Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 1

1. Flies and wasps land on your dinner plate in the manner of independent Poisson processes with respective intensities μ and λ. Show that the arrival of flying beasts forms a Poisson process of intensity $\lambda+\mu$ (superposition). The probability that an arriving fly is a blow-fly is p. Does the arrival of blow-flies also form a Poisson process? (thinning)
2. Let $\left(N_{t}, t \geqslant 0\right)$ be a Poisson process of intensity $\lambda>0$ and let $\left(Y_{k}\right)_{k \geqslant 1}$ be a sequence of i.i.d. random variables, independent of N. Then $X_{t}:=\sum_{k=1}^{N_{t}} Y_{k}$, $t \geqslant 0$, is called compound Poisson process $\left(X_{t}:=0\right.$ if $\left.N_{t}=0\right)$.
(a) Show that $\left(X_{t}, t \geqslant 0\right)$ has independent and stationary increments.
(b) Determine the expectation of X_{t} in the case $Y_{k} \in L^{1}$.
(c) Introduce the Lévy measure $\nu(B):=\lambda P\left(Y_{1} \in B\right), B \in \mathfrak{B}_{\mathbb{R}}$. Show that X_{t} has characteristic function

$$
\varphi_{t}(u)=\mathbb{E}\left[e^{i u X_{t}}\right]=\exp \left(t \int_{\mathbb{R}}\left(e^{i u x}-1\right) \nu(d x)\right), \quad u \in \mathbb{R}
$$

(d) Find a sequence of compound Poisson processes $\left(X_{t}^{(n)}, t \geqslant 0\right)$ with Lévy measures ν_{n} such that $X_{t}^{(n)} \xrightarrow{d} N(0,1)$ as $n \rightarrow \infty$ for some fixed $t>0$. Describe heuristically how the sample paths evolve.
$\left(\mathrm{e}^{*}\right)$ Characterize all sequences $\left(\nu_{n}\right)_{n \geqslant 1}$ with $X_{1}^{(n)} \xrightarrow{d} N(0,1)$ in (d).
3. The number of busses that arrive until time t at a bus stop follows a Poisson process with intensity $\lambda>0$ (in our model). Adam and Berta arrive together at time $t_{0}>0$ at the bus stop and discuss how long they have to wait in the mean for the next bus.
Adam: Since the waiting times are $\operatorname{Exp}(\lambda)$-distributed and the exponential distribution is memoryless, the mean is λ^{-1}.
Berta: The time between the arrival of two busses is $\operatorname{Exp}(\lambda)$-distributed and has mean λ^{-1}. Since on average the same time elapses before our arrival and after our arrival, we obtain the mean waiting time $\frac{1}{2} \lambda^{-1}$ (at least assuming that at least one bus had arrived before time t_{0}).
What is the correct answer to this waiting time paradoxon?
4. Let the processes $\left(X_{t}, t \geqslant 0\right)$ and $\left(Y_{t}, t \geqslant 0\right)$ be versions of each other and each have right-continuous sample paths. Prove that $\left(X_{t}, t \geqslant 0\right)$ and $\left(Y_{t}, t \geqslant 0\right)$ are indistinguishable.

Submit the solutions before the lecture on Thursday, 26 October 2023.

Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 2

1. Show for a given Markov chain that the set M of invariant initial distributions μ is convex. Find examples where (a) M consists of one element only, (b) M has infinitely many elements and (c) M is empty.
2. Let $C([0, \infty))$ be equipped with the topology of uniform convergence on compacts using the metric $d(f, g):=\sum_{k \geqslant 1} 2^{-k}\left(\sup _{t \in[0, k]}|f(t)-g(t)| \wedge 1\right)$. Prove:
(a) $(C([0, \infty)), d)$ is Polish.
(b) The Borel σ-algebra is the smallest σ-algebra such that all coordinate projections $\pi_{t}: C([0, \infty)) \rightarrow \mathbb{R}, t \geqslant 0$, are measurable.
(c) For any continuous stochastic process $\left(X_{t}, t \geqslant 0\right)$ on $(\Omega, \mathscr{F}, \mathbb{P})$ the mapping $\bar{X}: \Omega \rightarrow C([0, \infty))$ with $\bar{X}(\omega)_{t}:=X_{t}(\omega)$ is Borel-measurable.
(d) The law of \bar{X} is uniquely determined by the finite-dimensional distributions of X.
3. Prove the regularity lemma: Let \mathbb{P} be a probability measure on the Borel σ algebra \mathfrak{B} of any metric space. Then

$$
\mathcal{D}:=\left\{B \in \mathfrak{B} \mid \mathbb{P}(B)=\sup _{K \subseteq B \text { compact }} \mathbb{P}(K)=\inf _{O \supseteq B \text { open }} \mathbb{P}(O)\right\}
$$

is closed under set differences and countable unions (\mathcal{D} is a σ-ring).
Conclude for a Polish space, using the lecture results, that \mathcal{D} is a σ-algebra and $\mathcal{D}=\mathfrak{B}$.
4. Abstract construction of discrete-time Markov chains: Let $(S, \mathcal{P}(S))$ be a countable state space and let an initial counting density $\mu^{(0)}$ (i.e. $\mu_{i}^{(0)} \geqslant 0$, $\sum_{i \in S} \mu_{i}^{(0)}=1$) as well as transition probabilities $p_{i j}$ (i.e. $p_{i j} \geqslant 0$ and
$\sum_{j \in S} p_{i j}=1$) be given. $\left.\sum_{j \in S} p_{i j}=1\right)$ be given.
(a) Show that $(S, \mathcal{P}(S))$ becomes a Polish space when equipped with the discrete metric $d(i, j)=\mathbf{1}(i \neq j), i, j \in S$.
(b) For $A \subseteq S^{n+1}$ define

$$
\mu_{n}(A):=\sum_{i_{0} \in S} \cdots \sum_{i_{n} \in S} \mathbf{1}_{A}\left(i_{0}, \ldots, i_{n}\right) \mu_{i_{0}}^{(0)} p_{i_{0} i_{1}} \cdots p_{i_{n-1} i_{n}} .
$$

Show the one-step consistency condition

$$
\mu_{n+1}\left(\pi_{\{0, \ldots, n+1\} \rightarrow\{0, \ldots, n\}}^{-1}(A)\right)=\mu_{n}(A), \quad A \subseteq S^{n+1}
$$

(c) Conclude that $\mu_{\left\{t_{1}, \ldots, t_{n}\right\}}(B):=\mu_{t_{n}}\left(\pi_{\left\{0, \ldots, t_{n}\right\} \rightarrow\left\{t_{1}, \ldots, t_{n}\right\}}^{-1}(B)\right)$ for $n \geqslant 1,0 \leqslant$ $t_{1} \leqslant \cdots \leqslant t_{n}$ and $B \subseteq S^{n}$ defines a projective family and that a Markov chain $\left(X_{n}, n \geqslant 0\right)$ with $\mathbb{P}\left(X_{0}=j\right)=\mu_{j}^{(0)}, \mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=p_{i j}$ for all $n \geqslant 0$ and $i, j \in S$ with $\mathbb{P}\left(X_{n}=i\right)>0$ exists.

