
Markus Reiß

Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 1

1. Flies and wasps land on your dinner plate in the manner of independent Pois-
son processes with respective intensities µ and λ. Show that the arrival of
flying beasts forms a Poisson process of intensity λ + µ (superposition). The
probability that an arriving fly is a blow-fly is p. Does the arrival of blow-flies
also form a Poisson process? (thinning)

2. Let (Nt, t > 0) be a Poisson process of intensity λ > 0 and let (Yk)k>1 be a
sequence of i.i.d. random variables, independent of N . Then Xt :=

∑Nt
k=1 Yk,

t > 0, is called compound Poisson process (Xt := 0 if Nt = 0).

(a) Show that (Xt, t > 0) has independent and stationary increments.

(b) Determine the expectation of Xt in the case Yk ∈ L1.

(c) Introduce the Lévy measure ν(B) := λP (Y1 ∈ B), B ∈ BR. Show that
Xt has characteristic function

ϕt(u) = E[eiuXt ] = exp
(
t

∫
R

(eiux − 1)ν(dx)
)
, u ∈ R .

(d) Find a sequence of compound Poisson processes (X
(n)
t , t > 0) with Lévy

measures νn such that X
(n)
t

d−→ N(0, 1) as n → ∞ for some fixed t > 0.
Describe heuristically how the sample paths evolve.

(e*) Characterize all sequences (νn)n>1 with X
(n)
1

d−→ N(0, 1) in (d).

3. The number of busses that arrive until time t at a bus stop follows a Poisson
process with intensity λ > 0 (in our model). Adam and Berta arrive together
at time t0 > 0 at the bus stop and discuss how long they have to wait in the
mean for the next bus.
Adam: Since the waiting times are Exp(λ)-distributed and the exponential
distribution is memoryless, the mean is λ−1.
Berta: The time between the arrival of two busses is Exp(λ)-distributed and
has mean λ−1. Since on average the same time elapses before our arrival and
after our arrival, we obtain the mean waiting time 1

2λ
−1 (at least assuming

that at least one bus had arrived before time t0).
What is the correct answer to this waiting time paradoxon?



4. Let the processes (Xt, t > 0) and (Yt, t > 0) be versions of each other and each
have right-continuous sample paths. Prove that (Xt, t > 0) and (Yt, t > 0) are
indistinguishable.

Submit the solutions before the lecture on Thursday, 26 October 2023.
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1. Show for a given Markov chain that the set M of invariant initial distributions
µ is convex. Find examples where (a) M consists of one element only, (b) M
has infinitely many elements and (c) M is empty.

2. Let C([0,∞)) be equipped with the topology of uniform convergence on com-
pacts using the metric d(f, g) :=

∑
k>1 2−k(supt∈[0,k]|f(t)− g(t)| ∧ 1). Prove:

(a) (C([0,∞)), d) is Polish.

(b) The Borel σ-algebra is the smallest σ-algebra such that all coordinate
projections πt : C([0,∞))→ R, t > 0, are measurable.

(c) For any continuous stochastic process (Xt, t > 0) on (Ω,F ,P) the map-
ping X̄ : Ω→ C([0,∞)) with X̄(ω)t := Xt(ω) is Borel-measurable.

(d) The law of X̄ is uniquely determined by the finite-dimensional distribu-
tions of X.

3. Prove the regularity lemma: Let P be a probability measure on the Borel σ-
algebra B of any metric space. Then

D :=
{
B ∈ B

∣∣∣ P(B) = sup
K⊆B compact

P(K) = inf
O⊇B open

P(O)
}

is closed under set differences and countable unions (D is a σ-ring).
Conclude for a Polish space, using the lecture results, that D is a σ-algebra
and D = B.



4. Abstract construction of discrete-time Markov chains: Let (S,P(S)) be a

countable state space and let an initial counting density µ(0) (i.e. µ
(0)
i > 0,∑

i∈S µ
(0)
i = 1) as well as transition probabilities pij (i.e. pij > 0 and∑

j∈S pij = 1) be given.

(a) Show that (S,P(S)) becomes a Polish space when equipped with the
discrete metric d(i, j) = 1(i 6= j), i, j ∈ S.

(b) For A ⊆ Sn+1 define

µn(A) :=
∑
i0∈S
· · ·
∑
in∈S

1A(i0, . . . , in)µ
(0)
i0
pi0i1 · · · pin−1in .

