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1 Time series

1.1 Stationary processes

Idea: A process is stationary if its law is invariant with respect to time shifts.

1.1 Examples.
e Annual rainfall,
e EUR-USD-exchange rate,
e car accidents,
e heartbeat of a healthy person.
1.2 Counterexamples.
e Tide level at Hamburg harbour,
e stock price of Siemens since 1960,
e population of ladybirds per year.
Taking out trends/cycles this might still yield stationary time series.

1.3 Definition. Let T C R with t, s € T'= t 4+ s € T be a time set, mostly
T € {No, Z, R{, R}. A family (X, t € T) of random variables on some prob-
ability space (Q2,.%,P) is a stochastic process. For T' € {Ny, Z} we call X also
time series. X is called (strictly) stationary if

d
VneN, ty,...,t,,t€T: (th,...,th) = (Xt1+t,...,th+t),

ie. VA € Brn : P((th, e ,th) S A) = P((th+t, c.. ,th+t> S A)

If X isin L? ie. E[X?] < oo for all t € T, then X is called weakly stationary
(second order stationary) if the expectation function ¢ — pu(t) = E[X] is
constant and the covariance function satisfies Cov(X,, Xs) = Cov(Xyts, Xsit)
for all u, s, t € T. In that case t — ¢(t) := Cov(Xs, Xsyt) (s € T arbitrary) is
called autocovariance function.

1.4 Example. If (X;);er are i.i.d., then X is strictly stationary.

1.5 Lemma. We have: X is L? and strictly stationary = X is weakly station-
ary.

Proof. Identity in law and L?-property imply identity of expectations and co-
variances. ]

Problem 1

(a) Find a weakly stationary process that is not strictly stationary.



(b) Prove that for a Gaussian process both notions of stationarity are equi-
valent.

First statistical problem: Let X be a weakly stationary time series with
expectation pu = E[X;]. Estimate p from observations X, ..., X,,.
A natural approach is the empirical mean

1 n
fln = E Z;Xz
1=

Note that fi,, is a measurable function of the observations (X1,...,X,) and as
such a random variable. We call fi,, an estimator. For realisations xi,...,xy,

of (X1,...,Xy), ie. v = Xi(wo) for some wy € Q, the value (real number)
fin(wo) = %E?:l x; is called estimated value. Here, we see that fi, is an

unbiased (erwartungstreu) estimator of p:

. 1 & ion.
Elfin] = - ZE[XA Staflen- .
=1

1.6 Examples.

(a) If ¢(t) = 0 for ¢ # 0 (X; and X, are uncorrelated for ¢ # s), then by the
weak law of large numbers (LLN) fi,, — p in probability as n — oo.

(b) Take some Y € L? and set X; := Y for all i € Ng. Then (X;);en, is
weakly stationary (u = E[Y], ¢(t) = Cov(X;, Xi++) = Var(Y)). We see
immediately that fi,, =Y does not converge (in probability) to u, unless
P(Y =p)=1.

1.7 Proposition. If (Xy, t € Z) is weakly stationary with autocovariance func-
tion ¢ and mean i, then we have for i, := %Z?:l X;:

(a) Var(fi,) — 0 if lim ¢(n) =0, in particular fi, — w in probability and in
n—oo

LQ.

(b) nVar(ji)) = > ck) if > |e(k)| < .

k=—0c0 k=—0o0
Proof. (a)
1 n c(i~J) n—1 k
lim ¢(n) =0= Var(i,) = 5 3 Cov(Xi, X)) = > ° _2| ()
n—00 n i b= 1) n
1 = Mm—1( 1 = cé
< - — - esaro mean .
S S e Cr B DGl I’
k=—(n—1) k=—(n—1)

N ln,unbiased N . L2 . P
E[(fin — )% "= Var(fin) — 0 <= fin =5 i = fin — .



(b)
by (a) —
Z le(k)| < oo = sup(n Var(fi,)) < sup Z le(k)| < oo.
keZ " " k=—(n—1)

Dominated convergence theorem (DCT):

n—1

lim (n Var(f,)) %) i Z < — W) c(k) = Zc(k)
—_———

n—00 n—o0 n
k=—(n—1) kez

—1

O

1.8 Remarks. Part (a) shows in particular that f, is a consistent estimator:

fin 5 . Part (b) shows that the rate of convergence is —=: /n(fi, — u) is

NGk
bounded in L? (and then also in probability).

If Y ez lc(k)| is finite, the time series is said to have short range dependence,
otherwise it is called long range dependent.

Question: Do we even have ji,, 3 ? What if X is strictly stationary, but
X; € LY\L?? (cf. strong LLN)

Tool: Birkhoff’s ergodic theorem (7" left shift on sequence space,
J T-ivariant o-algebra):

1 n Cas. LU
fn == XoT' " 8 EX)).
=1

If T (vespectively (X;)) is ergodic, i.e. J is trivial, then E[X|J] 2 E[X] = p.

Problem 2: Let (X,,n € Ny) be a strictly stationary process.
Construct another strictly stationary process (X,,, m € Z) such that
(Xern, n € Np) d (X, n € Ny) for all m € Z. X is the canonical extension of
X from Ny to Z.

Problem 3: Consider a weakly stationary process (X, t € R) such that
(t,w) — Xi(w) is Br ® F-measurable (i.e. X is a measurable process).
Construct an estimator jr of u = E[X;] based on observing (X;,t € [0,T7])
(analogous to fi). Study its mean and asymptotic variance under suitable
conditions for c.

For statistical inference, e.g. confidence intervals, an (asymptotic) distribu-
tion of \/n(fi, — p) in the previous proposition would be desirable.

Conjecture: \/n(fi, — pu) — N(0, >, o5 c(k)) under suitable conditions.
Even if we had such a result, a priori we do not know the asymptotic variance

> rez ¢(k) and we need to estimate it. Alternative approach is a resampling/
bootstrap approach.



1.9 Lemma. The autocovariance function ¢ : Z — R of a weakly stationary

process (X, t € Z) satisfies:
(a) c is symmetric: c(—k) = c(k), k € Z,
(b) ¢(0) >0 and |c(k)| < ¢(0),

(c) c is positive semi-definite:

m
YméeN, ay,...,a, €ER: Zaiajc(i—j)zo.

i,j=1

(a) COV(XS, Xt) = COV()(t7 XS>,

Proof.
(b) ¢(0) = Var(X;) > 0,
Cauchy-Schwarz station
c(k)? = Cov(Xy, Xo)? < Var(X},) Var(Xg) = ¢(0)?
(c) 2oy aiaje(i— j) = Var(3iL, a; X;) > 0.
]

1.10 Definition. The 'canonical’ estimator ¢(k) of the autocovariance function

at lag k from observing Xy,..., X,,, n > k, is given by

(X1 = fin) (Xisk — fin)-

(k). The empirical autocovariance matrix is then

Set &(—k) == ¢

¢0)  ¢(1) én—1)
A ¢(1 ¢(0 é(n—2
M IO U
¢n—1) ¢(1)  ¢(0)
Problem 4:
(a) Verify the bias-variance decomposition for an estimator 0 of ¥ € R with
E[¥?] < oo: R R X
E[(D — 9)?] = (E[J] — 9)% + Var(d).
2
Bias

iid . N
(b) Let Yi’ ot Yn lrlv N(M? 02) and O'g( = % Z:L:I(Y; - /“Ln)Qa
fin = 23", Y;, @ > 0. Show that 62 is unbiased iff @ = 1 and determine
@ = aept > 0 such that E[(62 — 02)?] is minimal. How would you choose
« in practice?
1.11 Lemma. C,, (or ¢ on {—n+1,...,n —1}) is positive semi-definite:

Yai,...,a, € R: Zaiajé(i—j)zo.

ij=1



1.12 Remark. For this it is essential that the prefactor before the sum in é(k)
does not depend on k.

PT’OOf. Set }/Z = (XZ - ﬂn)l(lglgn)7 i € 7.

Z aiajé(i —Jj) = % Z aia; ZEYEHZ'*ﬂ

ij=1 ij=1 leZ
1 - 1 -
= E E a;a;Y1Yi i = - E E a;a; Yy _;Yy_j
17 i,j=1 Vezij=1
1 & 2
=— E < g az'Yl'z'> > 0.
n ;
ez ~i=1

O]

1.13 Example. If X is Gaussian and g = 0 is known (i.e. i, = p = 0), then
E[e(k)] = Z=ke(k), n Var(e(k) — Sen(cll)? + (1 + K)ell — £)) if

(c(1))iez € €% (see class notes ~» products of four Gaussian random variables).
~+ ¢(k) has convergence rate ﬁ as well (for k fixed).

1.2 Autoregressive and moving average processes

1.14 Definition. A weakly stationary process (g¢, ¢ € Z) with mean 0 and
o, t=0
0,

g¢ ~ WN(0,02). If (&) is even i.i.d. and (g;) ~ WN(0, 02) we write
(g¢) ~ IID(0, 0'2).

autocovariance function c¢(t) = " is called white noise,

Consider discrete dynamical systems (with initial values xg, Xo):

o vy =ari_1,t €N ~ z; = alwy.
a>1: Ty — 00,
a=1: Tr = T,
Asymptotics for large t : ¢ 0
O<a<l: ax—0,

a<0: similar cases.

e X;=aX;_ 1+e,teN.
We obtain: X; = at Xy + Zﬁ;(l) aler_i,
E[X;] = a' E[X{] (~ deterministic dynamics),

t—s—1
Cov(Xy, Xs) assumne 12 Cov(a' "5 X, + Z a‘er_i, Xs)
i=0
t—s—1
=a'% Var(X,) + Z at Cov(ei—i, Xs)
i=0

supp. Vt: Cov(Xop,e¢)=0 ,_
v (Xo0.2)=0 0 ¥ Var(Xy).



