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Exercises: sheet 1

1. For a Brownian motion (By,t > 0) and h > 0 consider the process of difference
quotients Xt(h) = (Bign — Bt)/h, t > 0.

(a) Show that X" is a centred Gaussian process and determine its covariance
function.

(b) For h | 0 show that the covariance function becomes a d-function in the
sense that

lim E [ /0 1 FOXMat /0 lg(s)xghms} - /0 1 F(t)g(t) dt

hl0

for test functions f,g : [0,1] — R (you may assume any regularity first,
then try to find minimal assumptions).

2. A Brownian bridge (BY,t € [0,1]) is a Gaussian process with mean zero and
covariance function Cov(B, BY) =t A s —ts, t,s € [0,1]. Prove that there is
a y-Holder continuous version of a Brownian bridge for any v € (0,1/2).

3. Let (pg)k>1 be an orthonormal basis of L?([0,1]), i.e. (pk,¢1)r2 = Ok, and
S r_i(f, or) 2k converges in L? for n — oo to f for f € L*([0,1]). For a
sequence (Yj)r>1 of independent N (0, 1)-random variables put

o0
B =) Yi®i(t), tel0,1],
k=1

with antiderivatives ®y(t) = fg vk(s)ds. Prove:

(a) For fixed t € [0,1] the process MY = Y peq Yip®y(t) converges almost
surely and in L?(P) to some MY e L*(P) (use martingale convergence,
Qi(t) = (Lo, ¢r)r2 plus Parseval identity) and By is well defined as
limit.

(b) For 0 < tp < t1 < -+ < ty, m € N show that the m-dimensional ran-
dom vector (MT(L“) — MSO)’ .. 7M7§fm) — Mfltm’l)) is centred Gaussian.
Conclude from (a) convergence in distribution as n — co. By calcula-
ting the covariance matrices deduce that B; ~ N(0,t) and (By)yeo,1) has
stationary and independent Gaussian increments like Brownian motion.



Remark: One can show that B is indeed a Brownian motion on [0, 1] (has a.s.
continuous sample paths) for any choice of (¢x)x>1. The next problem gives a
proof for the Haar basis.

4. Introduce the Haar basis ¢o(t) = 1j,1)(t), Y0,0(t) = 1jo,1/2)(t) — L[1/2,1)(t) and
generally 1; ,(t) = 23'/2@[10,1(23'15 — k) for j € Ng, k=0,...,27 — 1, which forms
an orthonormal basis in L?([0, 1]).

(a) Define the Schauder functions ®q(t) = fg wo(s)ds, ¥, k(t) = fg Vjk(s)ds
and draw them for the first (4, k). Sketch also realisations of

B =Yo@o(t)+ > YaUu(t), telo1],
0<j<J,0<k<27 -1

for independent N (0, 1)-random variables Yy, (Yjx); and some (small)
values of J € Nj.

(b) Verify for j >0

27 -1
A; = sup Y‘,k\l",k(t)‘ — 9 G2 ay (vl
! t€0,1] k.zo e 0<k<2—1 7

and deduce P(A; > ;) < Yr g P([Y;l > 2070/2n;) < 29 exp(—2972)
for n; > 0.
(c) Use (b) with a good choice of the 7; to prove for any € > 0

}LHSOP(;]Aj >e) =0,

Deduce supt€[071}|B§J) — By| 5 0for J = oo and By = Bt(oo) defined
analogously to Problem 3. Conclude for a subsequence (Jy,)m>1 that
Bg‘]m) — By uniformly on [0, 1] with probability one, whence By is a.s.
continuous and thus a Brownian motion.

Submit the solutions before the lecture on Thursday, 25 April 2024.
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1. Let B be an (.%;)-Brownian motion. Verify that the following processes are
(:#¢)-martingales:

(a) Bt7 7
(b) B? —t, t > 0;
(c) exp(AB; — 2A%t), t > 0, for any A € R.

