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ABSTRACT. The general relation between Chekhov–Eynard–Orantin topological recursion and the intersec-
tion theory on the moduli space of curves, the deformation techniques in topological recursion, and the poly-
nomiality dependency of its deformation parameters can be combined to derive vanishing relations involv-
ing intersection indices of tautological classes. We apply this strategy to three different families of spectral
curves and show they give vanishing relations for integrals involvingΩ-classes. The first class of vanishing
relations are genus-independent and generalises the vanishings found by Johnson–Pandharipande–Tseng
[JPT11] and by the authors jointly with Do and Moskovsky [BDK+22]. The two other class of vanishing
relations are of a different nature and depend on the genus.
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1. INTRODUCTION

1.1. Background: intersection theory and topological recursion. The Ω-classes Ω(r,s)
g;a1,...,an are gener-

alisations of the Hodge class on the moduli space of complex curves Mg,n, depending on integer pa-
rameters (r, s) ∈ Z>0 × Z and a1, . . . ,an ∈ Z. They were introduced by Mumford for s = 1 and r = 1
[Mum83], by Bini [Bin03] for generic s and r = 1, by Chiodo [Chi08] in general, and enjoy many inter-
esting properties. In particular, they form a cohomological field theory, i.e. they are compatible with
the boundary structure of the moduli spaces [LPSZ17]. They appear in the enumerative geometry of
branched coverings over P1, aka Hurwitz theory, as well as in Masur–Veech volumes strata of the mod-
uli of quadratic differentials [CMS23]. More precisely, the pioneering work of Ekedahl–Lando–Shapiro–
Vainshtein [ELSV01] gave a formula for simple Hurwitz numbers via intersection indices of the Hodge
class, and this was generalised to a subclass of double Hurwitz numbers by Johnson–Pandharipande–
Tseng [JPT11] involving virtual localisation on the moduli space of stable maps to an orbifold P1. Later,
ELSV-type formulae have been found for many other types of weighted Hurwitz numbers. In par-
ticular, the Hurwitz number of type “s-orbifold with (d + 1)-completed cycles” can be expressed via
intersection indices ofΩ(ds,s) [KLPS19, BKL+20, DBKPS23].

Topological recursion [EO07] is a procedure that takes a spectral curve S (i.e. a fixed branched cover
of complex curves) as input and gives a collection ωg,n of multidifferentials on Sn indexed by (g,n) ∈
Z>0 × Z>0, called correlators, as output. For appropriate choices of spectral curves the resulting cor-
relators store enumerative information, and since its formalisation by Chekhov, Eynard and Orantin,
the structure of topological recursion has appeared ubiquitous in enumerative geometry [Eyn14b]. In
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the present context there are two results of central importance. First, after the efforts of many, lead-
ing to the treatment of several special cases [EMS11, DLN16, BSLM14, DM14, DDM17, DK16, Lew18,
DBKPS19, DK18, BDK+22, BKW23], weighted Hurwitz numbers have been shown to be quite generally
governed by topological recursion [ACEH20, BDBKS20]. Second, the coefficients of theωg,n can always
be expressed as intersection theory of a tautological class on Mg,n, which can be constructed from the
spectral curve and which we call the TR class [Eyn14a], see e.g. [BKS23, Section 7] for a review. The
ELSV and JPT formulae originally obtained via algebraic geometry have a second proof by combining
these two results [DBLPS15], but for other ELSV-like formulae the path through topological recursion
remains the only available proof to this day, e.g.

• Topological recursion for weakly monotone Hurwitz numbers [DDM17, DK16] implies a for-
mula for these numbers in terms of intersection indices of κ-classes [DK16, ALS16];
• Zvonkine’s conjecture [Zvo06, SSZ15] proved in [BKL+20, DBKPS23]: “s-orbifold, (d + 1)-

completed cycles” in terms of intersection indices of the classΩ(ds,s).
• The generalisation of the JPT formula proved in [BDK+22]: all double Hurwitz numbers in

terms of the classesΩ(r,r).

An interesting feature of topological recursion is the possibility it offers to study deformations, which
are controlled by global properties of families of spectral curves. This was applied in [BDK+22] to derive
an ELSV-like formula for double Hurwitz numbers by realising them as deformations of s-orbifold
Hurwitz numbers and following this deformation through the topological recursion procedure. Double
Hurwitz numbers are not just numbers, but rather polynomials in a finite set of variables, such that
each monomial keeps track of covers with a different ramification profile above ∞. The deformation
in the context of topological recursion produces double Hurwitz numbers as Laurent polynomials with
coefficients being intersection indices of the class Ω(s,s). This means that all the coefficients in front
of negative powers should vanish. As a result, this has produced vanishing relations for intersection
indices, which generalise the ones found by Johnson–Pandharipande–Tseng [JPT11].

1.2. Main results. In this article we explore further the potential of deformation techniques in the
framework of topological recursion, in order to derive new relations between integrals of Ω-classes
agains ψ-classes, in the following referred to asΩ-integrals. This initiates a more structured analysis of
the vanishing ofΩ-integrals, although much remains to be understood.

After a background section, Section 2, introducing the Ω-class and relevant facts from Hurwitz the-
ory and topological recursion, we exhibit in Sections 3-4-5 three families of spectral curves with the
following properties:

(i) the TR class associated to the central fiber is (up to a rescaling) anΩ-class;
(ii) the general deformation properties of topological recursion — summarised in Section 2.5 —

compute the correlators for a generic fiber as a Laurent series (in the parameters of the family)
ofΩ-integrals;

(iii) we know from other means that this series can only contain nonnegative powers of the param-
eters.

We obtain relations betweenΩ-integrals by equating to 0 the coefficients in (ii) of monomials involving
negative powers due to the crucial and non-trivial property (iii). The two first families of spectral curves
we consider govern weighted Hurwitz numbers and (iii) is then a consequence of the structural results
of [BDBKS20]. The third family falls out of the scope of [BDBKS20] but we justify in Proposition 5.1 that
it satisfies (iii) by coming back to a careful analysis of the topological recursion formula. We summarise
our findings below, where we introduced the rising factorial

[x]` = x(x+ 1) · · · (x+ `− 1) (1.1)

and all the other relevant notations to read these formulae are explained in the next Section 1.4.

Our first set of relations holds in the divisible case r = ds and is a direct generalisation of the one
found for d = 1 [BDK+22] and in particular generalises the set of vanishings found in [JPT11], see the
discussion in Section 6.
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Theorem A (Section 3). Let d > 1, s > 2 and set r = ds. Let g > 0. For any non-empty partition µ and
non-empty (s− 1)-partition ν such that |µ|+ |ν| 6 s(`(µ) − 1), we have

`(ν)∑
k=1

(−1)`(ν)−k(r/s)k

k!

∑
ρ∈Pks−1
tρ=ν

k∏
c=1

[s−|ρ(c)|

s

]
`(ρ(c))−1

|Aut(ρ(c))|

∫
Mg,`(µ)+k

Ω
(r,s)
g;−µ,s−|ρ|∏`(µ)

i=1

(
1 − µi

r
ψi
) = 0.

If furthermore ν is bounded, i.e. mini 6=j(νi + νj) > s, this sum has a single term and we get the vanishing∫
Mg,`(µ)+`(ν)

Ω
(r,s)
g;−µ,s−ν∏n

i=1

(
1 − µi

r
ψi
) = 0.

The second relation we find again concerns the divisible case r = ds and has a range of vanishing
depending on the genus. It is presented in the text in Theorem 4.4, but as it is rather complicated, we
only state here the s = 1 case.

Theorem B (Section 4). Let r > 2, and g > 0. For any non-empty partition µ and possibly empty (r − 1)-
partition τ such that

2g− 2 + `(µ) + |µ|+ |τ| 6 d(`(τ) − 1),
we have

`(τ)∑
h=1

(−1)`(τ)−h

h!

∑
ρ∈Phr−1

26|ρ(c)|6r−1
tρ=τ

h∏
c=1

[ r+1−|ρ(c)|

r

]
`(ρ(c))−1

|Aut(ρ(c))|

∫
Mg,`(µ)+h

Ω
(r,1)
g;−µ,r+1−|ρ|∏`(µ)

i=1

(
1 − µi

r
ψi
) = 0.

If furthermore τ has no parts 1 and is bounded, i.e. mini 6=j(τi + τj) > r, this sum has a single term and we get
the vanishing ∫

Mg,`(µ)+`(τ)

Ω
(r,1)
g;−µ,r−τ∏`(µ)

i=1

(
1 − µi

r
ψi
) .

The third and last relation we find holds for positive r and swithout divisibility condition, with a range
of vanishing depending on the genus.

Theorem C (Section 5). Let r > 2 and s ∈ {1, . . . , r − 1}. Let g > 0. For any non-empty partition µ and a
non-empty (r+ s− 1)-partition τ whose parts belong to {s, . . . , r+ s− 1} and such that

(2g− 2 + `(µ))s+ |µ|+ |τ| 6 (r+ s)`(τ) − r,

we have
`(τ)∑
k=1

1
k!

∑
ρ∈Pks,r+s−1

|ρ(c)|6r+s−1
tρ=ν

k∏
c=1

[ r+s−|ρ(c)|

r

]
`(ρ(c))−1

|Aut(ρ(c))|

∫
Mg,`(µ)+k

Ωg;−µ,r+s−|ρ|∏`(µ)
i=1

(
1 − µi

r
ψi
) = 0.

If furthermore τ is bounded, i.e. mini 6=j(τi + τj) > r+ s, this sum has a single term and we get the vanishing∫
Mg,`(µ)+`(τ)

Ω
(r,s)
g;−µ,r+s−τ∏`(µ)

i=1

(
1 − µi

r
ψi
) = 0.

In Section 6, we give two other previously known vanishing results for Ω-integrals, as well as ob-
servations from our numerical experiments carried out with the package ADMCYCLES [DSvZ20]. In
Appendix A we collect basic properties of theΩ-classes.

1.3. Comments. This note can be thought as a guide through the application of deformation techniques
in topological recursion to obtain consequences in enumerative geometry, especially in the richer case
of oblique deformations (see the terminology in Section 2.5). Two recent works where deformations in
topological recursion are studied should be mentioned.

In [BCCGF22] topological recursion is established for a large class of maps and constellation enumera-
tions, by first showing it for a restricted model, and then using deformations and checking that topo-
logical recursion gets carried along. A notable difference with our work is that the deformations they
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use are horizontal (see Definition 2.6), thus the combinatorics of the Taylor expansion are simpler than
the general ones discussed in Section 2.5.

In [BBC+23] the question of analyticity of topological recursion correlators along families of spectral
curves (allowing certain catastrophes) is addressed, and sufficient conditions are proposed for analyt-
icity to hold. Yet, in the families considered in the present work, ramification points can approach the
essential singularity of the logarithm, and this case is not covered by [BBC+23]. We therefore have to
rely on different arguments to justify the regularity needed to get our vanishing results. The need to
consider logarithms come from the particular setting of the Ω-classes. However, following the same
strategy, it should be possible to derive vanishing results for intersection indices of other tautological
classes as consequence of the analyticity results proved in [BBC+23]

1.4. Notation. Ifm ∈ Z, we denote −m the unique integer in {0, . . . ,d− 1} such that −m = −m mod r.
By extension, if µ is a partition, −µ is the tuple (−µ1, . . . ,−µ`(µ)).

A partition λ is a (possibly empty) finite sequence of positive integers λ1 > · · · > λ`, called parts. Its
length is `(λ) = `, its size is |λ| =

∑`
i=1 λi. The automorphism group Aut(λ) is the set of permutations

of {1, . . . , `(λ)} respecting the weak decreasing order in λ. The notation λ = (1m1 2m2 · · · ) means that λ is
the partition with m1 parts 1, m2 parts 2, etc. We have |Aut(λ)| =

∏
i>1mi!. The notation λ ` N means

that λ is a partition of size N.

We say that λ is an N-partition if it is empty or λ1 6 N. We denote PN the set of N-partitions, and
PPN ⊆ PN the set of N-partitions of size 6 N. If λ is an (N − 1)-partition, we write N − λ the partition
N − λ`(λ), . . . ,N − λ1. We say that an (N − 1)-partition is bounded if mini 6=j(λi + λj) > N. A (N ′,N)-
partition is a partition whose parts all belong to {N ′,N ′ + 1, . . . ,N}. We denote PN′,N the set of (N ′,N)-
partitions. A more complicated set of ordered pairs of partitions is introduced in Definition 4.3 for the
needs of Theorem 4.4.

An extendedN-partition is λ = (1m1 · · ·NmN) withm1, . . . ,mN−1 ∈ Z>0 butmN ∈ Z. Its size is defined
as usual |λ| =

∑N
i=1 imi. The (N − 1)-partition associated to λ is λ = (1m1 · · · (N − 1)mN−1). We denote

PN the set of extended N-partitions.

