Bayesian nonparametrics

Posterior contraction and limiting shape

Ismaël Castillo

LPMA Université Paris VI
Berlin, September 2016

Part I

Introduction

Standard frequentist framework

Statistical experiment

- X random object $=$ data
- \mathcal{P} model

$$
\mathcal{P}=\left\{P_{\theta}, \theta \in \Theta\right\} .
$$

Frequentist assumption

$$
\exists \theta_{0} \in \Theta, \quad X \sim P_{\theta_{0}}
$$

Standard frequentist framework

Statistical experiment

- X random object $=$ data
- \mathcal{P} model

$$
\mathcal{P}=\left\{P_{\theta}, \theta \in \Theta\right\} .
$$

Frequentist assumption

$$
\exists \theta_{0} \in \Theta, \quad X \sim P_{\theta_{0}}
$$

Estimator a measurable function $\hat{\theta}(X) \in \Theta$
$\hat{\theta}(X)$ is a random point in Θ one studies $\hat{\theta}(X)$ under $X \sim P_{\theta_{0}}$
example

$$
\hat{\theta}^{M L E}(X)=\underset{\theta \in \Theta}{\operatorname{argmax}} p_{\theta}(X)
$$

Bayesian framework

Statistical experiment

- X random object $=$ data
- $\mathcal{P}=\left\{P_{\theta}, \theta \in \Theta\right\}$ model

Bayesian setting [Do not know θ ? View it as random!]
a) $\theta \sim \Pi$ proba measure on Θ the prior distribution
b) View P_{θ} as law of $X \mid \theta$
\Rightarrow joint distribution of (θ, X) is specified
c) law of $\theta \mid X$ is posterior distribution denoted $\Pi[\cdot \mid X]$

Bayesian estimator $\Pi(\cdot \mid X) \in \mathcal{M}_{1}(\Theta)$
$\Pi(\cdot \mid X)$ is a data-dependent measure on Θ

E0 - Example 0

$$
\begin{gathered}
X=\left(X_{1}, \ldots, X_{n}\right) \\
\mathcal{P}=\left\{\mathcal{N}(\theta, 1)^{\otimes n}, \theta \in \mathbb{R}\right\}
\end{gathered}
$$

Frequentist estimator

$$
\hat{\theta}^{M L E}(X)=\bar{X}_{n}
$$

Bayesian setting
a) $\theta \sim \mathcal{N}(0,1)=\Pi \quad$ prior (say)
b) $X \mid \theta \sim \mathcal{N}(\theta, 1)^{\otimes n}$
c) $\theta \left\lvert\, X \sim \mathcal{N}\left(\frac{n \bar{X}_{n}}{n+1}, \frac{1}{n+1}\right)=\Pi[\cdot \mid X] \quad\right.$ posterior

$$
\Pi[\cdot \mid X]=\mathcal{N}\left(\frac{n \bar{X}_{n}}{n+1}, \frac{1}{n+1}\right)
$$

Bayesian framework

Bayesian setting
a) $\theta \sim \Pi$ prior
b) $X \mid \theta \sim P_{\theta}$
c) $\theta \mid X \sim: \Pi[\cdot \mid X]$ posterior

All this produces a data-dependent measure $\Pi[\cdot \mid X]$

Bayesian framework

Bayesian setting
a) $\theta \sim \Pi$ prior
b) $X \mid \theta \sim P_{\theta}$
c) $\theta \mid X \sim: \Pi[\cdot \mid X]$ posterior

All this produces a data-dependent measure $\Pi[\cdot \mid X]$

And what if ...
... one would forget $a)+b)+c$) ...
... and study $\Pi[\cdot \mid X]$ as a 'standard' estimator??

Frequentist analysis of Bayesian procedures

Posterior distribution $\Pi[\cdot \mid X]$
Frequentist assumption

$$
\exists \theta_{0} \in \Theta, \quad X \sim P_{\theta_{0}}
$$

Frequentist analysis of Bayesian procedures

Posterior distribution $\Pi[\cdot \mid X]$
Frequentist assumption

$$
\exists \theta_{0} \in \Theta, \quad X \sim P_{\theta_{\mathbf{0}}}
$$

E0 - Example 0

$$
\begin{aligned}
& X \mid \theta \sim \mathcal{N}(\theta, 1)^{\otimes n} \\
& \theta \sim \mathcal{N}(0,1)=\Pi \\
& \Pi[\cdot \mid X]=\mathcal{N}\left(\frac{n \bar{X}_{n}}{n+1}, \frac{1}{n+1}\right) \sim \bar{\theta}(X)+\frac{1}{\sqrt{n+1}} \mathcal{N}(0,1)
\end{aligned}
$$

- centered close to $\hat{\theta}^{M L E}(X)=\bar{X}_{n}$
- converges at rate $1 / \sqrt{n}$ towards θ_{0} [see below]

Nonparametric models - regression

E1 - Gaussian white noise

$$
\begin{aligned}
& d X^{(n)}(t)=f(t) d t+\frac{1}{\sqrt{n}} d B(t), \quad t \in[0,1] \\
& \quad f \in L^{2}[0,1], \quad B \text { Brownian motion }
\end{aligned}
$$

E1 - Fixed design regression

$$
\begin{gathered}
X_{i}=f(i / n)+\varepsilon_{i} \\
f \in \mathcal{C}^{0}[0,1], \quad \varepsilon_{1}, \ldots, \varepsilon_{n} \text { iid } \mathcal{N}(0,1)
\end{gathered}
$$

Unknow parameter f is a function, element of functional space

Sparsity

E2 - Sparse gaussian sequence model

$$
\begin{gathered}
X_{i}=\theta_{i}+\varepsilon_{i}, \quad 1 \leq i \leq n \\
\theta \in \ell_{0}[s]=\left\{\theta \in \mathbb{R}^{n},\left|\left\{i: \theta_{i} \neq 0\right\}\right| \leq s\right\}
\end{gathered}
$$

Unknown θ is a sparse vector

Nonparametric models - sampling models

E3 - Sampling from unknown distribution

$$
\begin{gathered}
X^{(n)}=\left(X_{1}, \ldots, X_{n}\right) \text { i.i.d. } P \text { on }[0,1] \\
P \text { probability measure on }[0,1]
\end{gathered}
$$

E3 - Density estimation

$$
\begin{gathered}
X^{(n)}=\left(X_{1}, \ldots, X_{n}\right) \text { i.i.d. } f \text { density on }[0,1] \\
f \text { density on }[0,1]
\end{gathered}
$$

Unknown P measure with total mass 1
Unknown f density: $f \geq 0, \int f=1$

Nonparametric models - functionals

E4 - linear functional

$$
\begin{gathered}
\psi(f)=\int_{0}^{1} a(u) f(u) d u \\
a \text { bounded on }[0,1]
\end{gathered}
$$

E5 - distribution function

$$
\begin{gathered}
F(\cdot)=\int_{0}^{0} f(u) d u \\
f \text { density }
\end{gathered}
$$

Many other semiparametric functionals are also of interest ...

Prior on functions on $[0,1]$

Consider the law of a process Z with a.s. continuous sample paths

Prior on functions on $[0,1]$

Consider the law of a process Z with a.s. continuous sample paths
Example (centered Gaussian process) $K(x, y)=E\left(Z_{x} Z_{y}\right)$ covariance of $Z \mathrm{GP}$

$$
K(x, y)=1+x \wedge y
$$

Brownian motion released at 0

$$
K(x, y)=e^{-(x-y)^{2}}
$$

Squared-exponential GP

Prior on functions on $[0,1]$

Consider the law of a process Z with a.s. continuous sample paths
Example (centered Gaussian process) $K(x, y)=E\left(Z_{x} Z_{y}\right)$ covariance of Z GP

$$
K(x, y)=1+x \wedge y
$$

Brownian motion released at 0

$$
K(x, y)=e^{-(x-y)^{2}}
$$

Squared-exponential GP

Example (series expansions point of view)

$$
Z(x)=\sum_{k \geq 1} \gamma_{k} \alpha_{k} \varepsilon_{k}(x)
$$

Prior on sparse vectors

Define Π prior on $\ell_{0}[s]=\left\{\theta \in \mathbb{R}^{n},\left|\left\{i: \theta_{i} \neq 0\right\}\right| \leq s\right\}$

- draw $k \sim \pi_{n}$ distribution on $\{0, \ldots, n\}$
- given k, pick $S \subset\{1, \ldots, n\}$ of size $|S|=k$ uniformly at random

$$
\Pi_{n}(S \mid k)=1 /\binom{n}{k}
$$

- given S, set

$$
\begin{aligned}
\theta_{S c} & =0 \\
\theta_{S} & \sim \bigotimes_{i \in S} g, \quad g \text { density on } \mathbb{R}
\end{aligned}
$$

Sparsity

Example [special case of $\pi_{n}=$ binomial] ['coin-flipping' prior and e.g. $\alpha_{n}=1 / n$]

$$
k \quad \sim \operatorname{Bin}\left(n, \alpha_{n}\right)=\pi_{n}
$$

$g \quad$ density on \mathbb{R}

$$
\Pi \sim \bigotimes_{i=1}^{n}\left(1-\alpha_{n}\right) \delta_{0}+\alpha_{n} g
$$

[Remark. The posterior median can be shown to be a strict thresholding rule

$$
\hat{\theta}_{i}^{\text {med }}\left(X_{i}\right)=0 \Leftrightarrow\left|X_{i}\right| \leq t\left(\alpha_{n}\right)
$$

for some threshold $t\left(\alpha_{n}\right)$. For $\alpha_{n}=1 / n$, have $t\left(\alpha_{n}\right) \sim \sqrt{2 \log (n)}$.]

Prior on densities on $[0,1]$

Example - renormalisation

$$
[0,1] \ni x \rightarrow \frac{e^{Z_{x}}}{\int_{0}^{1} e^{Z_{u}} d u}
$$

Prior on densities on $[0,1]$

Example - renormalisation

$$
[0,1] \ni x \rightarrow \frac{e^{Z_{x}}}{\int_{0}^{1} e^{Z_{u}} d u}
$$

Example - [more to follow!]

Priors on probability measures

- Prior on probability measures on \mathbb{R}

Dirichlet process $D P\left(M, G_{0}\right)$ on \mathbb{R}
G_{0} probability measure on \mathbb{R} mean and $M>0$ concentration parameter
There exists a random probability measure on \mathbb{R} such that

For any finite partition $\left(B_{1}, \ldots, B_{r}\right)$ of \mathbb{R},

$$
\left(G\left(B_{1}\right), \ldots, G\left(B_{r}\right)\right) \sim \operatorname{Dir}\left(M G_{0}\left(B_{1}\right), \ldots, M G_{0}\left(B_{r}\right)\right)
$$

with $\operatorname{Dir}\left(a_{1}, \ldots, a_{r}\right)$ the standard Dirichlet distribution on the r-simplex.
[Ferguson 1973]

Priors on probability measures, Dirichlet process

$G \sim D P\left(M, G_{0}\right) \quad$ What does it look like ?
G is a discrete distribution almost surely
We have the representation [Sethuraman 94]

$$
G \sim \sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}}
$$

- $\theta_{k} \sim G_{0}(\cdot)$ i.i.d.
- π_{k} weights given by stickbreaking
- $\pi_{k}=V_{k} \prod_{i=1}^{k-1}\left(1-V_{i}\right)$
- $V_{1}, V_{2}, \ldots \sim \operatorname{Beta}(1, M)$ i.i.d.

Priors on probability measures, Dirichlet process

$G \sim D P\left(M, G_{0}\right) \quad$ What does it look like ?
G is a discrete distribution almost surely
We have the representation [Sethuraman 94]

$$
G \sim \sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}}
$$

- $\theta_{k} \sim G_{0}(\cdot)$ i.i.d.
- π_{k} weights given by stickbreaking
- $\pi_{k}=V_{k} \prod_{i=1}^{k-1}\left(1-V_{i}\right)$
- $V_{1}, V_{2}, \ldots \sim \operatorname{Beta}(1, M)$ i.i.d.

Pitman-Yor process $\operatorname{PY}\left(M, d, G_{0}\right)$
Same representation with $\quad V_{k} \sim \operatorname{Beta}(1-d, M+k d)$

Priors on probability measures, Pólya trees on $[0,1]$

Consider a sequence \mathcal{I} of dyadic partitions of $[0,1]=I_{\varnothing}$ $\mathcal{I}_{0}=\{[0,1]\}, \mathcal{I}_{1}=\left\{I_{0}, I_{1}\right\}, \mathcal{I}_{2}=\left\{I_{00}, I_{01}, I_{10}, I_{11}\right\}, \ldots, \mathcal{I}_{k}=\left\{I_{\varepsilon}, \varepsilon \in\{0,1\}^{k}\right\}, \ldots$ say for simplicity split in half \rightarrow dyadic intervals $\left(k 2^{-1},(k+1) 2^{-1}\right]$

Priors on probability measures, Pólya trees on $[0,1]$

Consider a sequence \mathcal{I} of dyadic partitions of $[0,1]=I_{\varnothing}$
$\mathcal{I}_{0}=\{[0,1]\}, \mathcal{I}_{1}=\left\{I_{0}, I_{1}\right\}, \mathcal{I}_{2}=\left\{I_{00}, I_{01}, I_{10}, I_{11}\right\}, \ldots, \mathcal{I}_{k}=\left\{I_{\varepsilon}, \varepsilon \in\{0,1\}^{k}\right\}, \ldots$ say for simplicity split in half \rightarrow dyadic intervals $\left(k 2^{-1},(k+1) 2^{-1}\right]$

To get a probability measure, one sets $V_{1}=1-V_{0}$ and more generally $V_{\varepsilon 1}=1-V_{\varepsilon 0}$

Priors on probability measures, Pólya trees on $[0,1]$

Consider a sequence \mathcal{I} of dyadic partitions of $[0,1]=I_{\varnothing}$
$\mathcal{I}_{0}=\{[0,1]\}, \mathcal{I}_{1}=\left\{I_{0}, I_{1}\right\}, \mathcal{I}_{2}=\left\{I_{00}, I_{01}, I_{10}, I_{11}\right\}, \ldots, \mathcal{I}_{k}=\left\{I_{\varepsilon}, \varepsilon \in\{0,1\}^{k}\right\}, \ldots$
say for simplicity split in half \rightarrow dyadic intervals $\left(k 2^{-1},(k+1) 2^{-1}\right]$