Moreover,

2a2 1
2-1"

s—1
Var(X,) = a* Var(Xg) + o2 Z a2 =T g2 Var(Xo) +
i=0

Asymptotics:

I |a| > 1: If E[X(] > 0, then E[X}] - 400 or —oo for a > 1, a < —1
geometrically fast; Var(Xt) — 00 holds as well. After normalisation,
however, we have that E[3£ ~t], Var (Xf) remain bounded (but usually
do not tend to zero) ~~» unstable behaviour.

I a = £1: a = 1: random walk, usually limsup, ,. Xy = +oo0,
liminf; ,o X3 = —00. @ = —1: alternating random walk-type pro-
cess with similar asymptotic properties.

I |a| < 1: E[X{] — 0, Var(X;) — 12 (independent of Xg).
Correlation for |a| < 1:

t>s at=*s Var( ) for large t,5  ,_
= ~ a

Corr(Xz, Xs) \/ Var(X;) Var(Xy)

S

More precisely: limg_,o Corr(Xgym, Xs) = a™. This means that for large
m X and Xy, are nearly uncorrelated. The time series ’forgets the
initial condition’ as t — oco.

1.15 Definition. For white noise (g) ~ WN(0,0?), p,q € N;
@1y Pps V1,...,Y¢ € R and random variables Xy, ..., X_,41 which are un-
correlated to (g¢)

Xi=p1Xp1+ -+ ppXpp+er +V16—1 4+ -+ Uget—g, t EN

defines an autoregressive-moving average process, ARMA((p, ¢)-process for
short.

With polynomials ¢(2) := 1 — 12 — - — @p2P, 9(2) := 1+ Oz + - + 0429
and the backward shift operator BX; := X; 1 (B?>X; = X; 2, B°X; = X; etc.)

we obtain more concisely ¢(B)X; “ U(B)et, t € N.

Any process (X, t € Z) solving (x) is called an ARMA(p, ¢)-process on Z.
If 9(z) = 1, then X is called autoregressive process or AR(p)-process. If
©(z) =1, then X is called moving average process or MA (g)-process.

Problem 5: Consider the deterministic dynamics for 2; € C with p(B)x; = 0.
Show that x; = a’ is a solution (for suitable initial values) if a=! is a zero of
. Conclude that in the case where ¢ has p distinct zeroes, any solution can
be written as x; = Zj 1 c]a with ¢1,...,¢, € C and al_l,..., ;1 zeroes of .
What happens in the case of multiple zeroes?



Problem 6:

(a) Let x¢(xo,...,2_py1) be the solution of ¢(B)z; = 0, t > 1, with initial
values g, ... x_p41. Prove that the AR(p)-process X satisfies the variation
of constants formula

t
X =2(Xo, ... X_pr1) + Y 2-5(1,0,0,...,0)e;.
j:

1 ’fundamental solution’

(b) Determine the solution and its expectation as well as its covariance func-
tion explicitly for the stochastic Fibonacci dynamics:

Xe =X 1+ Xy ote, Xo=X 1 =1

(c) Give an example of an AR(2)-process that admits a weakly stationary
solution.

1.16 Lemma. The AR(1)-process on Z (X4, t € Z) Xy = aXi—1 + e, t € Z,
has a weakly stationary solution if |a| # 1, For a € (—1,1) this solution has the
representation Xy = > o0 a'ey_;, for |a| > 1 it has the representation

Xe= =32 a e

Proof. The case |a] < 1 follows immediately from the formulas above when
inserting Xo = Y .2 a'e_;, cf. also the more general example from the class.
The case |a| > 1: note that Y 5%, a ’e14; is well-defined as a limit in L? since

Y o>t a~?% < 0o. We then have aX;_; = — > a Tlep 1= — + Xy
= X is AR(1)-process. Weak stationarity is checked by calculating expectation,
covariance function as for |a| < 1. O

1.17 Definition. A weakly stationary ARMA (p, q)-process is called causal if
there is (¢;) € ¢! such that X; = Yoo Yigt—i, t € Z. The latter is called an
infinite moving average representation (or MA (c0)).

1.18 Remarks.

(a) For the AR(1)-process above X is causal if |a| < 1 and not causal for
la| > 1.

(b) Compare with the concept of adaptedness for stochastic processes.
Problem 7: Show that there is a weakly stationary solution of an MA(g)-

process. Discuss its expectation and autocovariance functions and simulate
some examples.

We are now prepared for the main theorem on causal ARMA (p, ¢)-processes.

First, we need some basic power series calculus for the backward shift operator
B.



1.19 Lemma. If (X;, t € Z) is a process bounded in L' (i.e. sup, E[|X¢|] < o0)
and (aj)jez, in (' then the series

a(B)X; =Y a;B'X;=> a;j X
JEZ JET
converges absolutely with probability one (=a.s.). If X is bounded in L?, then
the series is bounded in L? and converges in L? to the same limit.

Proof. By Tonelli theorem:

EDY  lallXe—sll = D laj E[Xe—50] < [l(aj) e SQPE[!XtI] < 0o.

JET jez
It follows that P(3 ;7 [a;|[Xi—;| < co) =1 and the series converges a.s. abso-
lutely.
If X is L?-bounded, then for n > m > 0
2
E[( Z a; X)) = Z ajap  E[Xp—j Xi k]
m<|jl<n m<|jl;|k|<n

C.-S.
<(BIXZ ) EIXZ )12

< (X o) supBLXP) ™50

m<ljl<n —_——
\—v_/ <00
(aj)el!

Hence, the sum forms a Cauchy sequence in L? and thus converges in L?, which
must be the same limit. O

1.20 Lemma. If X is weakly stationary with autocovariance function cx and if
(aj) € €1, then Y, = a(B)X; = > jez 0 Xi—j, t € L, is again weakly stationary
with autocovariance function

Cy(t) = Z ajach(t - j + ]‘J)
J,kEZ

Proof. Y is well-defined by the preceding lemma noting

E[X?] = E[X{]? + Var(X;) = p% + cx(0) < oo.

Hence,
L2 n n
-conv. 4. .
B[] 7= lim Bl a;Xeg) = ) ajpx
j=—n j=—n
o0
= px Z a; =: py (independent of t),
j=—o00
L2 n n
-conv. .
EY;Y,] " =" lim E[( D aiXe (Y anXsp)]
j=-n k=—n
= nh_)Igo Z ajar BXe ;X ] = ( Z ajagex(t —s—j+k)) + pi.

—n<jk<n J,kEZ

ex (t—j—s+k)+pk



It is finite:
3 )ajakcx(t —s—j+k)| <exO)lal? < 0o
J,kEZ
and depends on (¢, s) only via (t — s).
Consequently, Y is weakly stationary and cy is as asserted. O

1.21 Remark. The lemma justifies the formal convolution algebra calculations
for (aj), (bj) et
a(B)b(B)X; = ¢(B) X,

with c(z) = > 22, ¢;j??, ¢; = ez arbj—k (¢ =axb=bxa) for X L?*-bounded.
1.22 Theorem. Let X be a weakly stationary ARMA(p, q)-process on Z with

no common zeroes of ¢ and ¥ on {z € C||z| < 1}. Then X is causal if and
only if p(z) # 0 for z € C with |z| < 1. In that case Xy = Y2 1bjer—; holds

where (z) :== 322, Pzl = 28 for |z| < 1. In particular, such a process X is

UnLque.

1.23 Remark. Note that ¢(z) # 0 for z € C with |z| < 1 implies that all
solutions of the deterministic equation p(B)z; = 0 are asymptotically stable,
i.e. limy_o0 2y = 0 (use Problem 5).

1.24 Corollary. Suppose p(z) # 0 for z € C with |z| < 1 and define (for white

noise (;)jez ~ WN(0,0%)) X}, = > itoiek—j for k = 0,...,—p+1 and
with Y (z) = 28 Then the ARMA(p, q)-process p(B)X; = ¥(B)ey, t > 1, with
initial values Xo, ..., X_py1 is weakly stationary on N (or NU{0,...,—p+1})

with p =0, c(t) = Z;io (e

1.25 Remark. Often, e.g. in the Gaussian case, Xo, X_1,...,X_p,41 can be
constructed explicitly without simulating all (¢;);<o.

Proof of Corollary. Clear from Theorem. O
Proof of Theorem.

"<’ Suppose ¢(z) # 0 for |z| < 1. Since ¢ has only finitely many zeroes, there

is an € > 0 such that ﬁ =320 szj = ¢(2) holds for |z| < 1+¢ (é is

holomorphic there).
This implies > 72 [§](1 + 5)7 < oo = (§;) € A
By the previous lemma,

Xi = (£p)(B)X: = £(B)(9(B)er) = ¢(B)e

1

with (2) = £(2)0(2) = 55 for [2] < 1.

Kly stat.
(ee) "ESYT X is causal since 1) is holomorphic, () € ¢4



'=" Suppose X is causal, Xy =3 71— for some (1;) € ¢'. Then
J(B)er = p(B) Xt = ¢(B)y(B)e.
Since (g7) ~ WN(0, 02), we have for s < ¢
E[(J(B)et) es] = o*4_s, E[(¢v)(B)etes] = oars
——
=> Vs

for a(z) = (o) (2) = 3 a;27.
0
Z s = as = V() = al2) = p(2)e(2), |2 < 1.
Since ¢ and ¢ do not have common zeroes on the unit disk, we cannot

have ¢(z) = 0 for some |z| < 1 (otherwise ¥(z) = 0 follows by finiteness
of 1 on unit disk).

O]

Statistical problem: Prediction/Forecasting
Focus on AR(p)-process X1 = o1 X¢ + -+ + 0pXi—py1 + €141 (t € Z) and
observations Xo, ..., X; (t > p).

Xip1 =1 X+ + OpXit—pt1 + Elegi]
=0

is the best linear predictor of X1 based on X, ..., X;:
E[(Xi11 — X¢41)%| X0, - - -, X;] is minimal for this choice (it equals o?).
Best nonlinear predictor (in general):

Xip1 = E[Xp41|Xo, - .., X¢].