If p1, . . . ,pN is a N-tuple of variables and λ = (1m1 · · ·NmN) is an extended N-partition, we denote

~pλ = pm1
1 · · ·p

mN
N .
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2. BACKGROUND ON Ω-CLASSES AND TOPOLOGICAL RECURSION

2.1. Definition of the Ω-classes. In [Mum83], Mumford derived a formula for the Chern character of
the Hodge bundle on the moduli space of curves Mg,n in terms of tautological classes and Bernoulli
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numbers. A generalisation of Mumford’s formula was proposed in [Chi08]. The moduli space of stable

curves Mg,n is substituted by the proper moduli stack M
(r,s)
g;a of r-th roots of the line bundle

ω⊗slog

(
−

n∑
i=1

aipi

)
, (2.1)

where ωlog = ω
(∑n

i=1 pi
)

is the log-canonical bundle, r ∈ Z>0 and s,a1, . . . ,an ∈ Z, satisfying the
modular constraint

a1 + a2 + · · ·+ an = (2g− 2 + n)s mod r. (2.2)

This condition guarantees the existence of a line bundle whose r-th tensor power is isomorphic to
ω⊗slog

(
−
∑n
i=1 aipi

)
. The label ai is called the type of pi. Let π : C

r,s
g;a → M

r,s
g;a be the universal curve,

and L→ C
r,s
g;a the universal r-th root. In complete analogy with the case of Mg,n, one can define ψ- and

κ-classes on the moduli spaces of r-th roots. There is moreover a natural forgetful morphism

ε : M
(r,s)
g;a1,...,an −→Mg,n (2.3)

Let Bm(x) denote them-th Bernoulli polynomial, that is the polynomial defined by the generating series

tetu

et − 1
=
∑
m>0

Bm(u)
tm

m!
. (2.4)

The evaluations Bm(0) = (−1)mBm(1) = Bm recover the usual Bernoulli numbers. There is an explicit
formula for the Chern characters of the derived pushforward of the universal line bundle on the moduli
of r-th roots.

Theorem 2.1. [Chi08] On the space M
(r,s)
g;a1,...,an for a1, . . . ,an ∈ {0, . . . , r− 1}, we have the formula

chm
(
R•π∗L

∣∣M(r,s)
g;a1,...,an

)
=
Bm+1(

s
r
)

(m+ 1)!
κm −

n∑
i=1

Bm+1(
ai
r
)

(m+ 1)!
ψmi +

r

2

r−1∑
a=0

Bm+1(
a
r
)

(m+ 1)!
ja∗

(ψ ′)m − (−ψ ′′)m

ψ ′ +ψ ′′
.

(2.5)
Here ja is the boundary morphism that represents the boundary divisor such that the two branches of the corre-
sponding node are of type a and r− a, and ψ ′,ψ ′′ are the ψ-classes at the two branches of the node.

We can then consider the pushforward to the moduli space of stable curves of the family of Chern
classes

Ω(r,s)
g;a1,...,an(u) = ε∗ exp

(∑
m>1

(−u)m(m− 1)! chm
(
R•π∗L

∣∣M(r,s)
g;a1,...,an

))
∈ Heven(Mg,n). (2.6)

We will omit the variable u when u = 1. Notice that we recover Mumford’s formula for the Hodge
class when r = s = 1 and a = (1, . . . , 1). For r = 1, general s and a = (s, . . . , s), we get the generalised
Hodge classes considered by Bini in [Bin03]. If the modular condition (2.2) is not satisfied, we declare
Ω

(r,s)
g;a1,...,an to be zero.

By expanding the exponential (2.6) one can derive an expression of the Ω-classes as a sum over deco-
rated stable graphs [JPPZ17]. From there, one can recognise using the Givental group action that the
Ω-classes for types a1, . . . ,an in the fundamental range {0, . . . , r− 1} form a cohomological field theory.

Theorem 2.2. [LPSZ17] Let r > 1 and V = spanC(v1, . . . , vr) a r-dimensional vector space. For any s ∈ Z, the
collection of mapsΩ(r,s)

g,n : V⊗n −→ Heven(Mg,n) defined by

Ω(r,s)
g,n (va1 ⊗ · · · ⊗ van) = Ω(r,s)

g;a1,...,an

and indexed by 2g− 2 + n > 0 form a cohomological field theory with the pairing on V defined by

η(va, vb) =
δr|a+b

r
(2.7)

If s ∈ {0, . . . , r}, it admits the flat unit vs (with the convention v0 = vr).
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In fact, we will only need ai in the fundamental range, but as ai = r leads to the same class as ai = 0,
for convenience we will sometimes allow ai = r as well or replace the fundamental range with {1, . . . , r}.
We refer to [JPPZ17, LPSZ17, GLN23] for a more detailed review of properties and applications of the
Ω-classes. Here, we will focus on reviewing its apparition in Hurwitz theory, which is directly relevant
for us. Some other basic properties are given in Appendix A.

2.2. Quick definition of topological recursion. The definition of topological recursion which we give
now will only be relevant in Section 5.2. In the rest of the article, topological recursion can be used as a
black box which takes a spectral curve as input and gives a collection of multidifferentialsωg,n indexed
by (g,n) ∈ Z>0×Z>0 as output. The reader ready to accept this may safely jump to the next subsection.

We will restrict our definitions to the spectral curves of the particular type needed in this article, and
refer e.g. to [EO07, BE13, BBC+23] for more general definitions. For us, a spectral curve S is simply
specified by the data of two functions x,y on C∗ such that dx and dy extend as meromorphic 1-form on
the Riemann sphere containing C∗. We denote R the set of zeros of dx. We assume that points in R are
simple zeros of dx and are neither zeros nor poles of dy.

For each α ∈ R, there we have a holomorphic involution z 7→ z defined in a neighborhood of α in C∗,
such that x(z) = x(z) but z 6= z for z 6= α. The recursion kernel is defined as

Kα(z0, z) =
1
2

( 1
z0−z

− 1
z0−z

)
dz0

(y(z) − y(z))dx(z)
.

The topological recursion starts from this data. It then defines the 1-form and bidifferential

ω0,1(z) = y(z)dx(z), ω0,2(z1, z2) =
dz1 ⊗ dz2

(z1 − z2)2 ,

and by induction on 2g− 2 + (1 + n) > 0 the multidifferentials

ωg,1+n(z0, . . . , zn)

=
∑
α∈R

Res
z=α

Kα(z0, z)
(
ωg−1,2+n(z, z, z1, . . . , zn) +

no ω0,1∑
JtJ′={z1,...,zn}
h+h′=g

ωh,1+|J|(z, J)⊗ωh′,1+|J′|(z, J ′)
)

. (2.8)

We refer toωg,n as the correlators associated to the spectral curve S. We also introduce the correspond-
ing free energies

Fg,n(z1, . . . , zn) =
∫z1

0
· · ·
∫zn

0
ωg,n.

The technical assumption that dx and dy do not have common zeros is necessary for topological recur-
sion to be well-defined, i.e. to produce symmetric correlators under exchange of z1, . . . , zn. The other
assumptions can be waived but this will not be needed here.

2.3. Ω-integrals and topological recursion. The only facts we genuinely need about topological recur-
sion are summarised in the remaining of Section 2. An important fact established in [DBOSS14] is that
correlation functions of semi-simple cohomological field theories are governed by topological recursion
on a spectral curve specified by the Givental–Teleman reconstruction procedure [Tel12]. This is at the
origin of the following result.

Let r ∈ Z>0 and s ∈ Z∗, consider the spectral curve S(r,s) parametrised by z ∈ C∗ with

S(r,s) : x(z) = ln z− zr, y(z) = zs, (2.9)

and denoteω(r,s)
g,n the corresponding correlators obtained by the topological recursion. We shall use the

symbol ≈ to denote an all-order series expansion of a meromorphic form around a certain point.

Theorem 2.3. [LPSZ17] For g > 0 and n > 1 such that 2g− 2 + n > 0, we have the expansion as zi → 0

ω(r,s)
g,n (z1, . . . , zn) ≈

∑
µ1,...,µn>0

H(r,s)
g,n (µ1, . . . ,µn)

n⊗
i=1

d
(
eµix(zi),

)
, (2.10)
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where

H(r,s)
g,n (µ1, . . . ,µn) =

n∏
i=1

(µi/r)
bµi/rc

bµi/rc!
· r

(2g−2+n)(1+s/r)+|µ|/r

s2g−2+n

∫
Mg,n

Ω
(r,s)
g;−µ∏n

i=1

(
1 − µi

r
ψi
) .

For a ∈ {1, . . . , r}, let us introduce the functions φa−1(z) = z
a, and form > 0 inductively we set

φam(z) = ∂x(z)φ
a
m−1(z) =

z

1 − rzr
∂zφ

a
m−1(z). (2.11)

As z→ 0 we have the expansion

a−1φam(z) ≈
∑
j>0

(jr+ a)j

j!
e(jr+a)x(z) (2.12)

The theorem above can be reformulated in terms of the free energies as

F(r,s)
g,n (z1, . . . , zn) :=

∫z1

0
· · ·
∫zn

0
ωg,n(z1, . . . , zn)

=
∑

m1,...,mn>0
16a1,...,an6r

r(2g−2+n)(1+s/r)+
∑n
i=1 ai/r

s2g−2+n

( ∫
Mg,n

Ω
(r,s)
g;r−a

n∏
i=1

(ψi/r)
di

) n∏
i=1

a−1
i φ

ai
mi

(zi).

(2.13)

2.4. Weighted Hurwitz numbers and topological recursion. Let

ψ̂( h2,y) and ŷ( h2, z) =
∑
m>1

ŷm( h2)zm

be two bivariate formal power series, with ψ̂( h2, 0) = 0. Following [BDBKS20] we introduce the parti-
tion function

Zψ̂,ŷ =
∑
λ

sλ

(
p1
 h

,
p2
 h

, . . .
)
sλ

(
ŷ1( h

2)
 h

,
ŷ2( h

2)
 h

, . . .
)

exp

 ∑
(i,j)∈λ

ψ̂
(
 h2,  h(i− j)

). (2.14)

Here, p1,p2, . . . are the power-sum generators of the ring of symmetric polynomials, and sλ is the Schur
basis, indexed by partitions λ; (i, j) ∈ λ means that i ∈ {1, . . . , `(λ)} and j 6 {1, . . . , λi}. This Zψ̂,ŷ is a
hypergeometric tau-function of KP hierarchy with respect to the times (pk/k)k>0 in the sense of Harnad
and Orlov and admits an interpretation in terms of weighted double Hurwitz numbers [HO15, GPH15].
More specifically, it encodes the weighted enumeration of (possibly disconnected) branched covers of
P1 with ramification profile above 0 tracked by the p-variables, ramification profile above ∞ tracked
by the ŷ-variables, type of ramifications elsewhere specified by the weight generating series ψ, and
topology tracked by the  h-variable. We are interested in the coefficients of expansion

WH(ψ̂,ŷ)
g,n (µ1, . . . ,µn) =

[
pµ1 · · ·pµn  h2g−2] lnZψ̂,ŷ,

which restricts the enumeration to connected covers. In [BDBKS20] the representation of Zψ̂,ŷ as ex-
pectation values in the semi-infinite wedge is the starting point of a detailed analysis of the structural

properties ofWH(ψ̂,ŷ)
g,n which led to topological recursion results in a rather general form. Similar results

had been established previously in [ACEH20] by different methods and for a more restricted class of
 h-independent ψ̂ and ŷ.

For our purposes, it is sufficient to summarise these results for the specific family of weights

ψ̂( h2,y) = S( h∂y)P(y), ŷ( h2, z) = Q(z) with S(z) =
sinh(z/2)
z/2

= 1 +O(z2), (2.15)

and where P,Q are two polynomials. In this setting consider the spectral curve parametrised by z ∈ C∗

S(ψ̂,ŷ) : x(z) = ln z− ψ̂(0,y(z)), y(z) = ŷ(0, z), (2.16)

and denote ω(ψ̂,ŷ)
g,n the corresponding correlators of the topological recursion. Notice that the spectral

curve does not depend on the parameter  h, but the weight ψ̂ does.
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Theorem 2.4. [BDBKS20] For g > 0 and n > 1 such that 2g − 2 + n > 0, for the weights of the form (2.15),
we have the expansion as zi → 0:

ω(ψ̂,ŷ)
g,n (z1, . . . , zn) ≈

∑
µ1,...,µn>0

WH(ψ̂,ŷ)
g,n (µ1, . . . ,µn)

n⊗
i=1

d
(
eµix(zi)

)
,

The spectral curve S(ds,s) of (2.9) is obtained by specialising this family to Q(z) = zs and P(z) = zd.
In this case, WH corresponds to the s-orbifold Hurwitz numbers with (d + 1)-completed cycles and
Theorem 2.4 was established in [BKL+20, DBKPS23]. Together with Theorem 2.3 it gave an ELSV-like
formula for those Hurwitz numbers in terms of classesΩ(ds,s).