We set $P\left(l_{01}\right)=V_{0} V_{01}$ and more generally,

$$
P\left(I_{\varepsilon_{1} \ldots \varepsilon_{k}}\right)=V_{\varepsilon_{1}} V_{\varepsilon_{1} \varepsilon_{2}} \cdots V_{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{k}} \text { for } \varepsilon=\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{k}
$$

To get a probability measure, one sets $V_{1}=1-V_{0}$ and more generally $V_{\varepsilon 1}=1-V_{\varepsilon 0}$

Pólya trees on $[0,1]$

A Pólya tree $P T(\mathcal{I}, \alpha)$ on $[0,1]$ is the random probability measure P on $[0,1]$ defined as

- Given a collection of independent random variables,

$$
V_{\varepsilon 0} \sim \operatorname{Beta}\left(\alpha_{\varepsilon 0}, \alpha_{\varepsilon 1}\right), \quad \text { any } \varepsilon \in\{0,1\}^{k}, k \geq 0
$$

- Set, for any $\varepsilon=\varepsilon_{1} \ldots \varepsilon_{k} \in\{0,1\}^{k}$, any $k \geq 0$,

$$
P\left(I_{\varepsilon}\right)=\prod_{j=1 ;}^{k} V_{\varepsilon_{j}=0} \ldots \varepsilon_{j-1} 0 \times \prod_{j=1 ; \varepsilon_{j}=1}^{k}\left(1-V_{\varepsilon_{\mathbf{1}} \ldots \varepsilon_{j-1} 0}\right)
$$

Pólya trees on $[0,1]$

A Pólya tree $P T(\mathcal{I}, \alpha)$ on $[0,1]$ is the random probability measure P on $[0,1]$ defined as

- Given a collection of independent random variables,

$$
V_{\varepsilon 0} \sim \operatorname{Beta}\left(\alpha_{\varepsilon 0}, \alpha_{\varepsilon 1}\right), \quad \text { any } \varepsilon \in\{0,1\}^{k}, k \geq 0
$$

- Set, for any $\varepsilon=\varepsilon_{1} \ldots \varepsilon_{k} \in\{0,1\}^{k}$, any $k \geq 0$,

$$
P\left(I_{\varepsilon}\right)=\prod_{j=1 ;}^{k} V_{\varepsilon_{j}=0} \ldots \varepsilon_{j-1} 0 \times \prod_{j=1 ; \varepsilon_{j}=1}^{k}\left(1-V_{\varepsilon_{\mathbf{1}} \ldots \varepsilon_{j-1} 0}\right)
$$

Special cases

- If $\alpha_{\varepsilon}=M \alpha\left(I_{\varepsilon}\right)$ for a probability measure $\alpha(\cdot)$ on $[0,1], \rightarrow \operatorname{DP}(M, \alpha)$
- For $\alpha_{\varepsilon_{1} \cdots \varepsilon_{k-1} 0}=\alpha_{\varepsilon_{1} \cdots \varepsilon_{k-1} 1}=a_{k}$ and $\sum_{k=1}^{\infty} a_{k}^{-1}<\infty$ with \mathcal{I} regular partition

$$
P \ll \operatorname{Leb}[0,1] \text { a.s. }
$$

In this case it is a prior on densities!

Part II

Rates

Bayesian dominated framework

Experiment. $\quad X=X^{(n)}, \mathcal{P}=\left\{P_{\theta}^{(n)}, \theta \in \mathcal{F}\right\},(\mathcal{F}, \mathbb{F})$ measure space Dominated framework. Suppose there exists a dominating measure $\mu^{(n)}$

$$
d P_{\theta}^{(n)}=p_{\theta}^{(n)}(\cdot) d \mu^{(n)}
$$

Bayesian setting.
a) $\theta \sim \Pi$ prior distribution
b) $X \mid \theta \sim P_{\theta}^{(n)}$
c) $\theta \mid X \sim: \Pi[\cdot \mid X]$ posterior

Bayes formula. For any measurable set $B \in \mathbb{F}$,

$$
\Pi\left(B \mid X^{(n)}\right)=\frac{\int_{B} p_{\theta}^{(n)}\left(X^{(n)}\right) d \Pi(\theta)}{\int p_{\theta}^{(n)}\left(X^{(n)}\right) d \Pi(\theta)}
$$

Remark. $\quad \Pi[B]=0 \Rightarrow \Pi[B \mid X]=0$

Consistency

Consistency. The posterior is consistent at θ_{0} if, as $n \rightarrow \infty$,

$$
\Pi\left(\cdot \mid X^{(n)}\right) \xrightarrow{w} \delta_{\theta_{0}}, \quad \text { in } P_{\theta_{0}}^{(n)} \text {-probability. }
$$

In a separable metric space equipped with a distance d, for any $\varepsilon>0$,

$$
\Pi\left(\theta: d\left(\theta, \theta_{0}\right)<\varepsilon \mid X^{(n)}\right) \longrightarrow 1, \quad \text { in } P_{\theta_{0}}^{(n)} \text {-probab. }
$$

[Notation: in the sequel, drop index ' n ' and write $P_{\theta_{0}}, E_{\theta_{0}}, X$]
General consistency results

- [Doob (1949)]
- [Schwartz (1965)]
- [Barron, Schervish, Wasserman (1999)]

Convergence rate

Convergence rate. The posterior converges at rate ε_{n} for the distance d at θ_{0} if, as $n \rightarrow \infty$,

$$
E_{\theta_{0}} \Pi\left(\theta: d\left(\theta, \theta_{0}\right) \leq \varepsilon_{n} \mid X\right) \longrightarrow 1
$$

It is an upper bound: we look for the smallest possible ε_{n}.
What happens in a nonparametric framework?

- [Ghosal, Ghosh, van der Vaart 00], [Ghosal, van der Vaart 07]

Convergence rate - lower bound

Lower bound to rate. We say that ζ_{n} is a lower bound for the rate for d at θ_{0} if

$$
E_{\theta_{0}} \Pi\left(\theta: d\left(\theta, \theta_{0}\right) \leq \zeta_{n} \mid X\right) \longrightarrow 0
$$

One looks for the largest possible ζ_{n}.
May look a little odd first that there is 'no mass' close to $\theta_{0} \ldots$
It just says that ζ_{n} is a too fast 'scaling' that captures little posterior mass

Rates, regular parametric models

E0

$$
\begin{aligned}
X \mid \theta & \sim \mathcal{N}(\theta, 1)^{\otimes n} \\
\theta & \sim \mathcal{N}(0,1)=\Pi \\
\Pi[\cdot \mid X]= & \mathcal{N}\left(\frac{n \bar{X}_{n}}{n+1}, \frac{1}{n+1}\right)
\end{aligned}
$$

Exercise. Show that, for any $M_{n} \rightarrow \infty$,

$$
E_{\theta_{0}} \Pi\left[\theta: \left.\frac{1}{M_{n} \sqrt{n}} \leq\left|\theta-\theta_{0}\right| \leq \frac{M_{n}}{\sqrt{n}} \right\rvert\, X\right] \rightarrow 1
$$

This extends to regular parametric models and most 'reasonable' priors

Posterior and aspects of posterior

The posterior distribution $\Pi[\cdot \mid X]$ may have a well-defined

- posterior mean

$$
\bar{\theta}(X):=\int \theta d \Pi(\theta \mid X)
$$

- posterior mode

$$
\theta^{*}(X):=\underset{\theta}{\operatorname{argmax}} \frac{d \Pi(\theta \mid X)}{d \mu}
$$

- posterior median, posterior quantiles ...

These are estimators in the standard sense.
Often, but not always, a convergence rate for $\Pi[\cdot \mid X]$ implies the same rate for a given aspect of it

Posterior and aspects of posterior

Fact 1. Suppose $\Pi\left[d\left(\theta, \theta_{0}\right)>\varepsilon_{n} \mid X\right]=o_{P}(1)$. Let $\theta^{B}(X)$ be the center of the smallest d-ball containing at least $1 / 2$ of the posterior mass

$$
d\left(\theta^{B}(X), \theta_{0}\right)=O_{P}\left(\varepsilon_{n}\right)
$$

Fact 2. Suppose

- $\Pi\left[d\left(\theta, \theta_{0}\right)>\varepsilon_{n} \mid X\right]=O_{P}\left(\varepsilon_{n}^{2}\right)$
- $\theta \rightarrow d^{2}\left(\theta, \theta_{0}\right)$ is convex and bounded [e.g. $d=h$]

Then

$$
d\left(\bar{\theta}(X), \theta_{0}\right)=O_{P}\left(\varepsilon_{n}\right)
$$

Posterior integrated loss

Fact 3. Suppose

$$
E_{\theta_{\mathbf{o}}} \int d\left(\theta, \theta_{0}\right)^{2} d \Pi(\theta \mid X) \leq \varepsilon_{n}^{2}
$$

Then

- for any $M_{n} \rightarrow \infty$

$$
E_{\theta_{0}} \Pi\left[\theta: d\left(\theta, \theta_{0}\right)^{2}>M_{n} \varepsilon_{n}^{2} \mid X\right]=o(1)
$$

- If $\theta \rightarrow d^{2}\left(\theta, \theta_{0}\right)$ is convex,

$$
E_{\theta_{\mathbf{o}}}\left[d\left(\bar{\theta}(X), \theta_{0}\right)^{2}\right] \leq \varepsilon_{n}^{2}
$$

First examples

E1 - Fixed design regression [van der Vaart, van Zanten 08, 09]

True function. Let $f_{0} \in \mathcal{C}^{\beta}[0,1]$
Loss function. $\|g\|_{n}^{2}=n^{-1} \sum_{i=1}^{n} g\left(t_{i}\right)^{2}$
Prior. Brownian motion + Gaussian
$W_{t}=B_{t}+Z_{0}$, with $Z_{0} \sim \mathcal{N}(0,1)$
Then as $n \rightarrow \infty$,

$$
E_{f_{0}} \Pi\left[f:\left\|f-f_{0}\right\|_{n} \leq \varepsilon_{n} \mid X\right] \rightarrow 1
$$

where

$$
\varepsilon_{n} \sim n^{-\frac{1}{4} \wedge \frac{\beta}{2}}= \begin{cases}n^{-1 / 4} & \text { if } \beta \geq 1 / 2 \\ n^{-\beta / 2} & \text { if } \beta \leq 1 / 2\end{cases}
$$

First examples

E1 - Fixed design regression (followed)

Prior. Riemann-Liouville process with parameter $\alpha>0$
$W_{t}=\int_{0}^{t}(t-s)^{\alpha-1 / 2} d B_{s}+\sum_{k=0}^{\lceil\alpha\rceil} Z_{k} t^{k}, \quad$ with $Z_{k} \sim \mathcal{N}(0,1)$ iid

Then

$$
E_{f_{0}} \Pi\left[f:\left\|f-f_{0}\right\|_{n} \leq \varepsilon_{n} \mid X\right] \rightarrow 1
$$

where

$$
\varepsilon_{n} \approx n^{-\frac{\alpha \wedge \beta}{2 \alpha+1}}= \begin{cases}n^{-\frac{\alpha}{2 \alpha+1}} & \text { if } \beta \geq \alpha \\ n^{-\frac{\beta}{2 \alpha+1}} & \text { if } \beta \leq \alpha\end{cases}
$$

First examples

E3 - Density estimation [van der Vaart, van Zanten 08, 09]

True density. Let $f_{0} \in \mathcal{C}^{\beta}[0,1]$ with $f_{0}>0$.
Loss function. Hellinger distance $h(f, g)^{2}=\int(\sqrt{f}-\sqrt{g})^{2}$
Prior. Consider the distribution on continuous functions induced by

$$
t \rightarrow \frac{e^{W_{t}}}{\int_{0}^{1} e^{W_{u}} d u}
$$

with W_{t} either Brownian motion or Riemann-Liouville process with parameter $\alpha>0$

Then, for ε_{n} as before,

$$
E_{f_{0}} \sqcap\left[h\left(f, f_{0}\right) \leq \varepsilon_{n} \mid X\right] \rightarrow 1 .
$$

Theory: Bayesian nonparametrics

Consistency

- [Doob (1949)] Consistency up to a П-null set
- [Schwartz (1965)] Consistency under testing and enough prior mass in Kullback-Leibler-type neighborhoods
- [Diaconis, Freedman (1986)] Example of 'innocent' prior in a semiparametric framework, for which the posterior is not consistent

Rates of convergence?