They coincide if (g;) ~ IID(0,0?) (and X, ..., X_p;1 independent of (¢)1>0).
In practice, we have to estimate ¢1,..., ).

Problem 8: See class notes.

Problem 9:
(a) Prove the optimality of X,41 formally.
(b) What is the optimal k-step linear predictor Xy ?

(c) Show that Xt—i—l is also the best linear predictor of X;1; based on
Xt, ..., Xi—py1 for any weakly stationary process (not necessarily AR(p))
when @1, ..., ¢, solve Cpp = ¢, (see notation below).

1.3 The Yule-Walker estimator and a CLT for martingale dif-
ferences

Here we focus on causal (weakly stationary) AR(p)-processes on Z with
Xi=o1Xe1+ - +0pXip +ep, t €7, (6) ~ WN(0,0%).

Ansatz: Moment estimation method

10



1% moments: X has zero mean ~» no information on .

2nd moments: X has autocovariance function

c(k) = Cov(Xy, Xy—p) = Cov(pr1 Xy1 + - + ppXip + &1, X4 )
=pic(k—1)+ -+ ppc(k —p) for k> 1 and

c(0) = Cov(Xy, Xy) = Cov(pr Xp—1 + -+ + 0pXi—p + 64, Xy)
= p1e(=1) + -+ @pe(—p) + 0°

Hence, the autocovariance function satisfies a linear recurrence equation

and is uniquely determined by its initial values c(0), ..., c(p—1), o2, given
Plyee ey (pp.
We can identify ¢1, ..., ¢, from p recurrence equations: (use c¢(—k) = c(k))

c(1) = p1¢(0) + - + ppe(p — 1)
= ¢p = Cpy
c(p) = p1c(p — 1) + -+ + ¢pc(0)

with ¢, = (c(1),...,¢(p))", Cp = (c(i = j)hi<i.j<p, ¢ = (01, )"
If C, € RP*P is positive definite (i.e. non-singular), then ¢ can be identified
from Cp, ¢p: ¢ = C ey

Empirical version: Deﬁne @ = (P1,---,¢p)T via C'p<ﬁ = ¢, with empirical
autocovariance é(k) = L 5707 * X, X; 1 (knowing that E[X;] = 0).

1.26 Definition. This ¢ is called Yule-Walker estimator.

What about o2?
The recurrence for k = 0 yields 02 = ¢(0) — (¢, c,)rr
~~ standard estimator: 62 = ¢(0) — (¢, é,)re

1.27 Example (AR(1)).

Yot XiXi X AR() 007 Xi(o1 X + i)
Zz 1X2 Zi:1Xi2
_@2"1)(2 S X
Zz I‘X—2 Zz I‘X—2 .

Look at ¢] ~ ¢1:

5 A—1
Y1 = Cl Cl1 =

n—1
N X; X511
©0F = Zz 1 i+ =1 +

S Xiei
Zn 1X2 :

-1
>ty X7

If (¢;) ~ IID(0,02) and X causal (~ ¢;11 independent of X;, X; 1,...,
Eiy Ei—1y - - .),
n

*
¥1 *901—’_ 0__2<M>n7

11



where M, = > , X;_1g;, n > 2, is an L%-martingale w.r.t. %, = o(ex, k <
n) (causality: Xy is Fx-measurable) and (M), = Y1 o E[(M; — M;_1)?|.Fi_1]
where My = My = 0.

In Stochastics II: If (M), — oo a.s., then (1]\\4/[310‘ %% 0 for L*-martingales
(M,) with E[M,] =0 and o > 1.

We want to prove:

1.28 Theorem. Let X be a causal (weakly stationary) AR(p)-process with
(e¢) ~ 1ID(0, 02). Then the Yule-Walker estimator (™ satisfies

V(g™ — o) 4 N(0, o2C; 1),

p
Cp = (c(i —J))i, j=1,..p-

1.29 Remark (CLT for Yule-Walker). If the order p is not known and we

estimate, assuming an AR(m)-process with m > p, then the coefficients gb,(f),

k=p+1,...,m, of (™ satisfy each \/ﬁg&,(:) — N(0, 02) and we can provide
an asymptotic level-a test for the hypothesis Hy that ¢ = 0 (using 62 from
above and Slutsky’s Lemma):

()| < Cal
if ¢q > 0 is chosen such that P(|Z] > ¢,) = a for Z ~ N(0, 1).
The fact that o2 is the asymptotic variance of \/ﬁgbgcn) follows from
(CrVk k = 0% in the case m > k > p, for this see Brockwell/Davies.
Other approaches to select the 'right’ order of the AR-process are based on
model selection criteria like AIC, BIC.

CLT for martingale differences

~~ recall standard CLT: (§;);>1 idd., E[§] = 0, & € LA S, = Y0 & =
Sy d

Var(Sn)1/2 — N(O, 1).

Questions

e What if (;) are not identically distributed?
— Lindeberg CLT.

e What if (¢;) are uncorrelated?
— no CLT: Y, (&)i>1 are independent random variables, E[Y] = 0,
E[Y? =1, ~N(0,1), & =Yg
= Gargogre = Y e = Jaler o4 en) ~N(O, 1),
For arbitrary Y this is not Gaussian N(0, 1).
But: CLT holds if §; are martingale differences:

§i = M; — M; 1, E[M;] = 0 ~ E[£;¢)] 7.

12



1.30 Definition. (;);>1 are called martingale differences w.r.t. (.%;);>1 if

o (F;)i>1 is a filtration, %y = {0, Q},
e & is Z;-measurable, i > 1,
o & € L2 E§]Fiq]=0,i> 1.

The triangular array

3%
2 2
6’ &

'k: . k
€W

where (fﬁn))izlw,’n are martingale differences w.r.t. (9}(”))1207“,7” foreachn € N
is called a martingale difference scheme (MDS). We set

(0(™)? = E[(¢™)2].%;1),

V2= (02 1<i<n, V2=V2,
j=1

We say that (€ »(n))im satisfies the conditional Lindeberg condition if

)

ZE [(fi(n))21(‘§zgn)‘>6)!9}(2 B0 for all § > 0.
i=1

Problem 10: The conditional Lindeberg condition implies max 02-(") 50
<i<n

("conditional Feller condition’).

ix : 22
1.31 Lemma. Q(z) = “ 1522 yith Q(0) = 0, M(z) = £ A 2,

12/2

N(z) = e ™ — 1+ x satisfy for all x € R:
1 Q@) <1, [Qx)] < M(jzl), [N (z])] < 2.

Proof. By hand. O

1.32 Lemma. Let (&,), (7,) be random variables with n, # 0 a.s. Suppose ¢
is a characteristic function and Ao € R with ¢(Ao) # 0. If

(a) lim,,_,oo E[n; tettoén — 1] = 0,
(b) limy o0 Ef[n;, ' — 0(X0) 1] =0,
then ¢¢, (Ao) = E[e?052] — (Ag) holds.

13



Proof.

e, (Ao) — (M) = [p(Ro)l| E[e05p(ro) ™ — 1]]
< p(No) ([Ele™p(ho) "t — oS 1] o [ B[00 —1]]) = 0.

<E[lp(Ao) 1= '] =| B[y ' —e—iroén]]|

O

1.33 Theorem. Let fz(n) be a martingale difference scheme such that V, 51
(‘norming’) and the conditional Lindeberg condition are satisfied. Then

n

Sn=>"e" 4N, 1).

i=1
Proof.
1. Truncation:

Put njn) = 5j('n)1(vf,j§c) for some ¢ > 1, T, => /" | 7
We shall show:

(n)

i .

(i) Sp—T, >0,

(ii) (ngn), Z, -(n)) is an MDS satisfying 'norming’, ’conditional Lindeberg’

7

and P(W? < ¢) = 1, where
Wi =3Bl F]
n m; i—11"
i=1

Because of (i) it suffices to prove T, 4 N(0, 1) (Slutsky Lemma), i.e.
o7, (u) — e "2 for all u € R.

2. Prove (i):
write T = S0 0™, W2, = S5 Bl 7).
PVj=1,...,n :gj(,n) :nén)) >P(Vj=1,...,n:V?, <c)

‘norming’

>1-P(VZ-1>c—1) ==°1-0=1.

= for e > 0: P(ISy — Tn| > ) <PEj=1,...,n: " #0") =0

:Sn—TnﬂO.

3. Prove (ii):
MDS:

14



’Conditional Lindeberg’ follows directly from |77§n)] < |§i(n)].

"Norming’:
W2V = | SRR < V1 g 0
J ! \/ Ty
—>1 30
= W2 1.
W2 = SEIEN L ol PO S g e (as)
n = j V2, <ol -1 = o Wiy = clas
i=1 p
4. CLT for T),:

Apply the 21 Jemma, above with (N = e—k2/2’ €n = Th, 0y = e‘AQW’QL/Q.
To conclude T;, N(0, 1), we have to show

(a) B[+ W2 _ 1] 5 0 for all A € R,

(b) E[leX"¥2 — ¢¥*/2|] = 0 for all A € R.

Part (b) follows immediately from W), 5 1, the continuity of x — /2

(continuous mapping theorem) and the fact that 0 < W2 < c a.s. (DCT).

5. Prove (a):
Let WLOG A #0, 1 <k <n, set

¢ = AT FINWE (M _ g

)

To(n) = n(()n) =0, (Tk(:n))2 =E [(nén))Q‘ﬁéi)l}. Then

n
Z (k") — ATt NWE g (telescoping sum).

(n) 1
ezATk_ﬁiA?Wj &

- Jefe

Tz o (n) ] N,Q frog lemma,
h- (*)

& [3R00)Q0n)| #0] - N (3]

152, 1 n n n 1.1 n
< (B[00 M| 2] + 5 (GAE)?)