2.5. Principles of deformation. We now describe the main principle exploited in this article, namely
the behavior of topological recursion under deformations of spectral curves. We will restrict ourselves
to spectral curves as defined in Section 2.2. In particular, they are always equipped with the standard
fundamental bidifferential

ω0,2(z1, z2) =
dz1 ⊗ dz2

(z1 − z2)2 . (2.17)

and we will not mention it anymore.
Let St be a spectral curve depending analytically on a parameter t ∈ T ⊂ C, where T is a neighborhood
of the closed unit disk. In other words, we are given xt(z),yt(z) such that x ′t(z) and y ′t(z) are rational
functions of z that depend analytically on t. Then, we denote by ωtg,n(z1, . . . , zn) the correlators of the
topological recursion on St, and by

Ftg,n(z1, . . . , zn) =
∫z1

0
· · ·
∫zn

0
ωtg,n

the corresponding free energies. We assume that the zeros of dx in C∗ are simple for all t ∈ T. Then,
the correlators and the free energies are analytic functions of t ∈ T — this can be seen directly from the
definition of topological recursion, see also [BBC+23] for a thorough discussion of analyticity in a more
general context.

Definition 2.5. In presence of ambiguity, we keep the notation ∂t the t-derivative at fixed z and rather
use Dt for the t-derivative at xt(z) fixed.

We assume that we can represent

ηt(z) := Dt
(
yt(z)dxt(z)

)
=
(
∂tyt(z)

)
dxt(z) −

(
∂txt(z)

)
dyt(z) = − Res

w=∞ω0,2(z,w)ft(w) (2.18)

for some rational function ft(z) without poles at the zeroes of x ′t, where the t-derivative in the left-hand
side is computed for fixed z. Then, Eynard and Orantin have proved [EO07, Theorem 5.1] that

Dtω
t
g,n(z1, . . . , zn) = − Res

z=∞ωtg,n+1(z1, . . . , zn, z) ft(z),

where Dt is the t-derivative for xt(z1), . . . , xt(zn) kept fixed. Equivalently, the first variation of the free
energy is

DtF
t
g,n(z1, . . . , zn) = Res

z=∞ Ftg,n+1(z1, . . . , zn,w)dft(z). (2.19)

We want to use this to compute Ft=1
g,n as a Taylor series

F1
g,n(z

′
1, . . . , z ′n) =

∞∑
k=0

1
k!
Dkt F

t
g,n(z1, . . . , zn)

∣∣
t=0

Here one should keep x1(z
′
i) = xt(zi) all the way before setting t = 0. This requires applying repeatedly

Dt to (2.19). A subtle point is that ft(z) at xt(z) may still depend on t.

Definition 2.6. We say that a deformation is horizontal if Dtft(z) = 0, where the t-derivative is com-
puted at xt(z) fixed. Otherwise, we say that the deformation is oblique.
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For an horizontal deformation, we simply have

F1
g,n(z

′
1, . . . , z ′n) =

∞∑
k=0

1
k!

Res
w1=∞ · · · Res

wk=∞ F0
g,n+k(z1, . . . , zn,w1, . . . ,wk)df0(w1)⊗ · · · ⊗ df0(wk),

with x1(z
′
i) = x0(zi). For an oblique deformation, the combinatorics of higher derivatives is more

involved and leads to [BDK+22, Section 5.3]

F1
g,n(z

′
1, . . . , z ′n) =

∞∑
k=0

1
k!

∞∑
l1,...,lk=0

Res
w1=∞ · · · Res

wk=∞ F0
g,n+k(z1, . . . , zn,w1, . . . ,wk)

k⊗
c=1

d
(
Dlct ft(wc)

(lc + 1)!

)∣∣∣∣
t=0

,

(2.20)
where again x1(z

′
i) = x0(zi).

The enumerative information in the free energy is typically stored in its decomposition on a suitable
basis of functions, or equivalently in its series expansion near a certain point (for us, zi = 0) using the
variable xt(zi). For instance, for the case of the spectral curve S(r,s) of Section 2.3, this is achieved by
the basis

∀(a,m) ∈ {1, . . . , r}×Z>0 a−1φam(z) = ∂m+1
x(z)

(
za
)

through (2.13), or the series expansion (2.10). The equivalence between the two came from the series
expansion of φam(z) as z → 0 given in (2.12). In the next three sections, we are going to study three
families of spectral curves which all fit the previous setting. For each of them, we will

• compute the deformation 1-form (2.18), i.e. find ft(z). In all three cases, It describes in fact an
oblique deformation;

• decompose F0
g,n+k on a good basis of functions a−1φam, so as to express the right-hand side of

(2.20) solely in terms of the corresponding coefficients;
• evaluate the residue pairings in (2.20), which amounts to compute

Ta,(l)
m := Res

z=∞a−1φam(z)d
(
Dltft(z)

)∣∣
t=0.

• expand F1
g,n(z

′
1, . . . , z ′n) of (2.20) as zi → 0, using the variables x1(z

′
i) = x0(zi). This only requires

knowing the expansion of a−1φam(z) as z→ 0 in the variable ex1(z
′) = ex0(z).

These steps allow to express the t = 1 enumerative information as a Taylor series involving only the
t = 0 enumerative information.

3. THE FIRST DEFORMATION

3.1. Setting. Let d > 1, s > 2 and set r = ds. Introduce a polynomialQ(z) =
∑s
j=1 qj z

j and σ ∈ C such
that qsσ 6= 0, and consider the spectral curve with

S1st
1 :

{
x(z) = ln z− σ

(
Q(z)

)d
y(z) = Q(z)

(3.1)

We see it as the t = 1 specialisation of the family of spectral curves

S1st
t :

{
xt(z) = ln z− σ

(
qsz

s + tQ̃(z)
)d

yt(z) = qsz
s + tQ̃(z)

with Q̃(z) =
∑s−1
j=1 qjz

j. At t = 0 we get the spectral curve

S1st
0 :

{
x0(z) = ln z− σqds zr

y0(z) = qsz
s

If σ is chosen small enough relative to q1, . . . ,qs, the zeros of x ′t(z) remain simple so that the assump-
tions of Section 2.5 are satisfied. We call Ftg,n the free energies associated to S1st

t .
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The spectral curve S1st
0 is related to S(r,s) of Section 2.3, which we here denote S[0]:

S[0] :

{
x[0](z) = ln z− zr

y[0](z) = zs

Indeed, if we use z̃ = (q
1/s
s σ1/r)z, we have

x0(z) = x[0](z̃) −
lnqs
s

−
lnσ
r

, y0(z) = σ
−s/ry[0](z),

while the standard ω0,2 in (2.17) has the same expression in the z or the z̃-variables. The homogeneity
properties of topological recursion under rescaling imply

F0
g,n(z1, . . . , zn) = σ(2g−2+n)s/r · F[0]g,n(z̃1, . . . , z̃n). (3.2)

The basis of functions we want to use to decompose the free energies is φa,[0]
m (z̃) from (2.11), namely

∀(a,m) ∈ {1, . . . , r}×Z>0 a−1φa,[0]
m (z̃) = ∂m+1

x[0](z̃)

(
z̃a
)
. (3.3)

Equation (2.12) gives its expansion as z→ 0 in the variable ex[0](z̃), and its expansion in the new variable
ex0(z) = q

−1/s
s σ−1/rex[0](z̃) reads:

a−1φa,[0]
m (z̃) ≈

z→0

∑
j>0

q(jr+a)/ss σj+a/r
(jr+ a)j

j!
e(jr+a)x0(z). (3.4)

3.2. The deformation 1-form. We first compute the deformation 1-form

ηt(z) =
(
∂tyt(z)dxt(z)

)
−
(
∂txt(z)

)
dyt(z) =

Q̃(z)

z
dz.

We recognise that it takes the form

ηt(z) = − Res
w=∞ω0,2(z,w)ft(w) with ft(z) =

s−1∑
j=1

qj

j
zj.

Then, we want to evaluate

Ta,(l)
m = Res

z=∞a−1φa,[0]
m (z̃)d

(
Dltft(z)

)∣∣
t=0.

The case d = 1 corresponds to r = s and was treated in [BDK+22]. As the function ft(z) does not
depend on d, it is straightforward to adapt [BDK+22, Lemma 5.2] and obtain the following expression.

Lemma 3.1. For any l > 0, we have as z→∞
Dltft(z)

∣∣
t=0 =

s−1∑
j=1

Q
(l)
j

s− j
zs−j +O(1),

where for j ∈ {1, . . . , s− 1} we set

Q
(l)
j

(l+ 1)!
=

(−1)l

qls

∑
ρ∈Ps−1
`(ρ)=l+1

|ρ|=j

[
s− |ρ|

r

]
`(ρ)−1

· ~qs−ρ
|Aut(ρ)|

, (3.5)

Besides,

Ta,(l)
m = δm,0 ·

{
r−1σa/r−1q

(a−r)/s
s Q

(l)
s−r+a if a ∈ {r− s+ 1, . . . , r− 1}

0 otherwise
(3.6)

The conditions in the sum (3.5) force ρ to be non-empty. Note that d = 1 corresponds to
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3.3. The Taylor series. We now have all the ingredients to evaluate the Taylor series (2.20):

• The free energies F0
g,n+k are equal to the F[0]g,n+k up to a rescaling given by (3.2);

• The decomposition of F[0]g,n+k on the basis functions a−1φ
a,[0]
m is given in (2.13) in terms of inter-

section indices of the classesΩ(ds,s);
• The residue pairing of the basis functions with d(Dltft)

∣∣
t=0 is given by (3.6);

Substituting these information in the Taylor series (2.20) we arrive to

F1
g,n(z

′
1, . . . , z ′n) =

(
σs/rr1+s/r

s

)2g−2+n ∑
16a1,...,an6r
m1,...,mn>0

r
∑n
i=1 ai/r

n∏
i=1

a−1
i φ

ai,[0]
mi

(z̃i)

×
∑
k>0

(s−1rs/r)k

k!

∑
r−s+16b1,...,bk6r−1

l1,...,lk>0

r
∑k
c=1 bc/rσ

∑k
c=1(s−r+bc)/rq

∑k
c=1(bc−r)/s

s

×
( ∫

Mg,n+k

Ω
(r,s)
g;r−a,r−b

n∏
i=1

(ψi/r)
mi

) k∏
c=1

Q
(lc)
s−r+bc

(lc + 1)!
.

(3.7)

where x1(z
′
i) = x0(zi) = q

−1/s
s σ−1/rx[0](z̃i). Now, we expand the right-hand side as zi → 0 using the

variables ex0(z):

F1
g,n(z

′
1, . . . , z ′n) ≈

∑
µ1,...,µn>0

H1st
g,n(µ1, . . . ,µn)

n∏
i=1

eµix1(z
′
i). (3.8)

The computation of the coefficients H1st
g,n is achieved via the expansion of the basis functions given in

(3.4), and we also insert the expression for Q provided by Lemma 3.1. Recalling r = ds, this yields for
any partition µ of length n > 0:

H1st
g,n(µ) =

r(2g−2+n)(1+s/r)

s2g−2+n

∑
λ∈Ps
|λ|=|µ|

σ(2g−2+n+`(λ))s/r
n∏
i=1

(µi/r)
bµi/rc

bµi/rc!
· ~qλ

×

`(λ)∑
k=0

(−1)`(λ)−k(r/s)k

k!

∑
ρ∈PPks−1
tρ=s−λ

k∏
c=1

[s−|ρ(c)|

r

]
`(ρ(c))−1

|Aut(ρ(c))|
·
( ∫

Mg,n+k

Ω
(r,s)
g;−µ,s−|ρ|∏n

i=1

(
1 − µi

r
ψi
))
 .

(3.9)

The notation for partitions are explained in Section 1.4. The exponent k in PPks−1 just means that we are
considering k-tuples of (s − 1)-partitions. If λ is empty, i.e. λ has only parts s, the sum in the last line
only has a k = 0 term which is equal to 1; if λ is non-empty, the sum in the last line should start at k = 1.

3.4. Polynomiality and vanishing. In view of Section 2.4 and Theorem 2.4, the numbers H1st
g,n(µ) de-

fined by (3.8) coincide with the weighted double Hurwitz numbersWH(ψ̂,ŷ)
g,n (µ) in the special case

ψ̂( h2,y) = S( h∂y)yd =

bd/2c∑
j=0

d!
(d− 2j)!(2j+ 1)!

( h/2)2jyd−2j,

ŷ( h2, z) = Q(z) =

s∑
j=1

qjz
j.

In particular, for any fixed µ, H1st
g,n(µ) must be a polynomial in q1, . . . ,qs and cannot contain negative

powers of qs. Negative powers of qs occur when λ is a non-empty (s − 1)-partition such that |λ| > |µ|.
In terms of the non-empty (s− 1)-partition ν = s− λ ′ = λ̌ ′, this condition reads

|µ|+ |ν| < s`(ν). (3.10)
11



Due to (2.2) and recalling that r = ds, we need |µ| + |ν| to be divisible by s for the Ω-class itself to be
non-zero. Therefore, the condition can be written in the stronger form

|µ|+ |ν| 6 s(`(ν) − 1). (3.11)

This gives us the following vanishing of Ω-integrals, valid for any non-empty partition µ and any
(s− 1)-partition ν satisfying (3.11)

`(ν)∑
k=1

(−1)`(ν)−k(r/s)k

k!

