Stochastic Analysis / Stochastic Processes II Summer 2024 Humboldt-Universität zu Berlin

Exercises: sheet 1

- 1. For a Brownian motion $(B_t, t \ge 0)$ and h > 0 consider the process of difference quotients $X_t^{(h)} := (B_{t+h} B_t)/h, t \ge 0.$
 - (a) Show that $X^{(h)}$ is a centred Gaussian process and determine its covariance function.
 - (b) For $h \downarrow 0$ show that the covariance function becomes a δ -function in the sense that

$$\lim_{h \downarrow 0} \mathbb{E} \left[\int_0^1 f(t) X_t^{(h)} dt \int_0^1 g(s) X_s^{(h)} ds \right] = \int_0^1 f(t) g(t) dt$$

for test functions $f, g: [0, 1] \to \mathbb{R}$ (you may assume any regularity first, then try to find minimal assumptions).

- 2. A Brownian bridge $(B_t^0, t \in [0, 1])$ is a Gaussian process with mean zero and covariance function $\text{Cov}(B_t^0, B_s^0) = t \wedge s ts, t, s \in [0, 1]$. Prove that there is a γ -Hölder continuous version of a Brownian bridge for any $\gamma \in (0, 1/2)$.
- 3. Let $(\varphi_k)_{k \ge 1}$ be an orthonormal basis of $L^2([0,1])$, i.e. $\langle \varphi_k, \varphi_l \rangle_{L^2} = \delta_{k,l}$ and $\sum_{k=1}^n \langle f, \varphi_k \rangle_{L^2} \varphi_k$ converges in L^2 for $n \to \infty$ to f for $f \in L^2([0,1])$. For a sequence $(Y_k)_{k \ge 1}$ of independent N(0,1)-random variables put

$$B_t := \sum_{k=1}^{\infty} Y_k \Phi_k(t), \quad t \in [0,1],$$

with antiderivatives $\Phi_k(t) = \int_0^t \varphi_k(s) ds$. Prove:

- (a) For fixed $t \in [0, 1]$ the process $M_n^{(t)} := \sum_{k=1}^n Y_k \Phi_k(t)$ converges almost surely and in $L^2(\mathbb{P})$ to some $M_{\infty}^{(t)} \in L^2(\mathbb{P})$ (use martingale convergence, $\Phi_k(t) = \langle \mathbf{1}_{[0,t]}, \varphi_k \rangle_{L^2}$ plus *Parseval identity*) and B_t is well defined as limit.
- (b) For $0 \leq t_0 < t_1 < \cdots < t_m$, $m \in \mathbb{N}$ show that the *m*-dimensional random vector $(M_n^{(t_1)} - M_n^{(t_0)}, \cdots, M_n^{(t_m)} - M_n^{(t_{m-1})})$ is centred Gaussian. Conclude from (a) convergence in distribution as $n \to \infty$. By calculating the covariance matrices deduce that $B_t \sim N(0,t)$ and $(B_t)_{t \in [0,1]}$ has stationary and independent Gaussian increments like Brownian motion.

Remark: One can show that *B* is indeed a Brownian motion on [0, 1] (has a.s. continuous sample paths) for any choice of $(\varphi_k)_{k \ge 1}$. The next problem gives a proof for the Haar basis.

- 4. Introduce the Haar basis $\varphi_0(t) = \mathbf{1}_{[0,1]}(t), \ \psi_{0,0}(t) = \mathbf{1}_{[0,1/2)}(t) \mathbf{1}_{[1/2,1)}(t)$ and generally $\psi_{j,k}(t) = 2^{j/2}\psi_{0,1}(2^jt-k)$ for $j \in \mathbb{N}_0, \ k = 0, \dots, 2^j - 1$, which forms an orthonormal basis in $L^2([0,1])$.
 - (a) Define the Schauder functions $\Phi_0(t) = \int_0^t \varphi_0(s) \, ds$, $\Psi_{j,k}(t) = \int_0^t \psi_{j,k}(s) \, ds$ and draw them for the first (j, k). Sketch also realisations of

$$B_t^{(J)} := Y_0 \Phi_0(t) + \sum_{0 \leqslant j \leqslant J, 0 \leqslant k \leqslant 2^j - 1} Y_{j,k} \Psi_{j,k}(t), \quad t \in [0,1],$$

for independent N(0, 1)-random variables $Y_0, (Y_{j,k})_{j,k}$ and some (small) values of $J \in \mathbb{N}_0$.