. 1 n n
S| E[ePTWE 1)) < STE[EC1#M))

< N2esNe( SR M () + A%E[ max_(71")2)).

j=1,...,n

15



Problem 10 implies that nax (T](n)) — 0. Moreover, 7-( ") < ¢ such that
]: 7"'7n
274 term — 0.

By conditional Lindeberg for any ¢ > 0:

ZE M(|xng”))]

<3 (2B o 170 + L ).
k=1

-~

cond. Lind., DCT ‘norming’ §|\
() e 2

() it DT o

Since this is true for all § > 0, we conclude (a).

O
Problem 11: Show that the conditional Lyapunov condition
- n n P
=>0:Y E [ygj( ) |2+e ﬁj(_ﬂ %o
j=1

implies ’conditional Lindeberg’.
Problem 12:

(a) Let (M,) be an L?-martingale, (s,) be deterministic such that Mn T g

and
M; — M1 2 P
ZE [ T 1 ‘M —M;_ 1}>6)’9}_1} — 0.

=1

Then 4 S 4 N(0, 1). (Show that s, — 00.)
4 N(0, 1)7

Do we then also have 1 7
(M)

(b) Formulate and prove by Cramér-Wold device a multivariate MDS-CLT.

(c) Give counterexamples of L?-martingales where (a) does not hold.

Proof (CLT for Yule-Walker).

1. AR(p)-process: X; = 01 X¢—1 + -+ + @pXi—p + &1, (e1) ~ 1ID(0,02).
Rewrite it in 'regression language’ as Y = Xp+e withY = (Xq,..., X,,)7,
design matrix

Xo X_i ... X1,
x=| % X Koy c RY7P,
Xpo1 Xpoo oo Xoop

16



e=(e1,...,en)T.
Standard Least-Squares estimator:

= (XTx)"'xTy.

This means: ¢ ~ @(")7 Yule-Walker.
We have ¢ = ¢ + (XTX) 1 XTe.

2. We have ¢} — oM = oﬂm(n_l/2) (i.e. nl/z(cp:; — gé(”)) x5 0)
1
Tyry o1 XisiXe = X Xpii)i=—0) XuoiXp)i.

- Cp Z k k Z kA k+ Z k k

\—,_z

<p summands

Weak stationarity implies that

1 .
E[|=XTY — &) < “P for some ¢ > 0
n n

1 . 1
= ”HXTY — Cp“ = OLI (ﬁ)

1 1
= V|- XTY = &) 50, ie. |-XTY — & = op(n~/?).
n n

Similarly,
) A P n—|i—jl
EXTX — Cp = E(Z Xpo—iXk— -J = Z XkaHZ ]‘)
k=1 k=1

= 0r,(n"") = op(n™ "),

Use continuous mapping theorem to conclude that o — 3™ = op(n="/2).
We note for ¢ —¢ = (XTX)"1 X7¢ that

M) = (XTe)i = Xyje1 + -+ Xnien (i=1,...,p)
is a martingale in n w.r.t. %, = o(e1,...,en, Xo,..., X py1):

o Xp€lo (g5) € Lo = MY e 1,
(MY s even in Ly: B[(Xp_sex)?] "S> B[X2_ ] E[e2] < o0),
o BE[MY|Z0 1] = X1 ie1 4+ Xn1itn1 + Elen| Fn1] = M,
N——

=E[en]=0

indep.
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with quadratic variation

(MDY, =S E(MY ~ M )2 T = 02> XE = 02(XTX)i s
k=1 k=1

Now, M,, = (M,(Ll), . ,Mép ))T is a vector-valued martingale. Its quadratic
covariation matrix (M), € RP*P satisfies

(M)n = B[(Mg — My_1)(My — My_1)" | F 1] = (X7 X).
k=1

Hence, ¢ — ¢ = o?(M) 1 M,.
From the chapter on autocovariances we know that ¢(k) 5 c¢(k) (empirical

covariances are consistent) if (c(k))rez decays sufficiently. Here ¢(k) even
decays with geometric rate in & such that this holds (since X is causal).

This means C'p E> C) and thus

1 L1 .
~XTX =Gt (CXTX - Gy) 50,
| S ——
50

We define the following martingale difference scheme:

€M = (n- 02 C) (M — My_y) €RP, 1< i <.

1
It has conditional covariance matrix
Vi = Vi = (n02Cp) ™ (M), 5 E, = diag(1,...,1) € RP*?
——
o2XTX

such that the norming condition is satisfied.
Check the conditional Lindeberg condition

n
_ P
Y E(l(no®Cy) (M = Mic)IPL o2y b2 a0y Fim1] = 0-
i=1
We even have L'-convergence because of

§E[||(n0‘20p)_1/2(Mi = M) o2, )2 (ts— i) 6]

] DCT

X stat. _
U E((07Cp) " (My = Mo)I® 120,200 i) >svm) O

E[...]<oo —0 and <1

Hence, we can apply a vector version of the CLT for MDS. It yields

(noC,) "2 M, 3 N(0, E,).

18



We write

072 — @) = (M) My = (M)} (n0?C,) (no? Cy) ™' My,

n

Then by Slutsky’s lemma
= 072 (no’Cy) P (pn — ) S N(O, )
= n'2(gh — 9) SN0, *(2C,) ™) = N(0, 02 1),

3. Fine point: C), is non-singular, i.e. C, > 0. For a € R?:

(Cpa,a) = Z c(k —Daga; = Var(z arXk)

k,l=1 k=1
X is AR(p) L,
18
— P Var( aka + (]Jp(sﬁ]_Xp—]_ + tte + SOpXO + 510))
k=1
ind f X, k L,
e ndep- o Ak, F<P Var(z ap Xy, + ap(©1Xp—1 + -+ 9pXo)) + aj0”.
k=1

Hence, (Cpa,a) =0 = a, = 0 and continuing in the same way we obtain
ap = ap—1 =---=a; =0 < a=0and thus C, > 0 and C, non-singular.

O]

Problem 13: Consider the Yule-Walker estimator of an AR(1)-process
X; = 1 Xy 1 + &4, (61) ~ 1ID(0,0?) and show that in the ’exploding case’
|p1] > 1 the estimator converges to ;1 (in probability) with geometric speed
in n, ie. @gn) — ¢ = op(r™) for some r € (0,1).

Problem 14: Consider the causal (weakly stationary) AR(1)-process with
(e1) ~ N(0,0?). Determine the Maximum-Likelihood estimator (MLE) of ¢;.
Discuss its difference to the Yule-Walker estimator.

Question: Is there another sequence of estimators gé(") of ¢ based on
X1,..., X, which is better in the sense that ¢(™ converges with faster rate
than n="/2 to ¢ (in probability) or

V(@™ — ) S N(0, V)

with V' < 0?C ! (i.e. 0°C,t =V is positive semi-definite and 02C, 1 =V # 0)?

Tool: Fisher information.
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Excursion: Suppose § : © — R is an unbiased estimator of g(9) (g : © — R),
i.e. g is measurable on (9, %, (Py)yeco), © non-empty index set, Ey[g] = g(¥)
for all ¥ € ©, and that § € L?(IPy), ¥ € ©. Moreover, suppose that (Py)gece is
dominated by a o-finite measure p on (2, .%), i.e. Py < u for all ¥ € O, and
let py = % be the densities (Radon-Nikodym derivatives). We want to derive
a lower bound on

Es[(§ — g(19))%] = Vary(g).
N~
Ey (4]

For each H € L?(Py) Cauchy-Schwarz inequality yields
Ey[(§ — 9(9)H]* < Ey[(§ — g(0))* Eg[H?)

. 2
= Bol(g - 9] > = SN

Goal: find H such that the numerator is independent of §.

a4
Fisher’s idea: Hy = %(logpﬁ)l(mw) = %5“91(7,100), 9 eO CRY.
Then formally:

for all H € L*(Py).

dp
Y=19

d
Ey,[Hy,) :/Hﬁopﬁodﬂ = / P
)

dPy, {pvy>0}

o [ vl =G ] )
(L[ pan =(5 [ podn)| =0
(dﬁ ESVN) dd 9=19¢
{py,>0} {py>0}
=1
For the change of the integration boundary above note:
G(0) = /1(p190:0)p19du. If G € C', then G'(Yg) = 0.
Q
Hence,
Eﬁo[(g - g(ﬁo))Hﬁo] = Covﬁo (gv Hﬁo) = Eﬁo [Q(Hﬂo - Eﬁo [Hﬁo])]
= 9T Leasopnds =55 gpedp s

{p9y>0}

Since ¢ is unbiased, we have

/ Gpody = Eglg] = g(9)

d / . d ,
= —( [ gpodp = 759(9)|y_y, = 9 (Vo)
d19( ) 99, d9 ’19_190
~~ numerator = g'(Jg)?.
Cramér-Rao inequality:
. g (00)? g (o)
Eo, [(9 — 9(00))*] = =
’ Eﬁo[(%(logpﬁ)b:go)Q] 1(190)
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where I(Yy) = Eﬁo[(%(logpﬂ)b:ﬂo)ﬂ is the Fisher information at ¥ = .
(This holds for unbiased estimators § of g(«}) under regularity conditions on

(py) and g).
~» Formal versions and proofs:

e Lehmann/Casella: Theory of Point Estimation ([5]),
e van der Vaart: Asymptotic Statistics ([8]).

1.34 Remark. If g is biased, i.e. Ey[g] = g(9) + b(¢¥}) for some b, we obtain
from above in terms of §(9) = g(9) + b(J):

Problem 15: Formulate and prove the Cramér-Rao inequality for 9 € © C RY,
i.e. for d > 2 (with g : © = R).