Submit the solutions before the lecture on Thursday, 2 November 2023.

Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 3

1. A process $\left(B_{t}, t \geqslant 0\right)$ is called Brownian motion if
(a) $B_{t} \sim N(0, t), t \geqslant 0$, holds;
(b) the increments are stationary and independent: for $0 \leqslant t_{0}<t_{1}<\cdots<t_{m}$ we have

$$
\left(B_{t_{1}}-B_{t_{0}}, \ldots, B_{t_{m}}-B_{t_{m-1}}\right) \sim N\left(0, \operatorname{diag}\left(t_{1}-t_{0}, \ldots, t_{m}-t_{m-1}\right)\right)
$$

(c) B has continuous sample paths.

Prove that a process $\left(B_{t}, t \geqslant 0\right)$ with properties (a) and (b) exists by showing that these properties are satisfied by a Gaussian process with mean zero and covariance function $c(t, s)=t \wedge s, t, s \geqslant 0$. For the existence of such a Gaussian process the representation $c(t, s)=\int_{0}^{\infty} \mathbf{1}_{[0, t]}(u) \mathbf{1}_{[0, s]}(u) d u$ might be useful to derive positive-semidefiniteness.
2. (Proof of $\left.C([0,1]) \notin \mathfrak{B}_{\mathbb{R}}^{\otimes[0,1]}\right)$ We say that $A \subseteq \mathbb{R}^{[0,1]}:=\{f:[0,1] \rightarrow \mathbb{R}\}$ only depends on countably many coordinates if there is a countable index set $T(A) \subseteq[0,1]$ with

$$
\forall f \in A, g \in \mathbb{R}^{[0,1]}:\left.f\right|_{T(A)}=\left.g\right|_{T(A)} \Rightarrow g \in A
$$

Let $\mathcal{A}:=\left\{A \subseteq \mathbb{R}^{[0,1]} \mid A\right.$ only depends on countably many coordinates $\}$.
(a) Show that $\left\{f \in \mathbb{R}^{[0,1]} \mid f\left(t_{0}\right) \in B\right\}$ for any $t_{0} \in[0,1], B \in \mathfrak{B}_{\mathbb{R}}$ lies in \mathcal{A}.
(b) Verify that \mathcal{A} is a σ-algebra and deduce that $\mathfrak{B}_{\mathbb{R}}^{\otimes[0,1]} \subseteq \mathcal{A}$.
(c) Prove $C([0,1])=\left\{f \in \mathbb{R}^{[0,1]} \mid f\right.$ is continuous $\} \notin \mathfrak{B}_{\mathbb{R}}^{\otimes[0,1]}$.
3. Let (X, Y) be a two-dimensional random vector with Lebesgue density $f^{X, Y}$.
(a) For $x \in \mathbb{R}$ with $f^{X}(x)>0$ (recall $\left.f^{X}(x)=\int f^{X, Y}(x, \eta) d \eta\right)$ consider the conditional density

$$
f^{Y \mid X=x}(y):=\frac{f^{X, Y}(x, y)}{f^{X}(x)} .
$$

Which regularity condition on $f^{X, Y}$ ensures for any Borel set B

$$
\lim _{h \downarrow 0} \mathbb{P}(Y \in B \mid X \in[x, x+h])=\int_{B} f^{Y \mid X=x}(y) d y \quad ?
$$

(b) Show that for $Y \in L^{2}$ (without any condition on $f^{X, Y}$) the function

$$
\varphi_{Y}(x):= \begin{cases}\int y f^{Y \mid X=x}(y) d y, & \text { if } f^{X}(x)>0 \\ 0, & \text { otherwise }\end{cases}
$$

minimizes the L^{2}-distance $\mathbb{E}\left[(Y-\varphi(X))^{2}\right]$ over all measurable functions φ. We write $\mathbb{E}[Y \mid X=x]:=\varphi_{Y}(x)$ and $\mathbb{E}[Y \mid X]:=\varphi_{Y}(X)$.
4. In the situation of problem 3 prove the following properties directly from the definition:
(a) $\mathbb{E}[\mathbb{E}[Y \mid X]]=\mathbb{E}[Y]$;
(b) if X and Y are independent, then $\mathbb{E}[Y \mid X]=\mathbb{E}[Y]$ holds a.s.;
(c) if $Y \geqslant 0$ a.s., then $\mathbb{E}[Y \mid X] \geqslant 0$ a.s.;
(d) for all $\alpha, \beta \in \mathbb{R}, \alpha \neq 0$ we have $\mathbb{E}[\alpha Y+\beta \mid X]=\alpha \mathbb{E}[Y \mid X]+\beta$ a.s.;
(e) if $g: \mathbb{R} \rightarrow \mathbb{R}$ is such that $(x, y) \mapsto(x, y g(x))$ is a diffeomorphism and $Y g(X) \in L^{1}$, then $\mathbb{E}[Y g(X) \mid X]=\mathbb{E}[Y \mid X] g(X)$ a.s.

Submit the solutions before the lecture on Thursday, 9 November 2023.

Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 4

1. Let $\Omega=\bigcup_{n \in \mathbb{N}} B_{n}, B_{m} \cap B_{n}=\varnothing$ for $m \neq n$, be a measurable, countable partition for given $(\Omega, \mathscr{F}, \mathbb{P})$ and put $\mathcal{B}:=\sigma\left(B_{n}, n \in \mathbb{N}\right)$. Show:
(a) Any \mathcal{B}-measurable random variable X can be written as $X=$ $\sum_{n \in \mathbb{N}} \alpha_{n} \mathbf{1}_{B_{n}}$ with suitable $\alpha_{n} \in \mathbb{R}$. For $Y \in L^{1}$ we have

$$
\mathbb{E}[Y \mid \mathcal{B}]=\sum_{n: \mathbb{P}\left(B_{n}\right)>0}\left(\frac{1}{\mathbb{P}\left(B_{n}\right)} \int_{B_{n}} Y d \mathbb{P}\right) \mathbf{1}_{B_{n}} \quad \mathbb{P} \text {-a.s. }
$$

(b) Specify $\Omega=[0,1)$ with Borel σ-algebra and $\mathbb{P}=U([0,1))$, the uniform distribution. For $Y(\omega):=\omega, \omega \in[0,1)$, determine

$$
\mathbb{E}[Y \mid \sigma([(k-1) / n, k / n), k=1, \ldots, n)]
$$

For $n=1,3,5,10$ plot the conditional expectations and Y itself as functions on Ω.
2. Let (X, Y) be a two-dimensional $N(\mu, \Sigma)$-random vector.
(a) For which $\alpha \in \mathbb{R}$ are X and $Y-\alpha X$ uncorrelated?
(b) Conclude that X and $Y-(\alpha X+\beta)$ are independent for these values α and for arbitrary $\beta \in \mathbb{R}$ such that $\mathbb{E}[Y \mid X]=\alpha X+\beta$ with suitable $\beta \in \mathbb{R}$.