∑
ρ∈(PPs−1)

k

tρ=ν

k∏
c=1

[s−|ρ(c)|

s

]
`(ρ(c))−1

|Aut(ρ(c))|
·
∫
Mg,`(µ)+k

Ω
(r,s)
g;−µ,s−|ρ|∏`(µ)

i=1

(
1 − µi

r
ψi
) = 0. (3.12)

If furthermore ν is bounded, i.e. mini 6=j(νi + νj) > s for any i 6= j, the only way to write ν as a
concatenation of k partitions of size 6 s − 1 is to take k = `(ν) and ρ(1) = (ν1), . . . , ρ(k) = (νk) up to
permutation. Therefore, the sum has k! equal terms and we get the vanishing of a singleΩ-integral

∫
Mg,`(µ)+`(ν)

Ω
(r,s)
g;−µ,s−ν∏`(µ)

i=1

(
1 − µi

r
ψi
) = 0. (3.13)

This proves Theorem A. Notice that in the first deformation r = ds. We have checked numerically that
such a result — for instance (3.13) — does not hold if s does not divide r.

4. THE SECOND DEFORMATION

4.1. Setting. We set s > 1, d > 2 (notice the difference with the assumption in Section 3) and set r = ds.
We introduce two polynomials

P(y) =

d∑
j=1

pjy
j, Q(z) =

s∑
i=1

qiz
i,

a parameter σ ∈ C such that σqspd 6= 0 and consider the spectral curve

S2nd
1 :

{
x(z) = ln z− σP(Q(z))

y(z) = Q(z)

If P(y) = yd this is the spectral curve S1st
1 of Section 3. We take a different perspective now as the

deformation will consist in turning on the other coefficients of P while keepingQ fixed. Namely, we see
S2nd

1 as the t = 1 specialisation of the family of spectral curves

S2nd
t :

{
xt(z) = ln z− σ

(
pdQ(z)d + tP̃(Q(z))

)
yt(z) = Q(z)

with P̃(y) =
∑d−1
j=1 pjy

j. If σ is chosen small enough relative to q1, . . . ,qs, the zeros of x ′t(z) remain
simple so that the assumptions of Section 2.5 are satisfied. We denote Ftg,n the free energies associated
to S2nd

t .

At t = 0 we have

S2nd
0 :

{
x0(z) = ln z− σpdQ(z)d

y0(z) = Q(z)
.
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Up to replacing σ with σpd this is the spectral curve S1st
1 so we have the intersection-theoretic formula

(3.7) for s > 2. Namely, the correlation functions of S2nd
0 can be written:

F0
g,n(z1, . . . , zn)

=
(
(σpd)

s/rs−1r1+s/r)2g−2+n ∑
16a1,...,an6r
m1,...,mn>0

r
∑n
i=1 ai/r

n∏
i=1

a−1
i φ

ai,[0]
mi

(z̃i)

×
∑
k>0

(s−1rs/r)k

k!

∑
r−s+16b1,...,bk6r−1

l1,...,lk>0

r
∑k
c=1 bc/r(σpd)

∑k
c=1(s−r+bc)/rq

∑k
c=1(bc−r)/s

s

×
( ∫

Mg,n+k

Ω
(r,s)
g;r−a,r−b

n∏
i=1

(ψi/r)
mi

) k∏
c=1

Q
(lc)
s−r+bc

(lc + 1)!
,

(4.1)

where the functions φa,[0]
m are the ones defined in (3.3), Qs are taken from Lemma 3.1, and

z̃i = q
1/s
s (σpd)

1/rzi. (4.2)

The case s = 1 was excluded in Section 3. In this case, there is no deformation and we simply have the
term k = 0 in the sum (4.1), that is

F0
g,n(z1, . . . , zn) =

(
(σpd)

1/rr1+1/r)2g−2+n ∑
16a1,...,an6r
m1,...,mn>0

r
∑n
i=1 ai/r

n∏
i=1

a−1
i φ

ai,[0]
mi

(z̃i)

∫
Mg,n

Ω
(r,1)
g;r−a

n∏
i=1

(ψi/r)
mi ,

with z̃i = q1(σpr)
1/rzi.

4.2. The deformation 1-form. We compute

ηt(z) =
(
∂tyt(z)

)
dx(z) −

(
∂txt(z)

)
dy(z) = σP̃(Q(z)) Q ′(z)dz

and try to represent it as
ηt(z) = − Res

w=∞ω0,2(z,w) ft(w)

We have P̃(y) = pd−1y
d−1 +O(yd−2) as y→∞ and we can find coefficients (fj)r−1

j=1 which are polyno-
mials in p1, . . . ,pd−1 and q1, . . . ,qs such that

ft(z) =

r−1∑
j=1

fj

j
zj

does the job. We only need the following information on ft(z).

Lemma 4.1. We have for l > 0 as z→∞
Dltft(z)

∣∣
t=0 =

r−1∑
j=1

F
(l)
j zr−j

r− j
+O(1),

where

F
(l)
j

(l+ 1)!
=

(−1)lσ(r− j)
pld

∑
(θ,γ)∈Ps−1×Pd−1

|θ|+s|γ|=j+s
`(γ)=l+1

q
d+1−|γ|−`(θ)
s (d− |γ|)!
(d+ 1 − |γ|− `(θ))!

·
[
d+ 1 − |γ|

d

]
l

~pd−γ
|Aut(γ)|

· ~qs−θ
|Aut(θ)|

,

(4.3)
with the convention p0 = q0 = 1. For s = 1, there is a huge simplification as the sum over θ is absent, and we
have for j ∈ {1, . . . ,d− 1}

F
(l)
j

(l+ 1)!
=

(−1)lσ
pld

∑
γ∈Pd−1
|γ|=j+1
`(γ)=l+1

q
d+1−|γ|
1 ·

[
d+ 1 − |γ|

d

]
l

· ~pd−γ
|Aut(γ)|

. (4.4)
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The conditions on the sum (4.3) force γ to have positive length, hence to be non-empty, whereas θ is
allowed to be empty. In particular, in the s = 1 case, θ = ∅ is the only contribution, and then γ is forced
to have length j + 1 > 2. The constraints on the sizes of γ and θ impose that only nonnegative powers
for qs appear in (4.3), and the factorial in the denominator is then non-zero.

Then, we would like to compute

Ta,(l)
m = Res

z=∞a−1φa,[0]
m (z̃)d

(
Dltft(z)

)∣∣
t=0. (4.5)

Starting from Lemma 4.1, evaluating Ta,(l)
m follows the same steps as [BDK+22, Lemma 5.3] and we

only state the result.

Corollary 4.2. For a ∈ {1, . . . , r},m, l > 0, we have

Ta,(l)
m = δm,0 ·

{
r−1 q

a/s−d
s (σpd)

a/r−1 F
(l)
a if a ∈ {1, . . . , r− 1}

0 if a = r
.

Proof of Lemma 4.1. There exists a unique formal series zt = z + K[[z−1]][[t]] satisfying x0(z) = xt(zt),
that is

ln zt − σ
(
pd
(
Q(zt)

)d
+ t

d−1∑
j=1

pj
(
Q(zt)

)j)
= ln z− σpd

(
Q(z)

)d. (4.6)

We need to compute the generating series

f(z, t) :=
∑
l>0

(
Dlufu(z)

)∣∣
u=0

tl

l!
=
z→∞

r−1∑
j=1

Fj(t)

r− j
zr−j +O(1),

which is such that
dzf(z, t) = σP̃(Q(zt))d

(
Q(zt)

)
.

Therefore, we have for j ∈ {1, . . . , r− 1}

Fj(t) = − Res
z=∞ f(z, t) (r− j)z−(r−j+1) dz = Res

z=∞dz
(
f(z, t)

)
z−(r−j) = − Res

z=∞σP̃(Q(zt))dQ(zt) z
−(r−j).

Using the change of variable ζt =
(
Q(zt)

)1/s, we get

Fj(t) = −

d−1∑
c=1

σpc Res
ζt=∞ ζsct d(ζst) z

−(r−j) =

d−1∑
c=1

σpcs
[
ζ
−s(c+1)
t

]
z−(r−j).

We first write the series expansion

z−(r−j) ≈
ζ→∞

∑
k>0

Aj,k ζ
−(r−j+k),

where ζ =
(
Q(z)

)1/s, and compute its coefficients

Aj,k = − Res
ζ=∞ z−(r−j)ζr−j+k−1du = −

r− j

r− j+ k
Res
z=∞ z−(r−j+1)ζr−j+k dz

=
r− j

r− j+ k

[
zr−j

]
ζr−j+k =

r− j

r− j+ k

[
zr−j

] (
Q(z)

)(r−j+k)/s
=

(r− j)q
(r−j+k)/s
s

r− j+ k

[
z−k

](
1 +

s−1∑
a=1

qa

qs
za−s

)(r−j+k)/s

=
r− j

r− j+ k

∑
θ∈Ps−1
|θ|=k

q(r−j+|θ|−s`(θ))/s
s

(
r−j+k
s

)
!(

r−j+k
s

− `(θ)
)
!

~qs−θ
|Aut(θ)|

.

(4.7)

Then, we have to compute

Fj(t) =

d−1∑
c=1

∑
k>0

σpcs ·Aj,k ·
[
ζ
−s(c+1)
t

]
ζ−(r−j+k). (4.8)
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Imagine we knew the power series expansion of ζ in terms of ζt up to O(ζ−αt ) as ζt → ∞, for some α.
Then, we would know the series expansion of ζ−(r−j+k) up to O(ζ−(r−j+k+α+1)

t ). To compute (4.8) for
a fixed j ∈ {1, . . . , r− 1}, we therefore need r− j+ k+α+ 1 > (c+ 1)s for all c ∈ {1, . . . ,d− 1} and k > 0.
This request would be fulfilled with α > j. Notice that ignoring the logarithm in the characterisation
(4.6) gives u (and thus z) as a series in ζt up to O(ζ−rt ), namely

ζ = ζt

1 +

d−1∑
j=1

tpj

pdζ
(d−j)s
t

+O(ζ
−(r+1)
t )

1/r

.

This truncated characterisation is therefore sufficient to compute all Fj(t) for j ∈ {1, . . . , r − 1}. Let us
write for k > 1

ζ−k ≈
ζt→∞

∑
m>0

Ck,m(t) ζ
−(k+ms)
t , (4.9)

where form 6 d

Ck,m(t) = − Res
ζt=∞ ζ−k ζk+ms−1

t dζt =
[
ζ−mst

]1 +

d−1∑
j=1

tpj

pdζ
(d−j)s
t

−k/r

=
∑

β∈Pd−1
|β|=m

(−1)`(β)t`(β)

p
`(β)
d

·
[
k

r

]
`(β)

· ~pd−β
|Aut(β)|

,

(4.10)

We observe that there arem are integers in the series (4.10). Therefore:

Fj(t) =

d−1∑
c=1

∑
k∈Z

Aj,j+ks · C(d+k)s,c+1−d−k(t).

We then substitute the value of A from (4.7) and C(t) from (4.10), and extract from the latter the coeffi-
cient of tl/l! and divide by (l+ 1)!. This yields

F
(l)
j

(l+ 1)!
=

d−1∑
c=1

σpcs
r− j

r+ ks

∑
θ∈Ps−1
|θ|=j+ks
k∈Z

qd+k−`(θ)s

(d+ k)!
(d+ k− `(θ))!

~qs−θ
|Aut(θ)|

×
∑

β∈Pd−1
|β|=c+1−(d+k)

`(β)=l

(−1)lp−ld
l+ 1

·
[

1 +
k

d

]
l

· ~pd−β
|Aut(β)|

.

In this sum, we can absorb the extra factor pc by defining a new partition γ obtained by adding to β a
part d− c. Then |γ| = |β|+ d− c = 1 − k and d+ k = d+ 1 − |γ|. Then s

r+ks = 1
d+k can be absorbed in

the factorial (d+ k)!, turning it into (d+ k− 1)! = (d− |γ|)!. Since `(γ) = l+ 1, we remark that∑
c

∑
β

1
l+ 1

pc · ~pd−β
|Aut(β)|

· · · =
∑
γ

~pd−γ
|Aut(γ)|

· · ·

Besides, we see that |θ| = j+ ks = j+(1− |γ|)s, thus |θ|+ s|γ| = j+ s. These handlings yield the claimed
formula (4.3). For s = 1 the sum over θ is absent, we have |γ| = j+ 1 and r = d, and the simplification

(r− j) · (d− |γ|)!
(d+ 1 − |γ|)!

·
[
d+ 1 − |γ|

d

]
l

= (d− j) · 1
d− j

·
[

1 −
j

d

]
l

=

[
1 −

j

d

]
l

leads to the claimed (4.4). �
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4.3. The Taylor series. We have all the ingredients to evaluate Taylor series (2.20):

• The decomposing of the free energies F0
g,n+k on the basis functions a−1φ

a,[0]
m is given in (4.1) in

terms of intersection indices of the classesΩ(ds,s);
• The residue pairing of the basis functions with d(Dltft)

∣∣
t=0 was found in Corollary 4.2.