Asymptotic efficiency lower bound:
Hajek-Le Cam convolution theorem: If the statistical model is (asymptot-
ically) regular (e.g. LAN), then any 'reasonable’ estimator §( of g(19) satisfies

1™ (90) (5™ = g(90)) 2 Qe

for some limit distribution )y, and we have

Qo, = N(0, ¢'(90)?) * Ry,

for some law Ry, (* denotes the convolution).
Interpretation: Since convolution of measures spreads the probability distribu-
tion (e.g. increases variance if it exists), the most concentrated limit law we can

obtain is N(0, ¢’(9%)?) (meaning Ry, = o). Therefore, estimators (§(™) with

I0)(09)(§™ — g(90)) % N(0, ¢ (90)?)

are called asymptotically efficient.

Superficial similarity to Cramér-Rao bound:

g'(90)* )

i — g(00) ~ N (0
9" = g(o) ( T (00)

Note that §(™ was not supposed to be unbiased.
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Let us now look at the Yule-Walker estimator for a causal AR(1)-process

X, =9X;o1 +ep, 0 € (=1, 1), () "= N(0, 02).

Here © = (-1, 1), g(9) = 9, ¢’(¢¥) = 1. Write uy for the Lebesgue density of
X under Py. One can prove that this AR(1)-model is indeed 'regular’.
The random vector (Xj,...,X,) has Lebesgue density (@ = Agn+1):

P (20, n) = g (20)0, 02 (21 — V0)- - .- 90, o2 (T — V1)

with ¢, 2 density of N(p, 0?), i.e. g has density pg 2.
Log-Likelihood:

log p§” (o, ..., &n) = log (g (z0)) + > “log(pg, 02 (x1 — Vi-1)).

k=1

Score function:

3

d n d 1
@ logpf51 )(xo, e ,xn) = @ log(,qu($o)) + — ( - ﬁ)xk_l(xk — 19.Tk_1).

d n
Eoyl(3510825" (X0, - Xa) y_y,)’]

3

= B, (55 10810 (Xo))| gy + D (= 25) Xi1ew)?

do P
O Varg, (- log (g (X QRPN
= arﬁo(@ og (s 0))‘192190)4_ kilﬁ 00 Xj—1]0
X stat. d n 2
= Varﬁo(@ log(:uﬂ(XO))‘ﬁzgo) + ﬁEﬂo [XO] :

:Cﬁo (O)

(For (x) regularity conditions are required ~~ regular model.)

92 2
20 4 0°ncy, (0)
n _ T(a-99)? 0
= 1M (9y) = : o
Ji)
_ ™) | %(20)_
n o

This means that an estimator (9(™) with
V@™ —9) 4N (0 UQ)
’ c9,(0)

is asymptotically efficient. This is the case for the Yule-Walker estimator.
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Problem 16: Investigate whether the Yule-Walker estimator for causal AR(p)-
processes, p > 2, is also asymptotically efficient (in a natural generalisation).

Final remark: In the ’explosive’ case (e.g. AR(1) with || > 1) the Fisher
information grows geometrically in n and the Yule-Walker estimator also
converges with geometric rate in n.

2 Statistics for continuous-time processes

2.1 Diffusion processes

2.1 Definition. A (time-inhomogeneous) diffusion process in R? is a process
(Xi, t > 0) solving the stochastic differential equation (SDE)

dX; = b(Xt, t)dt + J(Xt, t)th, t >0, (*)

with initial condition Xo = X©). Here b: RY x Rt — RY, o : RY x RT — R™
and W is m-dimensional Brownian motion.

The intuition is that (after ’division by dt’)

dx,

X, =
ET e

= b(Xy, t) + o (Xy, )W,

where W; is Gaussian white noise ("equivalent of i.i.d. N(0, 1)-random variables
in continuous time’). Since white noise can only be defined in a distributional
sense, the It0 interpretation in terms of integrated quantities is nowadays
preferred.

Rigorous definition: X is a strong solution of the SDE (%), where W is defined
on some (©,.%,P)and X© is independent of W on (Q,.%,P), if

(a) (X, t > 0) is adapted to the completion by null sets of

54}0 =o(Ws, 0<s <t X(O));

(b) X is a continuous process;

(d) IP’(f(Hb(XS, s)|| + [lo(Xs, 8)||?)ds < oo0) = 1 for all t > 0 (with ||| any
0
norm);

(e) With probability one:

t t
VE>0: X, = Xo +/b(XS, s)ds + /G(XS, $)dWs.
0 0
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The stochastic integral is taken in It0’s sense and obtained as the limit of sums

m
O=to<ti<-<tm=t:» o(Xp_,, ti))(We, = Wi,_,)
=1

where A = max; ‘ti — ti—l‘ — 0.

2.2 Theorem (Standard existence and uniqueness result for SDEs). Suppose
the drift coefficient b and the diffusion coefficient o satisfy the global Lipschitz
and linear growth conditions

(i) llo(z, t) = by, DIl + llo(z, ) — oy, ]| < Kz =yl
(i) |b(z, ) + oz, )] < K1+ [l])

for all z, y € R, t > 0 and some constant K. Then the SDE () has a strong
solution which is also unique, provided X(© € L2,

If (X4, t € [0, T]) is observed (continuous-time observations), then by taking
refined partitions, we can calculate the quadratic (co-)variation

¢
/O’(Xs, s)o(Xs, s)Tds
0

for all ¢t € [0, T7:

m

t
SO — X ) (X, — X, )T 23 / o(Xs, 8)0(Xs, 5)7ds.
0

: a.s.
=1

By taking the derivative in ¢, we thus identify (co®)(X;, t) € R¥? for all t €
[0, T']. Note that we cannot hope for more: if x is not visited by (X¢, t € [0, T)
there is no chance to learn about (co”)(x, t) for some t.

Moreover, we cannot find out more about ¢ € R¥™™ itself, because X also
solves an SDE of the form:

dXt = b(Xt, t) + (O'O'T)l/2(Xt, t)th

with W a d-dimensional Brownian motion.

Résumé: Continuous-time observations identify the diffusion part as far as
possible and the main interest is the drift part.

Main tool for drift statistics: Girsanov theorem to obtain the likelihood.
[Liptser/Shiryaev: Statistics of Random Processes ([6])]

2.3 Theorem (Theorem 7.19 in [6]). Let (X¢, t € [0, T)), (Yi, t € [0, T]) be
two real diffusion processes with

dXt = bx(Xt, t)dt + O’(Xt, t)th,
dY;f = bY(ma t)dt + U(Y;H t)th
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and Xo =Y, a.s.
Suppose for Y there is a unique strong solution and (bx — by)(x, t) = 0 if
o(x,t)=0. If

T
b2 +b2)(Xs, s)
]P’(/ 1(g(xs,s)>o)( XUQ(;Q’( S)S ds < o0)

(0% +03)(Ys, s)
) o2(Ys, s)

0
T

= ]P(/ 1(0'(Y375)>0 dS < OO) = 1,
0

then the laws P73, PY. of X and Y on C([0, T]) (with Borel-o-algebra) are
equivalent with Radon-Nikodym derivative/density/likelihood:

dPY

—=((X

T5r (X r)
r b b 1 r b2 — b2

= exp {/1(U(Xs,s)>0) (YUQX> (X5, s)dXs — 2/1(U(x$,s)>o) < Ya2 X) (X, s)ds}.
0 0

2.4 Examples.

1. Brownian motion with drift:
bX(Xt7 t) = bX(t)7 bY(Xta t) = bY(t)7 J(Xtv t) =0 > 07 X(O) = 07 ie.
t
Xt = /bX(S)dS + O'th,

o

t
Y; = /by(s)ds + odW;
0

~ all conditions above are satisfied and

T T

dPy (by — bx)(s) L[ (65 = b3)(s)
0 0

~~ if by, bx are constant in ¢, then X7 is a sufficient statistics, i.e. for

all statistical puropses it suffices to use Xp, not the trajectory (Xp, t €

[0, T7),

~~ enormous data reduction without loss of information on AbX, by .

Example: MLE for dX; = 9¥dt + odW;, ¢ € R unknown, is %hyrg = %

2. Ornstein-Uhlenbeck process:
It is the solution of the SDE

dX; = aXidt + odW;
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for some initial value X (©),
Variation of constants formula gives

t
X; = e x0 4 / =) cdWs.
0

If X(© is Gaussian or deterministic, then (X;) is a Gaussian process.
It is easy to see that all conditions in Girsanov’s theorem are satisfied for
by (z, t) = ax, bx(z, t) = 0 (for a = 0) and thus

dPY [ ax [ a2x?

T aXs 1 a

M—exp{/oang—Q/ O.QSdS}'
0 0

Writing P4 instead of P¥., we have

dPY  dpe dPe
T _ OT<: @) —: 2(a).
dpy  dPY dPg

The MLE is then

T T
[ Xd X [ Xs(aXsds + odWy)
~ 0 plug in X 0
ar = =g - T
[ X2ds J X2ds
0 0
T
X odW.
+bf sO s . My
=a =a
T o= 2(M)r
[ X2ds
0

t

with M; = szadWs.
0

Problem 17:

(a) Show that a strictly stationary solution of dX; = aX;dt + odW;
exists if a < 0. It has the representation (cf. MA (co)-representation

of AR(1))

Xt =0 / ea(t_s)dWS
—00

whereN(Ws, s € R) is two-sided Brownian motion, i.e. (W, t > 0)
and (W_¢, t > 0) are independent Brownian motions.
If a > 0, then no weakly stationary solution exists.

(b) Consider the observations (Xp, XaA,...,XnaA) with A > 0 and
T = nA (discrete observations). Estimate a by discretising the
continuous-time MLE ar and secondly by identifying (Xxa, £ > 0)
as an AR(1)-process and using the Yule-Walker estimator.
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3. Cox-Ingersoll-Ross (Bessel) process:

It solves

dX; = (91 — 92X3)dt + o/ X dW,
X©) > 0; 9y, 99, 0 > 0.
One can show that there is a unique strong solution (although diffusion
coefficient is not Lipschitz at X; = 0) with X; > 0 for all ¢ a.s. If 2¢; > o2,
then even X; > 0 for all ¢ a.s.
Assuming 29 > o2 and 21950) > 02 and considering P% (¢ = (91, 92)) as
the law of (X;) on C([0, T]) we have

T 0 0
Py (191—199)—(192—19;)))(8(1)(
dP%(O) B 02X °

T
Ryt 2
2 02X,

by Girsanov’s theorem (o(Xs, s) > 0).

