[F (X0)2] + E

[( T∫
0

F ′(Xt)σ(Xt)dWt

)2])
X stat.

=
Itô-iso.

6E[F (X0)2] + 3T E[F ′(X0)2σ(X0)2].

3. Check that

F (x) =

x∫
0

2

σ2(y)µ(y)

( y∫
−∞

f(z)µ(z)dz

)
dy

satisfies LF = f .

F ′(x) =
2

σ2(x)µ(x)

x∫
−∞

f(z)µ(z)dz

prop. 2.5
= 2

x∫
−∞

f(z)
1

σ2(z)
exp

( z∫
x

2b

σ2
(y)dy

)
dz

∫
R
f(z)µ(z)dz=0

= −2

∞∫
x

f(z)
1

σ2(z)
exp

( z∫
x

2b

σ2
(y)dy

)
dz.

F ′′(x) =
2f(x)

σ2(x)
+ 2

x∫
−∞

f(z)
1

σ2(z)

(
− 2b

σ2
(x)

)
exp

( z∫
x

2b

σ2
(y)dy

)
dz.
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Hence

LF (x) =

(
σ2

2
F ′′ + bF ′

)
(x) = (f(x)− b(x)F ′(x)) + b(x)F ′(x) = f(x).

4. Bound F ′(x), F (x).
For x > 0:

|F ′(x)| ≤ 2

σ2

∞∫
x

|f(z)| exp

( z∫
x

2b

σ2
(y)dy

)
︸ ︷︷ ︸

sup
x, z>0

(... )≤C1

dz ≤ C2||f ||L1 .

For x < 0 the same bound applies. We obtain |F ′(x)| ≤ C3||f ||L1 and
thus

E[F ′(X0)2σ2(X0)] ≤ C2
3 ||f ||2L1

∞∫
−∞

σ2(x)µ(x)dx ≤ C4||f ||2L1 .

The bound for |F (x)| and then E[F (X0)2] follows in the same way.

Problem 19: Generalise this proposition by relaxing the conditions
sgn(x) 2b

σ2 (x) ≤ −γ, σ2 > 0. Follow the constants more explicitly.

Applying this proposition to the denominator, we obtain for diffusions satisfying
its conditions:

E[

( T∫
0

1[x−h, x+h](Xt)− E[1[x−h, x+h](Xt)]dt

)2

]

≤ (C + C ′T )||1[x−h, x+h](Xt)− E[1[x−h, x+h](Xt)]︸ ︷︷ ︸
=
x+h∫
x−h

µ(x)dx≤2h||µ||∞

||2L1 ≤ (C + C ′T )C1h
2.

We have as T →∞, h ↓ 0:

E[
T∫
0

1[x−h, x+h](Xt)dt] ≥ C2Th,

Var(
T∫
0

1[x−h, x+h](Xt)dt) ≤ C3Th
2.

⇒
E[ 1

Th

T∫
0

1[x−h, x+h](Xt)dt] ≥ C2 > 0,

Var( 1
Th

T∫
0

1[x−h, x+h](Xt)dt) ≤ C3T
−1 → 0.

We thus have

P(
1

Th

T∫
0

1[x−h, x+h](Xt)dt ≥
C2

2
)→ 1.
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Hence the stochastic error term is OP

(√
Th
Th

)
= OP

(
1√
Th

)
in the sense that

√
Th

T∫
0

1[x−h, x+h](Xt)σ(Xt)dWt

T∫
0

1[x−h, x+h](Xt)dt

is tight (i.e. bounded in probability). This implies the following theorem.

2.8 Theorem. Suppose the SDE satisfies the conditions of the previous propo-
sition. Then for the stationary solution (Xt) and a drift b with

|b(x)− b(y)| ≤ R|x− y|α

we find

|̂bT, h(x0)− b(x0)| ≤ Rhα + OP

(
1√
Th

)
.

Hence, if h = hT ↓ 0, but ThT →∞, then b̂T, h(x0) is a consistent estimator of
b(x0).