GGV theory: first lemma

To fix ideas consider first the density estimation model

$$
\begin{aligned}
& X=\left(X_{1}, \ldots, X_{n}\right) \\
& \mathcal{P}=\left\{P_{f}^{\otimes n}, d P_{f}=f d \mu, f \in \mathcal{F}\right\}
\end{aligned}
$$

\mathcal{F} some set of densities
Π prior distribution on \mathcal{F}
Bayes' formula

$$
\Pi[B \mid X]=\frac{\int_{B} \prod_{i=1}^{n} f\left(X_{i}\right) d \Pi(f)}{\int \prod_{i=1}^{n} f\left(X_{i}\right) d \Pi(f)}
$$

Notation

$$
\begin{aligned}
K\left(f_{0}, f\right) & =\int \log \frac{f_{0}}{f} f_{0} d \mu \\
V\left(f_{0}, f\right) & =\int\left(\log \frac{f_{0}}{f}-K\left(f_{0}, f\right)\right)^{2} f_{0} d \mu
\end{aligned}
$$

GGV theory: first lemma

Define a Kullback-Leibler type neighborhood of f_{0} by

$$
B_{K L}\left(f_{0}, \varepsilon_{n}\right):=\left\{f: K\left(f_{0}, f\right) \leq \varepsilon_{n}^{2}, V\left(f_{0}, f\right) \leq \varepsilon_{n}^{2}\right\}
$$

Lemma 1. Let A_{n} measurable and let $n \varepsilon_{n}^{2} \rightarrow \infty$. Suppose

$$
\frac{\Pi\left[A_{n}\right]}{e^{-2 n \varepsilon_{n}^{2} \Pi\left[B_{K L}\left(f_{0}, \varepsilon_{n}\right)\right]}}=o(1)
$$

Then $\Pi\left[A_{n} \mid X\right]=o_{P}(1)$.
[Idea: very small prior mass implies small posterior mass]

Lemma 2. For any Π probability measure on \mathcal{F}, any $C>0$ and $\varepsilon>0$,

$$
\int \prod_{i=1}^{n} \frac{f}{f_{0}}\left(X_{i}\right) d \Pi(f) \geq \Pi\left(B_{K L}\left(f_{0}, \varepsilon\right)\right) e^{-(1+C) n \varepsilon^{2}}
$$

with $P_{f_{0}}-$ probability at least $1-1 /\left(C^{2} n \varepsilon^{2}\right)$.

$$
\int \prod_{i=1}^{n} \frac{f}{f_{0}}\left(X_{i}\right) d \Pi(f) \geq \int_{B} \prod_{i=1}^{n} \frac{f}{f_{0}}\left(X_{i}\right) d \bar{\Pi}(f) \Pi(B), \quad \bar{\Pi}=\frac{\left.\Pi\right|_{B}}{\Pi(B)}
$$

Lemma 2. For any Π probability measure on \mathcal{F}, any $C>0$ and $\varepsilon>0$,

$$
\int \prod_{i=1}^{n} \frac{f}{f_{0}}\left(X_{i}\right) d \Pi(f) \geq \Pi\left(B_{K L}\left(f_{0}, \varepsilon\right)\right) e^{-(1+C) n \varepsilon^{2}}
$$

with $P_{f_{0}}-$ probability at least $1-1 /\left(C^{2} n \varepsilon^{2}\right)$.

$$
\int \prod_{i=1}^{n} \frac{f}{f_{0}}\left(X_{i}\right) d \Pi(f) \geq \int_{B} \prod_{i=1}^{n} \frac{f}{f_{0}}\left(X_{i}\right) d \bar{\Pi}(f) \Pi(B), \quad \bar{\Pi}=\frac{\left.\Pi\right|_{B}}{\Pi(B)}
$$

$$
\begin{aligned}
\log \int_{B} \prod_{i=1}^{n} \frac{f}{f_{0}}\left(X_{i}\right) d \bar{\Pi}(f) & \geq \sum_{i=1}^{n} \int_{B} \log \frac{f}{f_{0}}\left(X_{i}\right) d \bar{\Pi}(f) \quad[\text { Jensen }] \\
& \geq-\sum_{i=1}^{n} \int_{B}\left[\log \frac{f_{0}}{f}\left(X_{i}\right)-K L\left(f_{0}, f\right)\right] d \bar{\Pi}(f)-n \int_{B} K L\left(f_{0}, f\right) d \bar{\Pi}(f) \\
& \geq-\sum_{i=1}^{n} Z_{i}-n \varepsilon^{2} \quad \text { if } B=B_{K L}\left(f_{0}, \varepsilon\right)
\end{aligned}
$$

$$
Z_{i}:=\int_{B}\left[\log \frac{f_{0}}{f}\left(X_{i}\right)-K L\left(f_{0}, f\right)\right] d \bar{\Pi}(f)
$$

We have Z_{i} iid and

$$
\begin{align*}
E_{f_{0}} Z_{1} & =0 \\
\operatorname{Var}_{f_{0}} Z_{1} & \leq E_{f_{0}} \int_{B}\left[\log \frac{f_{0}}{f}\left(X_{i}\right)-K L\left(f_{0}, f\right)\right]^{2} d \bar{\Pi}(f) \\
& =\int_{B} V\left(f_{0}, f\right) d \bar{\Pi}(f) \leq \varepsilon^{2} \bar{\Pi}(B)=\varepsilon^{2} \tag{Fubini}
\end{align*}
$$

$$
Z_{i}:=\int_{B}\left[\log \frac{f_{0}}{f}\left(X_{i}\right)-K L\left(f_{0}, f\right)\right] d \bar{\Pi}(f)
$$

We have Z_{i} iid and

$$
\begin{align*}
E_{f_{0}} Z_{1} & =0 \\
\operatorname{Var}_{f_{0}} Z_{1} & \leq E_{f_{0}} \int_{B}\left[\log \frac{f_{0}}{f}\left(X_{i}\right)-K L\left(f_{0}, f\right)\right]^{2} d \bar{\Pi}(f) \quad[C S] \tag{CS}\\
& =\int_{B} V\left(f_{0}, f\right) d \bar{\Pi}(f) \leq \varepsilon^{2} \bar{\Pi}(B)=\varepsilon^{2} \quad \text { [Fubini] }
\end{align*}
$$

By Chebyshev's inequality,

$$
P_{f_{0}}\left[\left|\sum_{i=1}^{n} Z_{i}\right|>c n \varepsilon^{2}\right] \leq \frac{1}{C^{2} n \varepsilon^{2}}
$$

On the complementary event, one thus has

$$
\log \int \prod_{i=1}^{n} \frac{f}{f_{0}}\left(X_{i}\right) d \bar{\Pi}(f) \geq-(C+1) n \varepsilon^{2}
$$

that is

$$
\int \prod_{i=1}^{n} \frac{f}{f_{0}}\left(X_{i}\right) d \bar{\Pi}(f) \geq \Pi(B) e^{(C+1) n \varepsilon^{2}}
$$

GGV theory: first lemma

Let $B_{K L}\left(f_{0}, \varepsilon_{n}\right):=\left\{f: K\left(f_{0}, f\right) \leq \varepsilon_{n}^{2}, V\left(f_{0}, f\right) \leq \varepsilon_{n}^{2}\right\}$

Lemma 1. Let A_{n} measurable and let $n \varepsilon_{n}^{2} \rightarrow \infty$. Suppose

$$
\frac{\Pi\left[A_{n}\right]}{e^{-2 n \varepsilon_{n}^{2} \Pi\left[B_{K L}\left(f_{0}, \varepsilon_{n}\right)\right]}}=o(1) .
$$

Then $\Pi\left[A_{n} \mid X\right]=o_{P}(1)$.
[Proof of lemma 1]

Theory: Bayesian nonparametrics

Experiment. $\quad X=X^{(n)}, \mathcal{P}=\left\{P_{\theta}^{(n)}, \theta \in \mathcal{F}\right\}$ as before [not necessarily iid sampling]
Prior. Π prior distribution on θ
Goal. For some distance d_{n} and rate ε_{n},

$$
E_{\theta_{0}} \Pi\left[\theta: \quad d_{n}\left(\theta, \theta_{0}\right)>M \varepsilon_{n} \mid X\right] \rightarrow 0
$$

Let us assume that, for $n \varepsilon_{n}^{2} \rightarrow \infty$,

Theory: Bayesian nonparametrics

Experiment. $X=X^{(n)}, \mathcal{P}=\left\{P_{\theta}^{(n)}, \theta \in \mathcal{F}\right\}$ as before [not necessarily iid sampling] Prior. Π prior distribution on θ

Goal. For some distance d_{n} and rate ε_{n},

$$
E_{\theta_{0}} \Pi\left[\theta: d_{n}\left(\theta, \theta_{0}\right)>M \varepsilon_{n} \mid X\right] \rightarrow 0
$$

Let us assume that, for $n \varepsilon_{n}^{2} \rightarrow \infty$,

- The prior puts enough mass on neighborhoods of θ_{0}

$$
\begin{gathered}
\Pi\left(B_{K L}\left(\theta_{0}, \varepsilon_{n}\right)\right) \geq e^{-c n \varepsilon_{n}^{2}} \\
B_{K L}\left(\theta_{0}, \varepsilon_{n}\right)=\left\{\int p_{\theta_{0}}^{(n)} \log \frac{\rho_{\theta_{0}}^{(n)}}{p_{\theta}^{(n)}} \leq n \varepsilon_{n}^{2}, \int p_{\theta_{0}}^{(n)} \log ^{2} \frac{p_{\theta_{0}}^{(n)}}{p_{\theta}^{(n)}} \leq n \varepsilon_{n}^{2}\right\} \\
\text { extends definition given above in iid sampling model }
\end{gathered}
$$

Theory: Bayesian nonparametrics

- Some sieve sets Θ_{n} capture most of the prior mass

$$
\Pi\left(\Theta \backslash \Theta_{n}\right) \leq e^{-(c+4) n \varepsilon_{n}^{2}}
$$

- Test true parameter vs. Complement of a ball

There exist tests ψ_{n} such that

$$
\begin{gathered}
E_{\theta_{\mathbf{0}}} \psi_{n} \rightarrow 0 \\
\sup _{\theta \in \Theta_{n}: d_{n}\left(\theta, \theta_{\mathbf{0}}\right)>M \varepsilon_{n}} E_{\theta}\left(1-\psi_{n}\right) \lesssim e^{-(c+4) n \varepsilon_{n}^{2}}
\end{gathered}
$$

Theory: Bayesian nonparametrics

- Some sieve sets Θ_{n} capture most of the prior mass

$$
\Pi\left(\Theta \backslash \Theta_{n}\right) \leq e^{-(c+4) n \varepsilon_{n}^{2}}
$$

- Test true parameter vs. Complement of a ball

There exist tests ψ_{n} such that

$$
\begin{gathered}
E_{\theta_{\mathbf{0}}} \psi_{n} \rightarrow 0 \\
\sup _{\theta \in \Theta_{n}: d_{n}\left(\theta, \theta_{\mathbf{0}}\right)>M \varepsilon_{n}} E_{\theta}\left(1-\psi_{n}\right) \lesssim e^{-(c+4) n \varepsilon_{n}^{2}}
\end{gathered}
$$

A sufficient condition is a control of an entropy [see below]

Theory: Bayesian nonparametrics

Theorem 1. [Ghosal, Ghosh, van der Vaart 00], [Ghosal, van der Vaart 07]
If there are sets $\Theta_{n} \subset \Theta, c, M>0$ such that there exist tests ψ_{n} with

$$
\begin{array}{lr}
E_{\theta_{0}} \psi_{n} \rightarrow 0, \sup _{\theta \in \Theta_{n}: d_{n}\left(\theta, \theta_{0}\right)>M \varepsilon_{n}} E_{\theta}\left(1-\psi_{n}\right) \lesssim e^{-(c+4) n \varepsilon_{n}^{2}} & \text { tests } \\
\Pi\left(\Theta \backslash \Theta_{n}\right) \leq e^{-(c+4) n \varepsilon_{n}^{2}} & \text { remaining mass } \\
\Pi\left(B_{K L}\left(\theta_{0}, \varepsilon_{n}\right)\right) \geq e^{-c n \varepsilon_{n}^{2}} & \text { prior mass }
\end{array}
$$

Then for $M>0$ as above,

$$
E_{\theta_{0}} \Pi\left[\theta: d_{n}\left(\theta, \theta_{0}\right) \leq M \varepsilon_{n} \mid X\right] \rightarrow 1
$$

Testing via entropy
Tests point vs. ball for some distance d_{n}
(TO)

$$
\exists k, \Psi>0, \forall \varepsilon>0 \quad \forall \theta_{1} \in \Theta, d_{1}\left(\theta_{1}, \theta_{0}\right)>\varepsilon, \quad \exists \phi_{m} \text { test }
$$

$$
\mathbb{T}_{\theta_{0}}^{(m)} \phi_{m} \leqslant e^{-k m \varepsilon^{2}}
$$

$N\left(\varepsilon, \Theta_{n}, d_{n}\right)=$ minimal number of balls of radius ε for d_{n} to cover Θ_{n}

Lemma 3. Suppose (T0) holds and

$$
\log N\left(\varepsilon, \Theta_{n}, d_{n}\right) \leq C n \varepsilon_{n}^{2}
$$

Then for any given $c>0$ and M large enough, (T1) holds.

- Build shells \mathcal{C}_{j} covering the complement of the ball
- Cover each shell by a minimal number of balls
- To each center of ball, associate $\varphi_{i, j}$ test via (T0)
- Set

$$
\psi:=\max _{i, j} \varphi_{i, j}
$$

- testing power $e^{-K n j \varepsilon^{2}}$ over shells is summable in j

Testing distances: examples

About the testing distance (T0)
[Le Cam 70's, Birgé 80's] \rightarrow general results for testing between convex sets
Imply that (T0) holds in iid and some simple dependency settings for

$$
d=h \quad \text { or } \quad d=\|\cdot\|_{1}
$$

Proposition. In density estimation $P_{f}^{(n)}=P_{f}^{\otimes n}$, then (T0) holds for $d=\|\cdot\|_{1}$

Testing distances: examples

About the testing distance (T0)
[Le Cam 70's, Birgé 80's] \rightarrow general results for testing between convex sets Imply that (T0) holds in iid and some simple dependency settings for

$$
d=h \quad \text { or } \quad d=\|\cdot\|_{1}
$$

Proposition. In density estimation $P_{f}^{(n)}=P_{f}^{\otimes n}$, then (T0) holds for $d=\|\cdot\|_{1}$
[Idea of proof.] Let f_{0}, f_{1} with $\left\|f_{0}-f_{1}\right\|_{1}>\varepsilon$. For

$$
\begin{aligned}
& A=\left\{x: \quad f_{0}(x)<f_{1}(x)\right\}, \quad \mathbb{P}_{n}(A)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \in A}, \\
& \text { consider } \quad \phi_{n}=\mathbb{1}\left\{\mathbb{P}_{n}(A)>P_{f_{0}}(A)+\frac{\left\|f_{0}-f_{1}\right\|_{1}}{3}\right\}
\end{aligned}
$$

Control of $E_{f_{0}} \phi_{n}$ and $E_{f}\left(1-\phi_{n}\right)$ via Hoeffding

Theory: Bayesian nonparametrics

Theorem 1 - entropy version [GGV 00]
If $\Theta_{n} \subset \Theta$ and $c>0$ such that, for d_{n} such that (T0) is verified,

$$
\begin{array}{lr}
\log N\left(\varepsilon_{n}, \Theta_{n}, d_{n}\right) \leq d n \varepsilon_{n}^{2} & \text { entropy } \\
\Pi\left(\Theta \backslash \Theta_{n}\right) \leq e^{-(c+4) n \varepsilon_{n}^{2}} & \text { remaining mass } \\
\Pi\left(B_{K L}\left(\theta_{0}, \varepsilon_{n}\right)\right) \geq e^{-c n \varepsilon_{n}^{2}} & \text { prior mass }
\end{array}
$$

