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1. For a Brownian motion (Bt, t > 0) and h > 0 consider the process of difference

quotients X
(h)
t := (Bt+h −Bt)/h, t > 0.

(a) Show thatX(h) is a centred Gaussian process and determine its covariance
function.

(b) For h ↓ 0 show that the covariance function becomes a δ-function in the
sense that

lim
h↓0

E
[ ∫ 1

0
f(t)X

(h)
t dt

∫ 1

0
g(s)X(h)

s ds
]

=

∫ 1

0
f(t)g(t) dt

for test functions f, g : [0, 1] → R (you may assume any regularity first,
then try to find minimal assumptions).

2. A Brownian bridge (B0
t , t ∈ [0, 1]) is a Gaussian process with mean zero and

covariance function Cov(B0
t , B

0
s ) = t ∧ s − ts, t, s ∈ [0, 1]. Prove that there is

a γ-Hölder continuous version of a Brownian bridge for any γ ∈ (0, 1/2).

3. Let (ϕk)k>1 be an orthonormal basis of L2([0, 1]), i.e. 〈ϕk, ϕl〉L2 = δk,l and∑n
k=1〈f, ϕk〉L2ϕk converges in L2 for n → ∞ to f for f ∈ L2([0, 1]). For a

sequence (Yk)k>1 of independent N(0, 1)-random variables put

Bt :=
∞∑
k=1

YkΦk(t), t ∈ [0, 1],

with antiderivatives Φk(t) =
∫ t
0 ϕk(s)ds. Prove:

(a) For fixed t ∈ [0, 1] the process M
(t)
n :=

∑n
k=1 YkΦk(t) converges almost

surely and in L2(P) to some M
(t)
∞ ∈ L2(P) (use martingale convergence,

Φk(t) = 〈1[0,t], ϕk〉L2 plus Parseval identity) and Bt is well defined as
limit.

(b) For 0 6 t0 < t1 < · · · < tm, m ∈ N show that the m-dimensional ran-

dom vector (M
(t1)
n −M

(t0)
n , · · · ,M (tm)

n −M
(tm−1)
n ) is centred Gaussian.

Conclude from (a) convergence in distribution as n → ∞. By calcula-
ting the covariance matrices deduce that Bt ∼ N(0, t) and (Bt)t∈[0,1] has
stationary and independent Gaussian increments like Brownian motion.



Remark: One can show that B is indeed a Brownian motion on [0, 1] (has a.s.
continuous sample paths) for any choice of (ϕk)k>1. The next problem gives a
proof for the Haar basis.

4. Introduce the Haar basis ϕ0(t) = 1[0,1](t), ψ0,0(t) = 1[0,1/2)(t)− 1[1/2,1)(t) and

generally ψj,k(t) = 2j/2ψ0,1(2
jt− k) for j ∈ N0, k = 0, . . . , 2j − 1, which forms

an orthonormal basis in L2([0, 1]).

(a) Define the Schauder functions Φ0(t) =
∫ t
0 ϕ0(s) ds, Ψj,k(t) =

∫ t
0 ψj,k(s) ds

and draw them for the first (j, k). Sketch also realisations of

B
(J)
t := Y0Φ0(t) +

∑
06j6J,06k62j−1

Yj,kΨj,k(t), t ∈ [0, 1],

for independent N(0, 1)-random variables Y0, (Yj,k)j,k and some (small)
values of J ∈ N0.

(b) Verify for j > 0

∆j := sup
t∈[0,1]

∣∣∣2j−1∑
k=0

Yj,kΨj,k(t)
∣∣∣ = 2−(j+1)/2 max

06k62j−1
|Yj,k|

and deduce P(∆j > ηj) 6
∑2j−1

k=0 P(|Yj,k| > 2(j+1)/2ηj) 6 2j exp(−2jη2j )
for ηj > 0.

(c) Use (b) with a good choice of the ηj to prove for any ε > 0

lim
J→∞

P
(∑
j>J

∆j > ε
)

= 0.