2.9 Corollary. If we choose hT ∼ T−
1

2α+1 (optimally in order), then we obtain

|̂bT, h(x0)− b(x0)| = OP

(
T−

α
2α+1

)
.

2.10 Remark. One can show that this rate T−
α

2α+1 is optimal in a minimax
sense over α-Hölder continuous drifts b. For the most interesting Lipschitz case
(α = 1) the rate is T−1/3 (compared to T−1/2 for parametric problems).

2.3 Nonparametric volatility estimation with high frequency
data

Consider the diffusion process

dXt = b(Xt)dt+ σ(Xt)dWt.

We observe X0, X∆, . . . , XN∆ (∆ << 1).
Intuition: We look at X0, X∆ and at the increment:

X∆ −X0

∆
=

1

∆

∆∫
0

b(Xs)ds

︸ ︷︷ ︸
∼b(X0) if b cts.

+
1

∆

∆∫
0

σ(Xs)dWs

︸ ︷︷ ︸
E[... ]=0

.
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To access σ, we look at the square:

(X∆ −X0)2

∆
=

1

∆

( ∆∫
0

b(Xs)ds

)2

︸ ︷︷ ︸
∼∆

+2
1

∆

∆∫
0

b(Xs)ds

︸ ︷︷ ︸
∼1

∆∫
0

σ(Xs)dWs

︸ ︷︷ ︸
∼
√

∆

+
1

∆

( ∆∫
0

σ(Xs)dWs

)2

︸ ︷︷ ︸
E[... ]

Itô
= 1

∆
E[

∆∫
0

σ2(Xs)ds]∼σ2(X0)

Consider the process dBt = σdWt, σ > 0 and the observations
B0, B∆, . . . , BN∆, N∆ = T .

σ̂2 :=
1

N

N−1∑
n=0

(B(n+1)∆ −Bn∆)2

∆
=

1

N

N−1∑
n=0

σ2Y 2
n ,

where (Yn) are i.i.d. N(0, 1).
Then E[σ̂] = σ2 and

E[(σ̂ − σ2)2] = E[(
1

N

N−1∑
n=0

σ2(Y 2
n − 1))2]

=σ4 E[(
1

N

N−1∑
n=0

(Y 2
n − 1))2] = σ4 1

N
Var(Y 2

0 − 1)︸ ︷︷ ︸
=2

.

⇒ E[(σ̂ − σ2)2]1/2 =
√

2σ2
√
N

.

What has made the computation easy?

1. σ is constant,

2. increments are independent.

L2 error bounds for the Florens-Zmirou estimator

2.11 Definition. Set 0 < m < M and define Θ(m,M) = {σ ∈ C1(R) :
m ≤ infx∈R σ(x) ≤ supx∈R σ(x) ≤ M, supx∈R |σ′(x)| ≤ M}. Note that each
σ ∈ Θ satisfies the global Lipschitz and linear growth conditions, hence the
corresponding equation

dXt = σ(Xt)dWt,

X0 = X(0) ∈ L2,

has a unique strong solution. For ∆ > 0 we observe a path t→ Xt at equidistant
times 0,∆, 2∆, ..., N∆ = 1. When x ∈ R is visited by the observed path (i.e.
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Xt = x for some t ∈ (0, 1)) we define the Florens-Zmirou ([4]) estimator of the
diffusion coefficient σ2 by

σ̂2
FZ(x, h∆) =

∑N−1
n=0 1(|Xn∆−x|<h∆)

1
∆(X(n+1)∆ −Xn∆)2∑N−1

n=0 1(|Xn∆−x|<h∆)

.

2.12 Definition. For any Borel set A define its occupation measure as µ(A) =∫ 1
0 1A(Xs)ds, i.e. the amount of time the path (Xt)0≤t≤1 stayed in A. Then the

measure µ has a Lebesgue density L ([7], [1]) called the local time (chronological
local time) of X at time one. For every positive Borel measurable function f
the occupation formula

∫ 1
0 f(Xs)ds =

∫
R f(x)L(x)dx holds.