Show the one-step consistency condition

µn+1

(
π−1
{0,...,n+1}→{0,...,n}(A)

)
= µn(A), A ⊆ Sn+1.

(c) Conclude that µ{t1,...tn}(B) := µtn(π−1
{0,...,tn}→{t1,...,tn}(B)) for n > 1, 0 6

t1 6 · · · 6 tn and B ⊆ Sn defines a projective family and that a Markov

chain (Xn, n > 0) with P(X0 = j) = µ
(0)
j , P(Xn+1 = j |Xn = i) = pij for

all n > 0 and i, j ∈ S with P(Xn = i) > 0 exists.

Submit the solutions before the lecture on Thursday, 2 November 2023.
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1. A process (Bt, t > 0) is called Brownian motion if

(a) Bt ∼ N(0, t), t > 0, holds;

(b) the increments are stationary and independent: for 0 6 t0 < t1 < · · · < tm
we have

(Bt1 −Bt0 , . . . , Btm −Btm−1) ∼ N(0,diag(t1 − t0, . . . , tm − tm−1)).

(c) B has continuous sample paths.

Prove that a process (Bt, t > 0) with properties (a) and (b) exists by showing
that these properties are satisfied by a Gaussian process with mean zero and
covariance function c(t, s) = t∧s, t, s > 0. For the existence of such a Gaussian
process the representation c(t, s) =

∫∞
0 1[0,t](u)1[0,s](u) du might be useful to

derive positive-semidefiniteness.

2. (Proof of C([0, 1]) /∈ B
⊗[0,1]
R ) We say that A ⊆ R[0,1] := {f : [0, 1] → R}

only depends on countably many coordinates if there is a countable index set
T (A) ⊆ [0, 1] with

∀f ∈ A, g ∈ R[0,1] : f |T (A) = g|T (A) ⇒ g ∈ A.

Let A := {A ⊆ R[0,1] |A only depends on countably many coordinates}.

(a) Show that {f ∈ R[0,1] | f(t0) ∈ B} for any t0 ∈ [0, 1], B ∈ BR lies in A.

(b) Verify that A is a σ-algebra and deduce that B
⊗[0,1]
R ⊆ A.

(c) Prove C([0, 1]) = {f ∈ R[0,1] | f is continuous} /∈ B
⊗[0,1]
R .



3. Let (X,Y ) be a two-dimensional random vector with Lebesgue density fX,Y .

(a) For x ∈ R with fX(x) > 0 (recall fX(x) =
∫
fX,Y (x, η) dη) consider the

conditional density

fY |X=x(y) :=
fX,Y (x, y)

fX(x)
.

Which regularity condition on fX,Y ensures for any Borel set B

lim
h↓0

P(Y ∈ B |X ∈ [x, x+ h]) =

∫
B
fY |X=x(y) dy ?

(b) Show that for Y ∈ L2 (without any condition on fX,Y ) the function

ϕY (x) :=

{∫
yfY |X=x(y) dy, if fX(x) > 0

0, otherwise

minimizes the L2-distance E[(Y − ϕ(X))2] over all measurable functions
ϕ. We write E[Y |X = x] := ϕY (x) and E[Y |X] := ϕY (X).

4. In the situation of problem 3 prove the following properties directly from the
definition:

(a) E[E[Y |X]] = E[Y ];

(b) if X and Y are independent, then E[Y |X] = E[Y ] holds a.s.;

(c) if Y > 0 a.s., then E[Y |X] > 0 a.s.;

(d) for all α, β ∈ R, α 6= 0 we have E[αY + β |X] = αE[Y |X] + β a.s.;

(e) if g : R → R is such that (x, y) 7→ (x, yg(x)) is a diffeomorphism and
Y g(X) ∈ L1, then E[Y g(X) |X] = E[Y |X]g(X) a.s.

Submit the solutions before the lecture on Thursday, 9 November 2023.



Markus Reiß

Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 4

1. Let Ω =
⋃
n∈NBn, Bm ∩ Bn = ∅ for m 6= n, be a measurable, countable

partition for given (Ω,F ,P) and put B := σ(Bn, n ∈ N). Show:

(a) Any B-measurable random variable X can be written as X =∑
n∈N αn1Bn with suitable αn ∈ R. For Y ∈ L1 we have

E[Y | B] =
∑

n:P(Bn)>0

( 1

P(Bn)

∫
Bn

Y dP
)
1Bn P -a.s.