Remark: In the Gaussian case the conditional expectation is linear!
3. Let \mathscr{G} be a sub- σ-algebra of \mathscr{F}. Prove:
(a) $Y_{n} \in \mathcal{M}^{+}(\Omega, \mathscr{F}) \Rightarrow \mathbb{E}\left[\liminf _{n \rightarrow \infty} Y_{n} \mid \mathscr{G}\right] \leqslant \liminf _{n \rightarrow \infty} \mathbb{E}\left[Y_{n} \mid \mathscr{G}\right]$ a.s. (Fatou's Lemma);
(b) $Y_{n} \in \mathcal{M}(\Omega, \mathscr{F}), Y_{n} \rightarrow Y,\left|Y_{n}\right| \leqslant Z$ with $Z \in L^{1}(\Omega, \mathscr{F}, \mathbb{P})$ implies $\mathbb{E}\left[Y_{n} \mid \mathscr{G}\right] \rightarrow \mathbb{E}[Y \mid \mathscr{G}]$ a.s. as $n \rightarrow \infty$ (dominated convergence).

Hint: Use the monotone convergence theorem for conditional expectations, recalling the arguments for the Lebesgue integral / expectation.
4. For $Y \in L^{2}$ define the conditional variance of Y given X by

$$
\operatorname{Var}(Y \mid X):=\mathbb{E}\left[(Y-\mathbb{E}[Y \mid X])^{2} \mid X\right]
$$

(a) Why is $\operatorname{Var}(Y \mid X)$ well defined?
(b) Show $\operatorname{Var}(Y)=\operatorname{Var}(\mathbb{E}[Y \mid X])+\mathbb{E}[\operatorname{Var}(Y \mid X)]$.
(c) Use (b) to prove for independent random variables $\left(Z_{k}\right)_{k \geqslant 1}$ and N in L^{2} with $\left(Z_{k}\right)$ identically distributed and $N \mathbb{N}$-valued:

$$
\operatorname{Var}\left(\sum_{k=1}^{N} Z_{k}\right)=\mathbb{E}\left[Z_{1}\right]^{2} \operatorname{Var}(N)+\mathbb{E}[N] \operatorname{Var}\left(Z_{1}\right)
$$

What is the variance of the compound Poisson process $\left(X_{t}, t \geqslant 0\right)$ from Exercise 1.2 at time t (assuming $Y_{k} \in L^{2}$)?

Submit the solutions before the lecture on Thursday, 16 November 2023.

Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 5

1. Let $\left(X_{n}\right)_{n \geqslant 0}$ be an $\left(\mathscr{F}_{n}\right)$-adapted family of random variables in L^{1}. Show that $\left(X_{n}\right)_{n \geqslant 0}$ is a martingale if and only if for all bounded $\left(\mathscr{F}_{n}\right)$-stopping times τ the identity $\mathbb{E}\left[X_{\tau}\right]=\mathbb{E}\left[X_{0}\right]$ holds.
Hint for ' if ': Deduce first $\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[X_{0}\right]$ and consider then $\tau=n \mathbf{1}_{G^{C}}+(n+$ 1) $\boldsymbol{1}_{G}$ for suitable events G.
2. Let $\left(\mathcal{F}_{n}^{X}\right)_{n \geqslant 0}$ be the natural filtration of a process $\left(X_{n}\right)_{n \geqslant 0}$ and consider a finite stopping time τ with respect to $\left(\mathcal{F}_{n}^{X}\right)$.
(a) Prove $\mathcal{F}_{\tau}=\sigma\left(\tau, X_{\tau \wedge n}, n \geqslant 0\right)$.

Hint: for ' \subseteq ' write $A \in \mathcal{F}_{\tau}$ as $A=\bigcup_{n} A \cap\{\tau=n\}$.
$\left(\mathrm{b}^{*}\right)$ Show that even $\mathcal{F}_{\tau}=\sigma\left(X_{\tau \wedge n}, n \geqslant 0\right)$ holds.
3. Let $\left(S_{n}\right)_{n \geqslant 0}$ be the symmetric simple random walk, that is $S_{0}=0, S_{n}=$ $\sum_{i=1}^{n} X_{i}, n \geqslant 1$, with independent X_{i} and $\mathbb{P}\left(X_{i}=+1\right)=\mathbb{P}\left(X_{i}=-1\right)=1 / 2$.
(a) Argue that $\left(\left|S_{n}\right|\right)_{n \geqslant 0}$ is a submartingale with respect to the natural filtration $\left(\mathscr{F}_{n}^{S}\right)_{n \geqslant 0}$ of $\left(S_{n}\right)$ (and then also to the natural filtration $\left(\mathscr{F}_{n}^{|S|}\right)_{n \geqslant 0}$ of $\left.\left(\left|S_{n}\right|\right)\right)$.
(b) Verify that $A_{n}=\sum_{i=0}^{n-1} \mathbf{1}\left(\left|S_{i}\right|=0\right), n \geqslant 1$, yields the compensator of $\left(\left|S_{n}\right|\right)_{n \geqslant 0} . A_{n}$ is called local time of the random walk at zero.
(c) Show $\mathbb{P}\left(S_{2 j}=0\right)=\binom{2 j}{j} 2^{-2 j}$ and conclude

$$
\mathbb{E}\left[\left|S_{n}\right|\right]=\sum_{i=0}^{n-1} \mathbb{P}\left(S_{i}=0\right)=\sum_{j=0}^{\lfloor(n-1) / 2\rfloor}\binom{2 j}{j} 2^{-2 j}
$$