Then for $M>0$ large enough,

$$
E_{\theta_{0}} \Pi\left[\theta: d_{n}\left(\theta, \theta_{0}\right) \leq M \varepsilon_{n} \mid X\right] \rightarrow 1
$$

Theory, Gaussian priors

$W=\left(W_{t}: t \in T\right)$ centered Gaussian process taking values in Banach space $(\mathbb{B},\|\cdot\|)$
Covariance kernel $K(s, t)=E\left(W_{s} W_{t}\right)$

Theory, Gaussian priors

$W=\left(W_{t}: t \in T\right)$ centered Gaussian process taking values in Banach space $(\mathbb{B},\|\cdot\|)$
Covariance kernel $K(s, t)=E\left(W_{s} W_{t}\right)$

Reproducing Kernel Hilbert Space \mathbb{H} (RKHS) associated to W.
Define a norm $\|\cdot\|_{\mathbb{H}}$ via

$$
\left\langle\sum_{i=1}^{p} a_{i} K\left(s_{i}, \cdot\right), \sum_{j=1}^{q} b_{j} K\left(t_{j}, \cdot\right)\right\rangle_{\mathbb{H}}=\sum_{i, j} a_{i} b_{j} K\left(s_{i}, t_{j}\right)
$$

Then one sets

$$
\mathbb{H}=\overline{\operatorname{Vect}\{K(s, \cdot),} \quad s \in T\}^{\mathbb{H}}
$$

Brownian motion
$\left(B_{t}\right) \quad \mathbb{H}=\left\{\int_{0}^{*} f(u) d u, \quad f \in L^{2}[0,1]\right\}$
Series prior

$$
\sum_{k \geq 1} \sigma_{k} \nu_{k} \varepsilon_{k} \quad \mathbb{H}=\left\{h=\left(h_{k}\right) \in \ell^{2}, \quad \sum_{k \geq 1} \sigma_{k}^{-2} h_{k}^{2}<+\infty\right\}
$$

Theory, Gaussian priors

Fact. For all g in the support of W in \mathbb{B}, and all $\varepsilon>0$,

$$
e^{-\varphi_{g}(\varepsilon / 2)} \leq P(\|W-g\|<\varepsilon) \leq e^{-\varphi_{g}(\varepsilon)}
$$

where

Concentration function. Let g be in the support of W in \mathbb{B}. For $\varepsilon>0$, set

$$
\begin{aligned}
& \varphi_{g}(\varepsilon)=\inf _{h \in \text { H: }:}^{\|h-g\|<\varepsilon} \frac{\|h\|_{\text {IH }}^{2}}{2}-\log P(\|W\|<\varepsilon) \\
& \text { Approximation Small ball probability }
\end{aligned}
$$

Example [small ball probability] Brownian motion $\left(B_{t}\right)$

$$
-\log \mathbb{P}\left(\|B\|_{\infty}<\varepsilon\right) \approx \varepsilon^{-2} \quad(\varepsilon \rightarrow 0)
$$

Theory, Gaussian priors

[van der Vaart, van Zanten 08]
Consider a nonparametric problem with unknown function $f_{0} \in \mathbb{B}$.
Prior $\Pi=$ law of a Gaussian process W on \mathbb{B}, with RKHS \mathbb{H}.
Assume that

- f_{0} is in the support in \mathbb{B} of the prior
- the norm $\|\cdot\|$ on \mathbb{B} combines correctly with the testing distance d

Let ε_{n} be a solution of the equation

$$
\varphi_{f_{0}}\left(\varepsilon_{n}\right) \leq n \varepsilon_{n}^{2}
$$

Then the posterior contracts at rate ε_{n} : for large enough M,

$$
E_{f_{0}} \Pi\left(d\left(f, f_{0}\right)>M \varepsilon_{n} \mid X\right) \rightarrow 0
$$

Lower bound [C 08]

Theory, Gaussian priors

Ingredients of proof :

- prior mass
the [Fact] links $P(\|W-w\|<\varepsilon)$ and concentration function
- sieves
[Borell 75]'s inequality
Let \mathbb{B}_{1} and \mathbb{H}_{1} unit balls \mathbb{B} and \mathbb{H} associated to W

$$
P\left(W \notin M \mathbb{H}_{1}+\varepsilon \mathbb{B}_{1}\right) \leq 1-\Phi\left(\Phi^{-1}\left(e^{-\phi_{0}(\varepsilon)}\right)+M\right)
$$

Suggests to set $\Theta_{n}=\sqrt{n} \varepsilon_{n} \mathbb{H}_{1}+\varepsilon_{n} \mathbb{B}_{1}$

- entropy
can link entropy of \mathbb{H}_{1} and small ball probability

Example Density estimation and Gaussian priors

Squared-exponential covariance kernel

Centered Gaussian process Z_{t} with covariance

$$
E\left(Z_{t} Z_{s}\right)=e^{-(s-t)^{2} / L}
$$

[van der Vaart, van Zanten 10] show that, for fixed L, there are regular functions f_{0} for which the rate is at best logarithmic

$$
\varepsilon_{n} \approx(\log n)^{-\gamma(\beta)}
$$

Example Density estimation and Gaussian priors

Squared-exponential covariance kernel

Centered Gaussian process Z_{t} with covariance

$$
E\left(Z_{t} Z_{s}\right)=e^{-(s-t)^{2} / L}
$$

[van der Vaart, van Zanten 10] show that, for fixed L, there are regular functions f_{0} for which the rate is at best logarithmic

$$
\varepsilon_{n} \approx(\log n)^{-\gamma(\beta)}
$$

However, those priors are used in machine learning and give very good results in practice when the parameter L is "well chosen" ...

Example Density estimation and Gaussian priors, adaptation [van der Vaart, van Zanten 09]

Example Density estimation and Gaussian priors, adaptation [van der Vaart, van Zanten 09]

Prior Π : consider $Z_{A t}$ and set $t \rightarrow \frac{e^{Z_{A t}}}{\int_{0}^{1} e^{Z_{A u} d u}}$, where

- A Gamma distribution
- $u \rightarrow Z_{u}$ centered GP with squared-exponential kernel

Then the posterior converges at minimax rate up to a log factor

$$
E_{f_{0}} \Pi\left[\left.h\left(f, f_{0}\right) \leq M(\log n)^{\gamma(\beta)} n^{-\frac{\beta}{2 \beta+1}} \right\rvert\, X\right] \rightarrow 1
$$

Example Adaptation on manifolds

[C, Kerkyacharian, Picard 14]

On \mathcal{M} compact Riemannian manifold of dimension d without boundary \rightarrow Laplacian $\Delta_{\mathcal{M}}$ linear operator on functions on \mathcal{M} with discrete spectrum

$$
\begin{aligned}
& \left(-\Delta_{\mathcal{M}}\right) \varphi_{p}=\lambda_{p} \varphi_{p} \\
& 0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots
\end{aligned}
$$

Note that

$$
\begin{aligned}
\Delta_{\mathcal{M}}\left(e^{-\lambda_{p} t} \varphi_{\rho}\right) & =-\lambda_{p} e^{-\lambda_{p} t} \varphi_{\rho} \\
\frac{\partial}{\partial t} e^{-\lambda_{p} t} \varphi_{p} & =-\lambda_{p} e^{-\lambda_{p} t} \varphi_{p}
\end{aligned}
$$

This is a special solution of the "heat equation" on \mathcal{M}

$$
\Delta_{\mathcal{M}} f=\frac{\partial}{\partial t} f
$$

Example Adaptation on manifolds

Let $\alpha_{p} \sim \mathcal{N}(0,1)$ iid. A GP "random solution of the heat equation" is

$$
W^{t}:=\sum_{p \geq 1} e^{-\lambda_{p} t / 2} \alpha_{p} \varphi_{p}
$$

The associated family of covariance kernels is

$$
P_{t}(x, y)=\sum_{p \geq 1} e^{-\lambda_{p} t} \varphi_{p}(x) \varphi_{p}(y) \quad \Delta_{\mathcal{M}} \text {-Heat Kernel }
$$

Subgaussian estimates

$$
\frac{c_{1} e^{-c^{\prime} \frac{\rho^{2}(x, y)}{t}}}{\sqrt{|B(x, \sqrt{t})||B(y, \sqrt{t})|}} \leq P_{t}(x, y) \leq \frac{c_{2} e^{-c^{\prime} \frac{\rho^{2}(x, y)}{t}}}{\sqrt{|B(x, \sqrt{t})||B(y, \sqrt{t})|}}
$$

Example Adaptation on manifolds

$$
d X^{(n)}(x)=f(x) d x+\frac{1}{\sqrt{n}} d Z(x), \quad x \in \mathcal{M}
$$

Prior Π

- $W^{T}=\sum_{p} e^{-\lambda_{p} T / 2} \alpha_{p} \varphi_{p} \quad$ with $T \sim t^{-a} e^{-t^{-d / 2} \log ^{q}(1 / t)}$
- W^{T} seen as prior on $(\mathbb{B},\|\cdot\|)=\left(\mathbb{L}_{2},\|\cdot\|_{2}\right)$
- Set $q=1+d / 2$

Example Adaptation on manifolds

$$
d X^{(n)}(x)=f(x) d x+\frac{1}{\sqrt{n}} d Z(x), \quad x \in \mathcal{M}
$$

Prior Π

- $W^{T}=\sum_{p} e^{-\lambda_{p} T / 2} \alpha_{p} \varphi_{p} \quad$ with $T \sim t^{-a} e^{-t^{-d / 2} \log ^{q}(1 / t)}$
- W^{T} seen as prior on $(\mathbb{B},\|\cdot\|)=\left(\mathbb{L}_{2},\|\cdot\|_{2}\right)$
- Set $q=1+d / 2$

Suppose $f_{0} \in B_{2, \infty}^{s}(\mathcal{M})$. Then for M large enough, as $n \rightarrow \infty$,

$$
E_{f_{0}} \Pi\left[\left.\left\|f-f_{0}\right\|_{2} \geq M\left(\frac{\log n}{n}\right)^{s /(2 s+d)} \right\rvert\, X\right] \rightarrow 0
$$

The rate is sharp

Example Adaptation on manifolds

$$
d X^{(n)}(x)=f(x) d x+\frac{1}{\sqrt{n}} d Z(x), \quad x \in \mathcal{M}
$$

Prior Π

- $W^{T}=\sum_{p} e^{-\lambda_{p} T / 2} \alpha_{p} \varphi_{p} \quad$ with $T \sim t^{-a} e^{-t^{-d / 2} \log ^{q}(1 / t)}$
- W^{T} seen as prior on $(\mathbb{B},\|\cdot\|)=\left(\mathbb{L}_{2},\|\cdot\|_{2}\right)$
- Set $q=1+d / 2$

Suppose $f_{0} \in B_{2, \infty}^{s}(\mathcal{M})$. Then for M large enough, as $n \rightarrow \infty$,

$$
E_{f_{0}} \Pi\left[\left.\left\|f-f_{0}\right\|_{2} \geq M\left(\frac{\log n}{n}\right)^{s /(2 s+d)} \right\rvert\, X\right] \rightarrow 0
$$

The rate is sharp for small enough ρ, there exists f_{0} in $B_{2, \infty}^{s}(\mathcal{M})$,

$$
\Pi\left[\left.\left\|f-f_{0}\right\|_{2} \leq \rho\left(\frac{\log n}{n}\right)^{s /(2 s+d)} \right\rvert\, X\right] \rightarrow 0
$$

Example Sparsity

Recall $X_{i}=\theta_{i}+\varepsilon_{i}$ and $\theta \in \ell_{0}[s] s$-sparse vector

Example [coin-flipping prior with fixed $\alpha_{n}=1 / n$]

$$
\begin{array}{cc}
k & \sim \operatorname{Bin}\left(n, \alpha_{n}\right)=\pi_{n} \\
g & \text { density on } \mathbb{R} \\
& \downarrow \\
\Pi \sim \bigotimes_{i=1}^{n}\left(1-\alpha_{n}\right) \delta_{0}+\alpha_{n} g
\end{array}
$$

Example Sparsity

Example [coin-flipping prior with random α]

$$
\begin{array}{rlc}
\alpha & \sim \operatorname{Beta}(1, n) \\
k \mid \alpha & \sim & \operatorname{Bin}(n, \alpha)=\pi_{n} \\
g & & \operatorname{density} \text { on } \mathbb{R} \\
& \downarrow \\
\alpha & \sim \operatorname{Beta}(1, n) \\
\Pi \mid \alpha & \sim \bigotimes_{i=1}^{n}(1-\alpha) \delta_{0}+\alpha g
\end{array}
$$

Example Sparsity

Theorem. Let Π be the Bayesian coin-flipping prior with random α with

- $\alpha \sim \operatorname{Beta}(1, n)$
- g the Laplace (or a heavier tailed) density

Then for M large enough,

$$
\sup _{\theta_{0} \in \ell_{0}\left[s_{n}\right]} E_{\theta_{0}} \Pi\left[\theta:\left\|\theta-\theta_{0}\right\|>M s_{n} \log \left(n / s_{n}\right) \mid X\right] \rightarrow 0
$$

Example Mixtures

[Rousseau 10]

Observations X_{1}, \ldots, X_{n} i.i.d. density $f_{0}>0$ and Hölder $\mathcal{C}^{\beta}[0,1]$
Beta densities $\quad g(x \mid a, b)=\frac{x^{a-1}(1-x)^{b-1}}{B(a, b)} \quad g_{\alpha, \varepsilon}(x)=g\left(x \left\lvert\, \frac{\alpha}{1-\varepsilon}\right., \frac{\alpha}{\varepsilon}\right)$
usual parametrisation reparametrisation

Prior $\Pi=$ hierarchical mixture of Beta densities

$$
g_{\alpha, k, \mathrm{p}^{k}, \epsilon k}(\cdot)=\sum_{j=1}^{k} p_{j} g_{\alpha, \varepsilon_{j}}(\cdot)
$$

Example Mixtures

[Rousseau 10]

Observations X_{1}, \ldots, X_{n} i.i.d. density $f_{0}>0$ and Hölder $\mathcal{C}^{\beta}[0,1]$
Beta densities $\quad g(x \mid a, b)=\frac{x^{a-1}(1-x)^{b-1}}{B(a, b)} \quad g_{\alpha, \varepsilon}(x)=g\left(x \left\lvert\, \frac{\alpha}{1-\varepsilon}\right., \frac{\alpha}{\varepsilon}\right)$

usual parametrisation
 reparametrisation

Prior $\Pi=$ hierarchical mixture of Beta densities

$$
\begin{aligned}
& \bullet \alpha \sim \pi_{\alpha} \\
g_{\alpha, k, \mathbf{p}^{k}, \epsilon k}(\cdot)=\sum_{j=1}^{k} p_{j} g_{\alpha, \varepsilon_{j}}(\cdot) \quad & k \sim \pi_{k} \\
\bullet & \mathbf{p}^{k} \mid k \sim\left(p_{1}, \ldots, p_{k}\right) \text { law on the canonical } \\
& \text { simplex of } \mathbb{R}^{k} \\
\bullet & \epsilon^{k} \mid k \sim\left(\varepsilon_{1}, \ldots, \varepsilon_{k}\right) \text { law in }(0,1)^{k}
\end{aligned}
$$

Then the posterior concentrates at rate

$$
E_{f_{0}} \Pi\left[\left.h\left(f, f_{0}\right) \leq M(\log n)^{\rho(\beta)} n^{-\frac{\beta}{2 \beta+1}} \right\rvert\, X\right] \rightarrow 1
$$

Posterior measure and aspects of the measure (I)

MESSAGE Full posterior measure and aspects of it may differ significantly !