This leads to:

F1
g,n(z

′
1, . . . , z ′n)

=
(
(σpd)

s/rs−1r1+s/r)2g−2+n ∑
16a1,...,an6r
m1,...,mn>0

r
∑n
i=1 ai/r

n∏
i=1

a−1
i φ

ai,[0]
mi

(z̃i)

×
∑
k>0

(s−1rs/r)k

k!

∑
r−s+16b1,...,bk6r−1

l1,...,lk>0

r
∑k
c=1 bc/r(σpd)

∑k
c=1(s−r+bc)/rq

∑k
c=1(bc−r)/s

s

×
∑
h>0

(s−1rs/r)h

h!

∑
16j1,...,jh6r−1
o1,...,oh>0

r
∑h
c=1 jc/r(σpd)

∑h
c=1(s−r+jc)/rq

∑h
c=1(jc−r)/s

s

×
( ∫

Mg,n+k+h

Ω
(r,s)
g;r−a,r−b,r−j

n∏
i=1

(ψi/r)
mi

) k∏
c=1

Q
(lc)
s−r+bc

(lc + 1)!

h∏
c=1

F
(oc)
jc

(oc + 1)!
,

(4.11)

with x1(z
′
i) = x0(zi). Taking into account the series expansion (2.12) for the basis functions and ex1(z

′
i) =

ex0(zi) = q
−1/s
s (σpd)

−1/dsex[0](z̃i), we deduce the all-order series expansion as z ′i → 0

F1
g,n(z

′
1, . . . , z ′n) ≈

∑
µ1,...,µn>0

H2nd
g,n(µ1, . . . ,µn)

n∏
i=1

eµix1(z
′
i),

with

H2nd
g,n(µ) =

(
(σpd)

s/rs−1r1+s/r)2g−2+n
n∏
i=1

(µi/r)
bµi/rc

bµi/rc!
∑
k,h>0

∑
r−s+16b1,...,bk6r−1

l1,...,lk>0

∑
16j1,...,jh6r−1
o1,...,oh>0

× s
−(k+h)

k!h!
r
∑n
i=1 µi/r+

∑k
c=1(bc+s)/r+

∑h
c=1(jc+s)/r

× (σpd)
∑n
i=1 µi/r+

∑k
c=1(s−r+bc)/r+

∑h
c=1(s−r+jc)/rq

∑n
i=1 µi/s+

∑k
c=1(bc−r)/s+

∑h
c=1(jc−r)/s

s

×
( ∫

Mg,n+k+h

Ω
(r,s)
g;−µ,r−b,r−j∏n
i=1

(
1 − µi

r
ψi
)) k∏

c=1

Q
(lc)
s−r+bc

(lc + 1)!

h∏
c=1

F
(oc)
jc

(oc + 1)!
.

(4.12)

The Q-factors contain monomials in the q-variables (Lemma 3.1), while the F-factors contain monomials
in the p- and q-variables (Lemma 4.1). The former get replaced by a sum over k-tuple of non-empty
(s − 1)-partitions ρ(1), . . . , ρ(k) such that |ρ(c)| = s − r + bc ∈ {1, . . . , s − 1}, that is ρ ∈ PPks−1. The latter
get replaced by a sum over a h-tuple of (s − 1)-partitions (θ(1), . . . , θ(h)) and a h-tuple of non-empty
(d − 1)-partitions (γ(1), . . . ,γ(h)) such that |θ(c)| + s|γ(c)| = jc + s. The range of jc in (4.12) is enforced
by the condition

|θ(c)|+ s|γ(c)| ∈ {s+ 1, . . . , s+ r− 1}.

Definition 4.3. We call P+r
s−1,d−1 the set of ordered pairs (θ,γ) such that θ is a (s − 1)-partition, γ is a

non-empty (d− 1)-partition and s+ 1 6 |θ|+ s|γ| 6 s+ r− 1.

Then, the powers of p1, . . . ,pd−1 and q1, . . . ,qs−1 recombine into

~qλ · ~pπ (4.13)

with

t γ = d− π and t ρ t θ = s− λ. (4.14)
16



We should not forget the natural combinatorial factor

1
k!h!

,

corresponding to permutations among the k-tuple ρ and the ordered pair of h-tuples (θ,γ).

We also have the factors pdeg(pd)
d q

deg(qs)
s with (possibly negative) powers

deg(pd) =
(2g− 2 + n)s

r
+

|µ|

r
+

k∑
c=1

|ρ(c)|

r
+

h∑
c=1

(
|θ(c)|+ s|γ(c)|

r
− `(γ(c))

)
,

deg(qs) =
|µ|

s
+

k∑
c=1

(
|ρ(c)|

s
− `(ρ(c))

)
+

h∑
c=1

(
|θ(c)|

s
− `(θ(c))

)
.

(4.15)

Due to (4.14), we have

|π| =

k∑
c=1

|d− γ(c)| =

h∑
c=1

(
d`(γ(c)) − |γ(c)|

)
|λ| =

k∑
c=1

|s− ρ(c)|+

h∑
c=1

|s− θ(c)| =

k∑
c=1

(
s`(ρ(c)) − |ρ(c)|

)
+

h∑
c=1

(
s`(θ(c)) − |θ(c)|

)
.

Using as well r = ds, we can then rewrite (4.15) as

d · deg(pd) = 2g− 2 + n+
|µ|+ |s− λ|

s
− |π| and deg(qs) =

|µ|− |λ|

s
. (4.16)

We may also absorb the powers of pd and qs by considering the extended s-partition λ obtained from λ

by adding deg(qs) ∈ Z parts s, and the extended d-partition π, obtained from π by adding deg(pd) ∈ Z

parts d. From (4.16), it follows that their respective sizes are

|λ| = |µ| and |π| = 2g− 2 + n+
|µ|+ |s− λ|

s
.

Let us now turn to the other factors. First, we have anΩ-integral of the form∫
Mg,n+k+h

Ω
(r,s)
g;−µ,s−|ρ|,s(d+1−|γ|)−|θ|∏n

i=1

(
1 − µi

r
ψi
) ,

where we recall that n = `(µ). Second, from Fs and Qs we have a minus sign to the power

deg(−1) =
k∑
c=1

(
`(ρ(c)) − 1

)
+

h∑
c=1

(
`(γ(c)) − 1

)
= `(π) − h+

k∑
c=1

(
`(ρ(c)) − 1

)
.

Third, the Fs and the first and third line of (4.12) give rise to a factor σdeg(σ) with

deg(σ) =
s

r
(2g− 2 + n) +

|µ|

r
+

k∑
c=1

|ρ(c)|

r
+

h∑
c=1

|θ(c)|+ s|γ(c)|

r

=
2g− 2 + n+ |d− π|

d
+

|µ|+ |s− λ|

r
=

|d− π|+ |π|

d
,

using again (4.14). Third, we bring s−h in the second line of (4.12) as an extra s−1 into each of the factor
F
(oc)
jc

for c ∈ {1, . . . ,h}, and more precisely into its factor r− jc, in order to get a factor

h∏
c=1

r− jc
s

=

h∏
c=1

(
d+ 1 − |γ(c)|−

|θ(c)|

s

)
. (4.17)

Fourth, the factorials and symmetry factors in Qs and Fs yield a factor

k∏
c=1

[s−|ρ(c)|

r

]
`(ρ(c))−1

|Aut(ρ(c))|
·
h∏
c=1

(d− |γ(c)|)!
(d+ 1 − |γ(c)|− `(θ(c)))!

·

[d+1−|γ(c)|

d

]
`(γ(c))−1

|Aut(γ(c))| · |Aut(θ(c))|
.
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Fifth, taking into account the factor already absorbed in the previous step, we have a remaining factor
of s to the power

deg(s) = −(2g− 2 + n+ k).
Sixth, on top of the combinatorial factor

n∏
i=1

(µi/r)
bµi/rc

bµi/rc!
,

we also get an extra factor of r to the power

deg(r) =
(

1 +
s

r

)
(2g− 2 + n) +

k∑
c=1

|ρ(c)|+ r

r
+

h∑
c=1

|θ(c)|+ s|γ(c)|

r

=

(
1 +

s

r

)
(2g− 2 + n) + k+

|µ|+ |s− λ|

r
+

|d− π|

d

= −deg(s) + deg(σ).

All together, this leads to the formula

H2nd
g,n(µ) = (r/s)2g−2+n

n∏
i=1

(µi/r)
bµi/rc

bµi/rc!
∑
λ∈Ps
|λ|=|µ|

∑
π∈Pd

|π|=2g−2+n+(|µ|+|s−λ|)/s

(σr)(|d−π|+|π|)/d · ~qλ · ~pπ

×

(
`(π)∑
h=0

`(λ)−`(π)∑
k=0

(−1)h−`(π)(r/s)k

k!h!

∑
ρ∈PPks−1

(θ,γ)∈(P+r
s−1,d−1)

h

tγ=d−π
tθtρ=s−λ

(−1)
∑k
c=1(`(ρ

(c))−1)

×
k∏
c=1

[s−|ρ(c)|

r

]
`(ρ(c))−1

|Aut(ρ(c))|
·
h∏
c=1

(d− |γ(c)|)!
(d+ 1 − |γ(c)|− `(θ(c)))!

·

[d+1−|γ(c)|

d

]
`(γ(c))−1

|Aut(γ(c))| · |Aut(θ(c))|

×
h∏
c=1

(
d+ 1 − |γ(c)|−

|θ(c)|

s

)
·
∫
Mg,n+k+h

Ω
(r,s)
g;−µ,s−|ρ|,s(d+1−|γ|)−|θ|∏n

i=1

(
1 − µi

r
ψi
) )

.

(4.18)

In this formula we use the convention that if π is empty, i.e. π only has parts d, then the sum over h
only contains h = 0; if π is non-empty the sum should start at h = 1. Likewise, if λ is empty, the sum
over k,h only contains the k = h = 0 term, which is equal to 1.

4.4. Structure of the formula. The formula (4.18) is heavy but we can stress a few structural properties.
First, the factor in front of the integral in the last line of (4.18) is the index of the corresponding insertion
in the Ω-class divided by s. These insertions take values in {1, . . . , r − 1} due to the constraints on the
size of |θ(c)| and |γ(c)| in Definition 4.3. Furthermore, the insertions s − |ρ(c)| take values in the smaller
range {1, . . . ,d− 1}.

We recall that the powers of pd and qs are given by (4.16), namely

deg(pd) =
2g− 2 + n− |π|

d
+

|µ|+ |s− λ|

r
,

deg(qs) =
|µ|− |λ|

s
,

(4.19)

and they may be negative. The formula for deg(qs) is as expected. The modular condition (2.2) for the
insertions in theΩ-class says that

(2g− 2 + n+ k+ h)s = −|µ|+ sk−

k∑
c=1

|ρ(c)|+ s(d+ 1)h− s

h∑
c=1

(
|θ(c)|+ s|γ(c)|

)
mod r

= −|µ|+ s(k+ h) − |s− λ|− |d− π| mod r.

Since r = ds, this is equivalent to deg(pd) being an integer, so π is indeed an extended partition.

In a few instances the sums simplify
18



• If maxi 6=j(πi + πj) 6 d, the only surviving term in the h-sum is h = `(π).
• If maxi 6=j(λi + λj) 6 s, the only surviving term is k+ h = `(λ).
• If both conditions are satisfied, we must have k = `(λ) − `(π) and h = `(π), so the sum over k,h

consists of k!h! terms which are all equal, therefore yields a singleΩ-integral.

4.5. Polynomiality and vanishing. The spectral curve S2nd
1 coincides with the family S(ψ̂,ŷ) introduced

in Section 2.4 and (2.15)-(2.16), up to multiplying P with σ. Therefore, H2nd
g,n(µ) can be interpreted in

terms of weighted Hurwitz numbers. Accordingly H2nd
g,n cannot contain terms with deg(pd) < 0 or

deg(qs) < 0, and we get vanishing relations for the last three lines of (4.18). They can be reformulated
in terms of the (s − 1)-partition ν = s − λ and the (d − 1)-partition τ = d − π. Taking into account
divisibility as in Section 3.4:

deg(pd) < 0 ⇐⇒ (2g− 2 + n+ |τ|)s+ |µ|+ |ν| 6 d(`(τ) − 1),

deg(qs) < 0 ⇐⇒ |µ|+ |ν| 6 s(`(ν) − 1).
(4.20)

Theorem 4.4. Let d > 2, s > 1 and set r = ds. Let g > 0. Let µ be a non-empty partition, ν is a (possibly
empty) (s − 1)-partition, and τ a (possibly empty) (d − 1)-partition. Assuming that one of the two conditions
(4.20) is satisfied, we have

0 =

`(τ)∑
h=0

`(ν)−`(τ)∑
k=0

(−1)`(τ)−h(r/s)k

h!k!

∑
ρ∈PPks−1

(θ,γ)∈(P+r
s−1,d−1)

h

tγ=τ
tθtρ=ν

(−1)
∑k
c=1(`(ρ

(c))−1)

×
k∏
c=1

[s−|ρ(c)|

r

]
`(ρ(c))−1

|Aut(ρ(c))|
×

h∏
c=1

(d− |γ(c)|)!
(d+ 1 − |γ(c)|− `(θ(c)))!