2. Let (X, t > 0) be an (%#;)-adapted process with right-continuous sample
paths. Then for a finite (.%;)-stopping time 7 the map w — X (,)(w) is F7-
measurable. To prove this, assume a right-continuous filtration (.%;), consider
the dyadic approximations 7, := 27"[2"7]| of 7 from the right and establish
that X, = limy—00 X-,, - =(),, Zr

3. Extend the Doob inequalities from discrete to continuous time:

(a) Maximal inequality: for any right-continuous submartingale (My, ¢t > 0)
and a > 0, T' > 0 we have

1
P( sup Mt2o¢) <—E[MT1( sup MtZaﬂ.
«

0<t<T 0<t<T

(b) LP-inequality: for any right-continuous LP-martingale (My, ¢t > 0) with
p > 1 we have
1/p 1/p
E [ sup yMt|P} <2 g [yMTﬂ .
0<t<T p—1
4. Let (N, t > 0) be a Poisson process of intensity A > 0. Check that (N, t > 0)
and (N2,t > 0) are right-continuous sub-martingales and that (N; — At,t > 0)
forms a right-continuous martingale.

Can you find a continuous, adapted and increasing process Q such that (N? —
Q¢,t > 0) forms a martingale? (Hint: determine limy, o # E[N — N2 | FA))

Submit the solutions before the lecture on Thursday, 2 May 2024.
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1. Let X be a complex Brownian motion starting in Xo = i, i.e. X; = i+ B} +iB}
for two independent standard Brownian motions B!, B2. Consider the first
time X hits the real axis:

7 =1inf{t > 0| Re(X}) = 0}.

(a) Sketch a typical path of X.

(b) Verify that (e*%t,¢ > 0) is a complex martingale for every A € R (i.e.,
real and imaginary parts are martingales).

(c) Prove E[e*Xr] = e}, X\ > 0, and then E[¢*¥7] = ¢~ X\ € R. Conclude
that X is Cauchy-distributed by using the characteristic function of a
Cauchy distribution (from the literature).

2. Show the following properties of a continuous local martingale (M;,t > 0):
(a) If M is dominated in the sense that there is a Z € L!(PP) with |M;| < Z

for all t > 0, then M is a martingale.

(b) If My = 0, then the stopping times 7, := inf{t > 0||M;| > n} localise
M.
Hint: use |Mipa-,| < n and part (a).

3. Let (X¢,t > 0) be a simple process and (M, t > 0) be a continuous martingale.
Prove:

(a) If M is an L%martingale and X is bounded, then (fg XsdMs,t > 0) is
also a continuous L?-martingale.

(b) In any case (fot XsdMs,t > 0) is a continuous local martingale.
Does part (b) also hold if M is only a continuous local martingale?

4. Show that the continuous martingale M; = B? — t for a Brownian motion B
has quadratic variation (M); = 4 fot B2ds.
Remark: This will later follow directly from M; = 2 fot B.dB;.

Submit the solutions of Problems 1 & 2 via email to sascha.gaudlitz@hu-berlin.de
by Friday 10 May, 9 a.m., and the solutions to Problems 3 & 4 before the lecture on
Thursday, 16 May 2024.
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1. For a Brownian motion B and n € Ny, t > 0 consider

M= 3" Bio-nLgo-n ks1y2-n) (£)-
k=0

Show for t = kg2~ ™ with some kg, ng € Ny

o0 (o]
B} = Z(B(Zk-i-l)Q*n/\t ro-nnt) Z Bk 1)2-nnt—Bra—nat) +2/ x{MdB,
k=0 k=0

whenever n > ng. Conclude for all ¢ > 0 that
g L*(P) 9
2| XWdBs —= By —t
0

2. (Stratonovich integral) For a simple process X; = Y 12, EkLl(ry 0] (), 20,
with (%;)-stopping times 7, T o0, & #;, -measurable and an (.%;)-adapted
process Y set

holds as n — oo.

t oo
0

Consider B and X(™ from problem 1, show that ( fg x™ o dBs,t > 0) is in
general not a martingale and deduce for n — oo

t
2/ XM oaB, L g2 >0
0

Submit the solutions before the lecture on Thursday, 16 May 2024.
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1. Let f:[0,7] — R be a deterministic function which is simple, i.e. of the form
() = 2720 &L (1,41 (t), and satisfies fo (t)2dt < oo. Prove for a Brownian
motion B:

(a) X;:= [y f(s)dBs ~ N(0, [y f(s)2ds) for t € [0,T7;

(b) (X¢,t €[0,T]) is a continuous Gaussian process with independent incre-
ments.