(b) Verify for $j \ge 0$

$$\Delta_j := \sup_{t \in [0,1]} \left| \sum_{k=0}^{2^j - 1} Y_{j,k} \Psi_{j,k}(t) \right| = 2^{-(j+1)/2} \max_{0 \le k \le 2^j - 1} |Y_{j,k}|$$

and deduce $\mathbb{P}(\Delta_j \ge \eta_j) \le \sum_{k=0}^{2^j-1} \mathbb{P}(|Y_{j,k}| \ge 2^{(j+1)/2}\eta_j) \le 2^j \exp(-2^j \eta_j^2)$ for $\eta_j > 0$.

(c) Use (b) with a good choice of the η_i to prove for any $\varepsilon > 0$

$$\lim_{J \to \infty} \mathbb{P}\left(\sum_{j \ge J} \Delta_j > \varepsilon\right) = 0.$$

Deduce $\sup_{t \in [0,1]} |B_t^{(J)} - B_t| \xrightarrow{\mathbb{P}} 0$ for $J \to \infty$ and $B_t = B_t^{(\infty)}$ defined analogously to Problem 3. Conclude for a subsequence $(J_m)_{m \ge 1}$ that $B_t^{(J_m)} \to B_t$ uniformly on [0,1] with probability one, whence B_t is a.s. continuous and thus a Brownian motion.

Submit the solutions before the lecture on Thursday, 25 April 2024.

Stochastic Analysis / Stochastic Processes II Summer 2024 Humboldt-Universität zu Berlin

Exercises: sheet 2

- 1. Let B be an (\mathscr{F}_t) -Brownian motion. Verify that the following processes are (\mathscr{F}_t) -martingales:
 - (a) $B_t, t \ge 0;$
 - (b) $B_t^2 t, t \ge 0;$
 - (c) $\exp(\lambda B_t \frac{1}{2}\lambda^2 t), t \ge 0$, for any $\lambda \in \mathbb{R}$.
- 2. Let $(X_t, t \ge 0)$ be an (\mathscr{F}_t) -adapted process with right-continuous sample paths. Then for a finite (\mathscr{F}_t) -stopping time τ the map $\omega \mapsto X_{\tau(\omega)}(\omega)$ is \mathscr{F}_{τ} measurable. To prove this, assume a right-continuous filtration (\mathscr{F}_t) , consider the dyadic approximations $\tau_n := 2^{-n} \lceil 2^n \tau \rceil$ of τ from the right and establish that $X_{\tau} = \lim_{n \to \infty} X_{\tau_n}, \ \mathscr{F}_{\tau} = \bigcap_n \mathscr{F}_{\tau_n}.$
- 3. Extend the Doob inequalities from discrete to continuous time:
 - (a) Maximal inequality: for any right-continuous submartingale $(M_t, t \ge 0)$ and $\alpha > 0, T > 0$ we have

$$\mathbb{P}\left(\sup_{0\leqslant t\leqslant T}M_t \geqslant \alpha\right) \leqslant \frac{1}{\alpha} \mathbb{E}\left[M_T \mathbf{1}\left(\sup_{0\leqslant t\leqslant T}M_t \geqslant \alpha\right)\right].$$

(b) L^p -inequality: for any right-continuous L^p -martingale $(M_t, t \ge 0)$ with p > 1 we have

$$\mathbb{E}\left[\sup_{0\leqslant t\leqslant T}|M_t|^p\right]^{1/p}\leqslant \frac{p}{p-1}\mathbb{E}\left[|M_T|^p\right]^{1/p}$$

4. Let $(N_t, t \ge 0)$ be a Poisson process of intensity $\lambda > 0$. Check that $(N_t, t \ge 0)$ and $(N_t^2, t \ge 0)$ are right-continuous sub-martingales and that $(N_t - \lambda t, t \ge 0)$ forms a right-continuous martingale.

Can you find a *continuous*, adapted and increasing process Q such that $(N_t^2 - Q_t, t \ge 0)$ forms a martingale? (*Hint*: determine $\lim_{h\downarrow 0} \frac{1}{h} \mathbb{E}[N_{t+h}^2 - N_t^2 | \mathscr{F}_t]$)

Submit the solutions before the lecture on Thursday, 2 May 2024.