2.13 Lemma. For every p > 2 we have sup(σ,b)∈Θ E[Lp(x)] < Cp.

Proof. By the Tanaka formula

L(x) = |X1−x|−|X0−x|−
∫ 1

0
sgn(Xs−x)dXs ≤ |X1−X0|+

∣∣ ∫ 1

0
sgn(Xs−x)dXs

∣∣.
Using the Burkholder-Davis-Gundy inequality (see stochastic analysis notes)
we obtain

• E[|X1 −X0|p] = E
[
|
∫ 1

0 σ(Xs)dWs|p
]
≤ C̃p E

[
|
∫ 1

0 σ
2(Xs)ds|

p
2

]
≤ C̃pMp.

• E
[
|
∫ 1

0 sgn(Xs−x)dXs|p
]
≤ C̃p E

[
|
∫ 1

0 sgn2(Xs−x)σ2(Xs)ds|
p
2

]
≤ C̃pMp.

2.14 Theorem. Consider an interval K, some positive ν > 0 and let L =
{infx∈K LT (x) ≥ ν}, h∆ ∼ ∆

1
3 . Then for every x ∈ int(K) we have

sup
σ∈Θ

E
[
1L· |σ̂2

FZ(x, h∆) ∧M2 − σ2(x)|2
]
≤ C∆

2
3 ,

where the constant C depends only on the set K and level ν.

Notation: We will write fσ . gσ (resp. gσ & fσ) if we have fσ ≤ C· gσ for
every σ ∈ Θ with some constant C > 0 depending only on K and ν.

Proof. (a) (Bias and martingale part) For n = 0, ..., N − 1 define

ηn =
1

∆

(∫ (n+1)∆

n∆
σ(Xs)dWs

)2
− 1

∆

∫ (n+1)∆

n∆
σ2(Xs)ds.

• E[ηn|Fn] = 0 and in particular E[ηnηm] = 0 for n 6= m.

• E[η2
n|Fn] . 1. Indeed, by the Burkholder-Davies-Gundy inequality:

∆2 E[η2
n|Fn] . E

[( ∫ (n+1)∆

n∆
σ(Xs)dWs

)4|Fn

]
+ E

[( ∫ (n+1)∆

n∆
σ2(Xs)ds

)2|Fn

]
. E

[( ∫ (n+1)∆

n∆
σ2(Xs)ds

)2|Fn

]
+ ∆2 . ∆2.
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We decompose the estimation error into martingale and bias parts:

|σ̂2
FZ(x, h∆)− σ2(x)| =

=
∣∣∣∑N−1

n=0 1{|Xn∆−x|<h∆}(
1
∆

( ∫ (n+1)∆
n∆ σ(Xs)dWs

)2 − σ2(x))∑N−1
n=0 1{|Xn∆−x|<h∆}

∣∣∣
.
∣∣∣∑N−1

n=0 1{|Xn∆−x|<h∆}ηn∑N−1
n=0 1{|Xn∆−x|<h∆}

∣∣∣︸ ︷︷ ︸
Mx,∆

+
∣∣∣∑N−1

n=0 1{|Xn∆−x|<h∆}(
1
∆

∫ (n+1)∆
n∆ σ2(Xs)ds− σ2(x))∑N−1

n=0 1{|Xn∆−x|<h∆}

∣∣∣︸ ︷︷ ︸
Bx,∆

.

(b) (The ”good” high-probability set) Denote by ω(∆) the modulus of conti-
nuity of the path (Xt)t∈(0,1), i.e.

ω(∆) = sup
0 ≤ s, t ≤ 1
|t− s| < ∆

|Xt −Xs|.

Set 0 < ε < 1/6 and let α = 3/2 − 3ε ∈ (1, 3/2). Define the event R =
{ω(∆) < hα∆}. Then for every p > 1 holds

P(Rc) . h−pα∆

(
∆ log

(
2∆−1

)) p2
. ∆εp log

(
2∆−1

) p
2 . (∗1)

In particular P(Rc) . ∆2/3 for p big enough.