(¢) X has quadratic variation (X); = fo s)%ds (do not use the result from
the lecture, but use independent 1ncrements)

2. Prove that any continuous local martingale (M;,t > 0), which has almost su-
rely finite variation, is almost surely constant, i.e. P(V¢t > 0: My = M) = 1.
Hint: reduce the problem for (M; — Mj,t > 0) by suitable stopping to conti-
nuous L2?-martingales starting in zero and extend the result from ¢ € [0, 7] to
t>0.

3. Show that an adapted process (X¢,t > 0) is progressively measurable if it is
left-continuous or right-continuous. Conclude that in particular every simple
process is progressively measurable.

4. Recall that Zp(M) for M € .42 is the set of all progressively measurable
processes (X, t € [0,7]) with E[fOT X2d(M);] < oo. Prove that Zr(M) is
a Hilbert space with scalar product (X,Y) 1 = E[fOT XY d(M),], X, Y €
Zp(M), if we identify X and Y with [) (X, — Y;)2d(M); = 0 a.s.
Hint: You may use that any L?-space of (equivalence classes of) functions on
a measure space is a Hilbert space.

Submit the solutions before the exercise class on Thursday, 23 May 2024.
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1. A function f :[0,7] — R is of bounded variation if

n>1;0=to<--<tn=

IfllBv == sup TZ\f(ti) — f(ti1)] < o0
=1

holds with the supremum over all partitions of [0,7]. Show:

(a) Every function f(t) = f(0) + fg f'(s)ds with some f’ € L'([0,T]) is of
bounded variation and || f||gv = || /]| 11

(b) Every function f = fi — fo with f1, fo : [0,7] — R increasing is of
bounded variation.

(c) Define for a function f of bounded variation and ¢ € [0, T

n

fi(t) = f(0) + sup D (i Aty = [t AL,

n>1;0=tog<--<tn=T i—1

n

fa(t) == sup D (i At) = f(tioa At))-—.

n>1;0=tg<--<tn=T i—1

Then f1, fo are increasing and f = f; — fo so that any bounded variation
function is the difference of two monotone function. Determine fi, fo in
the case f € C1([0,T)).

2. Prove for a Brownian motion B and ¢t > 0

t t
/ B?dB, = i B} —/ B.ds,
0 0

using piecewise constant approximations B™ of B as integrands.

3. Show for a continuous local martingale (Mt € [0,7]) with My = 0 and
X € Loe,r(M) that the stochastic integral fg XsdMs, t € 0,77, is well defined
as an almost sure limit and is itself a continuous local martingale. Prove further
that (f(f XodMy)? — fg X2d{M)g, t € [0,T], is a continuous local martingale.

4. Use Fatou’s Lemma to establish that a non-negative continuous local martin-
gale (My,t > 0) with My € L'(P) is always a super-martingale.

Submit the solutions before the lecture on Thursday, 30 May 2024.
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1. Let M € .42, X € Zp(M) and Y € Zr(N) with N = [} X,dM,. Show:

(a) YX € Zr(M).
(b) We have for simple, bounded X and Y the associativity

t t
/ Y,dN; :/ Ys XodMs, te€][0,T], as.
0 0

and then also for all X € Zp(M) and finally for all Y € Zp(N).

(¢) Formulate the corresponding associativity result for continuous local mar-
tingales M and then for semi-martingales M with adapted continuous
integrands X, Y. Prove this or describe briefly the main arguments in
the proof and cite a reference for full details.