The MLE 9 = (1, J2) is obtained from vy log ((ﬁ) =0:
T

) 0
=" T T ,
[ +ds [ Xods — ([ 1ds)
0 0 0
T T T T
[1ds [ {-dX, — [1dX, [ 5-ds
by = 0 0" 0 0"

4. General linear parametrisation:
Consider
dXt = <19? b(Xtv t)>dt + G(Xt7 t)th7

Xo = XO with 9 = (9q,...,9,)7 € © C R¥ (unknown parameter),
b : RxRY — RF such that all conditions for Girsanov’s theorem are
satisfied; suppose 0 € © and o(z, t) > 0. Then

T

T

d]P)% <197 b(Xta t)> 1 <197 b(Xt7 t)>2

T _ WA D) gx, - = [ W 220 0 gy L

apy — P {/ 02X, 1) 2/ o2(X,, 1) }
0 0

9
MLE is obtained from 7y log (dio )

T
MLE _ b-b" - "
19 = Xt, Xt, dXt € R,
O‘
0 0

=:IpeRFXF cRF
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provided the matrix is non-singular.
Under the law IP’?O we then obtain:

T
&MLE _ Iil / b(Xt, t)b(Xt, t)Tﬁodt + b(Xt, t)J(Xt, t)th
g T 0—2(Xta t)
0

N——
I
=T

:%+G%]K?y&Jmm>:%+M@FMT
0

::MT

If there is a deterministic sequence Ay € R¥*¥ Ap strictly positive de-

finite, with A7'(M)7 % B, and the conditional Lindeberg condition is
satisfied, then

under IP’i9

R 0
AL —00) = T N(0, Ey).

If (X;) is strictly stationary and ergodic, then we can take Ap = T-I;
where I; is the Fisher information matrix for observations (X, ¢ € [0, 1]).
In particular, then 97 — 9y is of order OP(T_I/Q).

Problem 18: Consider the stationary Ornstein-Uhlenbeck process
dXt = CLXtdt + O'th,

a < 0, and the estimator

T

[ X d X,
0

ar = T

[ Xzdt
0

Prove that v/T'(ar — a) is asymptotically normal. By calculating the Fisher
information prove that it is even efficient.

2.2 Nonparametric drift estimation

Suppose we observe a time-homogeneous diffusion process

dXt = b(Xt)dt + O'(Xt)th,
X=X,

on [0, T, we know the diffusion coefficient o, but we do not know b and do
not want to impose a particular parametric form on b. We merely assume that
x +— b(z) has a certain Holder smoothness:

[b(z) = b(y)| < Rlz —y|*
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for all z, y € R, « € (0, 1].
Idea: The drift b(x) is the mean of the infinitesimal increment of X; given
Xt =X

b(z) = imE [X“hh_Xf

hl0

Xt:$:|.

Hence we should use dX; for estimating b.
~» Nadaraja-Watson-type estimator:

T

) S omh, on) (Xe)d X

br,n(x) = OT
S Laep, wpn) (Xe)dt
0

Note:

T T

S Yamn,arn)(X)0(X)dt [ 1y py g (Xe)o (X)) AW
_0 0

bT,h(x) - T + T

S Yaen, ogn (Xe)dt S Ljoon,arn (Xe)dt

0 0

T
f]- [x—h, z+h] (Xt)b(Xt)dt
0

with i[m—h, x+h) (Xt) X l[x—h, z—&—h}(Xt)v i[z—h,r—i—h] (Xt)dt =1

fi[:(;—h,x—i-h] (X1)b(Xy)dt is a convex combination of values b(y) for y € [z —
0

h, x + h], hence it lies in [ min b(y), max b(y)]. Since b € C°,
ly—z|<h ly—z|<h

T
|/ia: h, x+h] Xt)b(Xt)dt— b(a})‘ < Rha,
0

which is a deterministic bound. It tends to zero when h | 0.

We look at the stochastic error term

T
f 1[J1—h, z+h] (Xt)a(Xt)th
0

Lo, apn) (Xe)dt
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Suppose that (X;) is stationary, then the numerator satisfies

£ [(/1[:v—h,x+h] (Xt)(’(Xt)thﬂ
0

T
o ey / E[lfpp, v n)(Xe) 0 (X)?)dt
0

X st
= TE[Lj—p, o) (X0)o(X0)?]
z+h
7 [ )ty < 2h]o%ll ~ Th

z—h

p inv. Lebesgue

dens. of Xo

Stationarity of X, existence of the invariant Lebesgue density p and finiteness
of 0% are necessary assumptions.
For the denominator:

T
X stat.
E[/ 1[xfh,x+h](Xt)dt] Fusb?m TE[]-[x h, x+h}(X0)}
0
1 z+h
u invar.
= 2Th| — .
density h<2h /M(y)dy>
z—h

Hope: The denominator ’concentrates’ around 2T hu(z) as T — 0o, h — 0 such

that the stochastic error is of order (in probability) Op (F> = Op < m)

2.5 Proposition (Durrett: Stochastic Calculus ([2])). If

G = 7 02190) exp (]ii@)@) dz < oo
0

—00

and the SDE has a strong solution for any initial condition, then there is a
stationary solution X of the SDE with invariant Lebesgue density

() = Gaé(x) exp (i ig(z)dz,), zER.
0

2.6 Proposition. Suppose there are A, v > 0 such that sgn(x ) b(x) < — for
all z with |x| > A, that b is bounded on [—A, A] and o := m]%a (x) > 0, then
xre

there is a stationary solution X of the SDE and for any function f : R - R
with E[f(Xo)] = 0 and f € L'(R) we have

Iﬂ(fﬂ&MQjSMN%@+CT)
0

with constants C, C' > 0 depending only on A, v, o2, sup b(z).
|z[<A
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2.7 Remark. The condition sgn(m)g—g(z‘) < —v (%) means for z > 0 that the
drift is negative for x > A and strong enough to push the diffusion process back
to the direction of the origin such that an equilibrium can be obtained. For
x < 0 the situation is symmetric. An easy example is the Ornstein-Uhlenbeck

process with b(z) = ax and a < 0.
Proof.
1. Condition (*) implies G < oo, using that 2—12’ is bounded in [—A, A] and
% is bounded on R.
2. Find F such that LF = f with the Markov generator
o*(x)

LF(z) = 5

F"(z) + b(z)F' ().

Then by It6’s formula
1
dF(X;) = F'(X)dX; + iF”(Xt)d(X%

— (F/(X)b(X)) + %F”(Xt)az(Xt))dt +F(X))o (X)W,

=LF(Xe)=f(t)
T

T
= /f(Xt)dt = F(XT) — F(XQ) — !F/(Xt)U(Xt)th

T

0
T
= E(( [ £00d0?) <3(EFQ ) + BFCO? + B[ [ Fonetan)])
0 0

X e 6 BIP(X0)?] + 3T E[F(Xo)?0(Xo0)?)-

It6-iso.

3. Check that

T )

Fe) = [ oot ([ fomteas)ay

0
satisfies LF' = f.

W@:ﬁ$+12mgix—ﬁmﬂm{]ﬁwwﬁz

x
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Hence
0.2
LF(z) = <2F” + bF’) (x) = (f(x) — b(x)F'(x)) + b(x)F'(x) = f(z).

4. Bound F'(z), F(x).

For = > 0:
, 2 T [ 2
Pl < 5 [156) e ( [ Zw)3dy)dz <ol
sup (...)<Ch
x,2>0

For z < 0 the same bound applies. We obtain |F'(z)| < Cs||f||r1 and
thus

e}

E[F'(Xo)*0*(Xo)] < C3||fIIZs / o*(z)p(z)dz < CallfI[7,-

The bound for |F(x)| and then E[F(X()?] follows in the same way.
O

Problem 19: Generalise this proposition by relaxing the conditions
sgn(z )21’( ) < —v, a? > 0. Follow the constants more explicitly.

Applying this proposition to the denominator, we obtain for diffusions satisfying
its conditions:

T 2
E[( [ 1) —E[l[z_h,$+h]<xt>]dt) |
0

<(C+ OV, wi)(Xe) = B[l o, o) (X0)] [0 < (C 4+ C'T)C1R?.

x+h
=] nl@)dz<2h]lullos
h

r—

We have as T' — oo, h ] 0:

T T

E[Of L—n,o4h) (Xe)dt] > CoTh, El7g [ Liamh,atn(Xe)dt] > Cy > 0,

T = Vo
Var([ Ly p pon(Xe)dt) < C5Th?. Var(7; [ Lja—p, o4n) (Xe)dt) < C3T71 = 0.

0 0

We thus have .
1 C
Pl [ Loonwm(Xde= ) > 1,
0
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Hence the stochastic error term is Op (@) =0Op <\/%Th> in the sense that

T
S Yoh, opn) (Xe)o (X)) dW;
VTh®

T
S Lo, o) (Xe)dt
0
is tight (i.e. bounded in probability). This implies the following theorem.

2.8 Theorem. Suppose the SDE satisfies the conditions of the previous propo-
sition. Then for the stationary solution (Xy) and a drift b with

[b(x) = b(y)| < Rz —y|*
we find
1

bz, (0) — b(xo)| < Rh® + OP(\/ﬁ)'

Hence, if h = hr | 0, but Thr — oo, then /b\T7h(:c0) is a consistent estimator of
b(ZL‘Q)

2.9 Corollary. If we choose hp ~ T~ %ast (optimally in order), then we obtain
b7, (0) — b(xo)| = Op <T—2c?+1>.

2.10 Remark. One can show that this rate T~ 211 is optimal in a minimax
sense over a-Holder continuous drifts b. For the most interesting Lipschitz case
(o = 1) the rate is T~"/* (compared to T~ for parametric problems).