Proof. (Proof of (∗1))

Set p > 0. By Markov’s inequality we just have to show that there exists
a constant Cp depending only on p and the upper bound of σ, such that

E[ω(∆)p] ≤ Cp
(

∆ log
(2T

∆

)) p2
. (∗2)

• (∗2) holds for Brownian motion - [3].

• Let dXt = σ(Xt)dWt. By the Dambis-Dubin-Schwarz theorem Xt =
B∫ t

0 σ
2(Xs)ds

for some Brownian motion B. Consequently

|Xt −Xs| =
∣∣B∫ t

0 σ
2(Xs)ds

−B∫ s
0 σ

2(Xs)ds

∣∣ ≤ ωB(|t− s|M2)

(c) (Bias part error) When |Xn∆ − x| < h∆ we have

1

∆

∫ (n+1)∆

n∆
|σ2(Xs)− σ2(x)|ds . 1

∆

∫ (n+1)∆

n∆
|Xs − x|ds

≤ 1

∆

∫ (n+1)∆

n∆
|Xs −Xn∆|ds+ |Xn∆ − x|

. ω(∆) + h∆.

Consequently 1R·Bx,∆ . h∆.
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(d) (Martingale part error) Denote
∑N−1

n=0 1{|Xn∆−x|<h∆} = N(x, h∆). Then,
on the event R we have∣∣∣N(x, h∆)

Nh∆
− 1

h∆

∫ x+h∆

x−h∆

L(z)dz
∣∣∣ . 1

h∆

∫
{h∆−hα∆≤|z−x|<h∆+hα∆}

L(z)dz.

(∗3)
Indeed by the triangle inequality

∣∣∣ 1

N

N−1∑
n=0

1{|Xn∆−x|<h∆} −
∫ 1

0
1{|Xs−x|<h∆}ds

∣∣∣ ≤
≤

N−1∑
n=0

∫ (n+1)∆

n∆

∣∣1{|Xn∆−x|<h∆} − 1{|Xs−x|<h∆}
∣∣ds

=
N−1∑
n=0

∫ (n+1)∆

n∆
1{h∆≤|Xs−x|<h∆+ω(∆)}ds

+
N−1∑
n=0

∫ (n+1)∆

n∆
1{h∆−ω(∆)≤|Xs−x|<h∆}ds

=

∫ 1

0
1{h∆−hα∆≤|Xs−x|<h∆+hα∆}ds

=

∫
{h∆−hα∆≤|z−x|<h∆+hα∆}

L(z)dz.

Denote for simplicity {z : h∆−hα∆ ≤ |z−x| < h∆ +hα∆} = A and observe
that the Lebesgue measure of A is 4hα∆. Using first Markov’s and next
Hölder’s inequalities we obtain

P
( 1

h∆

∫
A
L(z)dz ≥ c

)
. E

[ 1

hp∆

( ∫
A
L(z)dz

)p]
.
h
α(p−1)
∆

hp∆

∫
A
E[Lp(z)]dz . h(α−1)p

∆ . ∆
2
3

for p big enough. Consequently there exists a high probability event Q ⊆
R, P(Qc) . ∆2/3, such that N(x,h∆)

Nh∆
is bounded from below on Q∩L. Now
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using martingale properties of ηn we obtain:

E
[
1Q∩L·M2

x,∆

]
= E

[( 1

N(x, h∆)

N−1∑
n=0

1{|Xn∆−x|<h∆}ηn

)2
·1Q∩L

]
.

1

N2h2
∆

E
[(N−1∑

n=0

1{|Xn∆−x|<h∆}ηn

)2
1Q∩L

]
.

1

N2h2
∆

E
[ N−1∑
n,m=0

1{|Xn∆−x|<h∆}1{|Xm∆−x|<h∆}ηnηm

]

=
1

N2h2
∆

E
[N−1∑
n=0

1{|Xn∆−x|<h∆} E[η2
n|Fn]

]
.

1

N2h2
∆

E
[
N(x, h∆)

]
.

Finally

1

Nh∆
E
[
N(x, h∆)

]
.