4. Generating function of a random walk's first passage time:

Let $\left(S_{n}\right)_{n \geqslant 0}$ be a simple random walk with $S_{0}=0, S_{n}=\sum_{i=1}^{n} X_{i}, n \geqslant 1$, where the X_{i} are independent and $\mathbb{P}\left(X_{i}=+1\right)=p, \mathbb{P}\left(X_{i}=-1\right)=q=1-p$, $p \in(0,1)$. Prove:
(a) With $M(\lambda)=p e^{\lambda}+q e^{-\lambda}, \lambda \in \mathbb{R}$, the process

$$
Y_{n}^{(\lambda)}:=e^{\lambda S_{n}} M(\lambda)^{-n}, \quad n \geqslant 0,
$$

is a martingale with respect to $\left(\mathscr{F}_{n}^{S}\right)$.
(b) For $M(\lambda) \geqslant 1, a, b \in \mathbb{Z}$ with $a<0<b$ and the stopping time $\tau:=$ $\inf \left\{n \geqslant 0 \mid S_{n} \in\{a, b\}\right\}$ we have

$$
e^{a \lambda} \mathbb{E}\left[M(\lambda)^{-\tau} \mathbf{1}_{\left\{S_{\tau}=a\right\}}\right]+e^{b \lambda} \mathbb{E}\left[M(\lambda)^{-\tau} \mathbf{1}_{\left\{S_{\tau}=b\right\}}\right]=1 .
$$

(c) This implies for all $s \in(0,1]$ (solve $s=M(\lambda)^{-1}$)

$$
\begin{aligned}
& \mathbb{E}\left[s^{\tau} \mathbf{1}_{\left\{S_{\tau}=a\right\}}\right]=\frac{\nu_{+}(s)^{b}-\nu_{-}(s)^{b}}{\nu_{+}(s)^{b} \nu_{-}(s)^{a}-\nu_{+}(s)^{a} \nu_{-}(s)^{b}}, \\
& \mathbb{E}\left[s^{\tau} \mathbf{1}_{\left\{S_{\tau}=b\right\}}\right]=\frac{\nu_{-}(s)^{a}-\nu_{+}(s)^{a}}{\nu_{+}(s)^{b} \nu_{-}(s)^{a}-\nu_{+}(s)^{a} \nu_{-}(s)^{b}}
\end{aligned}
$$

with $\nu_{ \pm}(s)=\left(1 \pm \sqrt{1-4 p q s^{2}}\right) /(2 p s)$ and continuous extension of the quotient in the case $\nu_{+}(s)=\nu_{-}(s)$.
(d) Now let $a \downarrow-\infty$ and infer that the generating function of the first passage time $\tau_{b}:=\inf \left\{n \geqslant 0 \mid S_{n}=b\right\}$ is given by

$$
\varphi_{\tau_{b}}(s):=\mathbb{E}\left[s^{\tau_{b}} \boldsymbol{1}_{\left\{\tau_{b}<\infty\right\}}\right]=\nu_{+}(s)^{-b}=\left(\frac{1-\sqrt{1-4 p q s^{2}}}{2 q s}\right)^{b}, \quad s \in(0,1] .
$$

In particular, we have $\mathbb{P}\left(\tau_{b}<\infty\right)=\varphi_{\tau_{b}}(1)=\min (1, p / q)^{b}$.

Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 6

1. Prove that a family $\left(X_{i}\right)_{i \in I}$ of real-valued random variables is uniformly integrable if and only if $\sup _{i \in I}\left\|X_{i}\right\|_{L^{1}}<\infty$ holds as well as

$$
\forall \varepsilon>0 \exists \delta>0 \forall A \in \mathscr{F}: \mathbb{P}(A)<\delta \Rightarrow \sup _{i \in I} \mathbb{E}\left[\left|X_{i}\right| \mathbf{1}_{A}\right]<\varepsilon
$$

2. Show for an L^{p}-bounded martingale $\left(M_{n}\right)$ (i.e. $\sup _{n} \mathbb{E}\left[\left|M_{n}\right|^{p}\right]<\infty$) with $p \in$ $(1, \infty)$:
(a) $\left(M_{n}\right)$ converges a.s. and in L^{1} to some $M_{\infty} \in L^{1}$.
(b) Use $\left|M_{\infty}\right| \leqslant \sup _{n \geqslant 0}\left|M_{n}\right|$ and Doob's inequality to infer $M_{\infty} \in L^{p}$.
(c) Prove with dominated convergence that $\left(M_{n}\right)$ converges to M_{∞} in L^{p}.
3. Give a martingale proof of Kolmogorov's 0-1 law:
(a) Let $\left(\mathscr{F}_{n}\right)$ be a filtration and $\mathscr{F}_{\infty}=\sigma\left(\mathscr{F}_{n}, n \geqslant 0\right)$. Then for $A \in \mathscr{F}_{\infty}$ we have $\lim _{n \rightarrow \infty} \mathbb{E}\left[\mathbf{1}_{A} \mid \mathscr{F}_{n}\right]=\mathbf{1}_{A}$ a.s.
(b) For a sequence $\left(X_{n}\right)_{n \geqslant 1}$ of independent random variables consider the natural filtration $\left(\mathscr{F}_{n}^{X}\right)$ and the terminal σ-algebra $\mathcal{T}:=\bigcap_{n \geqslant 1} \sigma\left(X_{k}, k \geqslant\right.$ n). Then for $A \in \mathcal{T}$ deduce $\mathbb{P}(A)=\mathbb{E}\left[\mathbf{1}_{A} \mid \mathscr{F}_{n}^{X}\right] \rightarrow \mathbf{1}_{A}$ a.s. for $n \rightarrow \infty$, implying $\mathbb{P}(A) \in\{0,1\}$.
4. A monkey types at random the 26 capital letters of the Latin alphabet. Let τ be the first time by which the monkey has completed the sequence ABRACADABRA. Prove that τ is almost surely finite and satisfies

$$
\mathbb{E}[\tau]=26^{11}+26^{4}+26
$$

Give an example of an 11 -letter word where $\mathbb{E}[\tau]=26^{11}$.
Hint: You may look at a fair game with gamblers G_{n} arriving before times $n=1,2, \ldots$ Then G_{n} bets 1 Euro on 'A' for letter n; if she wins, she puts 26 Euro on 'B' for letter $n+1$, otherwise she stops. If she wins again, she puts 26^{2} Euro on 'R', otherwise she stops etc. What is the balance of the game maker at time τ ?

Submit the solutions before the lecture on Thursday, 30 November 2023.

Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 7

1. Let $Z_{n}(x)=(3 / 2)^{n} \sum_{k \in\{0,2\}^{n}} \mathbf{1}_{I(k, n)}(x), x \in[0,1)$, with intervals $I(k, n):=$ $\left[\sum_{i=1}^{n} k_{i} 3^{-i}, \sum_{i=1}^{n} k_{i} 3^{-i}+3^{-n}\right)$. Show:
(a) $\left(Z_{n}\right)_{n \geqslant 0}$ with $Z_{0}=1$ forms a martingale on $\left([0,1), \mathfrak{B}_{[0,1]}, \lambda,\left(\mathscr{F}_{n}\right)\right)$ with Lebesgue measure λ on $[0,1)$ and $\mathscr{F}_{n}:=\sigma\left(I(k, n), k \in\{0,1,2\}^{n}\right)$.
(b) $\left(Z_{n}\right)$ converges λ-a.s., but not in $L^{1}\left([0,1], \mathfrak{B}_{[0,1]}, \lambda\right)$.
(c) Interpret Z_{n} as the density of a probability measure \mathbb{P}_{n} with respect to λ. Then $\left(\mathbb{P}_{n}\right)$ converges weakly to some probability measure $\mathbb{P}_{\infty}\left(\mathbb{P}_{\infty}\right.$ is called Cantor measure). Identify a Borel set $C \subseteq[0,1]$ with $\mathbb{P}_{\infty}(C)=1$, $\lambda(C)=0$ so that $\mathbb{P}_{\infty} \perp \lambda$.
Hint: Show that the distribution functions converge.
2. Let $\left(X_{k}\right)_{k \geqslant 1}$ be a sequence of i.i.d. $\{-1,+1\}$-valued random variables. Under the probability measure \mathbb{P}_{0} (the null hypothesis H_{0}) we have $\mathbb{P}_{0}\left(X_{k}=+1\right)=p_{0}$ with $p_{0} \in(0,1)$, while under \mathbb{P}_{1} (the alternative $\left.H_{1}\right)$ we have $\mathbb{P}_{1}\left(X_{k}=+1\right)=p_{1}$ with $p_{1} \in(0,1), p_{1} \neq p_{0}$.
(a) Explain why the likelihood quotient $L_{n}=\frac{d\left(\otimes_{i=1}^{n} \mathbb{P}_{1}^{X_{i}}\right)}{d\left(\otimes_{i=1}^{n} \mathbb{P}_{0}^{X_{i}}\right)}$ after n observations X_{1}, \ldots, X_{n} is given by

$$
L_{n}=\frac{p_{1}^{\left(n+S_{n}\right) / 2}\left(1-p_{1}\right)^{\left(n-S_{n}\right) / 2}}{p_{0}^{\left(n+S_{n}\right) / 2}\left(1-p_{0}\right)^{\left(n-S_{n}\right) / 2}} \text { with } S_{n}=\sum_{k=1}^{n} X_{k}
$$

(b) Show that the likelihood process $\left(L_{n}\right)_{n \geqslant 0}$ (put $L_{0}:=1$) forms a nonnegative martingale under the hypothesis H_{0} (i.e. under \mathbb{P}_{0}) with respect to its natural filtration.
(c) A sequential likelihood-quotient test, based on $0<A<B$ and the stopping time

$$
\tau_{A, B}:=\inf \left\{n \geqslant 1 \mid L_{n} \geqslant B \text { or } L_{n} \leqslant A\right\}
$$

rejects H_{0} if $L_{\tau_{A, B}} \geqslant B$, and accepts H_{0} if $L_{\tau_{A, B}} \leqslant A$. Determine the probability for errors of the first and second kind (i.e., $\mathbb{P}_{0}\left(L_{\tau_{A, B}} \geqslant B\right)$ and $\left.\mathbb{P}_{1}\left(L_{\tau_{A, B}} \leqslant A\right)\right)$ in the case $p_{0}=0.4, p_{1}=0.6, A=(2 / 3)^{5}, B=(3 / 2)^{5}$. Calculate $\mathbb{E}\left[\tau_{A, B}\right]$.
$\left(d^{*}\right)$ Compare the error probabilities of this sequential test with those of the test which after $n=\left\lfloor\mathbb{E}\left[\tau_{A, B}\right]\right\rfloor$ observations rejects H_{0} if $L_{n} \geqslant 1$ and accepts H_{0} if $L_{n}<1$.
3. Prove in detail for probability measures $\mathbb{Q} \ll \mathbb{P}, Z=\frac{d \mathbb{Q}}{d \mathbb{P}}$ and $Y \in L^{1}(\mathbb{Q})$ that $Y Z$ is in $L^{1}(\mathbb{P})$ and that the identity

$$
\mathbb{E}_{\mathbb{Q}}[Y]=\mathbb{E}_{\mathbb{P}}[Y Z] \text {, i.e. } \int Y d \mathbb{Q}=\int Y \frac{d \mathbb{Q}}{d \mathbb{P}} d \mathbb{P}
$$

holds. Give an example where Y is in $L^{1}(\mathbb{Q})$, but not in $L^{1}(\mathbb{P})$.
4. Suppose $\mu_{0}, \mu_{1}, \mu_{2}$ are measures on (Ω, \mathscr{F}) so that μ_{2} has a μ_{1}-density $f_{2,1}$ and μ_{1} has a μ_{0}-density $f_{1,0}$ (i.e., $\mu_{1}(A)=\int_{A} f_{1,0} d \mu_{0}$ etc.). Show:
(a) μ_{0} and μ_{1} are equivalent if and only if $f_{1,0}>0$ holds μ_{0}-a.e. In that case $f_{0,1}:=f_{1,0}^{-1}$ is μ_{0}-a.e. and μ_{1}-a.e. the μ_{1}-density of μ_{0}.
Short-hand notation: $\frac{d \mu_{0}}{d \mu_{1}}=\left(\frac{d \mu_{1}}{d \mu_{0}}\right)^{-1}$.
(b) We have $\mu_{2} \ll \mu_{0}$ and $f_{2,0}:=f_{2,1} f_{1,0}$ is μ_{0}-a.e. the μ_{0}-density of μ_{2}. Short-hand notation: $\frac{d \mu_{2}}{d \mu_{0}}=\frac{d \mu_{2}}{d \mu_{1}} \frac{d \mu_{1}}{d \mu_{0}}$.

