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Abstract

We establish identities of Pfaffian type for the theta function associated with twice or half
the period matrix of a hyperelliptic curve. They are implied by the large size asymptotic anal-
ysis of exact Pfaffian identities for expectation values of ratios of characteristic polynomials in
ensembles of orthogonal or quaternionic self-dual random matrices. We show that they amount
to identities for the theta function with the period matrix of a hyperelliptic curves, and in this
form we reprove them by direct geometric methods.
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1 Introduction

Fay trisecant identity [Fay70] is a property of the Riemann theta function associated to the period matrix τ
of a compact Riemann surface Ĉ of genus g > 0

0 = θ(v|τ)θ
(
u(z1) − u(z3) + c

∣∣τ)θ(u(z2) − u(z4) + c
∣∣τ)θ(v+ u(z1) − u(z2) + u(z3) − u(z4)

∣∣τ)
− θ(u(z1) − u(z4) + c

∣∣τ)θ(u(z3) − u(z2) + c
∣∣τ)θ(v+ u(z1) − u(z2)

∣∣τ)θ(v+ u(z3) − u(z4)
∣∣τ)

+ θ
(
u(z1) − u(z2) + c

∣∣τ)θ(u(z3) − u(z4) + c
∣∣τ)θ(v+ u(z1) − u(z4)

∣∣τ)θ(v+ u(z3) − u(z2)
∣∣τ) ,

(1.1)

where u(zi) is the image via the Abel map of a point zi in the universal cover C̃ of C and v is an arbitrary
g-dimensional vector — all notations appearing in this formula will be reviewed later. Its proof is an ap-
plication of basic facts about the geometry of the Jacobian of C. This identity admits a generalisation to a
determinantal identity involving 2n points on C̃.

Fay identity is a showcase of the deep relations between the geometry of Riemann surfaces and integrability.
It is responsible for the existence of the algebro-geometric solutions to the KP hierarchy [Kri77], which
are associated to any fixed Riemann surface C; in this context (1.1) is an equivalent form of the Hirota
equation. The real-valued solutions among those give rise to the finite-gap potentials for the associated
linear differential system, which historically have played an important role in the study of the KdV and
KP hierarchies [Mat08]. Fay identity is also the basis of a solution to the Schottky problem: as conjectured
by Novikov and proved by Shiota [Shi86] building on earlier work of Mulase [Mul84], (1.1) characterises
period matrices among complex symmetric matrices τwith positive-definite imaginary part. In the algebro-
geometric solutions, coupling the moduli of C to the KP flows does not give anymore an exact solution, but
captures the long-time asymptotics of more general solutions of KP, see e.g. the conjectures in [BE12].

The 1-hermitian matrix model exhibits Toda integrability (closely related to KP integrability), which mani-
fests itself by the existence of determinantal formulae to compute various observables, valid for any matrix
sizeN. In particular, the average of any ratio of characteristic polynomials (called 2n-point functions) can be
expressed as a determinant of expectation values of the ratio of two characteristic polynomials. The large
N asymptotic of these matrix models has been extensively studied, either by Riemann–Hilbert methods
relying on integrability [Pas06, CGM15, CFWW21], or by probabilistic techniques [Joh98, APS01, BG13b,
BG13a, Shc13, BGK15]. The multi-cut regime, when the large N spectral density of the random matrix is
supported on g + 1 segments, is particularly interesting. As observed numerically in [Jur91], explained
heuristically in [BDE00] and justified rigorously in [BG13a, Shc13], the asymptotic behavior is of oscillatory
nature. In particular, fluctuations of linear statistics in the macroscopic regime are asymptotically described
as the independent sum of a Gaussian and a discrete Gaussian living on an N-dependence lattice. This
can be precisely described through the Riemann theta function of the underlying spectral curve, which is
hyperelliptic of genus g. Given the parallel with integrability, it should not be a surprise that the exact de-
terminantal formulae in the hermitian matrix model imply, in the largeN limit up to o(1), the Fay identities
(1.1). This implication will be shown in Proposition 5.2.

The purpose of our work is to generalise this to orthogonal and quaternionic self-dual 1-matrix models.
The determinantal formulae of the hermitian case for 2n-point functions of ratios of characteristic polyno-
mials are then replaced with the Pfaffian formulae found by Borodin and Strahov [BS06]. These models
correspond to the β = 1 and β = 4 cases of the β-ensembles, whose asymptotic analysis in the (g + 1)-cut
regime has been established for all β > 0 by probabilistic techniques in [BG13a, Shc13, BGK15]. The large
N spectral density is described by a hyperelliptic curve of genus g independent of β and having a period
matrix τ. The asymptotics of the partition function and the 2n-point functions are governed by the theta
function associated with the matrix β

2 τ. The appearance of the theta function does not have a geometric
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origin1 but is rather explained by eigenvalue tunnelling between the different connected components of the
support [BDE00]. Inserting these asymptotics up to o(1) in the Pfaffian identities for the 2n-point functions
yield identities between these theta functions, which can be expressed solely in terms of the geometry of
the underlying spectral curve.

The spectral curves arising from the large N limit of the matrix models we consider must be hyperelliptic,
have real Weierstraß points, and have the Boutroux property. We show that all such curves can be realised
as the spectral curve of an off-critical β-ensemble with polynomial potential (Proposition 3.11). By analytic
continuation we can extend the validity of the resulting identities to all hyperelliptic curves. This gives our
main results: Theorem 5.1 for β = 2, Theorem 5.4 for β = 1 and Theorem 5.7 for β = 4. It turns out that all
three identities can be reformulated in terms of theta functions for the matrix of periods τ (instead of β2 τ)
and in this form we are able to prove them by direct algebraic methods. Interestingly, the β = 1 and β = 4
identities are equivalent via the modular properties of theta functions, and the β = 2 identity implies the
Fay identity in the special case of hyperelliptic curves.

As a byproduct of our proofs, we obtain a seemingly new formula (Proposition 4.3 proved in Section 5.4)
for the equilibrium energy of the β-ensembles in the multi-cut regime in terms of the geometry of the
spectral curve. Although the ingredients are the same, at first sight it does not have exactly the same form
as the 1-matrix model specialisation of the formula known in the context of the 2-matrix model [Ber03].
Independently of our analysis, we also establish (Proposition 4.4 proved in Appendix A) an explicit formula
for the derivative with respect to filling fractions of the equilibrium entropy. For β 6= 2, the equilibrium
entropy appears as the orderN term in the free energy of the β-ensemble, and its derivatives with respect to
filling fractions appear both in the asymptotics of the partition function (Theorem 4.1) and in the centering
in the generalised central limit theorem (Theorem 4.2).

The strategy of proof via asymptotics in integrable random matrix ensembles is somehow more interesting
than the resulting identities in the particular case we studied, and constitutes the originality of this study.
In principle this strategy can be applied to any random matrix ensemble:

(i) which is amenable to asymptotic analysis up to o(1) in the large size limit and in the multi-cut regime;

(ii) in which exact formulae for 2n-point functions in terms of k-point functions (with k independent of
n) are available.

In principle, more general algebraic spectral curves can be obtained in two-matrix models or in linearly
coupled chain of matrices. In such models, (ii) is addressed by the Eynard–Mehta formulae [EM98] but
obtaining (i) already for the two-matrix model away from critical points in the multi-cut regime is a no-
toriously hard open problem. More general algebraic spectral curves can also be obtained in repulsive
particle systems with d groups of particles, in which the repulsion intensity between particles of groups
i and j is βi,j. The latter appear naturally in various situations (see e.g. [BEO15, BE17]) and (i) has been
addressed by [BGK15]. Their discrete counterpart appears in models related to random two-dimensional
tilings and is also amenable to asymptotic analysis [BGG]. We expect that in some of these models, integra-
bility properties (ii) should exist, and will therefore imply identities between theta functions with a more
complicated structure and that depend on a larger class of algebraic curves. By this we mean the matrix
τ in the theta function will be specified from the geometry of these curves, although it may not exactly be
the matrix of periods. This would in fact be the interesting situation, as the corresponding theta function is
then associated to an abelian variety which may not be a Jacobian. Whether genuinely new identities for
theta functions of certain abelian varieties — i.e. for which a proof by direct algebraic methods is not easily
available — as consequences of the integrability of probabilistic models can be obtained is a question left to
future investigations.

1The asymptotic analysis carried via the Riemann–Hilbert method does give a geometric origin to the theta function, but it is only
applied to the hermitian case, i.e. β = 2.
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2 β-ensembles and their properties

We recall a few facts about the β-ensembles and review the determinantal and pfaffian formulae of Borodin
and Strahov [BS06].