1

Nh∆
E
[
N(x, h∆)1R

]
+

1

Nh∆
E
[
N(x, h∆)1Rc

]
. E

[ 1

h∆

∫ x+h∆

x−h∆

L(z)dz +
1

h∆

∫
A
L(z)dz

]
+ h−1

∆ P(Rc)

.
1

h∆

∫
(x−h∆,x+h∆)∪A

E[L(z)]dz + h−1
∆ ∆

2
3

. 1.

(e) (Conclusion) We have shown

E[1L∩Q· |σ2
FZ(x, h∆)−σ2(x)|2] . E[1L∩Q·M2

x,∆+1R·B2
x,∆)] .

1

Nh∆
+h2

∆ ∼ ∆
2
3 .

Furthermore

E[1L∩Qc · |σ2
FZ(x, h∆) ∧M2 − σ2(x)|2] . P(Qc) . ∆

2
3 .

2.15 Corollary. Let

Θ∗ = Θ(m,M)× {b ∈ C(R) : b is Lipschitz and sup
x∈R

b(x) ≤M}.

For (σ, b) ∈ Θ∗ consider a diffusion Y defined by the SDE dYt = b(Yt)dt +
σ(Yt)dWt, Y0 = x0. Then for the event L and x defined as before, given that

h∆ ∼ ∆
1
3 , we have

sup
(σ,b)∈Θ∗

Eσ,b
[
1L· |σ2

FZ(x, h∆) ∧M2 − σ2(x)|
]
≤ C(L)∆

1
3 .
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Proof. Using boundedness of the coefficients b and σ one can easily verify the
assumptions of the Girsanov’s theorem. The laws of the diffusions X and Y on
C([0, 1]) are equivalent and

dPY
dPX

(X) = exp
(∫ 1

0

b(Xs)

σ2(Xs)
dXs −

1

2

∫ 1

0

b2(Xs)

σ2(Xs)
ds
)

= exp
(∫ 1

0

b(Xs)

σ(Xs)
dWs −

1

2

∫ 1

0

b2(Xs)

σ2(Xs)
ds
)
.

Denote 1L· |σ2
FZ(x, h∆) ∧M2 − σ2(x)| = Ex,∆. By Cauchy-Schwarz we obtain

Eσ,b
[
Ex,∆

]
= E

[
Ex,∆

dPY
dPX

(X)
]

= E
[
Ex,∆ exp

(∫ 1

0

b(Xs)

σ(Xs)
dWs −

1

2

∫ 1

0

b2(Xs)

σ2(Xs)
ds
)]

≤ E
[
Ex,∆ exp

(∫ 1

0

b(Xs)

σ(Xs)
dWs

)]
≤ E[E2

x,∆]
1
2 E
[

exp
(

2

∫ 1

0

b(Xs)

σ(Xs)
dWs

)] 1
2
.

We just have to argue that E
[

exp
( ∫ 1

0
2b(Xs)
σ(Xs)

dWs

)]
is uniformly bounded. Since

E
[

exp
(∫ 1

0
2(bσ−1)2(Xs)ds

)]
<∞

by the Novikov’s condition the process Mt = exp
( ∫ t

0 2(bσ−1)(Xs)dWs −∫ t
0 2(bσ−1)2(Xs)ds

)
is a martingale and consequently

E
[

exp
(∫ 1

0
2(bσ−1)(Xs)dWs

)]
= E

[
exp

(∫ 1

0
2(bσ−1)2(Xs)ds

)]
.

2.16 Theorem. (Florens-Zmirou, 1993)
Let X satisfy

dXt = b(Xt)dt+ σ(Xt)dWt, t∈[0, 1],

where b is a bounded function with two bounded derivatives, σ has three contin-
uous and bounded derivatives and furthermore m < σ < M for some positive
0 < m < M. If Nh3

∆ tends to zero, then

√
Nh∆

(σFZ(x, h∆)

σ2(x)
− 1
)

D→ L(x)−1/2Z,

where Z is a standard normal variable independent of L(x).
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2.4 Introduction to high-frequency statistics

Setting: Fix T > 0; X = (Xt)0≤t≤T .