(b) Specify Ω = [0, 1) with Borel σ-algebra and P = U([0, 1)), the uniform
distribution. For Y (ω) := ω, ω ∈ [0, 1), determine

E[Y |σ([(k − 1)/n, k/n), k = 1, . . . , n)].

For n = 1, 3, 5, 10 plot the conditional expectations and Y itself as func-
tions on Ω.

2. Let (X,Y ) be a two-dimensional N(µ,Σ)-random vector.

(a) For which α ∈ R are X and Y − αX uncorrelated?

(b) Conclude that X and Y − (αX + β) are independent for these values α
and for arbitrary β ∈ R such that E[Y |X] = αX+β with suitable β ∈ R.

Remark: In the Gaussian case the conditional expectation is linear!

3. Let G be a sub-σ-algebra of F . Prove:

(a) Yn ∈ M+(Ω,F ) ⇒ E[lim infn→∞ Yn |G ] 6 lim infn→∞ E[Yn |G ] a.s. (Fa-
tou’s Lemma);

(b) Yn ∈ M(Ω,F ), Yn → Y , |Yn| 6 Z with Z ∈ L1(Ω,F ,P) implies
E[Yn |G ]→ E[Y |G ] a.s. as n→∞ (dominated convergence).

Hint: Use the monotone convergence theorem for conditional expectations,
recalling the arguments for the Lebesgue integral / expectation.



4. For Y ∈ L2 define the conditional variance of Y given X by

Var(Y |X) := E[(Y − E[Y |X])2 |X].

(a) Why is Var(Y |X) well defined?

(b) Show Var(Y ) = Var(E[Y |X]) + E[Var(Y |X)].

(c) Use (b) to prove for independent random variables (Zk)k>1 and N in L2

with (Zk) identically distributed and N N-valued:

Var
( N∑
k=1

Zk

)
= E[Z1]2 Var(N) + E[N ] Var(Z1).

What is the variance of the compound Poisson process (Xt, t > 0) from
Exercise 1.2 at time t (assuming Yk ∈ L2)?

Submit the solutions before the lecture on Thursday, 16 November 2023.
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1. Let (Xn)n>0 be an (Fn)-adapted family of random variables in L1. Show that
(Xn)n>0 is a martingale if and only if for all bounded (Fn)-stopping times τ
the identity E[Xτ ] = E[X0] holds.
Hint for ’if ’: Deduce first E[Xn] = E[X0] and consider then τ = n1GC + (n+
1)1G for suitable events G.

2. Let (FXn )n>0 be the natural filtration of a process (Xn)n>0 and consider a
finite stopping time τ with respect to (FXn ).

(a) Prove Fτ = σ(τ, Xτ∧n, n > 0).
Hint: for ’⊆’ write A ∈ Fτ as A =

⋃
nA ∩ {τ = n}.

(b*) Show that even Fτ = σ(Xτ∧n, n > 0) holds.

3. Let (Sn)n>0 be the symmetric simple random walk, that is S0 = 0, Sn =∑n
i=1Xi, n > 1, with independent Xi and P(Xi = +1) = P(Xi = −1) = 1/2.

(a) Argue that (|Sn|)n>0 is a submartingale with respect to the natural filtra-

tion (FS
n )n>0 of (Sn) (and then also to the natural filtration (F

|S|
n )n>0

of (|Sn|)).
(b) Verify that An =

∑n−1
i=0 1(|Si| = 0), n > 1, yields the compensator of

(|Sn|)n>0. An is called local time of the random walk at zero.

(c) Show P(S2j = 0) =
(

2j
j

)
2−2j and conclude

E[|Sn|] =
n−1∑
i=0

P(Si = 0) =

b(n−1)/2c∑
j=0

(
2j

j

)
2−2j .



4. Generating function of a random walk’s first passage time:
Let (Sn)n>0 be a simple random walk with S0 = 0, Sn =

∑n
i=1Xi, n > 1,

where the Xi are independent and P(Xi = +1) = p, P(Xi = −1) = q = 1− p,
p ∈ (0, 1). Prove:

(a) With M(λ) = peλ + qe−λ, λ ∈ R, the process

Y (λ)
n := eλSnM(λ)−n, n > 0,

is a martingale with respect to (FS
n ).