2.1 The unconstrained model

Fix a finite unionA of compact intervals of R, a positive integerN, a real number β > 0, and an even-degree
polynomial V (the potential) with real coefficients and positive top coefficient. We consider the probability
measure µVN on AN defined by

dPVN(λ) =
1
ZVN

|∆(λ)|βe−
βN

2

∑N
i=1 V(λi)

N∏
i=1

1A(λi)dλi, (2.1)

where λ = (λ1, . . . , λN) ∈ AN, ∆(λ) =
∏
i<j(λj − λi) is the Vandermonde determinant, and

ZVN =

ˆ
AN

|∆(λ)|β exp
(
−
βN

2

N∑
i=1

V(λi)

) N∏
i=1

dλi

is the partition function. Many results that we quote are formulated with A = R but their validity trivially
extend to the case of A compact. We choose to work from the start with a compact A as it facilitates the
statement of the asymptotic results we will need and does not lead to any loss of generality.

When β = 1, 2 or 4, PVN is the distribution of the N eigenvalues of a random matrix whose law is propor-
tional to e−

βN
2 V(M)dM, whereM is a matrix which is real symmetric (β = 1), Hermitian (β = 2) or quater-

nionic self-dual (β = 4) and which is conditioned to have spectrum in A. The measure dM is the product
of Lebesgue measure on the R-linearly independent entries of M. In particular, when V(M) = 1

2M
2, the

entries Mij, i 6 j of the matrix are independent Gaussian random variables. These matrix ensembles are
known under the name of Gaussian Orthogonal Ensemble (GOE) for β = 1, Gaussian Unitary Ensemble
(GUE) for β = 2, and Gaussian Symplectic Ensemble (GSE) for β = 4, see [Meh04]. The β-ensembles (2.1)
constitute a generalisation of these models.

2.2 The model with fixed filling fractions

Let us write A =
⊔g
h=0Ah where Ah are the connected components of A. In addition to the measure

(2.1), we define the β-ensemble with fixed filling fractions as follows. Let N = (Nh)
g
h=1 ∈ Zg>0 such that

N1 + · · ·+Ng < N and introduce N0 ∈ Z>0 such that

N0 + · · ·+Ng = N.

We call εh = Nh/N the filling fraction of Ah, and let ε = (εh)
g
h=1. We define the measure with fixed filling

fractions by

dPVN,N/N =
1

ZV
N,N/N

|∆(λ)|β exp
(
−
βN

2

g∑
h=0

Nh∑
i=1

V(λh,i)

) g∏
h=0

Nh∏
i=1

1Ah(λh,i)dλh,i, (2.2)

where λ = (λh,1, . . . , λh,Nh)
g
h=0 is a N-tuple and

ZVN,N/N =

ˆ
AN

|∆(λ)|βe−
βN

2

∑g
h=0

∑Nh
i=1 V(λh,i)

g∏
h=0

Nh∏
i=1

1Ah(λh,i)dλh,i

is the partition function for fixed filling fractions. To distinguish it from the model with fixed filling frac-
tions, we refer to (2.1) as the unconstrained model.
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2.3 Equilibrium measures and their Stieltjes transform

We define the empirical measure as LN = 1
N

∑N
i=1 δλi . It belongs to the space of probability measures on A,

which we equip with the weak topology. We first consider LN in the original model. The following result
comes from large deviation arguments.

Theorem 2.1. Assume that V is an even-degree real polynomial with positive top coefficient. As N → ∞, LN
converges under PVN almost surely and in expectation to the unique probability measure µeq on A maximising

E[µ] =
β

2

¨
A2

(
ln |ξ− η|−

V(ξ) + V(η)

2

)
dµ(ξ)dµ(η). (2.3)

Furthermore, µeq has compact support S consisting in a finite union of segments. It is characterised by the existence
of a constant c such that

∀x ∈ A 2
ˆ
A

ln |x− ξ|dµeq(ξ) − V(x) 6 c,

with equality µeq-almost everywhere.

We will only need to consider S =
⊔g
h=0 Sh where Sh ⊂ Åh is a segment, and in particular we only consider

the case of soft edges. Without loss of generality one can and one will restrict Ah to be a small enlargement
of Sh. The choice of this enlargement will be irrelevant for our purposes, as it does not change the equilib-
rium measure and only affects the model by corrections which are exponentially small in N. In the model
with fixed filling fractions, Theorem 2.1 has the following adaptation.

Theorem 2.2. [BG13a, Theorem 1.2] Consider a sequence indexed by N of g-tuples of nonnegative integers N =

(N1, . . . ,Ng) with
∑g
h=1Nh < N and assume there exists ε = (εh)

g
1=0 such that Nh/N → εh for all h ∈ [g].

Then, LN = 1
N

∑g
h=0
∑Nh
i=1 δλh,i converges almost surely and in expectation under PVN,N/N towards a deterministic

probability measure µeq,ε, which is the maximiser of (2.3) among probability measures giving mass εh to the segment
Ah for each h ∈ [0,g]. It is characterised by the existence of constants (ch)

g
h=0 such that

∀h ∈ [0,g] ∀x ∈ Ah 2
ˆ
A

ln |x− ξ|dµeq,ε(ξ) − V(x) 6 ch

with equality µeq,ε|Ah -almost everywhere.

The filling fractions at equilibrium ε∗ = (ε∗h)
g
h=1 are defined as ε∗h = µeq(Ah), and one can show that

µeq = µeq,ε∗ — see [BG13a, Section 1.4].

Let us now discuss the properties of the equilibrium measure, both in the unconstrained case (Theorem 2.1)
or fixed filling fraction case (Theorem 2.2) . We introduce the Stieltjes transform of the equilibrium measure

W1(x) =

ˆ
A

dµeq(ξ)

x− ξ
,

defined for x ∈ C \ S. In [Joh98], Johansson introduces the polynomial

P(x) =

ˆ
A

V ′(x) − V ′(ξ)

x− ξ
dµeq(ξ),

and derives the equation

W1(x)
2 − V ′(x)W1(x) + P(x) = 0, (2.4)
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for all x ∈ C \ S. This equation is the largeN limit of the first Dyson–Schwinger of the model, and its origin
can be traced back to [BIPZ78, Mig83]. In particular, it implies that

W1(x) =
V ′(x)

2
±
√
V ′(x)2 − 4P(x)

2
. (2.5)

The determination of the squareroot should be chosen such thatW1(x) ∼
1
x

as x→∞ andW1 is holomorphic
in C\S. As this determination plays an important role in our discussion, it is worth reviewing in details how
this can be achieved. The standard determination of the squareroot gives a holomorphic function x 7→

√
x

on C \R60 such that
√
R>0 = R>0 and (

√
x)2 = x. We decompose V ′(x)2 − 4P(x) =M(x)2σ(x), where σ is a

monic polynomial with simple real roots andM is a real polynomial with positive top coefficient. We write
further

σ(x) =

g∏
h=0

(x− ah)(x− bh),

with:
a0 < b0 < a1 < b1 < · · · < ag < bg,

The locus σ−1(C \ R60) is a union of g + 2 connected components, labeled from left to right: C0 contains
a0 in its closure, Ch contains bh and ah+1 in its closure for h ∈ [g − 1], and Cg+1 contains bg in its closure.
For x ∈ Ch with h ∈ [0,g + 1] we set s(x) = (−1)g+1−h

√
σ(x). This definition makes s(x) a continuous

(thus holomorphic) function of x ∈ C \ S. It is discontinuous on (ah,bh) because by crossing this segment
we stay in the same component, so we keep the same global sign coming from the component we are in
while the standard determination of the squareroot does get a sign change since σ(x) crosses R<0. Then,
M(x)s(x) is a holomorphic function of x ∈ C \ S, and M(x)s(x) ∼ txd−1 for some d > 2 and t > 0. The
constraintW1(x) ∼

1
x

as x→∞ leads to the formula:

W1(x) =
V ′(x) −M(x)s(x)

2
. (2.6)

The fact that W1 is the Stieltjes transform of the equilibrium measure puts some constraints on the polyno-
mialM.

Lemma 2.3. The support of µeq is S =
⊔g
h=0 Sh with Sh = [ah,bh] and we have

dµeq

dx
=
M(x)Im(s(x+ i0))

2π
1S(x).

For each h ∈ [g], the number of zeros (with multiplicity) of M in [bh−1,ah] is odd. For each h ∈ [0,g], the zeros of
M in (ah,bh) have even multiplicity (if there is any).

Proof. By construction, for any h ∈ [0,g] and x ∈ (ah,bh) we have s(x + i0) ∈ (−1)g−hiR>0 and for any
h ∈ [0,g + 1] and x ∈ (bh−1,ah) we have s(x) ∈ (−1)g+1−hR>0, with the conventions b−1 = −∞ and
ag+1 = +∞. By definition of the Stieltjes transform, the function W1(x) has a discontinuity in the interior
of the support of µeq. It is identified as the real locus where the polynomial V ′(x)2 −4P(x) takes nonpositive
values, and thus coincides with S =

⊔g
h=0[ah,bh]. The density of the equilibrium measure is reconstructed

from the jump:

∀x ∈ R,
dµeq

dx
=
W1(x− i0) −W1(x+ i0)

2iπ
=
M(x)s(x+ i0)

2iπ
1S(x) =

M(x)Im(s(x+ i0))
2π

1S(x).