Deduce supt∈[0,1]|B
(J)
t − Bt|

P−→ 0 for J → ∞ and Bt = B
(∞)
t defined

analogously to Problem 3. Conclude for a subsequence (Jm)m>1 that

B
(Jm)
t → Bt uniformly on [0, 1] with probability one, whence Bt is a.s.

continuous and thus a Brownian motion.

Submit the solutions before the lecture on Thursday, 25 April 2024.
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1. Let B be an (Ft)-Brownian motion. Verify that the following processes are
(Ft)-martingales:

(a) Bt, t > 0;

(b) B2
t − t, t > 0;

(c) exp(λBt − 1
2λ

2t), t > 0, for any λ ∈ R.

2. Let (Xt, t > 0) be an (Ft)-adapted process with right-continuous sample
paths. Then for a finite (Ft)-stopping time τ the map ω 7→ Xτ(ω)(ω) is Fτ -
measurable. To prove this, assume a right-continuous filtration (Ft), consider
the dyadic approximations τn := 2−nd2nτe of τ from the right and establish
that Xτ = limn→∞Xτn , Fτ =

⋂
n Fτn .

3. Extend the Doob inequalities from discrete to continuous time:

(a) Maximal inequality: for any right-continuous submartingale (Mt, t > 0)
and α > 0, T > 0 we have

P
(

sup
06t6T

Mt > α
)
6

1

α
E
[
MT1

(
sup

06t6T
Mt > α

)]
.

(b) Lp-inequality: for any right-continuous Lp-martingale (Mt, t > 0) with
p > 1 we have

E
[

sup
06t6T

|Mt|p
]1/p

6
p

p− 1
E
[
|MT |p

]1/p
.

4. Let (Nt, t > 0) be a Poisson process of intensity λ > 0. Check that (Nt, t > 0)
and (N2

t , t > 0) are right-continuous sub-martingales and that (Nt−λt, t > 0)
forms a right-continuous martingale.

Can you find a continuous, adapted and increasing process Q such that (N2
t −

Qt, t > 0) forms a martingale? (Hint: determine limh↓0
1
h E[N2

t+h −N2
t |Ft])

Submit the solutions before the lecture on Thursday, 2 May 2024.
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1. Let X be a complex Brownian motion starting in X0 = i, i.e. Xt = i+B1
t +iB2

t

for two independent standard Brownian motions B1, B2. Consider the first
time X hits the real axis:

τ = inf{t > 0 | Re(Xt) = 0}.

(a) Sketch a typical path of X.

(b) Verify that (eiλXt , t > 0) is a complex martingale for every λ ∈ R (i.e.,
real and imaginary parts are martingales).

(c) Prove E[eiλXτ ] = e−λ, λ > 0, and then E[eiλXτ ] = e−|λ|, λ ∈ R. Conclude
that Xτ is Cauchy-distributed by using the characteristic function of a
Cauchy distribution (from the literature).

2. Show the following properties of a continuous local martingale (Mt, t > 0):

(a) If M is dominated in the sense that there is a Z ∈ L1(P) with |Mt| 6 Z
for all t > 0, then M is a martingale.

(b) If M0 = 0, then the stopping times τn := inf{t > 0 | |Mt| > n} localise
M .
Hint: use |Mt∧τn | 6 n and part (a).

3. Let (Xt, t > 0) be a simple process and (Mt, t > 0) be a continuous martingale.
Prove:

(a) If M is an L2-martingale and X is bounded, then (
∫ t
0 XsdMs, t > 0) is

also a continuous L2-martingale.

(b) In any case (
∫ t
0 XsdMs, t > 0) is a continuous local martingale.

Does part (b) also hold if M is only a continuous local martingale?

4. Show that the continuous martingale Mt = B2
t − t for a Brownian motion B

has quadratic variation 〈M〉t = 4
∫ t
0 B

2
sds.