Posterior measure and aspects of the measure (I)

MESSAGE Full posterior measure and aspects of it may differ significantly !

$$
Y=I_{n \times n} \theta+\epsilon \quad[\text { seq.model }]
$$

Let $\bar{\Pi}_{\lambda} \sim \otimes_{i=1}^{p}$ Laplace $(\lambda) \quad$ [without point masses at zero]

- $\hat{\theta}_{\lambda}^{\text {LASSO }}=\arg \max _{\theta}\left[-\|Y-X \theta\|_{2}^{2}-2 \lambda\|\theta\|_{1}\right]$ posterior mode of $\bar{\Pi}_{\lambda}[\cdot \mid Y]$

Posterior measure and aspects of the measure (I)

MESSAGE Full posterior measure and aspects of it may differ significantly !

$$
Y=I_{n \times n} \theta+\epsilon \quad[\text { seq.mode } l]
$$

Let $\bar{\Pi}_{\lambda} \sim \otimes_{i=1}^{p} \operatorname{Laplace}(\lambda) \quad$ [without point masses at zero]

- $\hat{\theta}_{\lambda}^{\text {LASSO }}=\arg \max _{\theta}\left[-\|Y-X \theta\|_{2}^{2}-2 \lambda\|\theta\|_{1}\right] \quad$ posterior mode of $\bar{\Pi}_{\lambda}[\cdot \mid Y]$

Lemma [C, Schmidt-Hieber, van der Vaart 15] There exists $\delta>0$ such that, as $n \rightarrow \infty$,

$$
E_{\theta^{0}=0} \bar{\Pi}_{\lambda_{n}}\left(\theta: \left.\|\theta\|_{2} \leq \delta \frac{\sqrt{n}}{\lambda_{n}} \right\rvert\, Y\right) \rightarrow 0 \quad \text { with } \lambda_{n}=\lambda_{n}^{L A S S O}=C \log n
$$

Posterior measure and aspects of the measure (I)

MESSAGE Full posterior measure and aspects of it may differ significantly !

$$
Y=I_{n \times n} \theta+\epsilon \quad[\text { seq.mode } l]
$$

Let $\bar{\Pi}_{\lambda} \sim \otimes_{i=1}^{p} \operatorname{Laplace}(\lambda) \quad$ [without point masses at zero]

- $\hat{\theta}_{\lambda}^{\text {LASSO }}=\arg \max _{\theta}\left[-\|Y-X \theta\|_{2}^{2}-2 \lambda\|\theta\|_{1}\right] \quad$ posterior mode of $\bar{\Pi}_{\lambda}[\cdot \mid Y]$

Lemma [C, Schmidt-Hieber, van der Vaart 15] There exists $\delta>0$ such that, as $n \rightarrow \infty$,

$$
E_{\theta^{0}=0} \bar{\Pi}_{\lambda_{n}}\left(\theta: \left.\|\theta\|_{2} \leq \delta \frac{\sqrt{n}}{\lambda_{n}} \right\rvert\, Y\right) \rightarrow 0 \quad \text { with } \lambda_{n}=\lambda_{n}^{L A S S O}=C \log n
$$

Note $\sqrt{n} / \log n$ suboptimal convergence rate!

Posterior measure and aspects of the measure (II)

$$
Y=I_{n \times n} \theta+\varepsilon
$$

Prior Π on θ Bayesian coin-flipping with random α and g (e.g.) the Laplace density
Consider estimation of θ under ℓ^{q} metric, $0<q \leq 2$,

$$
d_{q}\left(\theta, \theta^{\prime}\right)=\sum_{i=1}^{n}\left|\theta_{i}-\theta_{i}^{\prime}\right|^{q} .
$$

Posterior measure and aspects of the measure (II)

$$
Y=I_{n \times n} \theta+\varepsilon
$$

Prior Π on θ Bayesian coin-flipping with random α and g (e.g.) the Laplace density
Consider estimation of θ under ℓ^{q} metric, $0<q \leq 2$,

$$
d_{q}\left(\theta, \theta^{\prime}\right)=\sum_{i=1}^{n}\left|\theta_{i}-\theta_{i}^{\prime}\right|^{q} .
$$

Theorem [C, van der Vaart 12] For large enough M, as $n \rightarrow \infty$,

$$
\sup _{\theta_{0} \in \ell_{0}\left[s_{n}\right]} E_{\theta_{0}} \Pi\left[\theta: d_{q}\left(\theta, \theta_{0}\right)>M r_{n, q}^{*} \mid Y\right] \rightarrow 0
$$

- Posterior measure is rate-optimal for any $0<q \leq 2$
- Posterior mean is suboptimal (!) for $q<1$ [Johnstone, Silverman 04]
- Posterior median is rate-optimal for any $0<q \leq 2$ [Johnstone, Silverman 04], [C, van der Vaart 12]

Rates: conclusion and further topics

The previous general rate theorem applies to a variety of problems

- in i.i.d., non-i.i.d. Markov, hidden Markov, ...
- as soon as one can find a suitable testing distance d_{n}
- and verify prior-mass type conditions

Sometimes refinements can be used to tackle specific problems [e.g. more precise assumptions using similar ideas]

Other formulations/approaches are also possible: PAC Bayes, non-asymptotic versions etc.

Yet, with these techniques, unclear how to obtain results for other distances/loss functions that do not satify testing (T0)

Part III

Shape

Gaussian example

$$
\begin{aligned}
\text { E0 } \quad X \mid \theta \sim \mathcal{N}(\theta, 1)^{\otimes n} ; \quad & \theta \sim \mathcal{N}(0,1)=\Pi \\
& \Pi[\cdot \mid X]=\mathcal{N}\left(\frac{n \bar{X}_{n}}{n+1}, \frac{1}{n+1}\right)
\end{aligned}
$$

Is $\Pi[\cdot \mid X]$, after recentering and rescaling, close to $\mathcal{N}(0,1)$?

Gaussian example

$$
\text { E0 } \quad X \mid \theta \sim \mathcal{N}(\theta, 1)^{\otimes n} ; \quad \theta \sim \mathcal{N}(0,1)=\Pi
$$

$$
\Pi[\cdot \mid X]=\mathcal{N}\left(\frac{n \bar{X}_{n}}{n+1}, \frac{1}{n+1}\right)
$$

Is $\Pi[\cdot \mid X]$, after recentering and rescaling, close to $\mathcal{N}(0,1)$?

- recentering and rescaling. Set

$$
\tau_{a}: x \rightarrow \sqrt{n}(x-a)
$$

- comparing distributions. $\quad\|P-Q\|_{T V}=\sup _{A}|P(A)-Q(A)|=\frac{1}{2}\|P-Q\|_{1}$

The recentering choice $a=\bar{X}_{n}$ seems natural. Then

$$
\Pi[\cdot \mid X] \circ \tau_{\bar{X}_{n}}^{-1}=-\frac{\sqrt{n} \bar{X}_{n}}{n+1}+\sqrt{\frac{n}{n+1}} \mathcal{N}(0,1) .
$$

Gaussian example

E0 $\quad X \mid \theta \sim \mathcal{N}(\theta, 1)^{\otimes n} ; \quad \theta \sim \mathcal{N}(0,1)=\Pi$

$$
\Pi[\cdot \mid X]=\mathcal{N}\left(\frac{n \bar{X}_{n}}{n+1}, \frac{1}{n+1}\right)
$$

Set

$$
\tau_{\bar{x}_{n}}: x \rightarrow \sqrt{n}\left(x-\bar{X}_{n}\right)
$$

Proposition [convergence in Gaussian conjugate case]

$$
E_{\theta_{0}}\left\|\Pi[\cdot \mid X] \circ \tau_{\bar{x}_{n}}^{-1}-\mathcal{N}(0,1)\right\|_{T V} \rightarrow 0
$$

Exercise. Prove it.
[For instance: use $\|\cdot\|_{1}^{2} \leq K L$ and compute $K L$ distance between gaussians]

Historical example

Laplace [towards 1810] considered the setting

$$
\begin{aligned}
X \mid \theta & \sim \operatorname{Bin}(n, \theta) \\
\theta & \sim \operatorname{Unif}[0,1]=\Pi
\end{aligned}
$$

with associated posterior [a fact noted by Thomas Bayes a few decades before]

$$
\Pi[\cdot \mid X] \sim \operatorname{Beta}(X+1, n-X+1)
$$

Laplace noticed that, with $\tau_{X / n}: x \rightarrow \sqrt{n}(x-X / n)$,

$$
\Pi[\cdot \mid X] \circ \tau_{X / n}^{-1} \approx \mathcal{N}(0,1)
$$

Regular parametric models

$\mathcal{P}=\left\{P_{\theta}, \theta \in \Theta \subset \mathbb{R}^{k}\right\}$

- $d P_{\theta}(x)=p_{\theta}(x) d x, \quad \ell_{\theta}:=\log p_{\theta}$
- Suppose $\dot{\ell}_{\theta}=\partial \ell_{\theta} / \partial_{\theta}$ exists and $0<\mathcal{I}_{\theta}:=E_{\theta}\left[\dot{\ell}_{\theta} \dot{\ell}_{\theta}^{T}\right]<\infty$.

The model is locally asymptotically normal (LAN) at point $\theta_{0} \in \Theta$ if $\forall h \in \mathbb{R}^{k}$

$$
\log \prod_{i=1}^{n} \frac{p_{\theta_{\mathbf{0}}+h / \sqrt{n}}}{p_{\theta_{\mathbf{0}}}}\left(X_{i}\right)=\frac{1}{\sqrt{n}} h^{T} \sum_{i=1}^{n} \dot{\ell}_{\theta_{\mathbf{0}}}\left(X_{i}\right)-\frac{1}{2} h^{T} \mathcal{I}_{\theta_{\mathbf{0}}} h+o_{P_{\theta_{\mathbf{0}}}}(1)
$$

An estimator $\hat{\theta}=\hat{\theta}_{n}(X)$ is (asymp. linear and) efficient at θ_{0} if

$$
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)=\mathcal{I}_{\theta_{\mathbf{0}}}^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{\ell}_{\theta_{\mathbf{0}}}\left(X_{i}\right)+o_{P_{\theta_{\mathbf{0}}}}(1)
$$

Recall the notation $\tau_{\hat{\theta}}: x \rightarrow \sqrt{n}(x-\hat{\theta})$

Bernstein-von Mises, smooth parametric models

$X_{1}, \ldots, X_{n} \mid \theta \sim P_{\theta}^{\otimes n}, \theta \sim \Pi$

Theorem [Bernstein-von Mises] [Le Cam - van der Vaart] Suppose
(S) the model is LAN at θ_{0}
(T) for any $\varepsilon>0$ there exist tests ϕ_{n} with

$$
E_{\theta_{\mathbf{0}}} \phi_{n}=o(1), \sup _{\left|\theta-\theta_{\mathbf{0}}\right|>\varepsilon} E_{\theta}\left(1-\phi_{n}\right)=o(1)
$$

(P) the prior Π has a continuous positive density at θ_{0}

Then for $\hat{\theta}_{n}$ efficient estimator at θ_{0}, as $n \rightarrow \infty$,

$$
\left\|\square[\cdot \mid X] \circ \tau_{\hat{\theta}_{n}}^{-1}-\mathcal{N}\left(0, \mathcal{I}_{\theta_{0}}^{-1}\right)(\cdot)\right\|_{1} \longrightarrow 0 \quad \text { under } P_{\theta_{0}} .
$$

Bernstein-von Mises, smooth parametric models

By the Bernstein-von Mises (BvM) theorem,

$$
\left\|\Pi[\cdot \mid X] \circ \tau_{\hat{\theta}_{n}}^{-1}-\mathcal{N}\left(0, \mathcal{I}_{\theta_{0}}^{-1}\right)(\cdot)\right\|_{1} \longrightarrow 0 \quad \text { under } P_{\theta_{0}}
$$

For $\hat{\theta}$ efficient estimator, under $P_{\theta_{0}}$,

$$
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, \mathcal{I}_{\theta_{0}}^{-1}\right)
$$

This shows the remarkable 'duality', asymptotically,

$$
\begin{aligned}
\mathcal{L}^{\Pi}(\sqrt{n}(\theta-\hat{\theta}) \mid X) & \approx \quad \mathcal{L}\left(\sqrt{n}(\hat{\theta}-\theta) \mid \theta=\theta_{0}\right) \\
\text { Bayes law } & \approx \quad \text { Frequentist law }
\end{aligned}
$$

Parametric BvM implies: credible sets are confidence sets!