Since µeq is a positive measure and since Im(s(x+ i0)) has a constant sign in each (ah,bh), M should have
constant sign in Sh and thus have zeros of even multiplicity there (if there is any). Likewise, since the sign
of Im(s(x + i0)) changes between two consecutive segments in the support, M should have at least a sign
change in the closure of the interval between these two segments, hence an odd number of zeros.
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Lemma 2.3 allows us to give an expression for the density ρ of the equilibrium measure. Indeed,

ρ(x) =
W1(x− i0) −W1(x+ i0)

2iπ
=M(x)

s(x+ i0) − s(x− i0)
4π

1S(x) =

√
−M(x)σ(x)

2π
1S(x) . (2.7)

Definition 2.4. The effective potential is defined for x ∈ A byU(x) := V(x)−2
´
A ln |x−ξ|dµeq(ξ). It satisfies

∀x ∈ A \ S U ′(x) = V ′(x) − 2W1(x) =M(x)s(x),

∀x ∈ S̊ U ′(x) = V ′(x) −W1(x+ i0) −W1(x− i0) = 0.
(2.8)

Remark 2.5. For the equilibrium measure in the unconstrained case, Theorem 2.1 says there exists a con-
stant c such that U(x) = c for all x ∈ S. In view of (2.8) the latter property is equivalent to

∀h ∈ [g]

ˆ ah

bh−1

M(x)s(x)dx = 0. (2.9)

2.4 Determinantal and pfaffian formulae

Expectation values of ratios of characteristic polynomials, also called kernels, are quantities of interest in
random matrix theory. Let us introduce the notation 〈·〉VN for the expectation value with respect to PVN (the
value of β will be specified in each case), and Λ = diag(λ). Given c1, . . . , cm ∈ Z, and x1, . . . , xm ∈ C with
the condition xj /∈ A if cj < 0, them-point kernel is defined as〈 m∏

j=1

det(xj −Λ)
cj

〉V
N

=

〈 m∏
j=1

N∏
i=1

(xj − λi)
cj

〉V
N

.

In [BS06], Borodin and Strahov derive formulae to compute the kernels. In what follows, we will always
consider the “balanced” case, that is, when there are as many characteristic polynomials in the numerator
as in the denominator. Given two tuples of complex numbers x = (x1, . . . , xm1) and x̃ = (x̃1, . . . , x̃m2), we
write

∆(x, x̃) =
m1∏
i=1

m2∏
j=1

(xi − x̃j).

2.4.1 The determinantal case: β = 2

In that case, we have the following formulae.

Theorem 2.6. [BS06, Theorem 4.1.1] Let N,m1,m2 be positive integers, and sets of complex numbers

x = {x1, . . . , xm1 } x ′ = {x ′1, . . . , x ′m1
}

x̃ = {x̃1, . . . , x̃m2 } x̃ ′ = {x̃ ′1, . . . , x̃ ′m2
},

such that

x ∩ x ′ = ∅, y ∩ y ′ = ∅, x ′ ∩A = ∅, y ′ ∩A = ∅.

We have:〈
m1∏
j=1

det(xj −Λ)

det
(
x ′j −Λ

) m2∏
j=1

det(x̃j −Λ)

det
(
x̃ ′j −Λ

)〉V
N

= (−1)
1
2 ((m1+m2)

2+m2−m1)
∆(x, x ′)
∆(x)∆(x ′)

∆(x̃, x̃ ′)
∆(x̃)∆(x̃ ′)

× det
(
M(2)(x, x ′; x̃, x̃ ′)

)
,

(2.10)
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in terms of the block matrix of size (m1 +m2):

M(2)(x, x ′; x̃, x̃ ′) =

(
M

(2)
++(xi, x̃j) M

(2)
+−(xi, x ′j)

M
(2)
−+(x̃

′
i, x̃j) M

(2)
−−(x̃

′
i, x
′
j)

)
,

where i is a row index, j a column index, and the entries are:

M
(2)
++(x, x̃) = N

Z
N
N−1V

N−1

ZVN
〈det(x−Λ)det(x̃−Λ)〉

N
N−1V

N−1 ,

M
(2)
+−(x, x ′) =

1
x− x ′

〈
det(x−Λ)
det(x ′ −Λ)

〉V
N

,

M
(2)
−+(x̃

′, x̃) =
1

x̃ ′ − x̃

〈
det(x̃−Λ)
det(x̃ ′ −Λ)

〉V
N

,

M
(2)
−−(x̃

′, x ′) =
1

N+ 1
Z

N
N+1V

N+1

ZVN

〈
1

det(x̃ ′ −Λ)det(x ′ −Λ)

〉 N
N+1V

N+1
.

2.4.2 For orthogonal matrices: β = 1

Theorem 2.7. [BS06, Theorem 1.2.1] Let N,m be positive integers and set of complex numbers

x = {x1, . . . , xm}, x ′ = {x ′1, . . . , x ′m},

such that x ′ ∩A = ∅. We have:〈
m∏
j=1

det(xj −Λ)

det
(
x ′j −Λ

)〉V
2N

=
∆(x, x ′)
∆(x)∆(x ′)

Pf
(
M(1)(x, x ′)

)
, (2.11)

in terms of the antisymmetric matrix of size 2m:

M(1)(x, x ′) =

(
M

(1)
++(xi, xj) M

(1)
+−(xi, x ′j)

M
(1)
−+(x

′
i, xj) M

(1)
−−(x

′
i, x
′
j)

)
, (2.12)

with entries

M
(1)
++(x, x̃) = (2N− 1)2N(x− x̃)

Z
2N

2N−2V

2N−2

ZV2N
〈det(x−Λ)det(x̃−Λ)〉

2N
2N−2V

2N−2 ,

M
(1)
+−(x, x ′) =

1
x− x ′

〈
det(x−Λ)
det(x ′ −Λ)

〉V
2N

= −M
(1)
−+(x

′, x),

M
(1)
−−(x

′, x̃ ′) =
x ′ − x̃ ′

(2N+ 1)(2N+ 2)
Z

2N
2N+2V

2N+2

ZV2N

〈
1

det(x ′ −Λ)det(x̃ ′ −Λ)

〉 2N
2N+2V

2N+2
.

(2.13)

2.4.3 For symplectic matrices: β = 4

The case β = 4 is very similar to the case β = 1.

Theorem 2.8. [BS06, Theorem 1.2.1] Let N,m be positive integers and two sets of complex numbers

x = {x1, . . . , xm}, x ′ = {x ′1, . . . , x ′m},

9



such that x ′ ∩A = ∅. We have.〈
m∏
j=1

det(xj −Λ)
2

det
(
x ′j −Λ

)2

〉V
N

=
∆(x, x ′)
∆(x)∆(x ′)

Pf
(
M(4)(x, x ′)

)
, (2.14)

with the same block structure as (2.12) but entries

M
(4)
++(x, x̃) = N

Z
N
N−1V

N−1

ZVN
(x− x̃)

〈
det(x−Λ)2 det(x̃−Λ)2

〉 N
N−1V

N−1
,

M
(4)
+−(x, x ′) =

1
x− x ′

〈
det(x−Λ)2

det(x ′ −Λ)2

〉V
N

= −M
(4)
−+(x

′, x),

M
(4)
−−(x

′, x̃ ′) =
1

N+ 1
Z

N
N+1V

N+1

ZVN
(x ′ − x̃ ′)

〈
1

det(x ′ −Λ)2 det(x̃ ′ −Λ)2

〉 N
N+1V

N

.

(2.15)

3 Geometry of the spectral curves

This section collects the information on theta functions and geometry of the spectral curve that will be
needed later to present the large N asymptotics in the β-ensembles. We only give the details necessary to
understand the formulae of Section 4 and 5 in a self-contained way, their derivation is classical and omitted.

3.1 Theta functions

Let us recall the definition and properties of the theta function.

Definition 3.1. Let τ be a complex g × g symmetric matrix such that Imτ is definite positive. The theta
function with characteristics µ,ν ∈ Rg is the function defined by

∀z ∈ Cg ϑµ,ν(z|τ) =
∑
n∈Zg

exp
(
iπ(n+ µ) · τ(n+ µ) + 2iπ(n+ µ) · (z+ ν)

)
.

We set θ := ϑ0,0.