2. For a Brownian motion B let X € Z,.1(B). Consider the stochastic exponen-
tial

t 1 t
Zt—exp</ XSdBS—Z/ des), te[0,7T].
0 0

(a) Apply Ito’s formula to M; = fg X,dB and derive
t 1 t
M= 1 +/0 M X, dB, + 2/0 eMX2ds, te[0,T].

(b) Argue that Ze ™Mt =1-1 f(f Zse~Ms X2ds and show with integration by
parts

t
Zt:1+/ Z.X B, tel0,T).
0

(c) Conclude that Z is a continuous local martingale and by Problem 6.4 also
a super-martingale. Is it a martingale for deterministic X7



3. For an open, bounded domain D C R? assume that a solution h € C?(D) N
C(D) of the homogeneous Poisson equation

Ah=0on D, h=fondD

exists, where f : 9D — R is a continuous function on the boundary 0D (you
might think of electric charges on 0D and the generated electro-static field
inside D).

Let Xy =2+ B, t > 0, for x € D and a d-dimensional Brownian motion B and
define the stopping time 7 = inf{¢t > 0| X; ¢ D} when X hits the boundary.
Prove

h(x) = E[f(X)].

Based on this formula explain how Monte-Carlo simulations of B can be used
to determine the solution h of the Poisson equation.

Optional: Implement this in dimension two for the open unit disc D and some
charge distributions f. Compare with the analytic result in case 2 = 0 (or for
general x € D).

4. The two-dimensional Brownian motion By, t > 0, does not hit a given point
r € R? (even x = 0) a.s. We say that all singletons {z} are polar sets for
two-dimensional Brownian motion.

Prove P(7, < o0) =0 for 7, = inf{t > 0| B; = z} as follows:

(a) It is equivalent to the shifted problem whether X; = z¢ + By, t > 0, hits
zero for zg € R2.

(b) For zp # 0 and 0 < A < |zo| < B deduce with results from the lecture
P(r° < 78) < ing(TA < 78) =0 with 7% := inf{t > 0| |X;| = R}
and conclude P(7% < 00) = 0.
(c) For xy = 0 show
P(3t>e: B, =0) =E[P(3t > 0: 29 + By = 0)]ay_p.] = 0

and let € | 0.

Submit the solutions before the lecture on Thursday, 6 June 2024.



Markus Reif3

Stochastic Analysis / Stochastic Processes 11
Summer 2024
Humboldt-Universitit zu Berlin

Exercises: sheet 8

1. Prove the lower bound of the Burkholder-Davis-Gundy-inequality (BDG): For
any continuous local martingale (M, t > 0) with My = 0 and any p > 4 there
exists a universal constant ¢, > 0 (depending only on p) such that for all ¢ > 0

2 *
o (M| < B[],

where M = supg<,<; |M|s. Use the following steps:

(a) Assume first that M and (M) are bounded. Use the equality M? =

2f0t Mg dMs + (M), to show
t p/2
/ Mg dM;
0

for some constant ¢, > 0 and apply the upper bound of the BDG-
inequality to the local martingale fo' My dMs.

ERMﬂﬂS%(EM@m+E

(b) Conclude the general result by localisation.

2. Let By, t > 0, be a one-dimensional Brownian motion with By = 0. Let f be
a twice continuously differentiable function on R, and let g be a continuous
function on R.

(a) Verify that the process

t
Xt = f(Bt) exp <—A g(Bs) dS) N t 2 0,

is a semi-martingale, and give its decomposition as the sum of a conti-
nuous local martingale and a finite variation process.

(b) Prove that X is a continuous local martingale if and only if the function
f satisfies the differential equation

f"=2gf.

Submit the solutions before the lecture on Thursday, 13 June 2024.
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1. Let M be a continuous local martingale. For all 0 < a < b we want to show
that the events Ay, = {Vt € [a,b] : My = My} and B, = {(M), = (M),} are
a.s. equal.

(a) Prove A, € By a.s. by representing (M), as the limit of sums of squared
increments over partitions.