(b) For M(λ) > 1, a, b ∈ Z with a < 0 < b and the stopping time τ :=
inf{n > 0 |Sn ∈ {a, b}} we have

eaλ E[M(λ)−τ1{Sτ=a}] + ebλ E[M(λ)−τ1{Sτ=b}] = 1.

(c) This implies for all s ∈ (0, 1] (solve s = M(λ)−1)

E[sτ1{Sτ=a}] =
ν+(s)b − ν−(s)b

ν+(s)bν−(s)a − ν+(s)aν−(s)b
,

E[sτ1{Sτ=b}] =
ν−(s)a − ν+(s)a

ν+(s)bν−(s)a − ν+(s)aν−(s)b

with ν±(s) = (1 ±
√

1− 4pqs2)/(2ps) and continuous extension of the
quotient in the case ν+(s) = ν−(s).

(d) Now let a ↓ −∞ and infer that the generating function of the first passage
time τb := inf{n > 0 |Sn = b} is given by

ϕτb(s) := E[sτb1{τb<∞}] = ν+(s)−b =
(1−

√
1− 4pqs2

2qs

)b
, s ∈ (0, 1].

In particular, we have P(τb <∞) = ϕτb(1) = min(1, p/q)b.

Submit the solutions before the lecture on Thursday, 23 November 2023.
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1. Prove that a family (Xi)i∈I of real-valued random variables is uniformly inte-
grable if and only if supi∈I‖Xi‖L1 <∞ holds as well as

∀ ε > 0 ∃ δ > 0 ∀A ∈ F : P(A) < δ ⇒ sup
i∈I

E[|Xi|1A] < ε.

2. Show for an Lp-bounded martingale (Mn) (i.e. supn E[|Mn|p] < ∞) with p ∈
(1,∞):

(a) (Mn) converges a.s. and in L1 to some M∞ ∈ L1.

(b) Use |M∞| 6 supn>0|Mn| and Doob’s inequality to infer M∞ ∈ Lp.
(c) Prove with dominated convergence that (Mn) converges to M∞ in Lp.

3. Give a martingale proof of Kolmogorov’s 0-1 law:

(a) Let (Fn) be a filtration and F∞ = σ(Fn, n > 0). Then for A ∈ F∞ we
have limn→∞ E[1A |Fn] = 1A a.s.

(b) For a sequence (Xn)n>1 of independent random variables consider the
natural filtration (FX

n ) and the terminal σ-algebra T :=
⋂
n>1 σ(Xk, k >

n). Then for A ∈ T deduce P(A) = E[1A |FX
n ] → 1A a.s. for n → ∞,

implying P(A) ∈ {0, 1}.

4. A monkey types at random the 26 capital letters of the Latin alphabet.
Let τ be the first time by which the monkey has completed the sequence
ABRACADABRA. Prove that τ is almost surely finite and satisfies

E[τ ] = 2611 + 264 + 26.

Give an example of an 11-letter word where E[τ ] = 2611.
Hint: You may look at a fair game with gamblers Gn arriving before times
n = 1, 2, . . . Then Gn bets 1 Euro on ’A’ for letter n; if she wins, she puts 26
Euro on ’B’ for letter n+1, otherwise she stops. If she wins again, she puts 262

Euro on ’R’, otherwise she stops etc. What is the balance of the game maker
at time τ?

Submit the solutions before the lecture on Thursday, 30 November 2023.
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1. Let Zn(x) = (3/2)n
∑

k∈{0,2}n 1I(k,n)(x), x ∈ [0, 1), with intervals I(k, n) :=

[
∑n

i=1 ki3
−i,
∑n

i=1 ki3
−i + 3−n). Show:

(a) (Zn)n>0 with Z0 = 1 forms a martingale on ([0, 1),B[0,1], λ, (Fn)) with
Lebesgue measure λ on [0, 1) and Fn := σ(I(k, n), k ∈ {0, 1, 2}n).

(b) (Zn) converges λ-a.s., but not in L1([0, 1],B[0,1], λ).

(c) Interpret Zn as the density of a probability measure Pn with respect to
λ. Then (Pn) converges weakly to some probability measure P∞ (P∞ is
called Cantor measure). Identify a Borel set C ⊆ [0, 1] with P∞(C) = 1,
λ(C) = 0 so that P∞ ⊥ λ.
Hint: Show that the distribution functions converge.