Remark: This will later follow directly from Mt = 2
∫ t
0 BsdBs.

Submit the solutions of Problems 1 & 2 via email to sascha.gaudlitz@hu-berlin.de
by Friday 10 May, 9 a.m., and the solutions to Problems 3 & 4 before the lecture on
Thursday, 16 May 2024.
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1. For a Brownian motion B and n ∈ N0, t > 0 consider

X
(n)
t :=

∞∑
k=0

Bk2−n1(k2−n,(k+1)2−n](t).

Show for t = k02
−n0 with some k0, n0 ∈ N0

B2
t =

∞∑
k=0

(B2
(k+1)2−n∧t−B

2
k2−n∧t) =

∞∑
k=0

(B(k+1)2−n∧t−Bk2−n∧t)2+2

∫ t

0
X(n)
s dBs,

whenever n > n0. Conclude for all t > 0 that

2

∫ t

0
X(n)
s dBs

L2(P)−−−→ B2
t − t

holds as n→∞.

2. (Stratonovich integral) For a simple process Xt =
∑∞

k=0 ξk1(τk,τk+1](t), t > 0,
with (Ft)-stopping times τk ↑ ∞, ξk Fτk -measurable and an (Ft)-adapted
process Y set∫ t

0
Xs ◦ dYs :=

∞∑
k=0

ξk + ξk+1

2

(
Yτk+1∧t − Yτk∧t

)
, t > 0.

Consider B and X(n) from problem 1, show that (
∫ t
0 X

(n)
s ◦ dBs, t > 0) is in

general not a martingale and deduce for n→∞

2

∫ t

0
X(n)
s ◦ dBs

L2(P)−−−→ B2
t , t > 0.

Submit the solutions before the lecture on Thursday, 16 May 2024.
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1. Let f : [0, T ]→ R be a deterministic function which is simple, i.e. of the form

f(t) =
∑∞

i=0 ξi1(ti,ti+1](t), and satisfies
∫ T
0 f(t)2dt <∞. Prove for a Brownian

motion B:

(a) Xt :=
∫ t
0 f(s) dBs ∼ N(0,

∫ t
0 f(s)2ds) for t ∈ [0, T ];

(b) (Xt, t ∈ [0, T ]) is a continuous Gaussian process with independent incre-
ments.

(c) X has quadratic variation 〈X〉t =
∫ t
0 f(s)2ds (do not use the result from

the lecture, but use independent increments).

2. Prove that any continuous local martingale (Mt, t > 0), which has almost su-
rely finite variation, is almost surely constant, i.e. P(∀t > 0 : Mt = M0) = 1.
Hint: reduce the problem for (Mt −M0, t > 0) by suitable stopping to conti-
nuous L2-martingales starting in zero and extend the result from t ∈ [0, T ] to
t > 0.

3. Show that an adapted process (Xt, t > 0) is progressively measurable if it is
left-continuous or right-continuous. Conclude that in particular every simple
process is progressively measurable.

4. Recall that LT (M) for M ∈ M 2
T is the set of all progressively measurable

processes (Xt, t ∈ [0, T ]) with E[
∫ T
0 X2

t d〈M〉t] < ∞. Prove that LT (M) is

a Hilbert space with scalar product 〈X,Y 〉M,T := E[
∫ T
0 XtYtd〈M〉t], X,Y ∈

LT (M), if we identify X and Y with
∫ T
0 (Xt − Yt)2d〈M〉t = 0 a.s.

Hint: You may use that any L2-space of (equivalence classes of) functions on
a measure space is a Hilbert space.

Submit the solutions before the exercise class on Thursday, 23 May 2024.
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1. A function f : [0, T ]→ R is of bounded variation if

‖f‖BV := sup
n>1;0=t0<···<tn=T

n∑
i=1

|f(ti)− f(ti−1)| <∞

holds with the supremum over all partitions of [0, T ]. Show:

(a) Every function f(t) = f(0) +
∫ t
0 f
′(s)ds with some f ′ ∈ L1([0, T ]) is of

bounded variation and ‖f‖BV = ‖f ′‖L1 .