(b) For B,y C A, consider the continuous local martingale

t
Ni = Myny — Mipg = / 1,5(5) dM,
0

and the stopping times 7. = inf{t > 0| (N); > €} for € > 0. Verify that
NTe is an L%-martingale satisfying E[(N/*)?] < e.

Show that this implies E[NZ1({M), = (M),)] < ¢ and conclude by letting
el 0.

2. Consider the Wiener space (£, #,P) with Q = C([0,1]), F = B p,1)) and
Wiener measure P (law of Brownian motion). Write Ay ; f = f(k277) — f((k —
1)277) for j >0, k=1,...,2/ and f: [0,1] — R with f(0) = 0. Let

27 27

(a) Write Lj11 = Aj11L; for some Ajq in product form and prove that
(Lj)j>1 is a non-negative martingale with E[L;] = 1 under P with re-
spect to the filtration .#; = o (w5 |k = 1,...27) with the coordinate
projections m(B) = By for B € Q.

(b) By Kakutani’s dichtomy (Stochastik II) we have that L; — L, for some
Lo in L(P)-convergence is equivalent to E[Ls,] = 1 and also to Z;io(l—
Eh[Ajl-/z]) < oo (put Ag := Lg). Prove for smooth f (e.g. f € C'([0,1]))
that

Loo(B) = exp (/01 F(s)dB, — ;/01 F/(s)%ds), P-as.

Optional: Extend this to all f of the form f(t) = fg g(s)ds with g €
L*([0,1]).

(c) Conclude under one of the conditions of (c¢) that under Q. given by
% = Lo the process X; = By — f(t) forms a Brownian motion.

Submit the solutions before the lecture on Thursday, 20 June 2024.
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1. For a Brownian motion B let Bj := maxo<s<t|Bs|. For € > 0 consider the
stopping times 7 = inf{t > 0| |Bt| e/2} and o = inf{t > 7| B; = 0}.

(a) Argue that P(B <) =1/2 holds.
(b) Deduce that there are a,y > 0 such that P(c > o, Bf < ¢) = .

(c) Conclude that this implies P(B;,, < ¢) > 7" for any n € N and thus
P(Bf <e) >0 forall t > 0.

Remark: One can even show lim.|oe?log(P(Bf < ¢)) = —7?/8 (small ball
probability of Brownian motion).

2. Show that L; = exp(fot XsdBs — %fg X2ds), t € [0,T), for Brownian motion
B and X € . 7(B) is a martingale if the following piecewise Novikov con-
d1t10n holds There are 0 = tg < t; < -+ < t,, = T deterministic such that

Elexp(5 ft X2ds)] < oo fori=1,...,n.

For the proof write E[Ly] = E[L:, ,E[Lr/L:, | %, ,]] and show
E[Lr/Ly, ,| %, ,] = 1. Then proceed inductively.

3. Establish the piecewise Novikov condition from Problem 2 for X; = aB;
and conclude that the coordinate process X on C([0,7]) under Qr with
dQr/dPP = Lt satisfies Xq = 0 and dX; = aX; + dB; for a Qr-Brownian
motion B.



4. For ¢ € R and a Brownian motion B set X; = B; + ct. We want to determine
the law of the stopping time

7 =7(X) =inf{t > 0| X, = a},
where a > 0. For f € C([0,T]) and t € [0,T] let () = L(max,cpoy f(s) > a).
(a) Show for ¢ € [0, ]
P(r(X) < t) = E[®,(X)] = E[®(B) exp(cBr — T/2)].
(b) Use optional stopping to obtain
E[®,(B) exp(cB; — *t/2)] = E[1(r(B) < t) exp(ca — c>r(B)/2)].

(c) Derive, using the density of 7(B),

P(T(X)gt)z/ot a exp(—(acs)Q)ds.

V27s3 2s
Determine P(7(X) < oo) as a function of a and ¢ (computer algebra
permitted).

Submit the solutions before the lecture on Thursday, 27 June 2024.