2. Let (Xk)k>1 be a sequence of i.i.d. {−1,+1}-valued random variables. Under
the probability measure P0 (the null hypothesis H0) we have P0(Xk = +1) = p0

with p0 ∈ (0, 1), while under P1 (the alternativeH1) we have P1(Xk = +1) = p1

with p1 ∈ (0, 1), p1 6= p0.

(a) Explain why the likelihood quotient Ln =
d(⊗ni=1 P

Xi
1 )

d(⊗ni=1 P
Xi
0 )

after n observations

X1, . . . , Xn is given by

Ln =
p
(n+Sn)/2
1 (1−p1)(n−Sn)/2

p
(n+Sn)/2
0 (1−p0)(n−Sn)/2

with Sn =
∑n

k=1Xk.

(b) Show that the likelihood process (Ln)n>0 (put L0 := 1) forms a non-
negative martingale under the hypothesis H0 (i.e. under P0) with respect
to its natural filtration.

(c) A sequential likelihood-quotient test, based on 0 < A < B and the stopping
time

τA,B := inf{n > 1 |Ln > B or Ln 6 A},

rejects H0 if LτA,B > B, and accepts H0 if LτA,B 6 A. Determine the
probability for errors of the first and second kind (i.e., P0(LτA,B > B) and
P1(LτA,B 6 A)) in the case p0 = 0.4, p1 = 0.6, A = (2/3)5, B = (3/2)5.
Calculate E[τA,B].

(d*) Compare the error probabilities of this sequential test with those of the
test which after n = bE[τA,B]c observations rejects H0 if Ln > 1 and
accepts H0 if Ln < 1.



3. Prove in detail for probability measures Q� P, Z = dQ
dP and Y ∈ L1(Q) that

Y Z is in L1(P) and that the identity

EQ[Y ] = EP[Y Z], i.e.

∫
Y dQ =

∫
Y
dQ
dP

dP

holds. Give an example where Y is in L1(Q), but not in L1(P).

4. Suppose µ0, µ1, µ2 are measures on (Ω,F ) so that µ2 has a µ1-density f2,1

and µ1 has a µ0-density f1,0 (i.e., µ1(A) =
∫
A f1,0dµ0 etc.). Show:

(a) µ0 and µ1 are equivalent if and only if f1,0 > 0 holds µ0-a.e. In that case
f0,1 := f−1

1,0 is µ0-a.e. and µ1-a.e. the µ1-density of µ0.

Short-hand notation: dµ0
dµ1

= (dµ1dµ0
)−1.

(b) We have µ2 � µ0 and f2,0 := f2,1f1,0 is µ0-a.e. the µ0-density of µ2.

Short-hand notation: dµ2
dµ0

= dµ2
dµ1

dµ1
dµ0

.

Submit the solutions before the lecture on Thursday, 7 December 2023.
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1. The recursion Xn = aXn−1 +εn for n > 1 with a ∈ R and independent random
variables εn ∼ N(0, σ2), X0 ∼ N(µ0, σ

2
0) defines a so called autoregressive

process of order one.

(a) Show that (Xn, n > 0) forms a Gaussian process.

(b) For which values of a do µ0 ∈ R, σ0 > 0 exist such that (Xn, n > 0) is
stationary?

(c*) (optional) Simulate several trajectories for a ∈ {−1,−0.5, 0, 1, 2} and
different µ0, σ0. Explain what you see.

2. Let (Xn)n>0 be a time-homogeneous Markov chain with initial distribution µ.
Show that the following are equivalent:

(a) (Xn) is a stationary process;

(b) µ is an invariant initial distribution, i.e. Pµ(X1 ∈ B) = µ(B) for all
B ⊆ S.

Consider the one-step transition matrix of a Markov chain on S = {1, 2, 3}

P (1) =

p11 p12 0
0 p22 p23

0 p32 p33


with each pij > 0. Visualise this by a graph with directed edges along positive
transition probabilities. Then determine an invariant initial distribution µ.

3. Let IT be the σ-algebra of invariant events for the measure-preserving map
T on (Ω,F ,P). Show:

(a) A random variable Y is IT -measurable if and only if Y ◦ T = Y holds
P-a.s.

(b) T is ergodic if and only if all bounded random variables Y with Y ◦T = Y
P-a.s. are constant P-a.s.

(c) For all invariant events A there is a strictly invariant event B (i.e.,
T−1(B) = B holds) such that P(A∆B) := P(A \B ∪B \A) = 0.