·

[d+1−|γ(c)|

d

]
`(γ(c))−1

|Aut(γ(c))| · |Aut(θ(c))|

×
h∏
c=1

(
d+ 1 − |γ(c)|−

|θ(c)|

s

)
·
∫
Mg,n+k+h

Ω
(r,s)
g;−µ,s−|ρ|,s(d+1−|γ|)−|θ|∏n

i=1

(
1 − µi

r
ψi
) .

For given µ,g,n, one can always find a vanishing relation by taking ν and τ large enough.

Let us spell this out in the simpler case s = 1, i.e. r = d. Then we do not have any ρ and θ, and deg(q1)

is always nonnegative. Taking to account the remark about s = 1 at the end of Section 4.1, the formula
(4.18) then simplifies:

H2nd
g,n(µ) = r

2g−2+n
n∏
i=1

(µi/r)
bµi/rc

bµi/rc!
∑
π∈Pr

|π|=2g−2+n+|µ|

(σr)`(π)+(2g−2+n+|µ|−|π|)/r · q|µ|1 · ~pπ

×


`(π)∑
h=0

(−1)`(π)−h

h!

∑
γ∈Phr−1

26|γ(c)|6r−1
tγ=r−π

[ r+1−|γ(c)|

r

]
`(γ(c))−1

|Aut(γ(c))|

∫
Mg,n+h

Ω
(r,1)
g;−µ,r+1−|γ|∏n
i=1

(
1 − µi

r
ψi
)
 .

As usual, if π is empty the sum over h reduces to h = 0; if π is non-empty it starts at h = 1. Under the
condition deg(pd) < 0, that is

2g− 2 + n+ |τ|+ |µ| 6 d(`(τ) − 1).

with τ = d− π, we get

`(τ)∑
h=0

(−1)`(τ)−h

h!

∑
γ∈Phr−1

26|γ(c)|6r−1
tγ=τ

[ r+1−|γ(c)|

r

]
`(γ(c))−1

|Aut(γ(c))|

∫
Mg,n+h

Ω
(r,1)
g;−µ,r+1−|γ|∏n
i=1

(
1 − µi

r
ψi
) .
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Here, the requirement that γ(c) has size {2, . . . , r− 1} is implied by Definition 4.3 for empty θ(c). So, if π
has parts of size 1 they cannot appear alone in a γ(c). In particular, if π has no parts 1 and τ is bounded,
i.e. mini 6=j(τi + τj) > r, there only remains a single term∫

Mg,n+`(τ)

Ω
(r,1)
g;−µ,r+1−τ∏n

i=1

(
1 − µi

r
ψi
) = 0.

This proves Theorem B.

5. THE THIRD DEFORMATION

5.1. Setting and vanishing result. Let r > 2 and s ∈ {1, . . . , r− 1}. Contrarily to Sections 3-4, we do not
assume any divisibility condition between r and s. We consider the spectral curve

S3rd
t :

{
xt(z) = ln z−

(
prz

r + tP̃(z)
)

yt(z) = zs
(5.1)

with

P̃(z) =

r−s∑
j=1

pjz
j.

Let Ftg,n(z1, . . . , zn) be the free energies associated to this curve. The computations with this deformation
follow the same steps as in Sections 3-4 without additional difficulty — here it is important that P̃ has
degree at most r − s instead of r − 1, otherwise the simplifying tricks used in the proofs of Lemma 3.1
(see also [BDK+22, Lemma 5.3]) or Lemma 4.1 would not work. We will therefore omit the details and
only state the results.

The deformation 1-form is

ηt(z) = − Res
w=∞ω0,2(z,w)ft(w), dft(z) = sP̃(z)zs−1dz,

The evaluation of the Taylor series at t = 1 yields an expansion as zi → 0

F1
g,n(z

′
1, . . . , z ′n) ≈

∑
µ1,...,µn>0

H3rd
g,n(µ1, . . . ,µn)

n∏
i=1

eµix1(z
′
i),

with

H3rd
g,n(µ) = (s−1r1+s/r)2g−2+n

n∏
i=1

(µi/r)
bµi/rc

bµi/rc!
∑
π∈Pr

with parts in {1,...,r−s}∪{r}
|π|=(2g−2+n)s+|µ|

r(|µ|+|r+s−π|)/r · ~pπ

×


`(π)∑
k=0

1
k!

∑
ρ∈Pks,r+s−1

|ρ(c)|6r+s−1
tρ=r+s−π

k∏
c=1

[ r+s−|ρ(c)|

r

]
`(ρ(c))−1

|Aut(ρ(c))|
·
∫
Mg,n+k

Ω
(r,s)
g;−µ,r+s−|ρ|∏n
i=1

(
1 − µi

r
ψi
)
 ,

(5.2)

where Ps,r+s−1 was defined in Section 1.4 as the set of partitions which are either empty or have parts
of size {s, s+1, . . . , r+s−1}. The constraints on the (possibly empty) (r+s−1)-partitions ρ(c) imply that
the corresponding insertions in the Ω-class are in {1, . . . , r}, but an index r in the Ω-class is equivalent
to an index 0, all insertions effectively remain in the fundamental range {0, . . . , r − 1}. For |ρ(c)| = r

we have an insertion of an index s, which is the unit — we recall from Theorem 2.2 that in the range
s ∈ {1, . . . , r− 1} considered here,Ω(r,s) forms a cohomological field theory with flat unit.

As s may not divide r, the spectral curve (5.1) is not of the form considered in [BDBKS20] and we do
not have a priori a combinatorial meaning for H3rd

g,n(µ) from which one could infer that it cannot contain
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negative powers of p1, . . . ,pr−s. Nevertheless, we justify in the next section that this is indeed the case,
by a direct study of the topological recursion formula.

Proposition 5.1. For any µ1, . . . ,µn > 0, H3rd
g,n(µ) is a power series in the variables p1, . . . ,pr−s,pr.

By comparison with (5.2) which may contain negative powers of pr, we obtain vanishing relations.
More precisely, the power of pr is

deg(pr) = (2g− 2 + n)s+ |µ|− |π| = (2g− 2 + n)s+ |µ|− |r+ s− τ|

in terms of the (r+s−1)-partition τ = r+s−π. Due to the modular condition (2.2), we have deg(pr) < 0
is equivalent to

(2g− 2 + n) + |µ|+ |τ| 6 (r+ s)`(τ) − r

with n = `(µ). If this condition is satisfied, we then have the vanishing relation

`(τ)∑
k=0

1
k!

∑
ρ∈Pks,r+s−1

|ρ(c)|6r+s−1
tρ=τ

k∏
c=1

[ r+s−|ρ(c)|

r

]
`(ρ(c))−1

|Aut(ρ(c))|

∫
Mg,`(µ)+`(τ)

Ω
(r,s)
g;−µ,r+s−|ρ|∏`(µ)

i=1

(
1 − µi

r
ψi
) = 0.

Note that there is no alternating sign in this sum, as in Section 4 for the sum over kwhen we deformed
P, and unlike Section 3 when we deformedQ. The sum is non-empty only if the parts of τ all belong to
{s, . . . , r+ s− 1}. Furthermore, if τ is bounded, i.e. mini 6=j(τi + τj) > r+ s, only k = `(τ) survives in the
sum and we get the vanishing of a singleΩ-integral∫

Mg,n+`(τ)

Ω
(r,s)
g;−µ,r+s−τ∏n

i=1

(
1 − µi

r
ψi
) = 0.

This proves Theorem C.

5.2. Proof of polynomiality (Proposition 5.1). We keep the assumption r > 2 and s ∈ {1, . . . , r − 1}.
For the sake of clarity of our method, most of the argument will be given for the more general spectral
curve {

xt(z) = ln z− P(z)
yt(z) = zs

with P(z) =

r∑
j=1

pjz
j (5.3)

We want to examine the behavior of the correlators or free energies of topological recursion as functions
of pr → 0. The ingredients of the topological recursion were listed in Section 2.2: we need to examine
the behavior of ramification points (zeros of x ′(z), collected in the set R), of the local involution z 7→ z

near ramification points, of the recursion kernel Kα(z0, z). Additionally, as we are interested in the
coefficients of decomposition of the free energies on a suitable basis of functions (or equivalently, its
expansion as zi → 0), we must examine as well the behavior of this basis of functions as pr → 0.

Note that for s = 1 (and for all cases such that s|r), this spectral curve is of the form studied in Section 2.4
and Proposition 5.1 is a consequence of [BDBKS20]. Therefore, we can assume s > 2 and r > 3.

5.2.1. The ramification points. We look for the zeros of

zx ′(z) = 1 − zP ′(z) = 1 −

r∑
j=1

jpjz
j,

and want to understand their behavior as pr → 0. These are also the zeros of

z−r −

r∑
j=1

jpj(z
−1)r−j = 0. (5.4)

The left-hand side is a polynomial of fixed degree r in the variable z−1, so its set of r zeros is a continuous
functions of pr in a neighborhood of 0. In particular, at pr = 0 it has a zero of order r ′ at z−1 = 0, where

r ′ = min
{
j ∈ {1, . . . , r− 1} | pr−j 6= 0

}
.

If the minimum does not exist we set r ′ = r.
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Definition 5.2. We call escaping root a zero of 1 − zP ′(z) going to infinity as pr → 0. The other zeros are
called regular roots and they have a limit as pr → 0.

Lemma 5.3. Assume that r ′ ∈ {1, . . . , r − 1} and (1 − zP ′(z))|pr=0 has only simple zeros distinct from 0 (this
is a generic condition). In the regime pr → 0, the escaping roots have a Puiseux series expansion of the form
αj =

∑
k>−1 αj,kp

k/r′

r while the regular roots have a power series expansion.

Proof. Let βr′+1, . . . ,βr be the roots of (1 − zP ′(z))
∣∣
pr=0 and

∀j ∈ {1, . . . , r ′} ζj = e
2iπj/r′

(
−

(r− r ′)pr−r′

r

)1/r′

,

for some fixed choice of r ′-th root in the bracket. We can label αr′+1, . . . ,αr the regular roots tending
to βr′+1, . . . ,βr, and α1, . . . ,αr′ the escaping roots which are such that αj ∼ ζjp

−1/r′
r — an inspection

of (5.4) reveals that they behave in this way. The assumptions we have taken imply that α1, . . . ,αr are
continuous functions of pr in a sectorial neighborhood of 0. Notice that the zeros of any polynomial are
algebraic functions of the coefficients of such polynomial, hence in particular algebraic functions of pr.
In the present case, where we can label the roots individually, it implies that α1, . . . ,αr have Puiseux
series expansions as pr → 0.

Using the splitting between regular and escaping roots, Viète’s formula yields for i ∈ {1, . . . , r ′}

ei(α1, . . . ,αr′) + ei(αr′+1, . . . ,αr) +
∑

i1+i2=i
i1,i2>1

ei1(α1, . . . ,αr′)ei2(αr′+1, . . . ,αr) = δi,r′(−1)r
′ (r− r ′)pr−r′

rpr
.

We see this as a triangular system determining ei(α1, . . . ,αr′) for i ∈ {1, . . . , r ′}, in the form

ei(α1, . . . ,αr′) = δi,r′(−1)r
′ (r− r ′)pr−r′

rpr
+
∑
λ`i

Cλeλ(αr′+1, . . . ,αr) (5.5)

for some universal constants Cλ. Here, eλ are the elementary symmetric polynomials associated with a
partition λ, and for λ ` i they form a basis of the space of symmetric polynomials of degree equal to i.

Next, we write the remaining Viète’s formulae for i ∈ {r ′ + 1, . . . , r}, in the form

ei(αr′+1, . . . ,αr) +
r′∑
i′=1

ei′(α1, . . . ,αr′)ei−i′(αr′+1, . . . ,αr) = (−1)i
(r− i)pr−i

rpr
.

Then, we substitute (5.5) for ei′(α1, . . . ,αr′), write αj = βj+κj for j ∈ {r ′+1, . . . , r}, plug an (unknown)
formal power series expansion κj ≈

∑
k>1 κj,kpkr in the equation, and extract the coefficient of pkr for

each k ∈ Z>0. The result takes the form

∀i ∈ {r ′ + 1, . . . , r}
r∑

j=r′+1

ei−1(βr′+1, . . . , β̂j, . . . ,βr)κj,k = Polynomial
(
(κj,m)r′+16j6r

06m6k−1

)
.

This is a invertible triangular system, since the matrix(
ei−1(βr′+1, . . . , β̂j, . . . ,βr)

)
r′+16i,j6r

has determinant proportional to the Vandermonde
∏
r′+16j<l6r(βl − βj) which is non-zero due to the

assumption of distinct roots. By uniqueness of Puiseux series expansions, its solution determines the
(formal power) series expansion for the regular roots.