Xt = x0 +
t∫

0

bsds+
t∫

0

σsdWs, 0 ≤ t ≤ T ,

x0 ∈ R, W = (Wt)0≤t≤T standard Brownian motion,
(A0) b : [0, T ] → R, σ : [0, T ] → R are deterministic functions; b and σ are
bounded.

Data: n ≥ 1, Gn = (0 = t0, n < t1, n < · · · < tn, n = T )
(particular case: ti, n = iT

n ).
|Gn| = max

1≤i≤n
|ti, n − ti−1, n|.

We observe X0 = Xt0, n , . . . , Xtn, n = XT , which is equivalent to the observa-
tions X0, ∆Xti, n = Xti, n −Xti−1, n ; i = 1, . . . , n.
∆ti, n = ti, n − ti−1, n.

Objective: Pick g : [0, T ]→ R. Estimate Λ(g) =
T∫
0

g(s)σ2
sds.

2.17 Examples.

(1) g(t) = 1. Λ(1) is called integrated volatility.

(2) gh(t) = 1
h1[t0−h, t0](t), h > 0.

Λ(gh) = 1
h

t0∫
t0−h

σ2
sds ≈ σ2

t0 for h ↓ 0 if σ2 is smooth.

Note: L (Xt) = N(x0 +
t∫

0

bsds,
t∫

0

σ2
sds),

L (∆Xti ,n) = N(
∫

∆ti, n

bsds,
∫

∆ti, n

σ2
sds) and the ∆Xti ,n are independent.

Problem 20: bs = b, σs = σ > 0 (constant), ϑ = (b, σ2).

(i) Compute the MLE in that setting and find conditions on Gn in order to
have consistency.

(ii) Assume that b is known. Compute the Fisher information for the para-
meter σ2.

∆Xti, n
d
=

∫
∆ti, n

bsds+

( ∫
∆ti, n

σ2
sds

)1/2

ξi, n where ξi, n
d
= N(0, 1).

(A1) b = 0.
(∆Xti, n)2 =

∫
∆ti, n

σ2
sdsξ

2
i, n ≈ σ2

ti−1
∆ti, n.

 Λ̂n(g) =
∑n

i=1 g(ti−1, n)(∆Xti, n)2.
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Error decomposition:

Λ̂n(g)−Λ(g) =
n∑
i=1

g(ti−1, n)(

=:ηi, n︷ ︸︸ ︷
(∆Xti, n)2 −

∫
∆ti, n

σ2
sds)

︸ ︷︷ ︸
=:Mn

+
n∑
i=1

∫
∆ti, n

σ2
s(g(ti−1, n)− g(s))ds

︸ ︷︷ ︸
=:Rn

.

Look at Rn. Define

PGng(t) =

n∑
i=1

g(ti−1, n)1(t∈∆ti, n).

Then we have

Rn =

n∑
i=1

∫
∆ti, n

σ2
s(g(ti−1, n)− g(s))ds =

T∫
0

σ2
s(PGng(s)− g(s))ds.

We give a very rough bound:

|Rn| ≤ ||σ2||L∞ ||PGng − g||L1︸ ︷︷ ︸
M (g,Gn)

.

For Mn:

E[(∆Xti, n)2] =

∫
∆ti, n

σ2
sds,

E[M2
n] =

n∑
i=1

g(ti−1, n)2 E[η2
i, n],

E[η2
i, n] = E[((∆Xti, n)2 −

∫
∆ti, n

σ2
sds)

2] =

( ∫
∆ti, n

σ2
sds

)2

E[(ξ2
i, n − 1)2]︸ ︷︷ ︸

=2

.

Hence,

E[M2
n] = 2

n∑
i=1

g(ti−1, n)2

( ∫
∆ti, n

σ2
sds

)2

≤ 2||σ4||L∞
n∑
i=1

g(ti−1, n)2(∆ti, n)2

︸ ︷︷ ︸
M̃ (g,Gn)2

.

2.18 Proposition. Work under (A0) and (A1). Then

E[(Λ̂n(g)− Λ(g))2] ≤ C||σ4||L∞(M (g, Gn)2 + M̃ (g, Gn)2)

(with C constant).