Suppose BvM holds for $\Theta \subset \mathbb{R}$ [dimension 1]

$$
\left\|\Pi(\cdot \mid X) \circ \tau_{\hat{\theta}}^{-1}-\mathcal{N}\left(0, \mathcal{I}_{\theta_{0}}^{-1}\right)(\cdot)\right\|_{1} \longrightarrow 0 \quad \text { under } P_{\theta_{0}}
$$

Let A_{n}, B_{n} be such that, for $\alpha=5 \%$,

$$
\Pi\left(\left(-\infty, A_{n}\right) \mid X\right)=\Pi\left(\left(B_{n},+\infty\right) \mid X\right)=\alpha / 2
$$

By definition $\Pi\left[\left(A_{n}, B_{n}\right) \mid X\right]=1-\alpha$ Credible set

Exercise. As $n \rightarrow \infty$,

$$
P_{\theta_{0}}\left[\theta_{0} \in\left(A_{n}, B_{n}\right)\right] \rightarrow 1-\alpha
$$

so that $\left(A_{n}, B_{n}\right)$ is an asymptotic confidence set at level $1-\alpha$.

So, if the parametric BvM holds, credible sets are (asymptotically) confidence sets.

BvM in Gaussian model for nonconjugate prior

As a particular case of the previous BvM theorem, we have

Proposition [BvM for nonconjugate prior in Gaussian model]. Let

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \mid \theta \sim \mathcal{N}(\theta, 1) \\
& \theta \sim \Pi
\end{aligned}
$$

with $d \Pi(\theta)=\pi(\theta) d \theta$ and π continuous and positive density on \mathbb{R}. Then

$$
\left\|\Pi[\cdot \mid X] \circ \tau_{\bar{x}_{n}}^{-1}-\mathcal{N}(0,1)(\cdot)\right\|_{1} \rightarrow^{P} 0
$$

BvM in Gaussian model for nonconjugate prior

As a particular case of the previous BvM theorem, we have

Proposition [BvM for nonconjugate prior in Gaussian model]. Let

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \mid \theta \sim \mathcal{N}(\theta, 1) \\
& \theta \sim \Pi
\end{aligned}
$$

with $d \Pi(\theta)=\pi(\theta) d \theta$ and π continuous and positive density on \mathbb{R}. Then

$$
\left\|\Pi[\cdot \mid X] \circ \tau_{\bar{x}_{n}}^{-1}-\mathcal{N}(0,1)(\cdot)\right\|_{1} \rightarrow^{P} 0
$$

Idea of proof

$$
g_{n}^{x}(u):=\frac{\exp \left(-u^{2} / 2\right) \pi\left(\bar{X}_{n}+\frac{u}{\sqrt{n}}\right)}{\int \exp \left(-u^{2} / 2\right) \pi\left(\bar{X}_{n}+\frac{u}{\sqrt{n}}\right) d u} \rightarrow \frac{\exp \left(-u^{2} / 2\right) \pi\left(\theta_{0}\right)}{\sqrt{2 \pi} \pi\left(\theta_{0}\right)}
$$

use Scheffé's lemma on event $\left\{\left|\bar{X}_{n}-\theta_{0}\right| \leq 1 / \log (n)\right\}$

Towards a nonparametric BvM?

And what about a nonparametric BvM?

Gaussian white noise model

$$
d X^{(n)}(t)=f(t) d t+\frac{1}{\sqrt{n}} d W(t) \quad t \in[0,1]
$$

- Observe a trajectory $X^{(n)}$
- $f \in L^{2}[0,1]=: L^{2}$ is unknown $=$ object of interest

Gaussian white noise model

$$
d X^{(n)}(t)=f(t) d t+\frac{1}{\sqrt{n}} d W(t) \quad t \in[0,1]
$$

- Observe a trajectory $X^{(n)}$
- $f \in L^{2}[0,1]=: L^{2}$ is unknown $=$ object of interest

$$
\begin{aligned}
\int \varphi_{k}(t) d X^{(n)}(t) & =\int \varphi_{k}(t) f(t) d t+n^{-1 / 2} \int \varphi_{k}(t) d W(t), \quad k \geq 1 \\
X_{k} & =f_{k}+n^{-1 / 2} \varepsilon_{k}, \quad k \geq 1
\end{aligned}
$$

Gaussian white noise model

$$
d X^{(n)}(t)=f(t) d t+\frac{1}{\sqrt{n}} d W(t) \quad t \in[0,1]
$$

- Observe a trajectory $X^{(n)}$
- $f \in L^{2}[0,1]=: L^{2}$ is unknown $=$ object of interest

$$
\begin{aligned}
\int \varphi_{k}(t) d X^{(n)}(t) & =\int \varphi_{k}(t) f(t) d t+n^{-1 / 2} \int \varphi_{k}(t) d W(t), \quad k \geq 1 \\
X_{k} & =f_{k}+n^{-1 / 2} \varepsilon_{k}, \quad k \geq 1
\end{aligned}
$$

Equivalently, writing $\mathbb{X}^{(n)}$ for the sequence $\left\{X_{k}, k \geq 1\right\}$,

$$
\mathbb{X}^{(n)}=f+n^{-1 / 2} \mathbb{W}
$$

Bernstein-von Mises, nonparametric ?

$$
\mathbb{X}^{(n)}=f+n^{-1 / 2} \mathbb{W}
$$

- Let Π be a prior on $f \in L^{2} \longleftrightarrow$ prior on the coordinates $f_{k}=\left\langle f, \varphi_{k}\right\rangle, k \geq 1$
- Set $\hat{f}:=E^{\Pi}\left[f \mid X^{(n)}\right]$ posterior mean

Two questions
(1) Can one find Π in such a way that

$$
\Pi\left(f-\hat{f} \mid X^{(n)}\right) \approx \mathcal{L}(\hat{f}-f \mid f) \approx \text { optimal law in some sense ? }
$$

(2) In which sense should one interpret \approx ?

Nonparametric BvMs, related work

- Negative results [Cox 93], [Freedman 99], [Leahu 11]

Let Π be a Gaussian prior on f sitting on L^{2}
A nonparametric BvM does not hold in L^{2}

- Some positive results exist for specific models/priors Mostly in cases where some form of conjugacy is present
- [Lo 80s] Consider a i.i.d. sample $X_{1}, \ldots, X_{n} \sim P$ in \mathbb{R} with c.d.f. F Dirichlet process prior on $P \rightarrow$ nonparametric-BvM for F

$$
\sqrt{n}\left(F-F_{n}\right) \mid X_{1}, \ldots, X_{n} \xrightarrow{d} \mathcal{G},
$$

in probability, with \mathcal{G} law of a P-Brownian bridge.

- [Kim and Lee 06] Neutral to the right prior on F in Survival analysis model
\rightarrow NP-BvM for A cumulative hazard function

A large enough Hilbert space

Standard Sobolev spaces For $\left\{\varphi_{k}, k \geq 1\right\}$ smooth enough orthonormal basis of L^{2}

$$
H_{2}^{s}:=\left\{f \in L^{2}([0,1]):\|f\|_{s, 2}^{2}:=\sum_{k \geq 1} k^{2 s}\left|\left\langle\varphi_{k}, f\right\rangle\right|^{2}<\infty\right\}
$$

A large enough Hilbert space

Standard Sobolev spaces $\left\{\psi_{\mathrm{k}}\right\}$ smooth enough orthonormal basis of L^{2},

$$
H_{2}^{s}:=\left\{f \in L^{2}([0,1]):\|f\|_{s, 2}^{2}:=\sum_{l \in \mathcal{L}} a_{l}^{2 s} \sum_{k \in \mathcal{Z}_{1}}\left|\left\langle\psi_{l k}, f\right\rangle\right|^{2}<\infty\right\}
$$

(1) $\left|\mathcal{Z}_{\|}\right|=1, a_{l}=\max (2,|| |) \rightarrow$ Fourier-type basis
(c) $\mathcal{L} \subset \mathbb{N}, a_{l}=\left|\mathcal{Z}_{l}\right|=2^{\prime} \quad \rightarrow$ wavelet-type basis

Negative Sobolev space: for $s \in \mathbb{R}$,

$$
H_{2}^{s} \equiv\left\{f:\|f\|_{s, 2}^{2}:=\sum_{l \in \mathcal{L}} a_{l}^{2 s} \sum_{k \in \mathcal{Z}_{l}}\left|\left\langle\psi_{l k}, f\right\rangle\right|^{2}<\infty\right\}
$$

A large enough Hilbert space H

We use 'logarithmic Sobolev spaces' to get sharp rates. For $\delta \geq 1$ and $s=-1 / 2$, let

$$
H:=H_{2}^{-1 / 2, \delta} \equiv\left\{f:\|f\|_{-1 / 2,2, \delta}^{2}:=\sum_{l \in \mathcal{L}} \frac{a_{l}^{2(-1 / 2)}}{\left(\log a_{l}\right)^{2 \delta}} \sum_{k \in \mathcal{Z}_{l}}\left|\left\langle\psi_{l k}, f\right\rangle\right|^{2}<\infty\right\}
$$

A large enough Hilbert space H

We use 'logarithmic Sobolev spaces' to get sharp rates. For $\delta \geq 1$ and $s=-1 / 2$, let

$$
H:=H_{2}^{-1 / 2, \delta} \equiv\left\{f:\|f\|_{-1 / 2,2, \delta}^{2}:=\sum_{l \in \mathcal{L}} \frac{a_{l}^{2(-1 / 2)}}{\left(\log a_{l}\right)^{2 \delta}} \sum_{k \in \mathcal{Z}_{l}}\left|\left\langle\psi_{l k}, f\right\rangle\right|^{2}<\infty\right\}
$$

- $\mathbb{X}^{(n)}=f+\frac{1}{\sqrt{n}} \mathbb{W}$ white noise model in H
- Note that \mathbb{W} a.s. belong to H (as well as $\left.\mathbb{X}^{(n)}, f\right)$, as

$$
E\|\mathbb{W}\|_{-1 / 2,2, \delta}^{2}=\sum_{l \in \mathcal{L}} a_{l}^{-1}\left(\log a_{l}\right)^{-2 \delta} \sum_{k \in \mathcal{Z}_{l}} E g_{l k}^{2}<\infty .
$$

[This implies that \mathbb{W} takes values in H a.s. and is tight in H]
\mathbb{W} is a centered Gaussian measure on H with $E \mathbb{W}(g) \mathbb{W}(h)=\langle g, h\rangle \forall f, g \in L^{2}$.

A large enough Hilbert space H

We use 'logarithmic Sobolev spaces' to get sharp rates. For $\delta \geq 1$ and $s=-1 / 2$, let

$$
H:=H_{2}^{-1 / 2, \delta} \equiv\left\{f:\|f\|_{-1 / 2,2, \delta}^{2}:=\sum_{l \in \mathcal{L}} \frac{a_{l}^{2(-1 / 2)}}{\left(\log a_{l}\right)^{2 \delta}} \sum_{k \in \mathcal{Z}_{l}}\left|\left\langle\psi_{l k}, f\right\rangle\right|^{2}<\infty\right\}
$$

- $\mathbb{X}^{(n)}=f+\frac{1}{\sqrt{n}} \mathbb{W}$ white noise model in H
- Note that \mathbb{W} a.s. belong to H (as well as $\mathbb{X}^{(n)}, f$), as

$$
E\|\mathbb{W}\|_{-1 / 2,2, \delta}^{2}=\sum_{l \in \mathcal{L}} a_{l}^{-1}\left(\log a_{l}\right)^{-2 \delta} \sum_{k \in \mathcal{Z}_{l}} E g_{l k}^{2}<\infty .
$$

[This implies that \mathbb{W} takes values in H a.s. and is tight in H]
\mathbb{W} is a centered Gaussian measure on H with $E \mathbb{W}(g) \mathbb{W}(h)=\langle g, h\rangle \forall f, g \in L^{2}$.

- Denote by \mathcal{N} the law of \mathbb{W} as a r.v. in H [limiting non-parametric distribution]

Weak nonparametric BvM, definition

$$
\mathbb{X}^{(n)}=f+\frac{1}{\sqrt{n}} \mathbb{W}
$$

- Let Π prior on $f \in L^{2} \subset H$. Let $\Pi_{n}=\Pi\left(\cdot \mid \mathbb{X}^{(n)}\right)$ be the posterior distribution on H.

Weak nonparametric BvM, definition

$$
\mathbb{X}^{(n)}=f+\frac{1}{\sqrt{n}} \mathbb{W}
$$

- Let Π prior on $f \in L^{2} \subset H$. Let $\Pi_{n}=\Pi\left(\cdot \mid \mathbb{X}^{(n)}\right)$ be the posterior distribution on H.
- Denote $\tau: f \mapsto \sqrt{n}\left(f-\mathbb{X}^{(n)}\right)$ and $\Pi_{n} \circ \tau^{-1}$ be the rescaled posterior.