The condition Imτ > 0 ensures that the function is well defined. Let us define the period lattice associated
to τ as L = Zg ⊕ τ(Zg). The theta function is quasi-periodic: form,n ∈ Zg we havem+ τ(n) ∈ L, and for
any z ∈ Cg

ϑµ,ν
(
z+m+ τ(n)

∣∣τ) = e2iπm·µ−iπn·(τ(n)+2z+2ν)ϑµ,ν(z).

Definition 3.2. An odd half-integer characteristic is c = 1
2e+

1
2e
′, with e,e ′ ∈ Zg such that e ·e ′ ∈ 2Z+ 1.

By direct computation, if c is a odd half-integer characteristic, then z 7→ θ(c + z|τ) is odd, in particular
θ(c) = 0.

3.2 Geometry of Riemann surfaces

3.2.1 Basis of cycles and forms

Let Ĉ be a compact Riemann surface of genus g. The first homology groupH1(Ĉ;Z) has a basis (Ah,Bh)
g
h=1

which can be chosen such that

∀h,k ∈ [g] Ah ∩Ak = 0, Bh ∩Bk = 0, Ah ∩Bk = δh,k.

10



Such a basis is called a symplectic basis of homology, and Ĉ equipped with such a basis is called a marked
Riemann surface. We can for instance choose a point p0 and simple closed curves on Ĉ representing the
2g classes (Ah,Bh)

g
h=1 such that all the curves intersect each other at p0 only. For spectral curves of β-

ensembles, we will later work with another set of representatives (Section 3.3.1). We keep the same notation
for homology classes and their representatives. The surface Ĉ0 = Ĉ \

⋃g
h=1(Ah ∪ Bh) is then simply-

connected. The A-cycles determine a dual basis of holomorphic 1-forms (duh)
g
h=1, such that

∀h,k ∈ [g]

˛
Ah

duk = δh,k.

The matrix of periods τ is then defined by

∀h,k ∈ [g] τh,k =

˛
Bh

duk. (3.1)

It is symmetric and definite positive, in particular we can consider the theta function with matrix β
2 τ for

any β > 0. The theta function with matrix equal to (3.1) is called the Riemann theta function.

3.2.2 Abel map

With the 1-forms (duh)
g
h=1 defined in Section 3.2.1 we can introduce the Abel map.

Definition 3.3. Choose a base point p0 in Ĉ. The Abel map u : Ĉ0 → Cg is defined by

ui(z) =

ˆ z

p0

dui,

where the path of integration is in C0.

The definition of the Abel map depends on a choice of base point p0. However, we will often consider
differences u(z) − u(w) of Abel maps, which are independent of p0. Depending on the context, we may
also consider the Abel map as a map u : C̃ → Cg defined on the universal cover C̃ of Ĉ based at p0. We
say that c is nonsingular if θ

(
c + u(z) − u(w)

∣∣τ) is not identically 0 when z,w ∈ C̃. Non singular odd
half-integer characteristics exist, and in what follows we fix one.

3.2.3 Prime form

Given a half-integer characteristic c, we introduce the holomorphic 1-form

ωc =

g∑
h=1

∂zhθ(z|τ)
∣∣
z=c

duh.

The prime form is:

E(z1, z2) =
θ(c+ u(z1) − u(z2)|τ)√

ωc(z1)
√
ωc(z2)

. (3.2)

It is defined as a holomorphic bispinor on C̃ × C̃, i.e. a (− 1
2 ) ⊗ (− 1

2 ) form. It has zeros only at z1 = z2, and
in local coordinates ζ, we have

E(z1, z2) ∼
z1→z2

ζ(z1) − ζ(z2)√
dζ(z1)dζ(z2)

.

The prime form on the Riemann sphere Ĉ reads

E0(x1, x2) =
x1 − x2√
dx1dx2

.

11



Given a meromorphic function X : Ĉ→ Ĉ, we can define the relative prime form:

Ẽ(z1, z2) =
E(z1, z2)

E0(X(z1),X(z2))
. (3.3)

We observe that Ẽ(z1, z2) is a function on C̃× C̃, such that

lim
z2→z1

Ẽ(z1, z2) = 1. (3.4)

3.2.4 Fundamental bidifferential

Definition 3.4. The fundamental bidifferential B(z,w) is the unique bidifferential (i.e. a 1 ⊗ 1 form on
C× C) such that

1. Symmetry: B(z,w) = B(w, z);

2. Normalisation: ∀h ∈ [g]
¸
Ah
B(·,w) = 0;

3. Singularities: B(z,w) is meromorphic with only a double pole at z = w, and if ζ is a local coordinate,
we have

B(z,w) =
z→w

(
1

(ζ(z) − ζ(w))2 + SB,ζ(w) + O(ζ(z) − ζ(w))

)
dζ(z)dζ(w).

The fundamental bidifferential can be expressed as

B(z,w) = dzdw ln θ(c+ u(z) − u(w)).

and this expression is independent on the choice of a nonsingular odd half-integer characteristics c. Given
p,q ∈ C and a choice of path γp,q from p to q, we define the meromorphic form

dSp,q(z) =

ˆ
γp,q

B(z, ·),

It has two poles of order 1 in p and q, with respective residue −1 and +1. The prime form appears in the
following computation.

Lemma 3.5. For i = 1, 2, let zi, z̃i ∈ C̃ and γi a path from z̃i to zi. Then:
ˆ
γ1

ˆ
γ2

B =

ˆ
γ1

dSz̃2,z2 = ln
(
E(z1, z2)E(z̃1, z̃2)

E(z1, z̃2)E(z̃1, z2)

)
.

3.2.5 Decomposition of meromorphic forms

One distinguishes between three kinds of meromorphic forms:

• holomorphic 1-forms (first kind);

• meromorphic 1-forms with vanishing residues (second kind);

• meromorphic 1-form with non-vanishing residues (third kind).

The space of first kind differentials has for basis (duh)
g
h=1, which are dual to the A-cycles.

Assume that a choice of local coordinate ζp near each point p ∈ C has been made. A basis of the space of
second kind differentials is then given by

dBp,k(z) = Res
z′=p

ζp(z
′)−kB(z ′, z).
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for p ∈ C and k ∈ Z>0. Given the properties of the fundamental bidifferential, its only pole is at p with
order (k+ 1), where it behaves like:

dBp,k(z) =
z→p

−d
(
ζp(z)

−k
)
+ O(dζp(z)).

Besides, we have
¸
Ah

dBp,k = 0 for any h ∈ [g].

Assume that for each p ∈ C0, a choice of path γp0,p from p0 to p in C0 has been made. An example of third
kind differential is

dSp0,p(z) =

ˆ
γp0,p

B(z, ·), (3.5)

It has two poles of order 1 in p0 and p, respectively of residue −1 and +1, and has zero A-periods.

Every meromorphic 1-form φ can be decomposed uniquely as a sum of first kind, second kind and third
kind differentials2:

φ(z) =

( g∑
h=1

˛
Ah

φ

)
duh(z) +

∑
p simple pole

of φ

(
Res
p
φ
)
dSp0,p(z) +

∑
j>1

∑
p pole of

order (k+1) of φ

(
Res
p
ζkpφ

) dBp,k(z)

k

3.3 The spectral curve

We elaborate on Section 2.3 and construct the spectral curve associated to the equilibrium measure of β-
ensembles, for the moment indifferently in the unconstrained case or the fixed filling fraction case. This
prepares us for Section 4 where the asymptotics in the β-ensembles is described solely in terms of the
geometry of this spectral curve.

3.3.1 Construction of the marked Riemann surface

The equation (2.4) satisfied by the Stieltjes transform of the equilibrium measure has two solutions:

F+(x) =
V ′(x)

2
+ y(x) =W1(x),

F−(x) =
V ′(x)

2
− y(x) = V ′(x) −W1(x).

(3.6)

where y(x) = − 1
2M(x)s(x) and y(x)2 = 1

4V
′(x)2 − P(x). After the birational transformation (x,y) 7→ (x, s =

− 2y
M(x) ) we have the equation of an hyperelliptic curve

s2 = σ(x) =

g∏
h=0

(x− ah)(x− bh)

where the Weierstraß points a0,b0, . . . ,ag,bg are real. This curve is constructed from two sheets homeo-
morphic to C \ S, which are glued together along S. The two sheets are embedded into the curve by

ι± :
C \ S −→ C ⊂ C× C

x 7−→ (x,±s(x)) .

We denote the sheets by C± = ι±(C \ S), and Ĉ± are the sheets including their point at infinity. Adding
these points at infinity∞± to C, we get a compact Riemann surface Ĉ. We define the projection map as the
meromorphic function

X :
Ĉ −→ Ĉ

(x, s) 7−→ x
.

2Givenφ, we can always perturb the representatives of A and B-cycles so that all poles are contained inC0 and we can use (3.5).
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This function has simple poles at∞± and it defines a degree 2 branched covering of the Riemann sphere Ĉ,
whose branch points are the zeros of σ. It allows us to define local coordinates ζp around any point p ∈ Ĉ,
which is used in Section 3.2.5 to define a basis of meromorphic differentials:

• If p is a ramification point, we take ζp(z) =
√
X(z) − X(p) for some choice of sign for the squareroot.