Consider
(A2(α)) |g(t)−g(s)| ≤ R|t−s|α (for 0 < α ≤ 1) and |g(t)| ≤ R for all t ∈ [0, T ].
Then

M (g, Gn) =
n∑
i=1

∫
∆ti, n

|g(ti, n)− g(s)|ds ≤ R
n∑
i=1

(∆ti, n)α+1 ≤ TR|Gn|α,

M̃ (g, Gn)2 ≤ R2T |Gn|.
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2.19 Corollary. Assume moreover A2(α). Then

E[(Λ̂n(g)− Λ(g))2] ≤ CT ||σ4||L∞ |Gn|1∧2α.

2.20 Remark. |Gn| ≤ c
n  rate n−(1∧2α).

Towards a CLT: We want

√
n(Λ̂n(g)− Λ(g)) =

√
nMn +

√
nRn︸ ︷︷ ︸
!→0

.

Take (A3) |Gn|α = o
(

1√
n

)
.

√
nMn =

n∑
i=1

g(ti−1, n)
√
n

∫
∆ti, n

σ2
sds(ξ

2
i, n − 1).

Recall the CLT for independent random variables with Lindeberg condition:
Let η̃1, n, η̃2, n, . . . , η̃n, n be independent random variables such that

(i) E[η̃i, n] = 0,

(ii) vn =
∑n

i=1 E[η̃2
i, n],

(iii) ∃c > 0 such that 1
vn

∑n
i=1 E[η̃2

i, n1(η̃i, n)>c
√
vn ]→ 0.

Then
1
√
vn

n∑
i=1

η̃i, n
d→ N(0, 1).

Choose η̃i, n such that
√
nMn =

n∑
i=1

η̃i, n. If vn converge to some v2, then

√
nMn

d→ N(0, v2).

Identify vn:

vn =
n∑
i=1

E[η̃2
i, n] = 2n

n∑
i=1

g(ti−1, n)2
( ∫

∆ti, n

σ2
sds
)2

︸ ︷︷ ︸
≈σ4

ti−1, n
(∆ti, n)2

→ 2·T
∫ T

0
g(s)2σ4

sds

if σ2 is continuous and provided

(A4)
n∑
i=1
|n∆ti, n − T |∆ti, n → 0 and

(A5) σ2
s > 0 for all s; {t : g(t)2 > 0} contains an open set.

2.21 Theorem. Work under (A0)-(A5). Then

√
n(Λ̂n(g)− Λ(g))

d→ N
(

0, 2·T
T∫

0

g2(s)σ4
sds
)
.

Problem 21: What can you say if g = gh(t) = 1
h1[t0−h, t0](t)?
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2.5 Volatility estimation from high frequency data in a nutshell

2.5.1 Direct observation model

Consider the semi-martingale (continuous semi-martingale if there are no
jumps)

Xt = X0 +

t∫
0

bsds+

t∫
0

σsdWs + Jumps. (SM/CSM)

Main objective in (CSM): 〈X, X〉1 =
1∫
0

σ2
sds.

Functional stable CLT for realised volatility in (CSM) (see Jacod):

√
n
( xn−ty∑

i=1

(X i
n
−X i−1

n
)2 −

t∫
0

σ2
sds
)

st.→
t∫

0

√
2σ2

sdBs

with Bs Brownian motion and B ⊥W . ’st.’ denotes stable convergence in law.

⇒
√
n
( n∑
i=1

(∆n
i X)2 −

1∫
0

σ2
sds
)

st.→ N(0, 2

1∫
0

σ4
sds).

Consider the case

Xt = X0 +

t∫
0

σdWs. (M)

In (M) for ti = i
n : σ̂2 = 1

n

n∑
i=1

(
√
n∆n

i X)2.

In (M) for general ti: σ̂
2 =

n∑
i=1

αi(
√
n∆n

i X)2.

We would like to have
n∑
i=1

αi
(∗)
= 1 such that σ̂2 is unbiased.