2.3 Nonparametric volatility estimation with high frequency
data

Consider the diffusion process
dXt = b(Xt)dt + O'(Xt)th.

We observe Xy, Xa,...,XyaA (A << 1).
Intuition: We look at Xy, XA and at the increment:

A A
Xa—Xo 1 1
=== A/b(Xs)ds +A/0(Xs)dWs-
0 0 )
~b(Xp) if b cts. E[...]=0
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To access o, we look at the square:

(o 08 L Jrone)

~A

A A ) A 9
/ ds/a Xs)dWs + A(/U(Xs)dws)
0 0 0
M N —
va E[..]% iE[Of 02(Xs)ds]~02(Xo)
Consider the process dB; = odW;, ¢ > 0 and the observations

Bo, Ba,...,Byxa, NA =T.

52 Jbz B(n—}—l)AA BnA NZUQYnQ’

where (Y;,) are i.i.d. N(0, 1).
Then E[6] = 0% and

1 N-1
E[(6 - o*)’] =El(5 D) o*(Ya = 1))’]
o
=o' El( ) (Vi = 1) =o' Var(Yg - 1).
n=0

A N\2112 _ /202
= E[(6 —0°)%]/? = i
What has made the computation easy?

1. o is constant,

2. increments are independent.
L? error bounds for the Florens-Zmirou estimator

2.11 Definition. Set 0 < m < M and define ©(m, M) = {¢ € CY(R) :
m < infyero(x) < supyepo(z) < M, sup,ep |0'(z)] < M}. Note that each
o € O satisfies the global Lipschitz and linear growth conditions, hence the
corresponding equation

dXt == O'(Xt)th,
X, = X©er?

has a unique strong solution. For A > 0 we observe a path t — X at equidistant
times 0, A, 2A,..., NA = 1. When x € R is visited by the observed path (i.e.
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X; = x for some t € (0,1)) we define the Florens-Zmirou ([4]) estimator of the
diffusion coefficient o2 by

N-1 L
63z(x, ha) = 2n=0 1(|X"A1;x‘1<hA)Z(X(n+1)A —XnA)Q.
ZTL:_O 1(|XnA_$|<hA)

2.12 Definition. For any Borel set A define its occupation measure as pu(A) =
fol 14(X5)ds, i.e. the amount of time the path (X;)o<¢<1 stayed in A. Then the
measure p has a Lebesgue density L ([7], [1]) called the local time (chronological
local time) of X at time one. For every positive Borel measurable function f
the occupation formula fol s)ds = [ f(x)L(x)dz holds.

2.13 Lemma. For every p > 2 we have sup(,p)ce E[LF(2)] < C).

Proof. By the Tanaka formula
1 1
L(z) = \Xl—:c—Xo—x]—/ sgn(Xs—z)dX, < ]Xl—XOH—|/ sgn(XS—x)dXs‘.
0 0
Using the Burkholder-Davis-Gundy inequality (see stochastic analysis notes)
we obtain
o E[|X1 — XoP] = E[| J; o(Xs)dW,|?] < CE[| [ 0*(Xs)ds|?] < C,MP.
o E [|f0 sgn(Xs — 2)dXP] < CLE || fo sgn?( Xs—$)02(XS)dS|%] < C,MP.
O

2.14 Theorem. Consider an interval K, some positive v > 0 and let L =
{infyerx L7(z) > v}, ha ~ A5, Then for every x € int(K) we have

supE [1¢-[634(, ha) A M? — o*(2)[?] < CAS,
oce®

where the constant C' depends only on the set K and level v.

Notation: We will write f, < go (resp. 9o 2 fo) if we have f, < C-g, for

~

every o € © with some constant C' > 0 depending only on K and v.

Proof. (a) (Bias and martingale part) For n =0,..., N — 1 define

1 (n+1)A (n+1)A
Nn = A(/nA o(Xs /n s)ds.

E[n,|-#,] = 0 and in particular E[n,n,,] = 0 for n # m.

nl
E[n2|.#,] < 1. Indeed, by the Burkholder-Davies-Gundy inequality:
(n+1)A

AZEpR|Z] < E[(/?:H)Aa(xs)dws)ﬁ%} +E[(/nA

(n+1)A 5
< E [(/ 0%(X,)ds) I%} + A2 < A2,
nA
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We decompose the estimation error into martingale and bias parts:
|6F2(2, ha) — o*(z)| =
N-1 +1)A 2
ot Lx,s—al<na} (& (SATS 0 (X)dWW)° - o?(w»‘

ZN*l 1
n=0 “{|Xna—z|<ha}

N-1
< ’ano L{1X,a—al<ha}In
DY

N—-1 +1A
SN L xa—alena (2 [TV 02 (X,)ds — o%(2))
-+ N1 1 .
Ym0 L{|X,a—z|<ha}
M:A Bac,A

N-1 1
n=0 T{|Xna—z|<ha}

J/

(b) (The ”good” high-probability set) Denote by w(A) the modulus of conti-
nuity of the path (X¢).e(0,1), i-e-

w(A) = sup | Xt — Xl
0<s,t<1
lt—s| <A

Set 0 < e < 1/6 and let o = 3/2 — 3e € (1, 3/2). Define the event R =
{w(A) < h} }. Then for every p > 1 holds

D
P(R) S ha (Alog (2471)) " 5 A%log (2471, (+1)
In particular P(R®) < A2/3 for p big enough.

Proof. (Proof of (1))

Set p > 0. By Markov’s inequality we just have to show that there exists
a constant €}, depending only on p and the upper bound of ¢, such that

Elw(A)] < C, (A log (QAT))Q. (+2)

e (*2) holds for Brownian motion - [3].

e Let dX; = o(X;)dW;. By the Dambis-Dubin-Schwarz theorem X; =
B (X, )ds for some Brownian motion B. Consequently

X0 = Xl = |Byt oy = By orxas] < w201 = si21?)

(c) (Bias part error) When | XA — x| < ha we have

| DA | DA
A . ]JQ(XS) — 02(x)\ds < A . | Xs — z|ds
1 (n+1)A
< — | Xs — Xnalds + | Xpa — @
A nA
S w(A) + ha.

Consequently 1x- By A S ha.



(d) (Martingale part error) Denote Zflvz_ol 1{x,a—a2|<ha} = N (2, ha). Then,
on the event R we have

N(z,h 1 [otha 1
‘M—/ L(z)dz 5/
Nhp ha Jo—na ha Jiha—ng <lz—a|<ha+h}

Indeed by the triangle inequality

1 N—-1 1
‘N Z (X, a—al<ha} _/0 1{|XSfx|<hA}d3’ <
n=0

N-1 .(n+1)A

< Z /A ‘1{|XnA*fB\<hA} - 1{|Xs*$|<hA}’d5
N-1 .(nt+1)A

- Z/ Liha<|Xo—al<ha+w(a)}ds

(n+1)A
+ Z/A Lihp—w(A)<|Xs—a|<ha}dS

n=0
1
- / 1{hA—hZ§\Xs—$|<hA+h"‘A}d$
0

/ L(2)dz.
{ha—h} <|z—z|<ha+hX}

Denote for simplicity {z : ha —h} < |z—z| < ha+hQ} = A and observe
that the Lebesgue measure of A is 4h}. Using first Markov’s and next
Holder’s inequalities we obtain

IP’(hlA/AL(z)dz > c) <E [hl (/AL(z)dz)p}

1D

A
ha(p_l) a—1 2
S Mg [ e s AT S

for p big enough. Consequently there exists a high probability event ) C
R, P(Q°) < A?%/3, such that N]\fi;lhf) is bounded from below on QN L. Now
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using martingale properties of 7, we obtain:
1 N-1 5
2 —
£ [1@“" M%A} =k [(N(x, ha) 7;) 1{|XnA—w\<hA}Tln> ' lQﬂL}

 N-1

1 2
’S N2h2A E ( HZ_O 1{|XnA—x|<hA}77n) 1Q0L}
1 _ N-1
S T Z 1{\XnA—:c|<hA}1{|XmA—z|<hA}77n77m]
N hA “n,m=0
1 N-1
_ 2
- N2h2A E I ngo 1{|XnA_$|<hA} E[nn|ﬁn]]
1 -
< ——5 E|N(z,ha)l.
e, [N ha)|
Finally
1 1 1
Wi E [N(x, hA)] < wicE [N(yc, hA)lgg} + s B [N(x, hA)1yc}
< 1 z+ha 1 )
< E|— L(z)dz + — | L(z)dz| + hy P(R°
[hA/a:—hA (2) hAA()} A()
1
S E[L(z)|dz + h3' A%
ha J(@—haotha)ua
< L

(e) (Conclusion) We have shown

1 2
Ellcng lofz (2, ha)—0*(2)]*] S E[leng M a+1x BoA)] S ——+hi ~ A5,

~ Nha

Furthermore

wlro

Ellcnge |0Fz(z, ha) A M? — 0*(2)]?] SP(Q°) < A,

2.15 Corollary. Let

©" =0(m, M) x {be C(R) : b is Lipschitz and supb(z) < M}.
z€R

For (o,b) € ©* consider a diffusion Y defined by the SDE dY; = b(Y;)dt +
o(Yy)dWy, Yo = xg. Then for the event L and = defined as before, given that
ha ~ A%, we have

W=

S Eoa[Lelobs(r.ha) AN~ 0*(@)] < CL2IAL
o,b)eO*
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Proof. Using boundedness of the coefficients b and ¢ one can easily verify the
assumptions of the Girsanov’s theorem. The laws of the diffusions X and Y on
C([0,1]) are equivalent and

dPy . LX) 1 [P p3(Xy)
1y X =ow( [ ey [ i)

' b(X) L 02(Xy)
:exp(/o U(i((s)dWS—;/o 02(§s)ds).