(b) Every function f = f1 − f2 with f1, f2 : [0, T ] → R increasing is of
bounded variation.

(c) Define for a function f of bounded variation and t ∈ [0, T ]

f1(t) := f(0) + sup
n>1;0=t0<···<tn=T

n∑
i=1

(f(ti ∧ t)− f(ti−1 ∧ t))+,

f2(t) := sup
n>1;0=t0<···<tn=T

n∑
i=1

(f(ti ∧ t)− f(ti−1 ∧ t))−.

Then f1, f2 are increasing and f = f1− f2 so that any bounded variation
function is the difference of two monotone function. Determine f1, f2 in
the case f ∈ C1([0, T ]).

2. Prove for a Brownian motion B and t > 0∫ t

0
B2
sdBs = 1

3B
3
t −

∫ t

0
Bsds,

using piecewise constant approximations B(n) of B as integrands.

3. Show for a continuous local martingale (Mt, t ∈ [0, T ]) with M0 = 0 and
X ∈ Lloc,T (M) that the stochastic integral

∫ t
0 XsdMs, t ∈ [0, T ], is well defined

as an almost sure limit and is itself a continuous local martingale. Prove further
that (

∫ t
0 XsdMs)

2 −
∫ t
0 X

2
sd〈M〉s, t ∈ [0, T ], is a continuous local martingale.

4. Use Fatou’s Lemma to establish that a non-negative continuous local martin-
gale (Mt, t > 0) with M0 ∈ L1(P) is always a super-martingale.

Submit the solutions before the lecture on Thursday, 30 May 2024.
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1. Let M ∈M 2
T , X ∈ LT (M) and Y ∈ LT (N) with Nt =

∫ t
0 XsdMs. Show:

(a) Y X ∈ LT (M).

(b) We have for simple, bounded X and Y the associativity∫ t

0
YsdNs =

∫ t

0
YsXsdMs, t ∈ [0, T ], a.s.

and then also for all X ∈ LT (M) and finally for all Y ∈ LT (N).

(c) Formulate the corresponding associativity result for continuous local mar-
tingales M and then for semi-martingales M with adapted continuous
integrands X, Y . Prove this or describe briefly the main arguments in
the proof and cite a reference for full details.

2. For a Brownian motion B let X ∈ Lloc,T (B). Consider the stochastic exponen-
tial

Zt = exp
(∫ t

0
XsdBs −

1

2

∫ t

0
X2
sds
)
, t ∈ [0, T ].

(a) Apply Itô’s formula to Mt =
∫ t
0 XsdBs and derive

eMt = 1 +

∫ t

0
eMsXsdBs +

1

2

∫ t

0
eMsX2

sds, t ∈ [0, T ].

(b) Argue that Zte
−Mt = 1− 1

2

∫ t
0 Zse

−MsX2
sds and show with integration by

parts

Zt = 1 +

∫ t

0
ZsXsdBs, t ∈ [0, T ].

(c) Conclude that Z is a continuous local martingale and by Problem 6.4 also
a super-martingale. Is it a martingale for deterministic X?



3. For an open, bounded domain D ⊆ Rd assume that a solution h ∈ C2(D) ∩
C(D̄) of the homogeneous Poisson equation

∆h = 0 on D, h = f on ∂D

exists, where f : ∂D → R is a continuous function on the boundary ∂D (you
might think of electric charges on ∂D and the generated electro-static field
inside D).

Let Xt = x+Bt, t > 0, for x ∈ D and a d-dimensional Brownian motion B and
define the stopping time τ = inf{t > 0 |Xt /∈ D} when X hits the boundary.
Prove

h(x) = E[f(Xτ )].

Based on this formula explain how Monte-Carlo simulations of B can be used
to determine the solution h of the Poisson equation.
Optional: Implement this in dimension two for the open unit disc D and some
charge distributions f . Compare with the analytic result in case x = 0 (or for
general x ∈ D).