[^0]Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 8

1. The recursion $X_{n}=a X_{n-1}+\varepsilon_{n}$ for $n \geqslant 1$ with $a \in \mathbb{R}$ and independent random variables $\varepsilon_{n} \sim N\left(0, \sigma^{2}\right), X_{0} \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$ defines a so called autoregressive process of order one.
(a) Show that $\left(X_{n}, n \geqslant 0\right)$ forms a Gaussian process.
(b) For which values of a do $\mu_{0} \in \mathbb{R}, \sigma_{0}>0$ exist such that $\left(X_{n}, n \geqslant 0\right)$ is stationary?
$\left(c^{*}\right)$ (optional) Simulate several trajectories for $a \in\{-1,-0.5,0,1,2\}$ and different μ_{0}, σ_{0}. Explain what you see.
2. Let $\left(X_{n}\right)_{n \geqslant 0}$ be a time-homogeneous Markov chain with initial distribution μ. Show that the following are equivalent:
(a) $\left(X_{n}\right)$ is a stationary process;
(b) μ is an invariant initial distribution, i.e. $\mathbb{P}_{\mu}\left(X_{1} \in B\right)=\mu(B)$ for all $B \subseteq S$.

Consider the one-step transition matrix of a Markov chain on $S=\{1,2,3\}$

$$
P(1)=\left(\begin{array}{ccc}
p_{11} & p_{12} & 0 \\
0 & p_{22} & p_{23} \\
0 & p_{32} & p_{33}
\end{array}\right)
$$

with each $p_{i j}>0$. Visualise this by a graph with directed edges along positive transition probabilities. Then determine an invariant initial distribution μ.
3. Let \mathscr{I}_{T} be the σ-algebra of invariant events for the measure-preserving map T on $(\Omega, \mathscr{F}, \mathbb{P})$. Show:
(a) A random variable Y is \mathscr{I}_{T}-measurable if and only if $Y \circ T=Y$ holds P-a.s.
(b) T is ergodic if and only if all bounded random variables Y with $Y \circ T=Y$ \mathbb{P}-a.s. are constant \mathbb{P}-a.s.
(c) For all invariant events A there is a strictly invariant event B (i.e., $T^{-1}(B)=B$ holds) such that $\mathbb{P}(A \Delta B):=\mathbb{P}(A \backslash B \cup B \backslash A)=0$.
4. Read Ryan Tibshirani's slides on Google's PageRank algorithm (lecture 3 under http://www.stat.cmu.edu/~ryantibs/datamining) and explain briefly the main ideas.

Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 9

1. Extend Birkhoff's ergodic theorem to an L^{p}-ergodic theorem:

For measure-preserving T and $X \in L^{p}, p \geqslant 1$, consider $A_{n}:=\frac{1}{n} \sum_{i=0}^{n-1} X \circ T^{i}$. Then $\left(\left|A_{n}\right|^{p}\right)_{n \geqslant 1}$ is uniformly integrable and $A_{n} \rightarrow \mathbb{E}\left[X \mid \mathscr{I}_{T}\right]$ holds in L^{p}.
2. Show that a measure-preserving map T on $(\Omega, \mathscr{F}, \mathbb{P})$ is ergodic if and only if for all $A, B \in \mathscr{F}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{P}\left(A \cap T^{-k} B\right)=\mathbb{P}(A) \mathbb{P}(B)
$$

Hint: For one direction apply an ergodic theorem to $\mathbf{1}_{B}$.
(*optional) Extension: If even $\lim _{n \rightarrow \infty} \mathbb{P}\left(A \cap T^{-n} B\right)=\mathbb{P}(A) \mathbb{P}(B)$ holds, then T is called mixing. Show that T mixing implies T ergodic, but not conversely (e.g., consider rotation by an irrational angle).
3. Gelfand's Problem: Does the decimal representation of 2^{n} ever start with the initial digit 7? Study this as follows:
(a) Determine the relative frequencies of the initial digits of $\left(2^{n}\right)_{1 \leqslant n \leqslant 30}$.
(b) Let $A \sim U([0,1])$. Prove that the relative frequency of the initial digit k in $\left(10^{A} 2^{n}\right)_{1 \leqslant n \leqslant m}$ converges as $m \rightarrow \infty$ a.s. to $\log _{10}(k+1)-\log _{10}(k)$.
Hint: consider $X_{n}=A+n \log _{10}(2) \bmod 1$ and argue via ergodicity.
(c) Prove that the convergence in (b) even holds everywhere. In particular, the relative frequency of the initial digit 7 in the powers of 2 converges to $\log _{10}(8 / 7) \approx 0,058$.
Hint: Show for trigonometric polynomials $p(a)=\sum_{|m| \leqslant M} c_{m} e^{2 \pi i m a}$ that $\frac{1}{n} \sum_{k=0}^{n-1} p(a+k \eta) \rightarrow \int_{0}^{1} p(x) d x$ holds for all $\eta \in \mathbb{R} \backslash \mathbb{Q}, a \in[0,1]$ (calculate explicitly for monomials!) and approximate (you may use Weierstraß's Theorem: trigonometric polynomials are dense in $\left.\left(C([0,1]),\|\bullet\|_{\infty}\right)\right)$.

Suggested reading: Benford's law and fraud detection for election results, tax declarations and corona statistics, e.g.https://en.wikipedia.org/wiki/ Benford\%27s_law.
4. Consider the set \mathscr{I} of all invariant initial distributions of a recurrent Markov chain on a state space S. Prove:
(a) \mathscr{I} is convex.
(b) If $\pi \in \mathscr{I}$ is even ergodic (that is \mathbb{P}_{π} is ergodic), then there is a connected component $[x]$ with $\pi([x])=1$ and $\pi(\{y\})>0$ for all $y \in[x]$.
(c) If $\pi, \pi^{\prime} \in \mathscr{I}$ are both ergodic, then $\pi=\pi^{\prime}$ or $\pi \perp \pi^{\prime}$ follows.
(d) Suppose $\mathscr{I} \neq \varnothing$. By decomposing $S=\bigcup_{n}\left[x_{n}\right]$ into pairwise disjoint components $\left[x_{n}\right]$, there are ergodic $\pi_{n} \in \mathscr{I}$ with $\pi_{n}\left(\left[x_{n}\right]\right)=1$ so that we can write any $\pi \in \mathscr{I}$ as convex combination $\pi=\sum_{n} \alpha_{n} \pi_{n}$ with $\alpha_{n} \geqslant 0$, $\sum_{n} \alpha_{n}=1$. In particular, for an irreducible chain \mathscr{I} contains at most one element, which is then ergodic.
Here, the union and the sum extend over finitely or countably many n.

Submit the solutions before the lecture on Thursday, 18 January 2024.

Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 10

1. Let the initial distribution π of a Markov chain with one-step transition probabilities $p_{x y}(1)$ satisfy $\pi(\{x\}) p_{x y}(1)=\pi(\{y\}) p_{y x}(1)$ for all states x, y (then π is called reversible). Show:
(a) π is an invariant initial distribution.
(b) $\mathbb{P}_{\pi}\left(X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right)=\mathbb{P}_{\pi}\left(X_{n}=x_{0}, \ldots, X_{0}=x_{n}\right)$ holds for all $x_{0}, \ldots, x_{n} \in S$ (use induction over $n \geqslant 1$). Explain in your words what this reversibility of the Markov chain means.
(c) The transition operator P is $L^{2}(\pi)$-self-adjoint in the sense $\langle P f, g\rangle_{\pi}=$ $\langle f, P g\rangle_{\pi}$ for all $f, g \in L^{2}(\pi)$.
2. For random variables X, Y on $(\Omega, \mathscr{F}, \mathbb{P})$ with values in a Polish space (S, d) with Borel σ-algebra define $d_{0}(X, Y):=\mathbb{E}[d(X, Y) \wedge 1]$. Show:
(a) $\omega \mapsto d(X(\omega), Y(\omega))$ is measurable and d_{0} defines a metric on the space $L^{0}(\Omega ; S)$ of all S-valued random variables on $(\Omega, \mathscr{F}, \mathbb{P})$, when \mathbb{P}-a.s. equal random variables are identified.
(b) $d_{0}\left(X_{n}, X\right) \rightarrow 0 \Longleftrightarrow X_{n} \xrightarrow{\mathbb{P}} X$ (stochastic convergence).
(c) $X_{n} \xrightarrow{\mathbb{P}} X$ implies $X_{n} \xrightarrow{d} X$ (convergence in distribution).
(d) $X_{n} \xrightarrow{d} c$ for some constant $c \in S$ implies $X_{n} \xrightarrow{\mathbb{P}} c$.
3. Let $\left(X_{k}\right)_{k \geqslant 1}$ be an i.i.d. sequence of random variables in L^{2} with $\mu=\mathbb{E}\left[X_{k}\right]$. Introduce the sample mean $\bar{X}_{n}:=\frac{1}{n} \sum_{k=1}^{n} X_{k}$ and the sample variance $\bar{\sigma}_{n}^{2}:=$ $\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}_{n}\right)^{2}$. Use a CLT and Slutsky's Lemma to prove for $n \rightarrow \infty$

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\bar{\sigma}_{n}} \xrightarrow{d} N(0,1) .
$$

Determine approximately a real number $c>0$ such that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\mu \in\left[\bar{X}-c \frac{\bar{\sigma}_{n}}{\sqrt{n}}, \bar{X}+c \frac{\bar{\sigma}_{n}}{\sqrt{n}}\right]\right)=0.95
$$

4. Let $\alpha \in(0,1)$. Choose $X_{0} \in[0,1]$ and perform the following independent iterations for $n \in \mathbb{N}$: given $X_{n-1} \in[0,1]$, go with probability $1 / 2$ left, setting $X_{n}=\alpha X_{n-1}$, and with probability $1 / 2$ right, setting $X_{n}=(1-\alpha)+\alpha X_{n-1}$.
(a) Write $X_{n}=\alpha X_{n-1}+(1-\alpha) Z_{n}, n \in \mathbb{N}$, with suitable i.i.d. random variables $\left(Z_{n}\right)$. Interpret $\left(X_{n}, n \geqslant 0\right)$ as a Markov process on $\left([0,1], \mathfrak{B}_{[0,1]}\right)$.
(b) For $\alpha=1 / 2$ and $\alpha=1 / 3$ determine an invariant initial distribution μ such that $\left(X_{n}, n \geqslant 0\right)$ becomes stationary with $X_{0} \sim \mu$.
Hint: Represent $x \in[0,1]$ in a dyadic or triadic expansion.
(c) Show that, whatever the initial distribution of X_{0} is, we have $X_{n} \xrightarrow{d} \mu$ in (b). Conclude that with $X_{0} \sim \mu$ the process $\left(X_{n}, n \geqslant 0\right)$ is ergodic.
(d*) (Optional, but beautiful!) Consider the triangle Δ spanned by the corner points $(0,0),(1,0),(0,1)$ in \mathbb{R}^{2}. Perform iterations, where for given $X_{n-1} \in \Delta$ with probability $1 / 3$ one of the corners is selected and X_{n} is obtained as the middle point between that corner and X_{n-1}. Expand $x \in \Delta$ as $x=\sum_{i} b_{i} 2^{-i}$ with certain $b_{i} \in\{0,1\}^{2}$ and describe the unique invariant initial distribution μ. Plot the support set of μ approximately by simulating $\left(X_{n}\right)$. Try to understand and explore further!
Application: a treasure is hidden in the triangle spanned by three pyramids. A treasure hunter starts digging somewhere in the triangle and then moves half way to one of the pyramids at random to dig next etc. Does he asymptotically dig in a dense subset of the triangle and thus find the treasure eventually?

Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 11

1. Consider a distribution π on S with $\pi(\{x\})>0$ for all $x \in S$ and an irreducible Markov chain on S with transition probabilities $q_{x y}(1), x, y \in S$, satisfying $q_{x y}(1)>0$ if and only if $q_{y x}(1)>0$ for $x, y \in S$. Prove that the Markov chain with transition probabilities

$$
p_{x y}(1):= \begin{cases}\min \left(q_{x y}(1), \frac{\pi(\{y\})}{\pi(\{x\})} q_{y x}(1)\right), & \text { if } x \neq y \\ 1-\sum_{z \neq x} p_{x z}(1), & \text { if } x=y\end{cases}
$$

is reversible with respect to π and irreducible. If the transition matrix $Q(1)$ is aperiodic or if π is not reversible with respect to $Q(1)$, deduce that the transition matrix $P(1)$ is aperiodic.
2. Read Example 18.16 (Ising model) in the book by Klenke. Write down the Boltzmann distribution π on $S=\{-1,+1\}^{\Lambda}$ and explain briefly the quantities appearing. Prove in detail that the proposal Markov chain there satisfies the properties in Problem 1. Then derive rigorously that the Markov chain $X_{n}=$ $F_{n}\left(X_{n-1}\right)$ has invariant distribution π. Is $\left(X_{n}\right)$ aperiodic?
3. For probability measures \mathbb{P} and \mathbb{Q} on a measurable space (Ω, \mathcal{F}) their total variation distance is given by $\|\mathbb{P}-\mathbb{Q}\|_{T V}=\sup _{A \in \mathcal{F}}|\mathbb{P}(A)-\mathbb{Q}(A)|$. Prove that convergence in total variation implies weak convergence on metric spaces.
Decide whether for $n \rightarrow \infty$ the probabilities \mathbb{P}_{n} with the following Lebesgue densities f_{n} on \mathbb{R} converge in total variation, weakly or not at all:

$$
f_{n}(x)=n e^{-n x} \mathbf{1}_{[0, \infty)}(x), \quad f_{n}(x)=\frac{n+1}{n} x^{1 / n} \mathbf{1}_{[0,1]}(x), \quad f_{n}(x)=\frac{1}{n} \mathbf{1}_{[0, n]}(x)
$$