• If p =∞±, then ζ∞± = X(z)−1.

• In all the other cases, ζp(z) = X(z) − X(p).

We shall take p0 =∞+ as reference point for the definition of the Abel map (Section 3.2.2). For later use we
analyse the prime form over Ĉ near∞±.

Lemma 3.6. We have:
E0(z, z̃)

√
dζ∞±(z̃)

∣∣∣
z̃=∞± =

−1√
−dX(z)

.

Proof. Since dX(z̃) = −X(z̃)2dζ∞±(z̃), we have

lim
z̃→∞± E0(z, z̃)

√
dζ∞±(z̃) = lim

z̃→∞±(X(z) − X(z̃))
√
−X(z̃)−2dX(z̃)√

dX(z)dX(z̃)
=

−1√
−dX(z)

.

We choose representatives for a symplectic basis of homology on Ĉ like in Figure 1. Namely, we take
Ah representing a counterclockwise loop in C+ going around the cut Sh, for h ∈ [g]. For convenience
we fix a representative A0 of a counterclockwise loop surrounding S0 in C+, whose homology class is
−(A1 + · · · + Ag). We take Bh representing a loop in Ĉ travelling from S0 to Sh in C+ and in the opposite
direction in C−.

Bh

Ah

S0 Sh

Figure 1: Two cycles Ah and Bh.

14



3.3.2 The 1-form φ and the Stieltjes transform

The branched covering X : Ĉ → Ĉ alone does not determine the equilibrium measure: we also need to
specify the meromorphic function Y : (x, s) 7→ − 1

2M(x)s on Ĉ. It is such that Y(x) = ∓ 1
2M(x)s(x) for

x ∈ Ĉ±. The advantage to work with the Riemann surface Ĉ is that the function W1, originally defined on
C \ S (Section 2.3) can be analytically continued to a meromorphic function on the whole Ĉ. Indeed, the
meromorphic function W1(z) =

V ′(X(z))
2 + Y(z) coincides withW1(X(z)) for z ∈ Ĉ+. We can also see this by

noticing that F± in (3.6) are two solutions of the Riemann–Hilbert problem

∀x ∈ S̊ F(x+ i0) + F(x− i0) = V ′(x). (3.7)

Definition 3.7. We equip Ĉ with the meromorphic 1-form φ(z) = W1(z)dX(z).

The previous discussion shows that φ has a simple pole at∞+ with residue −1, and a higher order pole at∞− with:

φ(z) =
z→∞−

dV(X(z)) −
dX(z)
X(z)

+ O

(
dX(z)
X(z)2

)
,

where we recall that ζ∞± = 1/X is a local coordinate near∞±. As X has two simple poles at∞±, the form
dX thus has double poles at these points with

dX = −ζ2∞±dζ∞± .

The 1-form φ therefore decomposes as in Section 3.2.5:

φ =

g∑
h=1

2iπε∗hduh + dS∞+,∞−
−

d∑
k=1

tk

k
dB∞−,k. (3.8)

where the potential is V(x) =
∑d
k=1

tkx
k

k
. The path from ∞+ to ∞− used in the definition of the 1-form

dS∞+,∞−
is chosen so that it does not intersect (Ah,Bh)

g
h=1. For instance, one can take it to be ι+(a0 +

iR>0) ∪ ι−(a0 − iR60).

Remark 3.8. For the equilibrium measure in the unconstrained case, the property noticed in Remark 2.5
can be equivalently rewritten as

∀h ∈ [g]

˛
Bh

φ = 0.

As the filling fractions are real, this implies that for any γ ∈ H1(Ĉ,Z), we have Re
( ¸
γφ
)
= 0. Pairs (Ĉ,φ)

satisfying this property are called Boutroux curves, see [Ber11].

3.3.3 The fundamental bidifferential and the second correlator

Under the assumptions discussed in Section 4.1, [BG13a] shows that the N → ∞ limit of the second corre-
lator in the model with fixed filling fractionsN/N→ ε exists:

W2(x1, x2) = lim
N→∞

β

2

(〈
Tr
( 1
x1 −Λ

)
Tr
( 1
x2 −Λ

)〉V
N,N/N

−W1(x1)W1(x2)

)
.

It can be shown to satisfy the Riemann–Hilbert problem

∀(x1, x2) ∈ (C \ S)× S̊, W2(x1, x2 + i0) +W2(x1, x2 − i0) = −
1

(x1 − x2)2 , (3.9)
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for x ∈ C \ S and y ∈ S, see for instance [EKR15, Chapter 3] or [BEO15]. Besides, W2(x1, x2) = O
(
1/x2

i

)
as

xi →∞ since the total number of particles is deterministic, and

∀h ∈ [g]

˛
Ah

W2(x1, x2)dx1 = 0, (3.10)

since the filling fraction of the segment Ah is fixed.

The Riemann–Hilbert problem (3.9) implies that we can define a meromorphic function W2(z1, z2) on Ĉ× Ĉ
such that W2(z1, z2) =W2(X(z1),X(z2)) when z1, z2 ∈ Ĉ+. By examining the behavior of W2 at the poles and
considering the A-period conditions (3.10), one can identify it in terms of the fundamental bidifferential:

B(z1, z2) = W2(z1, z2)dX(z1)dX(z2) +
dX(z1)dX(z2)

(X(z1) − X(z2))2 . (3.11)

Definition 3.9. The spectral curve of a β-ensemble is the marked compact Riemann surface (Ĉ,A,B)

equipped with the meromorphic functions X, Y and the bidifferential B.

3.4 Characterisation of spectral curves of β-ensembles

In Section 3.3.1 we explained that the Riemann surface Ĉ underlying the spectral curve of a β-ensemble
is hyperelliptic with real Weierstraß points. We now prove the converse, namely that all such Riemann
surfaces can be realised (non uniquely) as the underlying Riemann surface of the spectral curve of an un-
constrained β-ensemble.

Definition 3.10. IfG is a meromorphic function in a neighborhood of∞ in Ĉ, we define its polynomial part
V[G](x), which is the unique polynomial such that G(x) = V[G](x) + O

( 1
x

)
as x→∞.

Proposition 3.11. For any a0 < b0 < · · · < ag < bg, there exists a polynomial V of degree (2g + 2) with
top coefficient t2g+2

2g+2 > 0 and there exist for each h ∈ [0,g] a segment Ah which is a neighborhood of [ah,bh],
such that the unconstrained β-ensemble with potential V on A =

⊔g
h=0Ah admits an equilibrium measure with

support S =
⊔g
h=0[ah,bh] and in (2.6) we haveM(x) = t2g+2

∏g
h=1(x− zh) having roots outside A and such that

bh−1 < zh < ah for any h ∈ [g].

Proof. Take 2g real points a0 < b0 < · · · < ag < bg and introduce polynomials σ(x) =
∏g
h=0(x−ah)(x−bh).

We have seen in Section 2.3 that there exists a unique holomorphic function s(x) on C \
⊔g
h=0[ah,bh] such

that s(x) ∼ xg+1 as x→∞ in the complex plane. Take h ∈ [g] and introduce the continuous function

∀λ ∈ [0, 1]g Jh(λ) =

ˆ ah

bh−1

s(x)

g∏
k=1

(
x− (λkbk−1 + (1 − λk)ak)

)
dx.

By continuity, s(x) has constant sign for x ∈ (bh−1,ah). Besides, for λh ∈ {0, 1} we have sgn(Jh(λ)) =

(−1)g−h+1−λh . The Poincaré–Miranda theorem [Mir41] then implies the existence of λ∗ ∈ [0, 1]g such that
Jh(λ

∗) vanishes for any h ∈ [g]. Since Jh(λ) does not vanish when λh ∈ {0, 1}, this λ∗ must be in (0, 1)g. We
let zh = λ∗hbh−1 + (1 − λ∗h)ah for h ∈ [g] and introduce the polynomial M(x) = t2g+2

∏g
h=1(x− zh), where

the constant t2g+2 is chosen such that
g∑
h=0

ˆ bh

ah

M(x)Im(s(x+ i0))
2π

= 1. (3.12)

The sign discussion for s in Section 2.3 reveals that all terms in (3.12) are positive, thus t2g+2 > 0. Then,
V(x) =

´ x
0 V[M · s](ξ)dξ is a polynomial of degree 2g+ 2 with top coefficient t2g+2

2g+2 , and

Res
x=∞ s(x)M(x)

2
dx = −

1
2iπ

g∑
h=0

˛
Ah

s(x)M(x)

2
dx =

g∑
h=0

ˆ bh

ah

M(x)Im(s(x+ i0))
2π

= 1.
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where Ah is a counterclockwise loop around [ah,bh]. Therefore,

V ′(x)

2
=
x→∞M(x)s(x)

2
+

1
x
+ O

(
1
x2

)
.