We now return to the Viète’s formulae (5.5) indexed by i ∈ {1, . . . , r ′} and insert there the power series
expansion of the regular roots, the decomposition

∀j ∈ {1, . . . , r ′} αj = p
−1/r′
r ζj + κj,

and a (unknown) regular formal Puiseux series expansion κj ≈
∑
k>0 κj,kp

k/r′

r . The leading term in the

equation is of order p−i/r
′

r and the equation is automatically satisfied at this order due to the properties
of the r ′-th roots. Extracting the coefficient of p(k−i+1)/r′

r for some k ∈ Z>0 yields a system of the form

∀i ∈ {1, . . . , r ′}
r′∑
j=1

ei−1(ζ1, . . . , ζ̂j, . . . , ζr′)κj,k = Polynomial
(
(κj,m) 16j6r

06m6k−1
, (κj,m)r′+16j6r

m>0

)
.
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Since the ζs are pairwise distinct, this is again an invertible triangular system, whose solution deter-
mines uniquely the Puiseux series expansion of the escaping roots. �

5.2.2. The local involutions. Recall that R is the set of zeros of 1 − zP ′(z), and let α ∈ R. Compared to
Section 2.2, it is convenient to recenter the local involution and define it as the holomorphic map z 7→ z

locally defined near 0 such that x(α+ z) = x(α+ z) but z 6= z for z 6= 0. Equivalently, it is characterised
by the condition dz 6= dz and

z ·
∏
γ∈R\{α}(z+ α− γ)

z+ α
dz = z̄ ·

∏
γ∈R\{α}(z̄+ α− γ)

z̄+ α
dz̄,

We rewrite it as
z̄

z
·
∏
γ∈R\{α}(z̄+ α− γ)∏
γ∈R\{α}(z̄+ α− γ)

· z+ α
z̄+ α

· dz̄
dz

= 1. (5.6)

As a holomorphic function, this involution admits a series expansion

z̄

z
≈

∞∑
k>0

akz
k (5.7)

as z → 0. Studying the leading order of (5.6), we get a0 = −1. We want to describe the structure of
(ak)k>1 as a function of the points in R.

Lemma 5.4. Keep the assumptions of Lemma 5.3 and assume as well that βr′+1, . . . ,βr are non-zero (this is
a generic condition). Then, for each k ∈ Z>0, the coefficient ak has a regular Puiseux series expansion in the
variable pr.

Proof. As z→ 0, we derive from (5.7) the expansion

dz̄
dz
≈
∑
k>0

(k+ 1)akzk.

and for any b ∈ C∗

z̄− b

z− b
≈ −1

b

(∑
k>1

ak−1z
k − b

)(∑
m>0

zm

bm

)
=
∑
k>0

zk
k∑
l=0

−al−1(b)

bk−l+1 = 1 +O(z),

where al(b) = al for l > 0 and a−1(b) = −b. Likewise:

z− b

z̄− b
≈
∑
k>0

zk
∑

m1,m2,...>0∑
i>1 imi=k

(∑
i>1mi

)
!∏

i>1mi!
·
∏
i>1

( i∑
l=0

al−1(b)

bi−l+1

)mi
.

Equating the coefficients of the z → 0 expansion on both sides of (5.6), we infer from the listed expan-
sions that the ak for k > 1 are polynomials in α−1 and (α − γ)−1 for γ ∈ R \ {α}. In view of Lemma 5.3
and since we additionally assume that the regular roots have a non-zero limit, each of this quantity has
a limit as pr → 0, and a Puiseux series expansion as pr → 0. Therefore, ak has a regular Puiseux series
expansion as pr → 0. �

5.2.3. The recursion kernel. The first part of the topological recursion formula (2.8) involves the recursion
kernel at α ∈ R. Specialised to the spectral curve (5.3) and with the modified convention of Section 5.2.2
for the local involution, this is

Kα(z0,α+ z)dzdz =
dz0

2

(
1

z0 − (α+ z)
−

1
z0 − (α+ z)

)
dzdz(

y(α+ z) − y(α+ z)
)
dx(z)

= −
1
2

(z+ α)dz0 dz
rprz

∏
γ∈R\{α}(z+ α− γ)

1
(α+ z)s − (α+ z)s

z− z

(z0 − z− α)(z0 − z− α)
.

Residues will be taken at z = 0, and we included a factor dzdz as it will come up in the second part of
(2.8).
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Lemma 5.5. For each α ∈ R, we have as z→ 0

Kα(z0,α+ z)dzdz ≈
∑
k>−1

Kα,k(z0) z
k dzdz0.

The functions Kα,m(z0) are polynomials in (z0 − α)−1. Under the assumptions of Lemma 5.4 and assuming
s ∈ {2, . . . , r− 1}, the coefficients of this polynomial have a regular Puiseux series expansion as pr → 0.

Proof. We rewrite Kα(z0,α+ z)dzdz = cαz−1(z0 − α)
−2 K̃α(z0, z)dz0dz, where

cα :=
α2−s

2srpr
∏
γ∈R\{α}(α− γ)

,

K̃α(z0, z) =
1 + z/α∏

γ∈R\{α}

(
1 + z

α−γ

) · 2sz
α
(
(1 + z/α)s − (1 + z/α)s

) · 1 − z/z(
1 − z

z0−α

)(
1 − z

z0−α

) · −dz
dz

.
(5.8)

If α is a regular root, we have as pr → 0

1∏
γ∈R\{α}(α− γ)

= O(pr)

because there are r ′ escaping roots behaving like O(p−1/r′
r ) contributing to the product. Under the

assumptions of Lemma 5.4, the numerator α2−s has a non-zero limit and thus cα = O(1). If α is an
escaping root, we rather have

1∏
γ∈R\{α}(α− γ)

= O(p(r−1)/r′
r ).

Then, α2−s = O(p
−(2−s)/r′
r ) and we obtain cα = O(p

(−r′+s−2+r−1)/r′
r ). The maximal value of r ′ being

r− 1, this gives cα = O(p
(s−2)/r′
r ). Hence, for s > 2, we always have cα = O(1).

The function K̃α(z0, z) has a power series expansion in the variable z → 0, and we claim that its coeffi-
cients are polynomial in α−1, (α− γ)−1 for γ ∈ R \ {α}, and (z0 − α)

−1. Indeed, the proof of Lemma 5.4
showed that the coefficients (ak)k>1 of expansion of z in the z-variable have this type of property. We
also compute as z→ 0

α
(
(1 + z/α)s − (1 + z/α)s

)
=

s∑
l=1

(
s

l

)
α1−l(zl − zl) ≈ 2sz+

∑
k>1

Akz
k+1,

where Ak is a polynomial in the variables (al)l>1. Therefore, as z→ 0:

2sz
α
(
(1 + z/α)s − (1 + z/α)s

) ≈ 1 +
∑
k>1

zk
∑

m,k1,...,km>1
k1+···+km=k

(−1)m

(2s)m

m∏
i=1

Aki , (5.9)

and the coefficient of zk there is a polynomial in (ak)k>1 and in α−1. The other factors in (5.8) are easier
to analyse. This shows the claim. In the proof of Lemma 5.4 we showed that α−1 and (α − γ)−1 have
a regular Puiseux series expansion in the variable pr. Therefore, the coefficient of zk in K̃α(z0, z) is a
polynomial in (z0 −α)

−1 whose coefficients have regular Puiseux series expansions as pr → 0. Since we
already proved that cα has this property, this proves the lemma. �

5.2.4. The free energies. For 2g− 2+n > 0, the free energies Fg,n(z1, . . . , zn) are rational functions on the
Riemann sphere with poles at zi = α for some α ∈ R and i ∈ {1, . . . ,n}, and zeros at zi = 0. We can
therefore decompose them as

Fg,n(z1, . . . , zn) =
∑

16j1,...,jn6r
k1,...,kn>0

Gg,n
[
j1 ··· jn
k1 ··· kn

] n∏
i=1

(
1

(zi − αji)
ki+1 −

1
(−αji)

ki+1

)
, (5.10)

where only finitely many coefficients are non-zero. In general, if u is an independent variable, let us
write as z→ 0

1
z− u

−
1
−u
≈
∑
m>1

Em(u)emx(z).
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We compute for anym > 1:

Em(u) = Res
z=0

e−(m+1)x(z)( 1
z− u

−
1
−u

)
d(ex(z)) = −

1
m

Res
z=0

e−mx(z)dz
(z− u)2

= −
1
m

Res
z=0

z−me−m
∑r
j=1 pjz

j

(z− u)2 = −
1
m

[
z−(m−1)] e−m∑rj=1 pjz

j

(z− u)2 .

Without making it more explicit, we can already tell that Em(u) is a polynomial in the variables 1/u
and p1, . . . ,pr. Then, by differentiating k times with respect to u, we get

1
(z− u)k+1 −

1
(−u)k+1 ≈

∑
m>1

E
(k)
m (u)

k!
emx(z),

and ∂kuEm(u) is also a polynomial in the variables 1/u and p1, . . . ,pr. This allows us extracting the
expansion of the free energies as zi → 0 in the variables ex(zi) :

Fg,n(z1, . . . , zn) ≈
∑

µ1,...,µn>0

Hg,n(µ1, . . . ,µn)
n∏
i=1

eµix(zi),

where

Hg,n(µ1, . . . ,µn) =
∑

16j1,...,jn6r
k1,...,kn>0

Gg,n
[
j1 ··· jn
k1 ··· kn

] n∏
i=1

E
(ki)
µi (αji)

ki!

and we recall there are only finitely many non-zero terms in this sum. Since α−1 has a regular Puiseux
series expansion as pr → 0 for any α ∈ R, it is sufficient to check that the coefficients Cg,n

[
j1 ··· jn
k1 ··· kn

]
have a regular Puiseux expansion as pr → 0 to conclude the same for Hg,n(µ1, . . . ,µn).

We first compute the cases 2g− 2 + n = 1. For (g,n) = (0, 3) we have

ω0,3(z1, z2, z3) =
∑
α∈R

Res
z=0

Kα(z1,α+ z)

(
dzdzdz2 dz3

(α+ z− z2)2(α+ z− z3)2 + (z2 ↔ z3)

)
=
∑
α∈R

2cα
(z1 − α)2(z2 − α)2(z3 − α)3

= dz1 dz2 dz3

(∑
α∈R

−2cα
3∏
i=1

(
(z1 − α)

−1 − (−α−1)
))

.

In other words G0,3
[
j1 j2 j3
k1 k2 k3

]
= −2δj,j1,j2,j3δk1,k2,k3,0cαj . For (g,n) = (1, 1), we have

ω1,1(z1) =
∑
α∈R

Res
z=0

Kα(z1,α+ z)
dzdz
(z− z)2

=
∑
α∈R

Res
z=0

(
Kα,−1(z1)

z
+ Kα,0(z1) + Kα,1(z1)z+O(z

2)

)(
1

4z2 +
a1

4z
+
a2

1 + 2a2

8
+O(z)

)
dzdz1

=
1
4
Kα,−1(z1) +

a1

4
Kα,0(z1) +

a2
1 + 2a2

8
Kα,1(z1).

in terms of the coefficients of expansion of the involution (5.7). Then, the Lemmata 5.4 and 5.5 guarantee
that the entries of G1,1 and G0,3 have regular Puiseux series expansion as pr → 0.

The topological recursion formula (2.8) implies a recursion on 2g − 2 + n > 0 for the Gg,n, which we
can initialise with G0,3 and G1,1 — this is closely related to the Airy structure form of the topological
recursion [?, ?]. To describe its structure, we first need to compute as z→ 0

ω0,2(zi,α+ z) =
dzidz

(z− zi)2 ≈
(k+ 1)zk

(zi − α)k+2 , (5.11)

and

ω0,2(zi,α+ z) ≈
∑
k>0

(k+ 1)zk

(zi − α)k+2 ≈
∑
k>0

zk

(
k∑
l=0

−(l+ 1)Wα,k,l

(zi − α)l+2

)
, (5.12)
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whereWα,k,l are polynomial in the variables a1,a2, . . .. Besides, for 2g− 2 +n > 0 the relation between
the correlators and the free energies (5.10) yields:

ωg,n(z1, . . . , zn) =
∑

16j1,...,jn6r
k1,...,kn>0

Cg,n
[
j1 ··· jn
k1 ··· kn

] n⊗
i=1

−(ki + 1)dzi
(zi − αji)

ki+2 . (5.13)

Inserting (5.11)-(5.12)-(5.13) in the topological recursion formula (2.8), we get

Gg,1+n
[
j0 ··· jn
k0 ··· kn

]
=

n∑
i=1

∑
16j6r
k>0

B
[
j0 ji j
k0 ki k

]
Gg,n

[
j j1 ··· ĵi ··· jn
k k1 ··· k̂i ··· kn

]

+
∑

16j,j′6r
k,k′>0

C
[
j0 j j

′

k0 k k
′

]
2

Gg−1,n+2
[
j j′ j1 ··· jn
k k′ k1 ··· kn

]
+

∑
ItI′={1,...,n}
h+h′=g

Gh,1+|I|

[ j (ji)i∈I
k (ki)i∈I

]
·Gh′,1+|I′|

[ j′ (ji)i∈I′

k′ (ki)i∈I′

] ,

with the conventions G0,1 = 0 and G0,2 = 0. The recursion coefficients B and C are computed as the
coefficients of −(k0 + 1)(z0 − αj0)

−(k0+2) in the respective expressions

δj0,ji Res
z=0

Kαj0
(z0, z+ αj0)

(ki + 1)zki · −(k+ 1)
(z+ αj0 − αj)

k+2 +
∑
k′>ki

zk
′
Wαj0 ,k′,ki ·

−(k+ 1)
(z+ αj0 − αj)

k+2


and

Res
z=0

Kαj0
(z0,αj0 + z)

(
(k+ 1)

(z+ αj0 − αj)
k+2 ·

(k ′ + 1)
(z+ αj0 − αj′)

k′+2 + (z↔ z)

)
.