Weak nonparametric BvM, definition

$$
\mathbb{X}^{(n)}=f+\frac{1}{\sqrt{n}} \mathbb{W}
$$

- Let Π prior on $f \in L^{2} \subset H$. Let $\Pi_{n}=\Pi\left(\cdot \mid \mathbb{X}^{(n)}\right)$ be the posterior distribution on H.
- Denote $\tau: f \mapsto \sqrt{n}\left(f-\mathbb{X}^{(n)}\right)$ and $\Pi_{n} \circ \tau^{-1}$ be the rescaled posterior.
- Let β be the bounded Lipschitz metric for weak cv. of probability measures on H

$$
\beta(\mu, \nu)=\sup _{u \in B L(1)}\left|\int_{S} u(s)(d \mu-d \nu)(s)\right|
$$

Weak nonparametric BvM, definition

$$
\mathbb{X}^{(n)}=f+\frac{1}{\sqrt{n}} \mathbb{W}
$$

- Let Π prior on $f \in L^{2} \subset H$. Let $\Pi_{n}=\Pi\left(\cdot \mid \mathbb{X}^{(n)}\right)$ be the posterior distribution on H.
- Denote $\tau: f \mapsto \sqrt{n}\left(f-\mathbb{X}^{(n)}\right)$ and $\Pi_{n} \circ \tau^{-1}$ be the rescaled posterior.
- Let β be the bounded Lipschitz metric for weak cv. of probability measures on H

$$
\beta(\mu, \nu)=\sup _{u \in B L(1)}\left|\int_{S} u(s)(d \mu-d \nu)(s)\right|
$$

Definition The prior Π satisfies the weak Bernstein - von Mises phenomenon in H if

$$
\beta\left(\Pi_{n} \circ \tau^{-1}, \mathcal{N}\right) \rightarrow^{P_{f_{0}}^{n}} 0, \quad(n \rightarrow \infty)
$$

Product priors and γ-smooth functions

Consider priors of the form

$$
\Pi \sim \bigotimes_{l, k} \pi_{l k}
$$

- defined on the coordinates of the basis $\left\{\psi_{l k}\right\}$, with
- $\pi_{l k}$ probability measures with Lebesgue density $\varphi_{I k}$ on \mathbb{R}.
- Further assume, for some fixed density φ,

$$
\varphi_{I_{k}}(\cdot)=\frac{1}{\sigma_{l}} \varphi\left(\frac{\cdot}{\sigma_{l}}\right) \quad \forall k \in \mathcal{Z}_{l} \quad \text { with } \sigma_{l}>0 .
$$

For instance, to model γ-smooth functions, take $\sigma_{l}=2^{-l(\gamma+1 / 2)}$ and set, with $g_{l k} \sim \varphi$,

$$
G_{\gamma}=\sum_{l} \sum_{k \in \mathcal{Z}_{l}} 2^{-l(\gamma+1 / 2)} g_{l_{k}} \psi_{\mid k}, \quad \gamma>0
$$

Main theorem - Condition (P)

Denote $f_{0, k}=\left\langle f_{0}, \psi_{l k}\right\rangle$ the coordinates of the true f_{0} on basis $\left\{\psi_{l k}\right\}$.
Suppose that for some $M>0$,

$$
(\mathbf{P} 1) \quad \sup _{I, k}\left|f_{0, l k}\right| / \sigma_{I} \leq M
$$

Suppose also that φ is bounded and that for some $\tau>M, c_{\varphi}>0$,

$$
\text { (P2) } \quad \varphi(x) \geq c_{\varphi} \quad \forall x \in(-\tau, \tau), \quad \int_{\mathbb{R}} x^{2} \varphi(x) d x<\infty
$$

For the previous wavelet prior, (P1) asks for

$$
\left|f_{0, l k}\right| \leq M 2^{-I(\gamma+1 / 2)} \quad \forall I, k \quad \Longleftrightarrow \quad f_{0} \in \mathcal{C}^{\gamma}
$$

Main theorem in white noise [C. and Nickl 13]

Theorem [Weak nonparametric BvM in H]
Any product prior Π and f_{0} satisfying Conditions (P) verify the weak Bernstein-von Mises phenomenon in H,

$$
\beta\left(\Pi\left(\cdot \mid X^{(n)}\right) \circ \tau^{-1}, \mathcal{N}\right) \rightarrow P_{f_{0}}^{P_{0}} 0
$$

Moreover the posterior mean $\hat{f}_{n}=E^{\Pi}\left[f \mid X^{(n)}\right]$ is efficient in the sense that

$$
\left\|\hat{f}_{n}-\mathbb{X}^{(n)}\right\|_{H}=o_{P}(1 / \sqrt{n})
$$

Nonparametric BvM: Note on weak convergence

Unlike in total variation convergence one does not have uniformity in all Borel sets B in

$$
\left|\Pi(\cdot \mid X) \circ \tau_{T}^{-1}(B)-\mathcal{N}(B)\right| \rightarrow \rightarrow_{f_{0}}^{P_{0}^{n}} 0 .
$$

One does have uniformity in all sets that have a uniformly smooth boundary for the probability measure \mathcal{N}.

In particular uniformity holds for all $\|\cdot\|_{\mu}$-balls

$$
\left\{B_{H}(0, t): 0<t \leq M\right\}
$$

Application: Credible ellipsoids

Suppose the weak BvM theorem holds for Π.

A natural $(1-\alpha)$-credible set is then obtained by solving for $R_{n}=R_{n}\left(\alpha, X^{(n)}\right)$ such that

$$
\Pi\left(C_{n} \mid X^{(n)}\right)=1-\alpha, \text { where } C_{n}=\left\{f:\left\|f-\mathbb{X}^{(n)}\right\|_{H} \leq R_{n} / \sqrt{n}\right\}
$$

C_{n} is the smallest ball around $\mathbb{X}^{(n)}$ charged by the posterior with probability $1-\alpha$.

Theorem [Elliptical Credible set C_{n}]
The random set C_{n} has confidence $1-\alpha$ asymptotically in that

$$
P_{f_{0}}^{n}\left(f_{0} \in C_{n}\right) \rightarrow 1-\alpha \text { and } R_{n}=O_{P}(1)
$$

Application: BvM and Credible sets for smooth functionals

- Linear functionals, for $g_{L} \in H_{2}^{s}, s>1 / 2$,

$$
L: f \rightarrow \int_{0}^{1} f(t) g_{L}(t) d t
$$

Application: BvM and Credible sets for smooth functionals

- Linear functionals, for $g_{L} \in H_{2}^{\varsigma}, s>1 / 2$,

$$
L: f \rightarrow \int_{0}^{1} f(t) g_{L}(t) d t
$$

- Smooth nonlinear functionals, e.g.

$$
f \rightarrow \int_{0}^{1} f^{2}(t) d t, \quad f_{0} \in \mathcal{C}^{\beta}, \beta>1 / 2
$$

- Self-convolutions of 1 -periodic functions

$$
f \rightarrow f * f
$$

Leads to BvM for these functionals
Deduce confident credible sets by taking quantiles of the induced posterior

Application: Confidence sets in L^{2}, uniform priors

Application: Confidence sets in L^{2}, uniform priors

 Consider first the special case of a uniform wavelet prior Π on $L^{2}$$$
U_{\gamma, M}=\sum_{l, k} 2^{-I(\gamma+1 / 2)} u_{l k} \psi_{l k}(\cdot), \quad u_{l k} \sim \mathcal{U}[-M, M] \text { i.i.d. }
$$

Such priors model functions in a Hölder ball of radius M, with posteriors Π_{n} contracting about f_{0} at the L^{2}-minimax rate $n^{-\gamma /(2 \gamma+1)}$ within log factors if $\left\|f_{0}\right\|_{\gamma, \infty} \leq M$.

It is natural to intersect the ellipsoid credible set C_{n} with the Hölderian support of Π

$$
C_{n}^{\prime}=\left\{f:\left\|f-\hat{f}_{n}\right\|_{H} \leq R_{n} / \sqrt{n}, \quad\|f\|_{\gamma, \infty} \leq M\right\}
$$

Application: Confidence sets in L^{2}, uniform priors

Consider first the special case of a uniform wavelet prior Π on L^{2}

$$
U_{\gamma, M}=\sum_{l, k} 2^{-I(\gamma+1 / 2)} u_{l k} \psi_{l k}(\cdot), \quad u_{l k} \sim \mathcal{U}[-M, M] \text { i.i.d. }
$$

Such priors model functions in a Hölder ball of radius M, with posteriors Π_{n} contracting about f_{0} at the L^{2}-minimax rate $n^{-\gamma /(2 \gamma+1)}$ within log factors if $\left\|f_{0}\right\|_{\gamma, \infty} \leq M$.

It is natural to intersect the ellipsoid credible set C_{n} with the Hölderian support of Π

$$
C_{n}^{\prime}=\left\{f:\left\|f-\hat{f}_{n}\right\|_{H} \leq R_{n} / \sqrt{n}, \quad\|f\|_{\gamma, \infty} \leq M\right\}
$$

Proposition [Confidence sets for uniform product priors]

$$
\Pi\left(C_{n}^{\prime} \mid X^{(n)}\right)=1-\alpha, \quad P_{f_{0}}^{n}\left(f_{0} \in C_{n}^{\prime}\right) \rightarrow 1-\alpha
$$

and the L^{2}-diameter $\left|C_{n}^{\prime}\right|_{2}$ of C_{n}^{\prime} satisfies, for some $\kappa>0$,

$$
\left|C_{n}^{\prime}\right|_{2}=O_{P}\left(n^{-\gamma /(2 \gamma+1)}(\log n)^{\kappa}\right)
$$

Application: Confidence sets in L^{2}, general product priors Consider more generally, if $f_{0} \in \mathcal{C}^{\gamma}$,

$$
G_{\gamma}=\sum_{l, k} 2^{-I(\gamma+1 / 2)} g_{l k} \psi_{l k}(\cdot), \quad g_{l k} \sim \text { i.i.d. } \varphi
$$

Let $\delta>0$ arbitrary. Let, for $\|\cdot\|_{\gamma, 2,1}$ the γ-Sobolev norm with log correction,

$$
C_{n}^{\prime \prime}=\left\{f:\left\|f-\hat{f}_{n}\right\|_{H} \leq R_{n} / \sqrt{n}, \quad\|f\|_{\gamma, 2,1} \leq M_{n}+4 \delta\right\}
$$

where M_{n} is defined as a 'quantile' for the γ-norm

Application: Confidence sets in L^{2}, general product priors

Consider more generally, if $f_{0} \in \mathcal{C}^{\gamma}$,

$$
G_{\gamma}=\sum_{I, k} 2^{-l(\gamma+1 / 2)} g_{l k} \psi_{l k}(\cdot), \quad g_{l k} \sim \text { i.i.d. } \varphi
$$

Let $\delta>0$ arbitrary. Let, for $\|\cdot\|_{\gamma, 2,1}$ the γ-Sobolev norm with log correction,

$$
C_{n}^{\prime \prime}=\left\{f:\left\|f-\hat{f}_{n}\right\|_{H} \leq R_{n} / \sqrt{n}, \quad\|f\|_{\gamma, 2,1} \leq M_{n}+4 \delta\right\}
$$

where M_{n} is defined as a 'quantile' for the γ-norm: for any n and $\delta_{n}=(\log n)^{-1 / 4}$,

$$
M_{n}=\inf \left\{M>0: \quad \Pi_{n}\left(f:\left|\|f\|_{\gamma, 2,1}-M\right| \leq \delta\right) \geq 1-\delta_{n}\right\},
$$

Proposition [Confidence sets for general product priors]

$$
\begin{gathered}
P_{f_{0}}^{n}\left(f_{0} \in C_{n}^{\prime \prime}\right) \rightarrow 1-\alpha, \quad \Pi\left(C_{n}^{\prime \prime} \mid X^{(n)}\right)=1-\alpha+o_{P}(1) \\
\left|C_{n}^{\prime \prime}\right|_{2}=O_{P}\left(n^{-\gamma /(2 \gamma+1)}(\log n)^{\kappa}\right)
\end{gathered}
$$

Nonparametric BvMs in white noise, further questions

- Adaptation

Prior on regularity α [Kolyan Ray] \rightarrow one obtains e.g. adaptive confidence regions (modulo expected appropriate restrictions)

Nonparametric BvMs in white noise, further questions

- Adaptation

Prior on regularity α [Kolyan Ray] \rightarrow one obtains e.g. adaptive confidence regions (modulo expected appropriate restrictions)

- How about, still in the white noise model, getting confidence sets for a different norm, for instance the L^{∞}-norm instead of L^{2} ?

Nonparametric BvMs in white noise, further questions

- Adaptation

Prior on regularity α [Kolyan Ray] \rightarrow one obtains e.g. adaptive confidence regions (modulo expected appropriate restrictions)

- How about, still in the white noise model, getting confidence sets for a different norm, for instance the L^{∞}-norm instead of L^{2} ?

This is possible, provided one slightly changes the definition of the large space H

Replace Hilbert space H ($=L^{2}$ structure)
\rightarrow with some Besov-type space \mathcal{M} (with norm related to L^{∞}-structure)

The density model

$$
X_{1}, \ldots, X_{n} \text { i.i.d. } \sim P \text { with } d P=f d \mu, f \text { unknown density on }[0,1] .
$$

The density model

$$
X_{1}, \ldots, X_{n} \text { i.i.d. } \sim P \text { with } d P=f d \mu, f \text { unknown density on }[0,1] .
$$

Two examples of prior distributions Π on β-smooth densities
(1) Random histograms

$$
\begin{aligned}
f(x) & =2^{L} \sum_{k=0}^{2^{L}-1} h_{k} \mathbb{1}_{\left(k 2^{-L},(k+1) 2^{-L}\right)}(x), \quad 2^{L}=2^{L_{n}}=n^{\frac{1}{1+2 \beta}} \\
h=\left(h_{1}, \ldots, h_{L}\right) & \sim \operatorname{Dirichlet}(1, \ldots, 1)
\end{aligned}
$$

(2) Log-density priors

$$
\begin{aligned}
& f(x)=\frac{e^{Z(x)}}{\int_{0}^{1} e^{Z(u)} d u} \\
& Z(x)=\sum_{l=0}^{L} \sum_{k} \sigma_{l} \alpha_{l k} \psi_{l k}(x), \quad 2^{L}=2^{L_{n}}=n^{\frac{1}{1+2 \beta}}
\end{aligned}
$$

with (e.g.) $\sigma_{I}=2^{-I \beta}$ and $\alpha_{l k} \sim N(0,1)$ i.i.d.