This V defines the potential in a β-ensemble which we consider over the domain A =
⊔g
h=0Ah, where

Ah = [a ′h,b ′h] and zh < a ′h < ah and bh < b ′h < zh+1 for any h ∈ [0,g], with the conventions z0 = −∞
and zg+1 = +∞. It remains to check that W(x) := 1

2 (V
′(x) −M(x)s(x)) is the Stieltjes transform of the

equilibrium measure of this (unconstrained) β-ensemble.

We define the measure µ with support S =
⊔g
h=0[ah,bh] and density

dµ
dx

=
W(x− i0) −W(x+ i0)

2iπ
=
M(x)s(x)

2π
1S(x).

By construction,W is the Stieltjes transform of µ. SinceM has a single zero between each components of the
support, µ is a positive measure — see the sign discussion in Section 2.3. Define U(x) = V(x) − 2

´
S ln |x −

ξ|dµ(ξ). We clearly have

∀x ∈ S U ′(x) = V ′(x) −W1(x+ i0) −W1(x− i0) = 0

Integrating this from ah to x ∈ (ah,bh), we find a constant ch such that U(x) = ch for any x ∈ (ah,bh).
Besides, for any h ∈ [g] we compute

ch − ch−1 =

ˆ ah

bh−1

U ′(x)dx =
ˆ ah

bh−1

(
V ′(x) − 2W1(x)

)
dx =

ˆ ah

bh−1

M(x)s(x)dx.

Since we have chosen (z1, . . . , zg) so that this integral vanishes, ch is independent of h. As a result, µ satisfies
the characterisation of the equilibrium measure from Theorem 2.1 (unconstrained case). By uniqueness, this
must be the equilibrium measure: µ = µeq.

3.5 Deformations of the curve

We consider real and complex deformations of the complex curves, that will be used in Section 4 to extend
the validity of our formulae beyond their realisation for spectral curves of β-ensembles. We first show that
within the class of spectral curves of β-ensembles, we can always realise any vector of filling fractions in a
small neighborhood of a given one by perturbation of the support.

Lemma 3.12. Let a0 < b0 < · · · < ag < bg and take a corresponding M(x) = t2g+2
∏g
h=1(x − zh) with

zh ∈ (bh−1,ah) as in Proposition 3.11. There exists a small neighborhood Ω ⊂ R2g of (ah, zh)
g
h=1 such that the

map Π : Ω→ R2g given by

Π(ã1, z̃1, . . . , ãg, z̃g) =
(ˆ bh

ãh

M̃(x)
√

−σ̃(x)dx ,
ˆ ãh

bh−1

M̃(x)
√
σ̃(x)dx

)g
h=1

,

is a diffeomorphism onto its image, where we have set:

M̃(x) = t2g+2

g∏
k=1

(x− z̃k) and σ̃(x) = (x− a0)(x− b0)

g∏
k=1

(x− ãk)(x− bk).

This will be used in the following form.

Corollary 3.13. There is a dense set of a0 < b0 < · · · < ag < bg for which there exists a β-ensemble whose
associated equilibrium measure of Theorem 2.1 has filling fractions ε∗ whose components ε∗1 , . . . , ε∗g are Q-linearly
independent.
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Proof of Lemma 3.12. Π is a smooth function of (ãh, z̃h)
g
h=1 in the range b0 < z̃1 < ã1 < b1 < z̃2 < ã2 < · · · <

z̃g < ãg < bg. We compute its Jacobian

det

´ bhãh −M̃(x)
√

−σ̃(x)

2(x−ãk)
dx

´ bh
ãh

−M̃(x)
√

−σ̃(x)

(x−z̃k)
dx´ ãh

bh−1

−M̃(x)
√
σ̃(x)

2(x−ãk)
dx

´ ãh
bh−1

−M̃(x)
√
σ̃(x)

(x−z̃k)
dx


16h,k6g

=
1

2g

ˆ b1

ã1

· · ·
ˆ bg

ãg

g∏
h=1

dxhM̃(xh)
√
−σ̃(xh)

ˆ ã1

b0

· · ·
ˆ ãg

bg−1

dξhM̃(ξh)
√
σ̃(ξh) · det

(
1

xh−ãk
1

xh−z̃k
1

ξh−ãk
1

ξh−z̃k

)
16h,k6g

.

(3.13)

where we used the fact that
√
±σ̃(x) vanishes at the endpoints of the integration intervals. The determinant

in the integrand can be readily evaluated

det

(
1

xh−ãk
1

xh−z̃k
1

ξh−ãk
1

ξh−z̃k

)
16h,k6g

= ∆(ã)∆(z̃)∆(x)∆(ξ)

g∏
h,k=1

(z̃h − ãk)(ξh − xk)

(xh − ãk)(ξh − ãk)(xh − z̃k)(ξh − z̃k)

=
t2g

2g+2∆(ã)∆(z̃)∆(x)∆(ξ)∏g
h=1 M̃(xh)M̃(ξh)

g∏
h,k=1

(z̃h − ãk)(ξh − xk)

(xh − ãk)(ξh − ãk)
.

(3.14)

For (ãh, z̃h)
g
h=1 close enough to (ah, zh)

g
h=1, the zeros of M̃ are outside

⊔g
h=1[ãh, b̃h], so that the sign of the

integrand in (3.13) remains constant in the whole integration range. The determinant of the Jacobian of Π
is thus nonzero, and Π is a local diffeomorphism.

Proof of Corollary 3.13. If (ãh, z̃h)
g
h=1 ∈ Ω, call µ̃ the measure supported on S̃ = [a0,b0] ∪

⊔g
h=1[ãh,bh]

with density 1
2πM̃(x)

√
−σ̃(x). At (ah, zh)

g
h=1 this µ̃ is by construction the equilibrium measure of a β-

ensemble, which we simply denote µ: it is in particular a probability measure with vector of filling fractions
(ε∗h)

g
h=1 and the h-th second component of Π(a1, z1, . . . ,ag, zg) is equal to (−1)g−h(U(ah) − U(bh−1)) = 0

for h ∈ [g]. So, Π induces a homeomorphism fromΩ to a neighborhoodΩ ′ ⊂ R2g of
(
(−1)g−h2πε∗h , 0

)g
h=1.

By continuity with respect to the parameters, µ̃ remains a positive measure on each component of S̃ for all
parameters in a (possibly smaller)Ω, and that the total mass of µ̃ defines a positive continuous function on
Ω. In particular, µ̃ ′ = µ̃/µ̃(S̃) is a probability measure on S̃.

If ε1, . . . , εg are Q-linearly dependent, we can approximate
(
(−1)g−h2πε∗h , 0

)g
h=1 to arbitrary precision by

2g-tuples
(
(−1)g−h2πε̃h , 0

)g
h=1 ∈ Ω

′ such that ε̃1, . . . , ε̃g are Q-linearly independent. Applying Π−1, we
get an approximation (ãh, z̃h)

g
h=1 of (ah, zh)

g
h=1 at arbitrary precision whose associated probability measure

µ̃ ′ is by construction (follow the proof of Proposition 3.11) the equilibrium measure of the β-ensemble with
potential

Ṽ(x) =
1
µ̃(S̃)

ˆ x

0
V[M̃ · s̃](x),

with s̃ like s of Section 2.3 but with ãs instead of as. This equilibrium measure has vector of filling fractions
(ε̃h/µ̃(S̃))

g
h=1, whose components remain Q-linearly independent.

In a second step, we will leave the realm of spectral curves of β-ensembles and rather consider their com-
plex deformations. Here it becomes important to keep track of the marking. The equation of a hyperelliptic
curve s2 =

∏g
h=0(x−ah)(x−bh) is parameterised by the set∆2g+2 of (2g+2)-tuple (ah,bh)

g
h=0 of pairwise

distinct complex numbers. Its universal cover ∆̃2g+2 based at a tuple of strictly increasing real numbers
parametrises the equation of the hyperelliptic curve together with a choice of marking: at the base point
it is the one described in Section 3.3.1, and there is a unique way to get from there a marking for any
other point in ∆̃2g+2 by performing continuous deformations of the representatives of the homology cy-
cles. The outcome is an analytic family Ĉ → ∆̃2g+2 of marked hyperelliptic curves, which coincide with
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the one described in Section 3.3.1 above the connected component of the base point in the real locus of
∆̃2g+2. Concretely, in other real connected components, the symplectic basis of homology has changed by
an Sp2g(Z)-transformation compared to Section 3.3.1, and so must have the matrix of periods. We will rely
on the following basic fact in complex geometry — see e.g. [CMSP17, Chapter 1].