We had to distinguish between the B-terms and the C-terms due to the two different expansions for
ω0,2 and the other ωg′,n′ . Only finitely many terms of the sum over k ′ can contribute in B because we
are extracting a given power of (z0 − αj0)

−1. With the help of Lemmata 5.4 and 5.5 and arguing as in
the previous paragraphs, one can infer that B and C are polynomials in α−1 and (α − γ)−1 for α 6= γ

in R, and we deduce that they admit an regular Puiseux series expansion as pr → 0. By induction on
2g − 2 + n > 0, we can then conclude that, under the Assumptions of Lemma 5.5, the Gg,n also have
regular Puiseux series expansion as pr → 0.

We are now in position to conclude the proof of Proposition 5.1. Recall that in the setting of this Propo-
sition we have pr−1 = · · · = pr−s+1 = 0. We have seen in (5.2) that for any given partition µ of length
n, the coefficient H3rd

g,n(µ1, . . . ,µn) has a Puiseux expansion in the variable pr, whose coefficients are
polynomials in the variables p1, . . . ,pr−s. Let us focus on the coefficient of a fixed negative power of pr
in a fixed H3rd

g,n(µ1, . . . ,µn). This coefficient is determined by the value it takes on finitely many tuples
of complex numbers (p1, . . . ,pr−s); how many depends on g,n and the power of pr one looks at. In
particular, we choose this amount of finitely many tuples so that all of them satisfy the assumptions
of the Lemma 5.5. We then conclude from the previous paragraph that the coefficient of the negative
power of pr under consideration in H3rd

g,n(µ) must vanish. This proves Proposition 5.1.

6. VANISHING OF SINGLE Ω-INTEGRALS: THEOREMS AND EXPERIMENTS

Vanishing of integrals of Ω-classes usually arise for particular geometric reasons. In this section we
discuss the single integral vanishing that were known and the new ones that we have experimentally
found by computing many examples of the same form of the ones appearing in this article.

A certain class of vanishing was obtained in the work of Johnson, Pandharipande, and Tseng [JPT11,
Theorem 2] with a geometric proof. The statement in the original paper is expressed in terms of integrals
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over the space of admissible covers, which becomes the integral of a Ω-class after taking the pushfor-
ward to the moduli space of stable maps, as proved in [LPSZ17]. We give below the pushforwarded
version adapted to our notation.

Theorem 6.1. [JPT11] Let r = s ∈ Z>0 and g ∈ Z>0. Let µ be a non-empty partition, n > 0 and b1, . . . ,bn ∈
{0, . . . , r− 1} such that |µ| =

∑n
i=1 bj mod r. Assume that at least one of the following conditions hold:

(i) The negativity condition |µ| <
∑n
i=1 bj and the boundedness condition maxi 6=j(bi + bj) 6 r.

(ii) The strong negativity condition (r− 1)|µ|+
∑n
i=1 bi < rn.

Then, we have the vanishing ∫
Mg,`(µ)+n

Ω
(r,s)
g;−µ;b1,...,bn∏`(µ)

i=1 (1 − µi
r
ψi)

= 0. (6.1)

The statement replacing Theorem 6.1 in absence of (i) was obtained in [BDK+22] and is the special case
d = 1 of Theorem A: it says that a linear combination of Ω-integrals vanish, and it contains a single
term whenever the boundedness condition is satisfied. The strong negativity condition does not seem
to play a role in our approach, so should be considered as a vanishing relation of a different nature than
Theorem A.

The theorem above holds as well for s = 0, since it gives the same Ω-class as s = r. The correct
tuning of the parameter s, especially in relation with the r parameter, has played an important role
in the applications of Ω-classes such as for instance Hurwitz theory [KLPS19, BKL+20, DBKPS23], the
double ramification cycle [JPPZ17], Masur-Veech volumes [CMS23], and the Euler characteristic of Mg,n

[GLN23]. It is therefore natural to ask whether a generalisation of Theorem 6.1 for general s exists.

For this purpose, we have run computations of integrals of the form (6.1) for dimC(Mg,n) 6 5 using the
Sage package ADMCYCLES [DSvZ20]. First, the computations suggest that for µ = (1) one could drop
conditions (i) and (ii) of Theorem 6.1, in the sense that the integral in (6.1) vanishes nevertheless:

∀s ∈ {0, r}
∫
Mg,1+n

Ω
(r,s)
g;r−1,b1,...,bn(
1 − 1

r
ψ1
) = 0 (6.2)

for any b1, . . . ,bn ∈ {0, . . . , r − 1}. Additionally, the vanishing (6.2) holds as well for s = −1. The case
s = −1 is a particular case of the observed vanishing:

∀s ∈ {−r+ 1, . . . ,−1}
∫
Mg,1+n

Ω
(r,s)
g;|s|,b1,...,bn(
1 + s

r
ψ1
) = 0. (6.3)

The latter can be proved as an specialisation of the statement (a) for −r < s < 0 in the following
vanishing result.

Theorem 6.2. [GLN23] Let r ∈ Z>0 and s ∈ Z, let g,n ∈ Z>0 such that 2g − 2 + n > 0, and b1, . . . ,bn ∈
{0, . . . , r − 1} such that (2g − 2 + n)s =

∑n
i=1 bi mod r. Denote 〈s〉 ∈ {0, . . . , r − 1} the remainder of the

Euclidean division of s by r. Then, the following properties hold
(a) If s < 0 we have: ∫

Mg,1+n

Ω
(r,s)
g;〈s〉,b1,...,bn∏−bs/rc−1

m=0

(
1 −

(
−s
r
−m

)
ψ1
) = 0. (6.4)

(b) If 0 6 s 6 r we have: ∫
Mg,1+n

Ω
(r,s)
g;s,b1,...,bn = 0. (6.5)

(c) If s > r we have: ∫
Mg,1+n

Ω
(r,s)
g;〈s〉,b1,...,bn

bs/rc∏
m=1

(
1 +

(s
r
−m

)
ψ1

)
= 0. (6.6)

Let us now consider the integrals ∫
Mg,1+n

Ω
(r,s)
g;−µ1,b1,...,bn(
1 − µ1

r
ψ1
) (6.7)
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for fixed g,n, r, s as functions of positive integers µ1. We have observed numerically that, for s < 0,
these integrals not only vanish for µ1 = −s as discussed above, but most of the vanishing happen
around that value: for µ1 = −s+ 1,−s+ 2, etc. Sometimes, for a few values µ1 < −s, many of the tuples
(b1, . . . ,bn) produce vanishing, with the amount of tuples leading to vanishing fading out away from
the value µ1 = −s. It can happen that for some µ1 = −s + a with a a small positive integer, all tuples
b1, . . . ,bk give vanishing. If only some tuples produce vanishing and some do not, there seems to be an
boundedness-type condition

max
i 6=j

(bi + bj) 6 C
(r,s)
g,n (µ1)

which is sufficient to produce vanishing — we already know the specialisation C(r,r)
g,n (µ1) = r from

Theorem 6.1. If such a bound exists it should depend in a non trivial way on µ1 and on the genus, and
this phenomenon goes undetected for s = r. However, in a few cases, we encounter counterexamples.
For instance, in genus one for (r, s) = (6,−3) and µ1 = 6, we have computed in genus 1∫

M1,5

Ω
(6,−3)
1;0;5,4,4,2

(1 +ψ1)
= 0,

∫
M1,5

Ω
(6,−3)
1;0;5,4,3,3

(1 +ψ1)
6= 0,

despite the two tuples b = (5, 4, 4, 2) and b = (5, 4, 3, 3) having the same max
i 6=j

(bi + bj), and even the

same
∑
i bi. As a last observation, we have not encountered any vanishing for s < −r.
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APPENDIX A. PROPERTIES AND SYMMETRIES OF Ω-CLASSES

This section contains a collection of previously known and basic properties of the Ω-classes as defined
in (2.6).

Theorem A.1. [GLN23] Fix g,n ∈ Z>0 such that 2g − 2 + n > 0. Let (r, s) ∈ Z>0 × Z and a1, . . . ,an ∈
{0, . . . , r − 1} such that a1 + a2 + · · · + an = (2g − 2 + n)s mod r. The Ω-classes satisfying the following
properties

(i) Shift of s:

Ω(r,s)
g;a1,...,an(u) = Ω

(r,s)
g;a1,...,an(u) · exp

(∑
m>1

(−u)m

m

(s
r

)m
κm

)
. (A.1)

(ii) Shift of ai:

Ω
(r,s)
g;a1,...,ai−1,ai+r,ai+1,...,an(u) = Ω

(r,s)
g;a1,...,an(u) ·

(
1 + u

ai

r
ψi

)
. (A.2)

(iii) Zero and r-symmetry:

Ω(r,0)
g;a1,...,an = Ω(r,r)

g;a1,...,an ,

Ω
(r,s)
g;a1,...,ai−1,0,ai+1,...,an = Ω(r,s)

g;a1,...,ai−1,r,ai+1,an .
(A.3)

(iv) Pullback property. Denoting π : Mg,n+1 →Mg,n the forgetful morphism, we have

Ω(r,s)
g;a1,...,an = π∗Ω(r,s)

g;a1,...,an,s. (A.4)

(v) (String equation). For formal variables u1, . . . ,un+1 we have:∫
Mg,n+1

Ω
(r,s)
g;a1,...,an,s∏n+1

i=1 (1 − uiψi)

∣∣∣∣∣
un+1=0

= (u1 + · · ·+ un)
∫
Mg,n

Ω
(r,s)
g;a1,...,an∏n

i=1(1 − uiψi)
. (A.5)

(vi) (Dilaton equation). For formal variables u1, . . . ,un+1 we have:

∂

∂un+1

∫
Mg,n+1

Ω
(r,s)
g;a1,...,an,s∏n+1

i=1 (1 − uiψi)

∣∣∣∣∣
un+1=0

= (2g− 2 + n)

∫
Mg,n

Ω
(r,s)
g;a1,...,an∏n

i=1(1 − uiψi)
. (A.6)

Iterating (i) and (ii), one finds for any N ∈ Z>0

(I) Multiple shifts of s:

Ω(r,s+Nr)
g;a1,...,an(u) = Ω

(r,s)
g;a1,...,an(u) · exp

(∑
m>1

(−u)m

m
pm

(s
r

, . . . ,
s

r
+N− 1

)
κm

)
,

where pm is the sum ofm-th powers.
(II) Multiple shifts of ai:

Ω
(r,s)
g;a1,...,ai−1,ai+Nr,ai+1,...,an(u) = Ω

(r,s)
g;a1,...,an(u) ·

N−1∏
m=0

(
1 + u

(ai
r

+m
)
ψi

)
. (A.7)

Another interesting property, which only holds for r = 1, is a relation between two different parametri-
sations ofΩ-classes, that may be called Segre and Chern:

Ω
(1,1−s)
g;0,...,0 (u) =

(
Ω

(1,s)
g;0,...,0(u)

)−1. (A.8)

It has been proved and used in [CMS23]. The relation that one might expect from Serre duality applied
to an r-th root of ω⊗slog

(
−
∑n
i=1 aipi

)
, i.e. Ω(r,r−s)

g;r−a1,...,r−an(u) =
(
Ω

(r,s)
g;a1,...,an(u)

)−1, is in fact false. As a
counterexample, in topology (g,n) = (1, 2) we have

Ω
(2,1)
g=1;0,2(u) ·Ω

(2,1)
g=1;2,0(−u) = 1 −

3
4
u2κ2.

Nevertheless, in our numerical experiments we have observed the vanishing

∀k ∈ Z>0
[
Ω

(r,r−s)
g;r−a1,...,r−an(−u) ·Ω

(r,s)
g;a1,...,an(u)

]
deg 2(2k+1) = 0.
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math.AG/1912.02267.

[DBKPS19] P. Dunin-Barkowski, R. Kramer, A. Popolitov, and S. Shadrin. Cut-and-join equation for monotone Hurwitz numbers
revisited. J. Geom. Phys., 137:1–6, 2019. math.AG/1807.04197.

[DBKPS23] P. Dunin-Barkowski, R. Kramer, A. Popolitov, and S. Shadrin. Loop equations and a proof of Zvonkine’s qr-ELSV
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[KLPS19] R. Kramer, D. Lewański, A. Popolitov, and S. Shadrin. Towards an orbifold generalization of Zvonkine’s r-ELSV
formula. Trans. Amer. Math. Soc., 372(6):4447–4469, 2019. math.CO/1703.06725.
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