4. Prove: Every relatively (weakly) compact family $\left(\mathbb{P}_{i}\right)_{i \in I}$ of probability measures on a Polish space $\left(S, \mathfrak{B}_{S}\right)$ is uniformly tight. Proceed as follows (compare the proof of Ulam's Theorem):
(a) For $k \geqslant 1$ consider open balls $\left(A_{k, m}\right)_{m \geqslant 1}$ of radius $1 / k$ that cover S. If $\lim _{M \rightarrow \infty} \inf _{i} \mathbb{P}_{i}\left(\bigcup_{m=1}^{M} A_{k, m}\right)<1$ were true, then by assumption and by the Portmanteau Theorem we would have $\lim _{M \rightarrow \infty} \mathbb{Q}\left(\bigcup_{m=1}^{M} A_{k, m}\right)<1$ for some limiting probability measure \mathbb{Q}, which is contradictory.
(b) Conclude that for any $\varepsilon>0, k \geqslant 1$ there are indices $M_{k, \varepsilon} \geqslant 1$ such that $\inf _{i} \mathbb{P}_{i}(K)>1-\varepsilon$ holds with $K:=\bigcap_{k \geqslant 1} \bigcup_{m=1}^{M_{k, \varepsilon}} A_{k, m}$. Moreover, K is relatively compact in S, which suffices.

Markus Reiß
Stochastik II / Stochastic Processes I
Winter 2023/24
Humboldt-Universität zu Berlin

Exercises: sheet 12

1. We say that a family of real-valued random variables $\left(X_{i}\right)_{i \in I}$ is stochastically bounded, notation $X_{i}=O_{\mathbb{P}}(1)$, if $\lim _{R \rightarrow \infty} \sup _{i \in I} \mathbb{P}\left(\left|X_{i}\right|>R\right)=0$.
(a) Show $X_{i}=O_{\mathbb{P}}(1)$ if and only if the laws $\left(\mathbb{P}^{X_{i}}\right)_{i \in I}$ are uniformly tight.
(b) Prove that any L^{p}-bounded family of random variables is stochastically bounded, hence has uniformly tight laws.
(c) If $X_{n} \xrightarrow{\mathbb{P}} 0$ holds, then we write $X_{n}=o_{\mathbb{P}}(1)$. Check the symbolic rules $O_{\mathbb{P}}(1)+O_{\mathbb{P}}(1)=O_{\mathbb{P}}(1)$ and $O_{\mathbb{P}}(1) o_{\mathbb{P}}(1)=o_{\mathbb{P}}(1)$.
2. For probability measures \mathbb{P}, \mathbb{Q} on a metric space (S, d) with Borel σ-algebra define the Bounded-Lipschitz metric

$$
d_{B L}(\mathbb{P}, \mathbb{Q}):=\sup \left\{\left|\int_{S} f d \mathbb{P}-\int_{S} f d \mathbb{Q}\right| \mid f \in B L_{1}(S)\right\}
$$

with $B L_{1}(S)=\left\{f: S \rightarrow \mathbb{R}\left|\|f\|_{\infty} \leqslant 1, \forall x, y \in S:|f(x)-f(y)| \leqslant d(x, y)\right\}\right.$. Prove that $d_{B L}$ is indeed a metric and that $d_{B L}\left(\mathbb{P}_{n}, \mathbb{P}\right) \rightarrow 0 \Rightarrow \mathbb{P}_{n} \xrightarrow{w} \mathbb{P}$.
For $S=[0, T]$ use the Arzelà-Ascoli Theorem to prove

$$
d_{B L}\left(\mathbb{P}_{n}, \mathbb{P}\right) \rightarrow 0 \Longleftrightarrow \mathbb{P}_{n} \xrightarrow{w} \mathbb{P}
$$

Remark: This holds in fact on any Polish space (S, d).
3. Let $\left(B_{t}, t \geqslant 0\right)$ be a Brownian motion. Verify that the following processes are also Brownian motions:
(a) $\left(-B_{t}, t \geqslant 0\right)$;
(b) $\left(a^{-1 / 2} B_{a t}, t \geqslant 0\right)$ for any $a>0$ ('time change');
(c) $\left(X_{t}, t \geqslant 0\right)$ with $X_{t}=t B_{1 / t}$ for $t>0$ and $X_{0}=0$ ('time inversion').
*4. (Optional) We want to show that a Brownian motion B is a.s. not $1 / 2$-Hölder continuous at zero and a.s. hits zero again immediately after start in zero.
(a) Let $A_{s}:=\left\{\exists t \in(0, s]: B_{t} \geqslant K \sqrt{t}\right\}, s>0$, for some $K>0$. Use invariance of B under time changes to prove $\mathbb{P}\left(A_{s}\right)=\mathbb{P}\left(A_{1}\right)$ for all $s>0$.
(b) By letting $s \downarrow 0$ deduce

$$
\mathbb{P}\left(\inf \left\{t>0 \mid B_{t} \geqslant K \sqrt{t}\right\}=0\right) \geqslant \mathbb{P}\left(B_{1} \geqslant K\right)>0 .
$$

(c) Apply Blumenthal's 0-1 law (follows from Kolmogorov's 0-1 law, e.g. Thm. 21.15 in Klenke) to deduce that $\inf \left\{t>0 \mid B_{t} \geqslant K \sqrt{t}\right\}=0$ almost surely.
(d) This implies that with probability one there is for any $\varepsilon>0$ a sequence $\left(t_{K}\right)_{K \geqslant 1} \subseteq(0, \varepsilon)$ with $B_{t_{K}} \geqslant K \sqrt{t_{K}}$ for all $K \in \mathbb{N}$, that is $\lim \sup _{t \rightarrow 0} t^{-1 / 2} B_{t}=\infty$ a.s.
(e) By Problem 3(a) we obtain further $\lim \inf _{t \rightarrow 0} t^{-1 / 2} B_{t}=-\infty$ a.s. so that $\inf \left\{t>0 \mid B_{t}=0\right\}=0$ a.s. By Problem 3(c) we get with probability one $\limsup _{t \rightarrow \infty} t^{-1 / 2} B_{t}=\infty, \liminf _{t \rightarrow \infty} t^{-1 / 2} B_{t}=-\infty, \sup \left\{t>0 \mid B_{t}=0\right\}=\infty$.

Submit the solutions before the lecture on Thursday, 8 February 2024.

[^0]: Submit the solutions before the lecture on Thursday, 7 December 2023.