4. Read Ryan Tibshirani’s slides on Google’s PageRank algorithm (lecture 3 un-
der http://www.stat.cmu.edu/~ryantibs/datamining) and explain briefly
the main ideas.

Submit the solutions before the lecture on Thursday, 14 December 2023.

http://www.stat.cmu.edu/~ryantibs/datamining
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1. Extend Birkhoff’s ergodic theorem to an Lp-ergodic theorem:
For measure-preserving T and X ∈ Lp, p > 1, consider An := 1

n

∑n−1
i=0 X ◦ T i.

Then (|An|p)n>1 is uniformly integrable and An → E[X |IT ] holds in Lp.

2. Show that a measure-preserving map T on (Ω,F ,P) is ergodic if and only if
for all A,B ∈ F

lim
n→∞

1

n

n−1∑
k=0

P(A ∩ T−kB) = P(A)P(B).

Hint: For one direction apply an ergodic theorem to 1B.
(*optional) Extension: If even limn→∞ P(A ∩ T−nB) = P(A)P(B) holds, then
T is called mixing. Show that T mixing implies T ergodic, but not conversely
(e.g., consider rotation by an irrational angle).

3. Gelfand’s Problem: Does the decimal representation of 2n ever start with the
initial digit 7? Study this as follows:

(a) Determine the relative frequencies of the initial digits of (2n)16n630.

(b) Let A ∼ U([0, 1]). Prove that the relative frequency of the initial digit k
in (10A2n)16n6m converges as m→∞ a.s. to log10(k + 1)− log10(k).
Hint: consider Xn = A+ n log10(2) mod 1 and argue via ergodicity.

(c) Prove that the convergence in (b) even holds everywhere. In particular,
the relative frequency of the initial digit 7 in the powers of 2 converges
to log10(8/7) ≈ 0, 058.
Hint: Show for trigonometric polynomials p(a) =

∑
|m|6M cme

2πima that
1
n

∑n−1
k=0 p(a+kη)→

∫ 1
0 p(x)dx holds for all η ∈ R \Q, a ∈ [0, 1] (calculate

explicitly for monomials!) and approximate (you may use Weierstraß’s
Theorem: trigonometric polynomials are dense in (C([0, 1]), ‖•‖∞)).

Suggested reading: Benford’s law and fraud detection for election results,
tax declarations and corona statistics, e.g. https://en.wikipedia.org/wiki/
Benford%27s_law.

https://en.wikipedia.org/wiki/Benford%27s_law
https://en.wikipedia.org/wiki/Benford%27s_law


4. Consider the set I of all invariant initial distributions of a recurrent Markov
chain on a state space S. Prove:

(a) I is convex.

(b) If π ∈ I is even ergodic (that is Pπ is ergodic), then there is a connected
component [x] with π([x]) = 1 and π({y}) > 0 for all y ∈ [x].

(c) If π, π′ ∈ I are both ergodic, then π = π′ or π ⊥ π′ follows.

(d) Suppose I 6= ∅. By decomposing S =
⋃
n[xn] into pairwise disjoint

components [xn], there are ergodic πn ∈ I with πn([xn]) = 1 so that we
can write any π ∈ I as convex combination π =

∑
n αnπn with αn > 0,∑

n αn = 1. In particular, for an irreducible chain I contains at most
one element, which is then ergodic.
Here, the union and the sum extend over finitely or countably many n.

Submit the solutions before the lecture on Thursday, 18 January 2024.



Markus Reiß

Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 10

1. Let the initial distribution π of a Markov chain with one-step transition pro-
babilities pxy(1) satisfy π({x})pxy(1) = π({y})pyx(1) for all states x, y (then π
is called reversible). Show:

(a) π is an invariant initial distribution.

(b) Pπ(X0 = x0, . . . , Xn = xn) = Pπ(Xn = x0, . . . , X0 = xn) holds for all
x0, . . . , xn ∈ S (use induction over n > 1). Explain in your words what
this reversibility of the Markov chain means.

(c) The transition operator P is L2(π)-self-adjoint in the sense 〈Pf, g〉π =
〈f, Pg〉π for all f, g ∈ L2(π).