Lemma 3.14. The period matrix (3.1) is a holomorphic function on ∆̃2g+2. The Abel map based at∞+ is a holomor-
phic function C̃→ Cg.

4 Asymptotics of the partition function and the kernels

4.1 Expansion of the partition function and generalised central limit theorem

The large N asymptotic expansion of the partition function of the β-ensembles in the multi-cut regime
was established in [BG13a], under assumptions which are satisfied for the potentials that we consider in
Theorem 2.1. In particular, the off-criticality assumption on A corresponds to M of Lemma 2.3 having no
zeros on A. We reproduce here the formulae for these asymptotics, which will be our starting point.

Theorem 4.1. [BG13a, Theorem 1.5] Let g > 1, let V as in Theorem 2.1 and assumeM from Lemma 2.3 has no zeros
on A. The partition function has the following expansion as N→∞

ZVN ∼ N
β
2 N+κeN

2E[µeq]+NS[µeq]+G[µeq] ϑ−Nε∗,0
(
veq
∣∣β

2 τ
)
.

Here

S[µ] =

(
1 −

β

2

)(
Ent[µ] − ln(β/2)

)
+ (β/2) ln(2π/e) − ln Γ(β/2),

where Ent[µ] is the von Neumann entropy of the probability measure µ, κ is a known universal constant depending
only on g and β, G[µ] is a continuous functional whose expression is irrelevant for our purposes, and

veq =
∇εS[µeq,ε]

2iπ

∣∣∣∣
ε=ε∗

. (4.1)

In (4.1) one differentiates with respect to ε = (ε1, . . . , εg), keeping in mind that ε0 = 1 − (ε1 + · · · +
εg) depends on them. The kernels appearing in the determinantal and pfaffian formulae of Borodin and
Strahov (Theorems 2.6–2.8) can be estimated using the following generalised central limit theorem.

Theorem 4.2 ([BG13a, Theorem 1.6]). Let f be a holomorphic function in a complex neighborhood of A. Under the
same assumptions as Theorem 4.1, we have as N→∞:

〈
e
∑N
i=1 f(λi)

〉V
N

∼ eNL[f]+H[f]+ 1
2 Q[f,f] ϑ−Nε∗,0

(
veq +U[f]

∣∣β
2 τ
)

ϑ−Nε∗,0
(
veq
∣∣β

2 τ
) .

Here
L[f] =

˛
S

W1(ξ)
f(ξ)dξ

2iπ
, Q[f, f] =

2
β

˛
S2
W2(ξ1, ξ2)

f(ξ1)dξ1

2iπ
f(ξ2)dξ2

2iπ
,

where W1 and W2 are calculated in a model with fixed filling fraction tending to ε∗, H[f] is a linear form whose
expression is irrelevant, and

U[f] =

˛
S

f(X(z))
du(z)

2iπ
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4.2 Three explicit formulae

We will establish in Section 5.4 the following expression for the equilibrium energy in terms of the geometry
of the spectral curve.

Proposition 4.3. The equilibrium energy is

−E[µeq] =
β

2
L[V] +

β2

8
Q[V ,V] + iπβε∗ ·

(
τ(ε∗) + u(∞−)

)
.

The right-hand side is proportional to β
2 , sinceW2 contains a factor 2

β
, and so is the left-hand side. Accord-

ingly this is an identity between β-independent quantities. There is a classical link between random matrix
theory and the theory of Frobenius manifolds: the free energy at leading order, namely E[µeq] coincides
with the prepotential of the Hurwitz–Frobenius manifold associated to the spectral curve of the random
matrix ensemble. A formula for this free energy was established in the more general context of the two
matrix model in [Ber03], involving only the geometry of the spectral curve. It involves the same ingredient
but does not have exactly the same form as Proposition 4.3, which is the formula we need.

Before going further, we give two extra formulae. The first one evaluates the argument veq of the theta
functions in Theorems 4.1-4.2; it is not necessary for Section 5, but we include it for completeness. The
second one will be used in the proof of Lemma 4.7.

Proposition 4.4. The function Imu(z) =
´ z∞+

du is a single-valued function of z ∈ Ĉ+, and denoting (e1, . . . ,eg)
the canonical basis of Cg, we have

veq = 2π
(

1 −
β

2

)[
g+ 1

2i
u(∞−) +

g∑
k=1

(
Imu(zk) +

g+ 1 − k

2i
τ(ek)

)]
. (4.2)

Proof. See Appendix A. As we explain in Section 5.4, u(∞−) and τ are purely imaginary, so all terms in the
right-hand side are real, as it should be. The domain Ĉ+ is homeomorphic to the non simply-connected
domain Ĉ \ S, so

´ z∞+
du is multi-valued. However, the ambiguities are A-periods of du which are real, so

Imu(z) is single-valued.

Lemma 4.5.
U[V] = −Res∞+

Vdu = τ(ε∗) + u(∞−).

Proof. The first equality is obtained by moving the contour around S to∞+. We focus on the second equal-
ity. Since dV = 2(φ− YdX), we have

Res∞+
Vdu = −Res∞+

udV = −2 Res∞+
u(φ− YdX) .

Since ∞+ is the base point for the Abel map, we have u(∞+) = 0 and since φ has only a simple pole at∞+, the first term gives a vanishing residue. The hyperelliptic involution preserves X, sends Y and du to
their opposite, and∞+ to∞−. Hence, it sends u to u(∞−) − u, where∞− ∈ C0. Using the involution as a
change of variables, we get

Res∞+
uYdX = Res∞−

(u− u(∞−))YdX = Res∞−
uYdX− u(∞−).

For the last equality, since the only poles of YdX are∞± we could evaluate

Res∞−
YdX = −Res∞+

YdX = −Res∞+
φ = 1.

We then write
Res∞+

Vdu =
(

Res∞+
+Res∞−

)
YdX− u(∞−)
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The first term can be computed with the Riemann bilinear identity [DFN90]

(
Res∞+

+Res∞−

)
uYdX =

1
2iπ

g∑
h=1

(˛
Ah

du ·
˛
Bh

YdX−

˛
Bh

du ·
˛
Ah

YdX
)

. (4.3)

Taking into account that for any h,k ∈ [g], we have
¸
Bh
YdX = 0 (Remark 3.8), and

¸
Bh

duk = τh,k and¸
Ah
YdX = 2iπε∗h, we find that (4.3) is equal to −τ(ε∗).

4.3 Kernel asymptotics: intermediate computations

We need to compute an asymptotic equivalent as K→∞ of kernels of the form:

Z
K
M
V

M

ZVK

〈
m∏
j=1

det(xj −Λ)
cj

〉 K
M
V

M

,

where x1, . . . , xm /∈ A, c1, . . . , cm ∈ Z, and (M− K) = p is a fixed integer. Notice that

Z
K
M
V

M

ZVK

〈
m∏
j=1

det(xj −Λ)
cj

〉 K
M
V

M

=
ZVM
ZVK

〈
e
∑M
i=1 fc(λi)+

β
2 pV(λi)

〉V
M

, (4.4)

where we used the holomorphic function on a neighborhood of A

fc(λ) =

m∑
j=1

cj ln(xj − λ),

and for xj /∈ A we choose the cut of the logarithm away from A. In order to access the asymptotics of (4.4)
via Theorem 4.2, we first have to evaluate the following quantities

Lemma 4.6. Let z, z1, z2 ∈ C+. We have:

L
[

ln(X(z) − •)
]
= 2iπε∗ · u(z) − ln

(
η(z)E(z,∞+)

2dζ∞+
(∞+)

)
−

d∑
k=1

tk

k

ˆ z

∞+

dB∞−,k,

Q
[

ln(X(z) − •),V
]
=

2
β

d∑
k=1

tk

k

ˆ z

∞+

dB∞+,k,

Q
[

ln(X(z1) − •), ln(X(z2) − •)
]
=

2
β

ln
(

E(z1, z2)

E(z1,∞+)E(z2,∞+)(X(z2) − X(z1))dζ∞+
(∞+)

)
,

Q
[

ln(X(z) − •), ln(X(z) − •)
]
=

2
β

ln
(

1
E(z,∞+)2dζ∞+

(∞+)

)
,

where η(z) is defined in (4.7). In particular, we observe the simplification

L
[

ln(X(z) − •)
]
+
β

2
Q ln

[
ln(X(z) − •),V

]
= 2iπε∗ · u(z) − ln

(
η(z)E(z,∞+)

2dζ∞+
(∞+)

)
. (4.5)
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Proof. Let x = X(z). The first two formulas are a consequence of the decomposition (3.8) of φ. . We have:

L
[

ln(x− •)
]
=

˛
S

dξ
2iπ

ln(x− ξ)W1(ξ)

=

˛
S

dξ
2iπ

[ˆ x

∞
(

1
ξ ′ − ξ

−
1
ξ ′

)
dξ ′ + ln x

]
W1(ξ)

= ln(x) +
ˆ x

∞ dξ ′
(˛

S

dξ
2iπ

W1(ξ)

ξ ′ − ξ
−

1
ξ ′

)
= ln(x) +

ˆ x

∞ dξ ′
(
W1(ξ

′) −
1
ξ ′

)
= ln(x) +

ˆ z

∞+

(
φ−

dX
X

)
.