The variance is
n∑
i=1

α2
i 2σ

4n2(∆ti)
2. We try to minimise it:

d

dαj

( n∑
i=1

α2
i 2σ

4n2(∆ti)
2 + λ(

n∑
i=1

αi − 1)
)

= 0

⇒ αj =
−λ

4σ4n2(∆tj)2
=

1

n2(∆tj)2G

with G =
n∑
i=1

1
n2(∆ti)2 (calculate using (∗)).

If we now set In, i = 1
2σ4(∆ti)2n2 ; In =

n∑
i=1

In, i, we obtain

Var(σ̂2) =
n∑
i=1

1

n4(∆ti)4G2
2σ4n2(∆ti)

2 = 2σ4G−1 = I−1
n .
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Estimating spot volatility in (CSM)
Set Kn to be the size of the window for relevant observations around s ∈ (0, 1).
Then

σ̂2
s =

n

2Kn + 1

xsny+Kn∑
i=xsny−Kn

(∆n
i X)2.

For the bias we compute

E[σ̂2
s − σ2

s ] ≈
n

2Kn + 1

xsny+Kn∑
i=xsny−Kn

(σ2
i
n

n−1 − σ2
sn
−1) ≈ K−1

n

xsny+Kn∑
i=xsny−Kn

(σ2
i
n

− σ2
s).

We look at the modulus of continuity to characterise the smoothness of σ and
assume

sup
τ∈[s, t]

|σ2
τ − σ2

s | ≤ |t− s|α.

Then

E[σ̂2
s − σ2

s ] ≈ K−1
n

Kn∑
j=1

( j
n

)α
≈ Kα

n

nα
.

Var(σ̂2
s) ≈

n2

4K2
n

∑
i

2σ4
i
n

n−2 ≈ K−1
n 2σ4

s .

Bias and variance are balanced if Kn ∝ n
2α

2α+1 ; then

(σ̂2
s − σ2

s) = OP

(
n
−α

2α+1

)
.

2.5.2 Noisy observation model

The model is
Yti = Xti + εi, i = 0, . . . , n.

We assume ε ⊥ X, εi i.i.d., E[εi] = 0, Var(εi) = η2 and E[ε8
i ] <∞. We observe

∆n
i Y = ∆n

i X︸ ︷︷ ︸
OP(n−1/2)

+ εi − εi−1︸ ︷︷ ︸
OP(1)

and get

E[

n∑
i=1

(∆n
i Y )2] = 2nη2 + o(n),

E[∆n
i Y∆n

i−1Y ] = −η2.

Spectral volatility estimation
Idea: split [0, 1] in bins [kh, (k + 1)h), k = 0, . . . , h−1 − 1. Approximate σt:

σt = σkh1[kh, (k+1)h)(t).
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Take the family of functions

Φjk(t) =

√
2

h
sin(jπh−1(t− (k − 1)h))1[kh, (k+1)h)(t), j ≥ 1.

Φjk are orthonormal: 〈Φjk, Φmk〉 = δjm.
Define the spectral statistics

Sjk =
n∑
i=1

YtiΦjk(ti), j ≥ 1.

Summation by parts decomposition yields

Sjk ≈
n∑
i=1

XtiΦjk(ti)−
n−1∑
i=1

εiΦ
′
jk(ti)∆ti.

Assume additionally εi
i.i.d.∼ N(0, η2). Then

Sjk ∼ N(0, σ2
kh + π2j2h−1η2) j ≥ 1

and Sjk are independent. We find optimal weights wjk for the integrated volatil-
ity estimator

ÎV n =
h−1−1∑
k=0

∞∑
j=1

wjk(S
2
jk − π2j2h−2η̂2)h :

wjk = I−1
k Ijk with Ik =

∞∑
j=1

Ijk, Ijk = 1
2(σ2

kh + π2j2h−2η2)−1.

Problem: σkh are unknown. The solution is to use two-stage methods ( esti-
mate weights first). The final result is

n
1/4(ÎV n −

∫ 1

0
σ2
sds)

st.→ N(0, 8

∫ 1

0
σ3
sηds).
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