2. For random variables X,Y on (Ω,F ,P) with values in a Polish space (S, d)
with Borel σ-algebra define d0(X,Y ) := E[d(X,Y ) ∧ 1]. Show:

(a) ω 7→ d(X(ω), Y (ω)) is measurable and d0 defines a metric on the space
L0(Ω;S) of all S-valued random variables on (Ω,F ,P), when P-a.s. equal
random variables are identified.

(b) d0(Xn, X)→ 0 ⇐⇒ Xn
P−→ X (stochastic convergence).

(c) Xn
P−→ X implies Xn

d−→ X (convergence in distribution).

(d) Xn
d−→ c for some constant c ∈ S implies Xn

P−→ c.

3. Let (Xk)k>1 be an i.i.d. sequence of random variables in L2 with µ = E[Xk].
Introduce the sample mean X̄n := 1

n

∑n
k=1Xk and the sample variance σ̄2

n :=
1

n−1

∑n
k=1(Xk − X̄n)2. Use a CLT and Slutsky’s Lemma to prove for n→∞

√
n(X̄n − µ)

σ̄n

d−→ N(0, 1).

Determine approximately a real number c > 0 such that

lim
n→∞

P
(
µ ∈

[
X̄ − c σ̄n√

n
, X̄ + c σ̄n√

n

])
= 0.95.



4. Let α ∈ (0, 1). Choose X0 ∈ [0, 1] and perform the following independent
iterations for n ∈ N: given Xn−1 ∈ [0, 1], go with probability 1/2 left, setting
Xn = αXn−1, and with probability 1/2 right, setting Xn = (1− α) + αXn−1.

(a) Write Xn = αXn−1 + (1 − α)Zn, n ∈ N, with suitable i.i.d. random va-
riables (Zn). Interpret (Xn, n > 0) as a Markov process on ([0, 1],B[0,1]).

(b) For α = 1/2 and α = 1/3 determine an invariant initial distribution µ
such that (Xn, n > 0) becomes stationary with X0 ∼ µ.
Hint: Represent x ∈ [0, 1] in a dyadic or triadic expansion.

(c) Show that, whatever the initial distribution of X0 is, we have Xn
d−→ µ in

(b). Conclude that with X0 ∼ µ the process (Xn, n > 0) is ergodic.

(d*) (Optional, but beautiful!) Consider the triangle ∆ spanned by the cor-
ner points (0, 0), (1,0), (0, 1) in R2. Perform iterations, where for given
Xn−1 ∈ ∆ with probability 1/3 one of the corners is selected and Xn

is obtained as the middle point between that corner and Xn−1. Expand
x ∈ ∆ as x =

∑
i bi2

−i with certain bi ∈ {0, 1}2 and describe the unique
invariant initial distribution µ. Plot the support set of µ approximately
by simulating (Xn). Try to understand and explore further!
Application: a treasure is hidden in the triangle spanned by three pyra-
mids. A treasure hunter starts digging somewhere in the triangle and then
moves half way to one of the pyramids at random to dig next etc. Does
he asymptotically dig in a dense subset of the triangle and thus find the
treasure eventually?
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1. Consider a distribution π on S with π({x}) > 0 for all x ∈ S and an irreducible
Markov chain on S with transition probabilities qxy(1), x, y ∈ S, satisfying
qxy(1) > 0 if and only if qyx(1) > 0 for x, y ∈ S. Prove that the Markov chain
with transition probabilities

pxy(1) :=

{
min

(
qxy(1), π({y})

π({x})qyx(1)
)
, if x 6= y,

1−
∑

z 6=x pxz(1), if x = y

is reversible with respect to π and irreducible. If the transition matrix Q(1)
is aperiodic or if π is not reversible with respect to Q(1), deduce that the
transition matrix P (1) is aperiodic.

2. Read Example 18.16 (Ising model) in the book by Klenke. Write down the
Boltzmann distribution π on S = {−1,+1}Λ and explain briefly the quantities
appearing. Prove in detail that the proposal Markov chain there satisfies the
properties in Problem 1. Then derive rigorously that the Markov chain Xn =
Fn(Xn−1) has invariant distribution π. Is (Xn) aperiodic?

3. For probability measures P and Q on a measurable space (Ω,F) their total
variation distance is given by ‖P−Q‖TV = supA∈F |P(A)−Q(A)|. Prove that
convergence in total variation implies weak convergence on metric spaces.
Decide whether for n → ∞ the probabilities Pn with the following Lebesgue
densities fn on R converge in total variation, weakly or not at all:

fn(x) = ne−nx1[0,∞)(x), fn(x) = n+1
n x1/n1[0,1](x), fn(x) = 1

n1[0,n](x).