Stochastic Analysis / Stochastic Processes II Summer 2024 Humboldt-Universität zu Berlin

Exercises: sheet 3

1. Let X be a complex Brownian motion starting in $X_0 = i$, i.e. $X_t = i + B_t^1 + iB_t^2$ for two independent standard Brownian motions B^1, B^2 . Consider the first time X hits the real axis:

$$\tau = \inf\{t \ge 0 \mid X_t = 0\}.$$

- (a) Sketch a typical path of X.
- (b) Verify that $(e^{i\lambda X_t}, t \ge 0)$ is a complex martingale for every $\lambda \in \mathbb{R}$ (i.e., real and imaginary parts are martingales).
- (c) Prove $\mathbb{E}[e^{i\lambda X_{\tau}}] = e^{-\lambda}$, $\lambda \ge 0$, and then $\mathbb{E}[e^{i\lambda X_{\tau}}] = e^{-|\lambda|}$, $\lambda \in \mathbb{R}$. Conclude that X_{τ} is Cauchy-distributed by using the characteristic function of a Cauchy distribution (from the literature).
- 2. Show the following properties of a continuous local martingale $(M_t, t \ge 0)$:
 - (a) If M is dominated in the sense that there is a $Z \in L^1(\mathbb{P})$ with $|M_t| \leq Z$ for all $t \geq 0$, then M is a martingale.
 - (b) If $M_0 = 0$, then the stopping times $\tau_n := \inf\{t \ge 0 \mid |M_t| \ge n\}$ localise M. Hint: use $|M_{t \land \tau_n}| \le n$ and part (a).
- 3. Let $(X_t, t \ge 0)$ be a simple process and $(M_t, t \ge 0)$ be a continuous martingale. Prove:
 - (a) If M is an L^2 -martingale and X is bounded, then $(\int_0^t X_s dM_s, t \ge 0)$ is also a continuous L^2 -martingale.
 - (b) In any case $\left(\int_{0}^{t} X_{s} dM_{s}, t \ge 0\right)$ is a continuous local martingale.

Does part (b) also hold if M is only a continuous local martingale?

4. Show that the continuous martingale $M_t = B_t^2 - t$ for a Brownian motion B has quadratic variation $\langle M \rangle_t = 4 \int_0^t B_s^2 ds$. Remark: This will later follow directly from $M_t = 2 \int_0^t B_s dB_s$.

Submit the solutions of Problems 1 & 2 via email to sascha.gaudlitz@hu-berlin.de by Friday 10 May, 9 a.m., and the solutions to Problems 3 & 4 *before* the lecture on Thursday, 16 May 2024.

Stochastic Analysis / Stochastic Processes II Summer 2024 Humboldt-Universität zu Berlin

Exercises: sheet 4

1. For a Brownian motion B and $n \in \mathbb{N}_0, t \ge 0$ consider

$$X_t^{(n)} := \sum_{k=0}^{\infty} B_{k2^{-n}} \mathbf{1}_{(k2^{-n},(k+1)2^{-n}]}(t).$$

Show for $t = k_0 2^{-n_0}$ with some $k_0, n_0 \in \mathbb{N}_0$

$$B_t^2 = \sum_{k=0}^{\infty} (B_{(k+1)2^{-n}\wedge t}^2 - B_{k2^{-n}\wedge t}^2) = \sum_{k=0}^{\infty} (B_{(k+1)2^{-n}\wedge t} - B_{k2^{-n}\wedge t})^2 + 2\int_0^t X_s^{(n)} dB_s,$$

whenever $n \ge n_0$. Conclude for all $t \ge 0$ that

$$2\int_0^t X_s^{(n)} dB_s \xrightarrow{L^2(\mathbb{P})} B_t^2 - t$$

holds as $n \to \infty$.

2. (Stratonovich integral) For a simple process $X_t = \sum_{k=0}^{\infty} \xi_k \mathbf{1}_{(\tau_k, \tau_{k+1}]}(t), t \ge 0$, with (\mathscr{F}_t) -stopping times $\tau_k \uparrow \infty$, $\xi_k \mathscr{F}_{\tau_k}$ -measurable and an (\mathscr{F}_t) -adapted process Y set

$$\int_0^t X_s \circ dY_s := \sum_{k=0}^\infty \frac{\xi_k + \xi_{k+1}}{2} (Y_{\tau_{k+1}} - Y_{\tau_k}), \quad t \ge 0.$$

Consider B and $X^{(n)}$ from problem 1, show that $(\int_0^t X_s^{(n)} \circ dB_s, t \ge 0)$ is in general *not* a martingale and deduce for $n \to \infty$

$$2\int_0^t X_s^{(n)} \circ dB_s \xrightarrow{L^2(\mathbb{P})} B_t^2, \quad t \ge 0.$$

Submit the solutions before the lecture on Thursday, 16 May 2024.