4. The two-dimensional Brownian motion Bt, t > 0, does not hit a given point
x ∈ R2 (even x = 0) a.s. We say that all singletons {x} are polar sets for
two-dimensional Brownian motion.

Prove P(τx <∞) = 0 for τx = inf{t > 0 |Bt = x} as follows:

(a) It is equivalent to the shifted problem whether Xt = x0 +Bt, t > 0, hits
zero for x0 ∈ R2.

(b) For x0 6= 0 and 0 < A < |x0| < B deduce with results from the lecture

P(τ0 < τB) 6 inf
A

P(τA < τB) = 0 with τR := inf{t > 0 | |Xt| = R}

and conclude P(τ0 <∞) = 0.

(c) For x0 = 0 show

P(∃t > ε : Bt = 0) = E[P(∃t > 0 : x0 +Bt = 0)|x0=Bε ] = 0

and let ε ↓ 0.

Submit the solutions before the lecture on Thursday, 6 June 2024.
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1. Prove the lower bound of the Burkholder-Davis-Gundy-inequality (BDG): For
any continuous local martingale (Mt, t ≥ 0) with M0 = 0 and any p ≥ 4 there
exists a universal constant cp > 0 (depending only on p) such that for all t ≥ 0

cp E
[
〈M〉p/2t

]
≤ E [(M∗t )p] ,

where M∗t = sup0≤s≤t |M |s. Use the following steps:

(a) Assume first that M and 〈M〉 are bounded. Use the equality M2
t =

2
∫ t
0 Ms dMs + 〈M〉t to show

E
[
〈M〉p/2t

]
≤ c̃p

(
E [(M∗t )p] + E

[∣∣∣∣∫ t

0
Ms dMs

∣∣∣∣p/2
])

for some constant c̃p > 0 and apply the upper bound of the BDG-
inequality to the local martingale

∫ •
0 Ms dMs.

(b) Conclude the general result by localisation.

2. Let Bt, t > 0, be a one-dimensional Brownian motion with B0 = 0. Let f be
a twice continuously differentiable function on R, and let g be a continuous
function on R.

(a) Verify that the process

Xt = f(Bt) exp

(
−
∫ t

0
g(Bs) ds

)
, t > 0,

is a semi-martingale, and give its decomposition as the sum of a conti-
nuous local martingale and a finite variation process.

(b) Prove that X is a continuous local martingale if and only if the function
f satisfies the differential equation

f ′′ = 2gf.

Submit the solutions before the lecture on Thursday, 13 June 2024.
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1. Let M be a continuous local martingale. For all 0 6 a < b we want to show
that the events Aa,b = {∀t ∈ [a, b] : Mt = Ma} and Ba,b = {〈M〉b = 〈M〉a} are
a.s. equal.

(a) Prove Aa,b ⊆ Ba,b a.s. by representing 〈M〉t as the limit of sums of squared
increments over partitions.

(b) For Ba,b ⊆ Aa,b consider the continuous local martingale

Nt = Mt∧b −Mt∧a =

∫ t

0
1[a,b](s) dMs

and the stopping times τε = inf{t > 0 | 〈N〉t > ε} for ε > 0. Verify that
N τε is an L2-martingale satisfying E[(N τε

t )2] 6 ε.

Show that this implies E[N2
t 1(〈M〉b = 〈M〉a)] 6 ε and conclude by letting

ε ↓ 0.

2. Consider the Wiener space (Ω,F ,P) with Ω = C([0, 1]), F = BC([0,1]) and
Wiener measure P (law of Brownian motion). Write ∆k,jf = f(k2−j)− f((k−
1)2−j) for j > 0, k = 1, . . . , 2j and f : [0, 1]→ R with f(0) = 0. Let

Lj(B) = exp
( 2j∑
k=1

∆k,jf

2−j
∆k,jB −

1

2

2j∑
k=1

(∆k,jf

2−j

)2
2−j
)
, B ∈ Ω.

