Markus Reiß
Stochastic Analysis / Stochastic Processes II
Summer 2024
Humboldt-Universität zu Berlin

Exercises: sheet 1

1. For a Brownian motion $\left(B_{t}, t \geqslant 0\right)$ and $h>0$ consider the process of difference quotients $X_{t}^{(h)}:=\left(B_{t+h}-B_{t}\right) / h, t \geqslant 0$.
(a) Show that $X^{(h)}$ is a centred Gaussian process and determine its covariance function.
(b) For $h \downarrow 0$ show that the covariance function becomes a δ-function in the sense that

$$
\lim _{h \downarrow 0} \mathbb{E}\left[\int_{0}^{1} f(t) X_{t}^{(h)} d t \int_{0}^{1} g(s) X_{s}^{(h)} d s\right]=\int_{0}^{1} f(t) g(t) d t
$$

for test functions $f, g:[0,1] \rightarrow \mathbb{R}$ (you may assume any regularity first, then try to find minimal assumptions).
2. A Brownian bridge $\left(B_{t}^{0}, t \in[0,1]\right)$ is a Gaussian process with mean zero and covariance function $\operatorname{Cov}\left(B_{t}^{0}, B_{s}^{0}\right)=t \wedge s-t s, t, s \in[0,1]$. Prove that there is a γ-Hölder continuous version of a Brownian bridge for any $\gamma \in(0,1 / 2)$.
3. Let $\left(\varphi_{k}\right)_{k \geqslant 1}$ be an orthonormal basis of $L^{2}([0,1])$, i.e. $\left\langle\varphi_{k}, \varphi_{l}\right\rangle_{L^{2}}=\delta_{k, l}$ and $\sum_{k=1}^{n}\left\langle f, \varphi_{k}\right\rangle_{L^{2}} \varphi_{k}$ converges in L^{2} for $n \rightarrow \infty$ to f for $f \in L^{2}([0,1])$. For a sequence $\left(Y_{k}\right)_{k \geqslant 1}$ of independent $N(0,1)$-random variables put

$$
B_{t}:=\sum_{k=1}^{\infty} Y_{k} \Phi_{k}(t), \quad t \in[0,1]
$$

with antiderivatives $\Phi_{k}(t)=\int_{0}^{t} \varphi_{k}(s) d s$. Prove:
(a) For fixed $t \in[0,1]$ the process $M_{n}^{(t)}:=\sum_{k=1}^{n} Y_{k} \Phi_{k}(t)$ converges almost surely and in $L^{2}(\mathbb{P})$ to some $M_{\infty}^{(t)} \in L^{2}(\mathbb{P})$ (use martingale convergence, $\Phi_{k}(t)=\left\langle\mathbf{1}_{[0, t]}, \varphi_{k}\right\rangle_{L^{2}}$ plus Parseval identity) and B_{t} is well defined as limit.
(b) For $0 \leqslant t_{0}<t_{1}<\cdots<t_{m}, m \in \mathbb{N}$ show that the m-dimensional random vector $\left(M_{n}^{\left(t_{1}\right)}-M_{n}^{\left(t_{0}\right)}, \cdots, M_{n}^{\left(t_{m}\right)}-M_{n}^{\left(t_{m-1}\right)}\right)$ is centred Gaussian. Conclude from (a) convergence in distribution as $n \rightarrow \infty$. By calculating the covariance matrices deduce that $B_{t} \sim N(0, t)$ and $\left(B_{t}\right)_{t \in[0,1]}$ has stationary and independent Gaussian increments like Brownian motion.

Remark: One can show that B is indeed a Brownian motion on $[0,1]$ (has a.s. continuous sample paths) for any choice of $\left(\varphi_{k}\right)_{k \geqslant 1}$. The next problem gives a proof for the Haar basis.
4. Introduce the Haar basis $\varphi_{0}(t)=\mathbf{1}_{[0,1]}(t), \psi_{0,0}(t)=\mathbf{1}_{[0,1 / 2)}(t)-\mathbf{1}_{[1 / 2,1)}(t)$ and generally $\psi_{j, k}(t)=2^{j / 2} \psi_{0,1}\left(2^{j} t-k\right)$ for $j \in \mathbb{N}_{0}, k=0, \ldots, 2^{j}-1$, which forms an orthonormal basis in $L^{2}([0,1])$.
(a) Define the Schauder functions $\Phi_{0}(t)=\int_{0}^{t} \varphi_{0}(s) d s, \Psi_{j, k}(t)=\int_{0}^{t} \psi_{j, k}(s) d s$ and draw them for the first (j, k). Sketch also realisations of

$$
B_{t}^{(J)}:=Y_{0} \Phi_{0}(t)+\sum_{0 \leqslant j \leqslant J, 0 \leqslant k \leqslant 2^{j}-1} Y_{j, k} \Psi_{j, k}(t), \quad t \in[0,1],
$$

for independent $N(0,1)$-random variables $Y_{0},\left(Y_{j, k}\right)_{j, k}$ and some (small) values of $J \in \mathbb{N}_{0}$.
(b) Verify for $j \geqslant 0$