4. Prove: Every relatively (weakly) compact family (Pi)i∈I of probability measu-
res on a Polish space (S,BS) is uniformly tight. Proceed as follows (compare
the proof of Ulam’s Theorem):

(a) For k > 1 consider open balls (Ak,m)m>1 of radius 1/k that cover S. If

limM→∞ infi Pi(
⋃M
m=1Ak,m) < 1 were true, then by assumption and by

the Portmanteau Theorem we would have limM→∞Q(
⋃M
m=1Ak,m) < 1

for some limiting probability measure Q, which is contradictory.

(b) Conclude that for any ε > 0, k > 1 there are indices Mk,ε > 1 such that

infi Pi(K) > 1 − ε holds with K :=
⋂
k>1

⋃Mk,ε

m=1 Ak,m. Moreover, K is
relatively compact in S, which suffices.

Submit the solutions before the lecture on Thursday, 1 February 2024.

https://link.springer.com/book/10.1007/978-1-4471-5361-0
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1. We say that a family of real-valued random variables (Xi)i∈I is stochastically
bounded, notation Xi = OP(1), if limR→∞ supi∈I P(|Xi| > R) = 0.

(a) Show Xi = OP(1) if and only if the laws (PXi)i∈I are uniformly tight.

(b) Prove that any Lp-bounded family of random variables is stochastically
bounded, hence has uniformly tight laws.

(c) If Xn
P−→ 0 holds, then we write Xn = oP(1). Check the symbolic rules

OP(1) +OP(1) = OP(1) and OP(1)oP(1) = oP(1).

2. For probability measures P,Q on a metric space (S, d) with Borel σ-algebra
define the Bounded-Lipschitz metric

dBL(P,Q) := sup
{∣∣∣∫

S
f dP−

∫
S
f dQ

∣∣∣ ∣∣∣ f ∈ BL1(S)
}

with BL1(S) = {f : S → R | ‖f‖∞ 6 1,∀x, y ∈ S : |f(x) − f(y)| 6 d(x, y)}.
Prove that dBL is indeed a metric and that dBL(Pn,P)→ 0⇒ Pn

w−→ P.

For S = [0, T ] use the Arzelà-Ascoli Theorem to prove

dBL(Pn,P)→ 0 ⇐⇒ Pn
w−→ P .

Remark: This holds in fact on any Polish space (S, d).

3. Let (Bt, t > 0) be a Brownian motion. Verify that the following processes are
also Brownian motions:

(a) (−Bt, t > 0);

(b) (a−1/2Bat, t > 0) for any a > 0 (’time change’);

(c) (Xt, t > 0) with Xt = tB1/t for t > 0 and X0 = 0 (’time inversion’).



*4. (Optional) We want to show that a Brownian motion B is a.s. not 1/2-Hölder
continuous at zero and a.s. hits zero again immediately after start in zero.

(a) Let As := {∃ t ∈ (0, s] : Bt > K
√
t}, s > 0, for some K > 0. Use

invariance of B under time changes to prove P(As) = P(A1) for all s > 0.

(b) By letting s ↓ 0 deduce

P(inf{t > 0 |Bt > K
√
t} = 0) > P(B1 > K) > 0.

(c) Apply Blumenthal’s 0-1 law (follows from Kolmogorov’s 0-1 law, e.g.
Thm. 21.15 in Klenke) to deduce that inf{t > 0 |Bt > K

√
t} = 0 al-

most surely.

(d) This implies that with probability one there is for any ε > 0 a se-
quence (tK)K>1 ⊆ (0, ε) with BtK > K

√
tK for all K ∈ N, that is

lim supt→0 t
−1/2Bt =∞ a.s.

(e) By Problem 3(a) we obtain further lim inft→0 t
−1/2Bt = −∞ a.s. so that

inf{t > 0 |Bt = 0} = 0 a.s. By Problem 3(c) we get with probability one

lim sup
t→∞

t−1/2Bt =∞, lim inf
t→∞

t−1/2Bt = −∞, sup{t > 0 |Bt = 0} =∞.

Submit the solutions before the lecture on Thursday, 8 February 2024.

https://link.springer.com/book/10.1007/978-1-4471-5361-0