The density model
(3) Pólya trees

- $P\left(I_{\varepsilon_{1} \ldots \varepsilon_{k}}\right)=V_{\varepsilon_{1}} V_{\varepsilon_{1} \varepsilon_{2}} \cdots V_{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{k}}$ and $V_{\varepsilon 1}=1-V_{\varepsilon 0}$
- $V_{\varepsilon 0} \sim \operatorname{Beta}\left(\alpha_{\varepsilon 0}, \alpha_{\varepsilon 1}\right)$
- Take

$$
\alpha_{\varepsilon}=a_{l}, \quad \text { for all } \varepsilon \text { with }|\varepsilon|=I,
$$

- with

$$
\alpha_{l}=2^{21 / \beta}
$$

NP BvM: Natural limiting distribution (\square)

$$
X_{1}, \ldots, X_{n} \text { i.i.d. } \sim P \text { with } d P=f d \mu
$$

Suppose one wants to estimate $P \psi_{I k}=\left\langle f, \psi_{\text {Ik }}\right\rangle$.
Natural estimator is $P_{n} \psi_{l k}=\frac{1}{n} \sum_{i=1}^{n} \psi_{l k}\left(X_{i}\right)$

NP BvM: Natural limiting distribution (\square)

$$
X_{1}, \ldots, X_{n} \text { i.i.d. } \sim P \text { with } d P=f d \mu
$$

Suppose one wants to estimate $P \psi_{l k}=\left\langle f, \psi_{\text {Ik }}\right\rangle$.
Natural estimator is $P_{n} \psi_{l k}=\frac{1}{n} \sum_{i=1}^{n} \psi_{l k}\left(X_{i}\right)$
Under true $P_{0}=P_{f_{0}}$,

$$
\sqrt{n}\left(P_{n}-P_{0}\right) \psi_{l k} \xrightarrow{d} \mathbb{G}_{P_{0}}\left(\psi_{l k}\right),
$$

where, for any I, k,

$$
\mathbb{G}_{P_{0}}\left(\psi_{k_{k}}\right) \sim N\left(0,\left\|\psi_{{ }_{k}}-E_{P_{0}} \psi_{{ }_{k}}(X)\right\|_{2, P_{0}}^{2}\right)
$$

\rightarrow natural limiting distribution $(\square)=\mathbb{G}_{P_{0}}, P_{0}$-white 'bridge'

NP BvM, the convergence $\stackrel{? ?}{\rightarrow}$: a large enough space \mathcal{M}_{0}

Let w_{l} sequence such that $w_{l} / \sqrt{l} \uparrow \infty$. Call this admissible sequence.

$$
\begin{gathered}
\mathcal{M}:=\mathcal{M}(w)=\left\{f=\left\{\left\langle f, \psi_{\left.l_{k}\right\rangle}\right\rangle, \quad \sup _{l} \max _{k} \frac{\left|\left\langle f, \psi_{k k}\right\rangle\right|}{w_{l}}<\infty\right\}\right. \\
\mathcal{M}_{0}:=\mathcal{M}_{0}(w)=\left\{f=\left\{\left\langle f, \psi_{\left.l_{k}\right\rangle}\right\rangle, \quad \lim _{l \rightarrow \infty} \max _{k} \frac{\left|\left\langle f, \psi_{\mid k}\right\rangle\right|}{w_{l}}=0\right\}\right.
\end{gathered}
$$

\mathcal{M}_{0} is a closed separable subspace of \mathcal{M}.

Lemma The process $\mathbb{G}_{P_{0}}$ a.s. belong to $\mathcal{M}_{0}=\mathcal{M}_{0}(w)$ for any admissible w.

$$
\text { Remarks • } L^{2} \subset \mathcal{M}_{0} \text { - } \mathbb{G}_{p_{0}} \text { has (Besov)-regularity essentially }-1 / 2
$$

Nonparametric BvM in space \mathcal{M}_{0} [C. and Nickl 14]

Let $\tau_{T_{n}}: f \rightarrow \sqrt{n}\left(f-T_{n}\right)$ for some centering sequence T_{n}.

Definition The prior Π with posterior $\Pi_{n}=\Pi(\cdot \mid X)$ satisfies the weak $B v M$ in \mathcal{M}_{0} with centering T_{n} if

$$
\Pi_{n} \circ \tau_{\tau_{n}}^{-1} \xrightarrow{d} \mathbb{G}_{P_{0}}
$$

Nonparametric BvM in space \mathcal{M}_{0} [C. and Nickl 14]

Let $\tau_{T_{n}}: f \rightarrow \sqrt{n}\left(f-T_{n}\right)$ for some centering sequence T_{n}.

Definition The prior Π with posterior $\Pi_{n}=\Pi(\cdot \mid X)$ satisfies the weak BvM in \mathcal{M}_{0} with centering T_{n} if

$$
\beta_{\mathcal{M}_{0}}\left(\Pi_{n} \circ \tau_{T_{n}}^{-1}, \mathbb{G}_{P_{0}}\right) \rightarrow^{P_{0}} 0 \quad(n \rightarrow \infty)
$$

Nonparametric BvM in space $\mathcal{M}_{0} \quad$ [C. and Nickl 14]

Let $\tau_{T_{n}}: f \rightarrow \sqrt{n}\left(f-T_{n}\right)$ for some centering sequence T_{n}.

Definition The prior Π with posterior $\Pi_{n}=\Pi(\cdot \mid X)$ satisfies the weak BvM in \mathcal{M}_{0} with centering T_{n} if

$$
\beta_{\mathcal{M}_{0}}\left(\Pi_{n} \circ \tau_{T_{n}}^{-1}, \mathbb{G}_{P_{0}}\right) \rightarrow^{P_{0}} 0 \quad(n \rightarrow \infty)
$$

Theorem [Weak BvM for first two examples of priors] Let $f_{0} \in \mathcal{C}^{\beta}$ for some $\beta>1 / 2$. Let Π be either the histogram prior $(1 / 2<\beta \leq 1)$ or the log-density prior $(\beta>1)$. Then for admissible w

$$
\beta_{\mathcal{M}_{0}(w)}\left(\Pi(\cdot \mid X) \circ \tau_{T_{n}}^{-1}, \mathbb{G}_{P_{0}}\right) \rightarrow 0
$$

with centering $T_{n}=P_{n}\left(L_{n}\right)$ defined by

$$
\left\langle P_{n}\left(L_{n}\right), \psi_{l k}\right\rangle= \begin{cases}\left\langle P_{n}, \psi_{l k}\right\rangle & \text { if } 2^{\prime} \leq 2_{n}^{L}=n^{\frac{1}{1+2 \beta}} \\ 0 & \text { if } 2^{\prime}>2_{n}^{L},\end{cases}
$$

Nonparametric BvM for Pólya trees [C 16]

Theorem [nonparametric BvM for the Pólya trees]
Let $f_{0} \in \mathcal{C}^{\beta}$ for $\beta \in(0,1]$ and suppose $\left\|\log f_{0}\right\|_{\infty}<\infty$. Let Π Pólya tree prior with

$$
\alpha_{\varepsilon}=a_{l}=2^{2 / \beta}, \quad \text { any }|\varepsilon|=I, \quad I \geq 0
$$

Then for admissible w

$$
\beta_{\mathcal{M}_{0}(w)}\left(\Pi(\cdot \mid X) \circ \tau_{T_{n}}^{-1}, \mathbb{G}_{P_{0}}\right) \rightarrow 0
$$

with centering $T_{n}=P_{n}\left(L_{n}\right)$ defined by, for P_{n} the empirical measure,

$$
\left\langle P_{n}\left(L_{n}\right), \psi_{l k}\right\rangle= \begin{cases}\left\langle P_{n}, \psi_{l k}\right\rangle & \text { if } 2^{\prime} \leq 2_{n}^{L}=n^{\frac{1}{1+2 \beta}} \\ 0 & \text { if } 2^{\prime}>2_{n}^{L},\end{cases}
$$

More generally can also consider mismatched regularity $\alpha \neq \beta$

Applications

- By the continuous mapping theorem, from BvM in \mathcal{M}_{0} one can deduce limiting shape results for continuous functionals

$$
\begin{aligned}
& \psi: f \\
& \rightarrow \\
& \mathcal{M}_{0} \rightarrow \\
& \rightarrow(f) \\
&
\end{aligned}
$$

Applications

- By the continuous mapping theorem, from BvM in \mathcal{M}_{0} one can deduce limiting shape results for continuous functionals

$$
\begin{aligned}
\psi: & f \\
& \rightarrow \\
\mathcal{M}_{0} & \rightarrow \\
& \rightarrow(f) \\
&
\end{aligned}
$$

- Nonparametric confidence bands [of fixed regularity]

The nonparametric BvM in \mathcal{M}_{0} leads to

- confident credible balls in \mathcal{M}_{0} [of size $1 / \sqrt{n}$]
- Further inserting it with a 'regularity constraint', [Rate of the order 1 in \mathcal{C}^{α}]
- it leads to L^{∞} confidence bands of minimax diameter

Application 3. Donsker's theorem for posterior distributions

Define, for a density f and a centering sequence T_{n},

$$
F(t):=\int_{0}^{t} f(u) d u, \quad \mathbb{T}_{n}:=\int_{0}^{t} T_{n}(u) d u .
$$

Application 3. Donsker's theorem for posterior distributions

Define, for a density f and a centering sequence T_{n},

$$
F(t):=\int_{0}^{t} f(u) d u, \quad \mathbb{T}_{n}:=\int_{0}^{t} T_{n}(u) d u
$$

Theorem [Donsker's theorem for posterior on F]
Suppose Π satisfies weak $B v M$ in $\mathcal{M}_{0}(w)$ with centering $T_{n} \in L^{2}$ and $\sum_{l} w_{l} 2^{-1 / 2}<\infty$. Let $\mu_{\mathbb{T}_{n}}: f \rightarrow \sqrt{n}\left(F-\mathbb{T}_{n}\right)$. Then

$$
\beta_{C^{0}[0,1]}\left(\Pi(\cdot \mid X) \circ \mu_{\mathbb{T}_{n}}^{-1}, \mathcal{G}\right) \rightarrow^{P_{0}} 0
$$

with \mathcal{G} the law of a P_{0}-Brownian bridge G, as well as

$$
\beta_{\mathbb{R}}\left(\mathcal{L}\left(\sqrt{n}\left\|F-\mathbb{T}_{n}\right\|_{\infty} \mid X\right), \mathcal{L}\left(\|G\|_{\infty}\right)\right) \rightarrow^{P_{0}} 0
$$

Corollary. The previous examples of priors satisfy a BvM for F with centering \mathbb{T}_{n}. An extra argument shows that the 'standard' centering F_{n} can be used as well.

Multiscale BvM and beyond

It can be useful to decompose the study of posterior on f

$$
f \quad \longleftrightarrow\left\langle f, \psi_{l k}\right\rangle
$$

into a collection of semiparametric functionals

- NP BvM in \mathcal{M}_{0} : A key step in the proof is to prove

$$
E\left[\left\|f-T_{n}\right\|_{\mathcal{M}_{0}} \mid X\right]=O_{P_{0}}(1 / \sqrt{n})
$$

Based on decomposition of the \mathcal{M}_{0}-norm along $\left\langle f, \psi_{l k}\right\rangle$
Also need asymptotic gaussianity to check cv. of finite-dimensional distributions

- This idea can also be used for stronger distances e.g. $\|\cdot\|_{\infty}$ [C. 14]

Rates: multiscale approach

Given a function f and a wavelet basis $\left\{\psi_{l k}\right\}$, consider the mapping

$$
f \rightarrow\left\langle f, \psi_{l k}\right\rangle_{2}
$$

- can be viewed as a semiparametric functional
- the collection over all I, k enables to reconstruct f

Rates: multiscale approach

Given a function f and a wavelet basis $\left\{\psi_{l k}\right\}$, consider the mapping

$$
f \rightarrow\left\langle f, \psi_{l k}\right\rangle_{2}
$$

- can be viewed as a semiparametric functional
- the collection over all I, k enables to reconstruct f

For localised wavelet bases $\left\{\psi_{1 k}\right\}$ (think of the Haar basis) $\sum_{k=0}^{2^{\prime}-1}\left\|\psi_{I k}\right\|_{\infty} \leq C 2^{1 / 2}$.

$$
\left\|f-f_{0}\right\|_{\infty} \lesssim \sum_{l} 2^{1 / 2} \max _{0 \leq k \leq 2^{\prime}-1}\left|\left\langle f-f_{0}, \psi_{\mid k}\right\rangle_{2}\right|
$$

Various regimes may appear for the functionals $f \rightarrow\left\langle f, \psi_{l k}\right\rangle_{2}$

- 'Small l' \rightarrow BvM-type regime
- 'Large l' The prior mostly takes over

Have to study the functionals simultaneously

Rates via multiscale, examples

Consider the density estimation model. Set $\varepsilon_{n, \alpha}^{*}=(n / \log n)^{-\alpha /(2 \alpha+1)}, \alpha>0$
Example Let $\sigma_{l}=2^{-l\left(\alpha+\frac{1}{2}\right)}, \alpha_{l k} \sim$ Laplace(1) i.i.d., $L_{n}=n^{1 /(2 \alpha+1)}$,

$$
\Pi_{1}: \quad f=\frac{e^{T}}{\int_{0}^{1} e^{T}}, \quad \text { with } T(\cdot)=\sum_{l=0}^{L_{n}} \sum_{k=0}^{2^{\prime}-1} \sigma_{l \alpha_{l k}} \psi_{l k}(\cdot)
$$

Theorem [C 14] Let f_{0} be Hölder $\alpha>1$ and bounded away from 0 and ∞ on $[0,1]$. For any $M_{n} \rightarrow \infty$,

$$
E_{f_{0}} \Pi_{1}\left[f:\left\|f-f_{0}\right\|_{\infty} \leq M_{n} \varepsilon_{n, \alpha}^{*} \mid X^{(n)}\right] \rightarrow 1
$$

A similar result holds for the Pólya tree prior with $a_{l}=I 2^{2 / \beta}$ and $\alpha \leq 1$ [C 16]

Conclusion

Conclusion

- Bayesian approach is useful to suggest estimators
- Allows to naturally integrate hyperparameters via hierarchies cf. adaptation
- We have presented tools which enable to guarantee convergence properties under $E_{\theta_{0}}$

Future work

- Construction of priors and convergence in high-dimensional problems, semiparametrics, inverse problems etc.
- Machine learning: numerous interesting priors considered, few theoretical studies of convergence
- Much to do in terms of
- limiting shape results
- confident credible sets

Thank you!