$$
\Delta_{j}:=\sup _{t \in[0,1]}\left|\sum_{k=0}^{2^{j}-1} Y_{j, k} \Psi_{j, k}(t)\right|=2^{-(j+1) / 2} \max _{0 \leqslant k \leqslant 2^{j}-1}\left|Y_{j, k}\right|
$$

and deduce $\mathbb{P}\left(\Delta_{j} \geqslant \eta_{j}\right) \leqslant \sum_{k=0}^{2^{j}-1} \mathbb{P}\left(\left|Y_{j, k}\right| \geqslant 2^{(j+1) / 2} \eta_{j}\right) \leqslant 2^{j} \exp \left(-2^{j} \eta_{j}^{2}\right)$ for $\eta_{j}>0$.
(c) Use (b) with a good choice of the η_{j} to prove for any $\varepsilon>0$

$$
\lim _{J \rightarrow \infty} \mathbb{P}\left(\sum_{j \geqslant J} \Delta_{j}>\varepsilon\right)=0 .
$$

Deduce $\sup _{t \in[0,1]}\left|B_{t}^{(J)}-B_{t}\right| \xrightarrow{\mathbb{P}} 0$ for $J \rightarrow \infty$ and $B_{t}=B_{t}^{(\infty)}$ defined analogously to Problem 3. Conclude for a subsequence $\left(J_{m}\right)_{m \geqslant 1}$ that $B_{t}^{\left(J_{m}\right)} \rightarrow B_{t}$ uniformly on $[0,1]$ with probability one, whence B_{t} is a.s. continuous and thus a Brownian motion.

Submit the solutions before the lecture on Thursday, 25 April 2024.

Markus Reiß
Stochastic Analysis / Stochastic Processes II
Summer 2024
Humboldt-Universität zu Berlin

Exercises: sheet 2

1. Let B be an $\left(\mathscr{F}_{t}\right)$-Brownian motion. Verify that the following processes are $\left(\mathscr{F}_{t}\right)$-martingales:
(a) $B_{t}, t \geqslant 0$;
(b) $B_{t}^{2}-t, t \geqslant 0$;
(c) $\exp \left(\lambda B_{t}-\frac{1}{2} \lambda^{2} t\right), t \geqslant 0$, for any $\lambda \in \mathbb{R}$.
2. Let $\left(X_{t}, t \geqslant 0\right)$ be an $\left(\mathscr{F}_{t}\right)$-adapted process with right-continuous sample paths. Then for a finite $\left(\mathscr{F}_{t}\right)$-stopping time τ the map $\omega \mapsto X_{\tau(\omega)}(\omega)$ is $\mathscr{F}_{\tau^{-}}$ measurable. To prove this, assume a right-continuous filtration $\left(\mathscr{F}_{t}\right)$, consider the dyadic approximations $\tau_{n}:=2^{-n}\left\lceil 2^{n} \tau\right\rceil$ of τ from the right and establish that $X_{\tau}=\lim _{n \rightarrow \infty} X_{\tau_{n}}, \mathscr{F}_{\tau}=\bigcap_{n} \mathscr{F}_{\tau_{n}}$.
3. Extend the Doob inequalities from discrete to continuous time:
(a) Maximal inequality: for any right-continuous submartingale $\left(M_{t}, t \geqslant 0\right)$ and $\alpha>0, T>0$ we have

$$
\mathbb{P}\left(\sup _{0 \leqslant t \leqslant T} M_{t} \geqslant \alpha\right) \leqslant \frac{1}{\alpha} \mathbb{E}\left[M_{T} \mathbf{1}\left(\sup _{0 \leqslant t \leqslant T} M_{t} \geqslant \alpha\right)\right]
$$

(b) L^{p}-inequality: for any right-continuous L^{p}-martingale $\left(M_{t}, t \geqslant 0\right)$ with $p>1$ we have

$$
\mathbb{E}\left[\sup _{0 \leqslant t \leqslant T}\left|M_{t}\right|^{p}\right]^{1 / p} \leqslant \frac{p}{p-1} \mathbb{E}\left[\left|M_{T}\right|^{p}\right]^{1 / p}
$$

4. Let $\left(N_{t}, t \geqslant 0\right)$ be a Poisson process of intensity $\lambda>0$. Check that $\left(N_{t}, t \geqslant 0\right)$ and $\left(N_{t}^{2}, t \geqslant 0\right)$ are right-continuous sub-martingales and that $\left(N_{t}-\lambda t, t \geqslant 0\right)$ forms a right-continuous martingale.
Can you find a continuous, adapted and increasing process Q such that $\left(N_{t}^{2}-\right.$ $Q_{t}, t \geqslant 0$) forms a martingale? (Hint: determine $\lim _{h \downarrow 0} \frac{1}{h} \mathbb{E}\left[N_{t+h}^{2}-N_{t}^{2} \mid \mathscr{F}_{t}\right]$)

Submit the solutions before the lecture on Thursday, 2 May 2024.