Denote 14 |02, (z,ha) A M? — 0?(z)| = €, a. By Cauchy-Schwarz we obtain

Eop[€aa] = E[€oasm-

- E :emexp(/ol b((fcz) AW, — ;/01 sz(g())ds)}

o(X,)
< E ex,Aexp(/Ol z(g())dwﬂ
< E[E2.]?E [exp (2 01 gg))dw)}?

We just have to argue that E [exp ( ! 2:()(9) )

1
E | exp / s)ds)| < oo
== (), X))
by the Novikov’s condition the process M; = exp (fo (bo™)(X)dWy —

fo 2(bo~1)2(X s)ds> is a martingale and consequently

E [exp (/01 2(ba_1)(XS)dWs>} =E [exp (/01 2(()0'_1)2(Xs)d8>:|'

2.16 Theorem. (Florens-Zmirou, 1993)
Let X satisfy
dX; = b(Xy)dt + o(Xy)dWy,  tel0,1],

where b is a bounded function with two bounded derivatives, o has three contin-
uwous and bounded derivatives and furthermore m < o < M for some positive
0<m< M. If Nhi tends to zero, then

VNha (‘w - 1) B L(z)V27,

where Z is a standard normal variable independent of L(x).
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2.4 Introduction to high-frequency statistics
Setting: Fix T'> 0; X = (Xt)OStST-
t t
Xt:xo—i—fbsds+fadeS, 0<t<T,
0

0
o € R, W = (Wi)o<t<r standard Brownian motion,
(A0) b :[0,T] - R, 0 : [0, T] — R are deterministic functions; b and o are
bounded.

Data:n>1,9, =(0=ton <tin<- - <tpn=T)

(particular case: t; p = %)
(| = max [tin —ti—1,n-
1<i<n

We observe Xo = Xt »Xt,,, = X7, which is equivalent to the observa-
tions Xo, AXy, , = Xt , — Xt,_, i =1,...,n.
Atin =tin —ti—1,n.

Objective: Pick g : [0, T] — R. Estimate A(g) = [ g(s)o2ds.

2.17 Examples.
(1) g(t) = 1. A(1) is called integrated volatility.

(2) gn(t) = %l[to—h,to](t)a h > 0.

to
Agn) =+ [ o2ds~ o} for h |0 if o2 is smooth.
to—h

t ¢
Note: .Z(X;) = N(xo + [ bsds, [o2ds),

0 0
ZL(AXy, ) =N( [ beds, [ o2ds)and the AXy, , are independent.

Ati,n Atiyn
Problem 20: bs = b, 05 = 0 > 0 (constant), ¥ = (b, 02).

(i) Compute the MLE in that setting and find conditions on %, in order to
have consistency.

(ii) Assume that b is known. Compute the Fisher information for the para-

meter o2.

1/2
AXp 2 [ byds+ < | agds> & n where &, = N(0, 1).

Ati,n Ati,n
(A1) b=0.
(AXy, )>= [ o03ds€}, ~of Atin.
Ati,n
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Error decomposition:

=Mi,n
Ra(9)-A(0) = Y gt )(AXe 2 = [ a2+ 3 [ ogltirn) - g(s))ds,
=1 At n =IAL
=:My =R,
Look at R,,. Define
Pgn Zg i—1, n tEAtZ n)*

Then we have

n T
- / glti1.0) ~ g(5)ds = [ 02(Pa,g(s) — 9(s))ds.
=1 0

7, n

We give a very rough bound:
|Ral < 10°] |1 ||Pg,9 — gll11 -
—_—
M (g,%n)

Atz n Ati,n =2
Hence,
n 2 n
B =23 ot ([ o2s) < llotlm D attion (Mt
i=1 AL i=1
‘%(g7gn)2

2.18 Proposition. Work under (A0) and (A1). Then
E[(An(9) = A9))*] < Cllo"||1< (A (g, 90)* + .4 (9, 0)°)
(with C constant).

Consider
(A2(a)) |g(t)—g(s)| < R[t—s|* (for 0 < a < 1) and |g(t)| < Rforallt € [0, T.
Then

(5. 9) =Y [ laltin) = gls)lds < RY (At < TRIGI"
=1ap i=1

M (g, 9,)? < R*T|%,|.
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2.19 Corollary. Assume moreover A2(«). Then
E[(An(9) — A(9))%] < Crllo*|[ o |40 2.
2.20 Remark. |¥,| < £ ~ rate n=(1A2%),

Towards a CLT: We want

Vi(An(g) = Alg)) = VM, + ViR,
—
50

Take (A3) |4,]* = o(ﬁ)

¢A@—§yzlnwu/2@an—»

Atz n
Recall the CLT for independent random variables with Lindeberg condition:
Let 11,0, N12,n, - - -, TIn,n be independent random variables such that
(i) E[ﬁz n] =0,

(H> Z'L 1 E[Th n}

(iii) 3¢ > 0 such that i S B2 o1 ) seymn] = 0
Then

1 < d
> in = N(0, 1).
VUn i

n
Choose 7; ,, such that /nM,, = 3 f; n. If v, converge to some v?, then

VnM, 3 N0, v?).

Identify vy,:

S SETREES SFURE T T8 ey e
=1

0
Aty

if o2 is continuous and provided
(A4) Z InAt; , — T|At; », — 0 and

(A5) 02 > 0 for all s; {t: g(t)2 > 0} contains an open set.
2.21 Theorem. Work under (A0)-(A5). Then

T
Vilda(o) - A@) 4N (0.2.7 [ P(s)otas).

0

1

Problem 21: What can you say if g = gn(t) = 7 1i5—n, 1) (t)?
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2.5 Volatility estimation from high frequency data in a nutshell
2.5.1 Direct observation model

Consider the semi-martingale (continuous semi-martingale if there are no
jumps)

X, =X+ /bsds + /ades + Jumps. (SM/CSM)

1
Main objective in (CSM): (X, X); = [ o2ds.

0
Functional stable CLT for realised volatility in (CSM) (see Jacod):

Ln—ty t t
\/ﬁ( Z (Xi /a ds) it /\@agst
i=1 0 0

with Bs; Brownian motion and B L W. ’st.” denotes stable convergence in law.

n 1 1
:>\/E(ZA”X /O’dS O,2/st

=1 0 0

Consider the case .
X, = Xo + / odW. (M)
0
In (M) for t; = L: 62 =1 Z(\/HA"X)
In (M) for general t;: 6% = 3 a;(y/nATX)2.
=1

We would like to have Z oy © 1 such that 62 is unbiased.
i=1

n
The variance is Y a?20%n?(At;)?. We try to minimise it:

=1
2 4. 2
da]<2a20n (At;) +)\Zal—1)
o .Y 1
N T 4em2(AL)2 T n2(At)26

n
with G = ) m (calculate using (x)).
i=1 ¢

If we now set I, ; = I, = I, ;, we obtain

1M

1 .
204(At;)2n2?

n

. 1 _ _
Var(02) == Z W2O’4n2(Atz)2 == 204G 1 =1 1.

1=
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Estimating spot volatility in (CSM)

Set K, to be the size of the window for relevant observations around s € (0, 1).
Then

n Lsna+Ky
~2

— ny)2
7 TR, + 1 >, (apx)”

i=Lsni—Knp
For the bias we compute

n Lsna+Kn
E[6% — o2

sno+Knp,
N — Z (2nt—cein Hx K1 L JZ (02 — o2
T 2K, +1 0 T 0

5)-
i=Lsno—K, i=Lsni—Kjp

We look at the modulus of continuity to characterise the smoothness of o and
assume

sup |02 — 2| < |t — 5|
TE[s, t]
Then

K )
E[&g — 03] A Krjl g <%) ~
j=1

_n
ne’
2 n? 4, -2 1o 4
Var(63) ~ — g 2000 " = K, 20.
4K2 & n
3
Bias and variance are balanced if K, o< n2a+1; then

(62 —0?%) = Op(nﬁ).

2.5.2 Noisy observation model

The model is

Yy, = Xy, + €4, 1=0,...,n.

We assume € L X, ¢; i.i.d., Elg;] = 0, Var(e;) = n? and E[¢}] < co. We observe
AY = ATX e —egi
—— ———
O]p(’n,fl/z) O]P’(l)

and get

E[Y (A}Y)’] = 20m” + o(n),
i=1
E[ATY A Y] = —n?
Spectral volatility estimation
Idea: split [0, 1] in bins [kh, (k + 1)h), k

0,...

,h~1 — 1. Approximate o;:

0t = Tkn Lk, (k+-1)n) (1)
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Take the family of functions

2 .. _ )
i (t) = \/;SID(JTFh Yt = (k= DR) g, gy (), 5> 10

@, are orthonormal: (®ji, i) = 6jm.
Define the spectral statistics

Sik = ZYtﬂ’jk(tz‘), Jj>1
=1

Summation by parts decomposition yields
n n—1
Sjk ~ Zthq)Jk(tz) — Zgiq),jk(ti)Ati-
i=1 i=1

Assume additionally ¢; b N(0, #?). Then
Sik ~N(0, opp, + 72520 1n?) j>1

and S;;, are independent. We find optimal weights w;, for the integrated volatil-

ity estimator
h™1-1 oo

Vo= 3" w83 — 7% 23%)h :
k=0 j=1

oo
wjp = I, 'Ly, with Ij, = -21 Lik, Ly, = 3(03), + m232h =)7L,
‘]:

Problem: oy, are unknown. The solution is to use two-stage methods (~ esti-
mate weights first). The final result is

1 1
n* IV, —/ o2ds) % N(o, 8/ o3nds).
0 0
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