(a) Write Lj+1 = Aj+1Lj for some Aj+1 in product form and prove that
(Lj)j>1 is a non-negative martingale with E[Lj ] = 1 under P with re-
spect to the filtration Fj = σ(πk2−j | k = 1, . . . 2j) with the coordinate
projections πt(B) = Bt for B ∈ Ω.

(b) By Kakutani’s dichtomy (Stochastik II) we have that Lj → L∞ for some
L∞ in L1(P)-convergence is equivalent to E[L∞] = 1 and also to

∑∞
j=0(1−

E[A
1/2
j ]) < ∞ (put A0 := L0). Prove for smooth f (e.g. f ∈ C1([0, 1]))

that

L∞(B) = exp
(∫ 1

0
f ′(s) dBs −

1

2

∫ 1

0
f ′(s)2ds

)
, P−a.s.

Optional: Extend this to all f of the form f(t) =
∫ t
0 g(s)ds with g ∈

L2([0, 1]).

(c) Conclude under one of the conditions of (c) that under Q∞ given by
dQ∞
dP = L∞ the process Xt = Bt − f(t) forms a Brownian motion.

Submit the solutions before the lecture on Thursday, 20 June 2024.
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1. For a Brownian motion B let B∗t := max06s6t|Bs|. For ε > 0 consider the
stopping times τ = inf{t > 0 | |Bt| > ε/2} and σ = inf{t > τ |Bt = 0}.

(a) Argue that P(B∗σ 6 ε) = 1/2 holds.

(b) Deduce that there are α, γ > 0 such that P(σ > α,B∗σ 6 ε) = γ.

(c) Conclude that this implies P(B∗nα 6 ε) > γn for any n ∈ N and thus
P(B∗t 6 ε) > 0 for all t > 0.

Remark: One can even show limε↓0 ε
2 log(P(B∗1 6 ε)) = −π2/8 (small ball

probability of Brownian motion).

2. Show that Lt = exp(
∫ t
0 XsdBs − 1

2

∫ t
0 X

2
sds), t ∈ [0, T ], for Brownian motion

B and X ∈ Lloc,T (B) is a martingale if the following piecewise Novikov con-
dition holds: There are 0 = t0 < t1 < · · · < tn = T deterministic such that
E[exp(12

∫ ti
ti−1

X2
sds)] <∞ for i = 1, . . . , n.

For the proof write E[LT ] = E[Ltn−1 E[LT /Ltn−1 |Ftn−1 ]] and show
E[LT /Ltn−1 |Ftn−1 ] = 1. Then proceed inductively.

3. Establish the piecewise Novikov condition from Problem 2 for Xt = aBt
and conclude that the coordinate process X on C([0, T ]) under QT with
dQT /dP

B = LT satisfies X0 = 0 and dXt = aXt + dB̄t for a QT -Brownian
motion B̄.



4. For c ∈ R and a Brownian motion B set Xt = Bt + ct. We want to determine
the law of the stopping time

τ = τ(X) = inf{t > 0 |Xt = a},

where a > 0. For f ∈ C([0, T ]) and t ∈ [0, T ] let Φt(f) = 1(maxs∈[0,t] f(s) > a).

(a) Show for t ∈ [0, T ]

P(τ(X) 6 t) = E[Φt(X)] = E[Φt(B) exp(cBT − c2T/2)].

(b) Use optional stopping to obtain

E[Φt(B) exp(cBt − c2t/2)] = E[1(τ(B) 6 t) exp(ca− c2τ(B)/2)].

(c) Derive, using the density of τ(B),

P(τ(X) 6 t) =

∫ t

0

a√
2πs3

exp
(
− (a− cs)2

2s

)
ds.

Determine P(τ(X) < ∞) as a function of a and c (computer algebra
permitted).

Submit the solutions before the lecture on Thursday, 27 June 2024.