We can expand this as

L
[

ln(x− •)
]
= ln x+ 2iπε∗ · u(z) +

ˆ z

∞+

(
dS∞+,∞−

+
dζ∞+

ζ∞+

)
−

d∑
k=1

tk

k

ˆ z

∞+

dB∞−,k

= ln x+ 2iπε∗ · u(z) +
ˆ z

∞+

dz′ ln
(
E(z ′,∞−)ζ∞+

(z ′)

E(z ′,∞+)

)
−

d∑
k=1

tk

k

ˆ z

∞+

B∞−,k

= ln x+ 2iπε∗ · u(z) + ln
(

E(z,∞−)ζ∞+
(z)

E(z,∞+)E(∞+,∞−)dζ∞+
(∞+)

)
−

d∑
k=1

tk

k

ˆ z

∞+

B∞−,k.

(4.6)

and ln x cancels with ln ζ∞+
(z). We introduce the 1-form on C̃

η(z) =
E(∞+,∞−)

E(z,∞+)E(z,∞−)
(4.7)

and use it to get rid of∞− in (4.6). This leads to the claimed formula.
For the second formula

Q
[

ln(x− •),V
]
=

2
β

˛
S2

dξ1

2iπ
dξ2

2iπ
V(ξ1)

[
ln x+

ˆ x

∞+

(
1

ξ ′ − ξ2
−

1
ξ ′

)
dξ ′
]
W2(ξ1, ξ2).

We move the ξ2-contour to∞. SinceW2 has no residue at∞ the first and third term disappear and we get:

Q
[

ln(x− •),V] = 2
β

˛
S

dξ1

2iπ
V(ξ1)

ˆ x

∞+

W2(ξ1, ξ ′)dξ ′

=
2
β

˛
S

dξ1

2iπ
V(ξ1)

ˆ x

∞+

(
W2(ξ1, ξ ′) +

1
(ξ1 − ξ ′)2

)
dξ ′,

where in the second line the shift does not affect the integral around S as it is holomorphic near S. Then,
we write X(w) = ξ1 and X(w ′) = ξ ′, consider these integrals as integrals on C̃, and recognise via (3.11) the
fundamental bidifferential B. Since the path on which we integrate w ′ remains in the first sheet away from
the cut, we can move the integral over w to surround the pole∞− of V(X(w)). We get:

Q
[

ln(x− •),V] = 2
β

ˆ z

w′=∞+

Res
w=∞−

dX(w)V(X(w))B(w,w ′)

=
2
β

d∑
k=1

tk

k

ˆ z

w′=∞+

Res
w=∞−

ζ∞−
(w)−kB(w,w ′)

=
2
β

d∑
k=1

tk

k

ˆ z

∞+

dB∞−,k,
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as desired.
For the third formula, let xi = X(zi). Using Section 3.3.3, we find

Q
[

ln(x1 − •), ln(x2 − •)
]
=

2
β

˛
S2

dξ1dξ2

(2iπ)2 W2(ξ1, ξ2) ln(x1 − ξ1) ln(x2 − ξ2)

=
2
β

ˆ z1

∞+

ˆ z2

∞+

W2(w1,w2)dX(w1)dX(w2)

after we handle the logarithms like in the previous proofs. Then:

Q
[

ln(x1 − •), ln(x2 − •)
]
=

2
β

ˆ z1

∞+

ˆ z2

∞+

(
B(w1,w2) −

dX(w1)dX(w2)

(X(w1) − X(w2))2

)
=

2
β

ln
(
E(z1, z2)E0(z1,∞+)E0(∞+, z2)

E(z1,∞+)E(∞+, z2)E0(z1, z2)

)
.

where we used Lemma 3.5 both for C̃ and Ĉ, and (3.4) to get rid of the ratio of the relative prime form with
two arguments ∞+. Since the prime forms are antisymmetric in their two variables, we can arrange the
formula to have∞+ always in the second argument. The presence of∞+ in E0 factors can be understood
by first replacing it by a point z̃, and then letting z̃ → ∞+. Due to Lemma 3.6 the product of the two
E0-factors involving ∞+ only gives a sign when we use the local coordinate ζ∞+

, and using E0(z1, z2) =

(X(z1) − X(z2))/
√

dX(z1)dX(z2) leads to the claim.

We are now in position to evaluate the asymptotics of the kernels. We will mainly be interested in a situation
with only two variables:

K
K
M
V

M

(
c c̃
x x̃

)
:=
〈

det(x−Λ)c det(x̃−Λ)c̃e
β
2 pTrV(Λ)

〉V
M

=
〈
e
∑M
i=1 c ln(x−λi)+c̃ ln(x̃−λi)+β2 pV(λi)

〉V
M

.
(4.8)

where p =M− K. It will be used in the form:

Z
K
M
V

M

ZVK

〈
det(x−Λ)c det(x̃−Λ)c̃

〉 K
M
V

M
=
ZVM
ZVK

K
K
M
V

M

(
c c̃
x x̃

)
. (4.9)

Lemma 4.7. Let z, z̃ ∈ C+ and c, c̃ ∈ Z. We have as K→∞ and p is a fixed integer:

K
K
K+pV

K+p

(
c c̃
X(z) X(z̃)

)
∼ eKcL[ln(X(z)−•)]+Kc̃L[ln(X(z̃)−•)]+cH[ln(X(z)−•)]+c̃H[ln(X(z̃)−•)]+Kβ2 pL[V]+β2 p

2L[V]+β2 pH[V]+β
2

8 p
2Q[V ,V]

× e2iπpε∗·(cu(z)+c̃u(z̃))
(
η(z)E(z,∞+)

2dζ∞+
(∞+)

)−pc(
η(z̃)E(z̃,∞+)

2dζ∞+
(∞+)

)−pc̃
× e

1
2c

2Q[ln(X(z)−•),ln(X(z)−•)]+ 1
2 c̃

2Q[ln(X(z̃)−•),ln(X(z̃)−•)]
(

E(z, z̃)
E(z,∞+)E(z̃,∞+)(X(z̃) − X(z))dζ∞+

(∞+)

) 2
β
cc̃

×
ϑ−(K+p)ε∗,0

(
veq + cu(z) + c̃u(z̃) +

β
2 p(τ(ε

∗) + u(∞−))
∣∣β

2 τ
)

ϑ−Mε∗,0
(
veq
∣∣β

2 τ
) .

In particular if p = 0, we have asM→∞
KVM

(
c c̃
X(z) X(z̃)

)
∼ eMcL[ln(X(z)−•)]+Mc̃L[ln(X(z̃)−•)]+cH[ln(X(z)−•)]+c̃H[ln(X(z̃)−•)]

× e
1
2c

2Q[ln(X(z)−•),ln(X(z)−•)]+ 1
2 c̃

2Q[ln(X(z̃)−•),ln(X(z̃)−•)]

×
(

E(z, z̃)
(X(z̃) − X(z))E(z,∞+)E(z̃,∞+)dζ∞+

(∞+)

) 2
β
cc̃ ϑ−Mε∗,0

(
veq + cu(z) + c̃u(z̃)

∣∣β
2 τ
)

ϑ−(K+p)ε∗,0
(
veq
∣∣β

2 τ
) .
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Proof. Let x = X(z) and x̃ = X(z̃). Applying Theorem 4.2 to the definition (4.8), we get as M,K → ∞ while
M− K = p is fixed:

K
K
M
V

M

(
c c̃
x x̃

)
∼
ZVM

Z
K
M
V

M

eMcL[ln(x−•)]+Mc̃L[ln(x̃−•)]+cH[ln(x−•)]+c̃H[ln(x̃−•)]+Mβ
2 pL[V]+β2 H[V]+β

2
8 p

2Q[V ,V]

× e
1
2c

2Q[ln(x−•),ln(x−•)]+cc̃Q[ln(x−•),ln(x̃−•)]+ 1
2 c̃

2Q[ln(x̃−•),ln(x̃−•)]+β2 pcQ[ln(x−•),V]+β2 pc̃Q[ln(x̃−•),V]

×
ϑ−Mε∗,0

(
veq +

1
2iπ

¸
S

[
c ln(x− •) + c̃ ln(x̃− •) + β

2 pV
]
du
∣∣β

2 τ
)

ϑ−Mε∗,0
(
veq
∣∣β

2 τ
) .

We split M = K + p in the exponential and combine the newly created p-terms with the β
2 Q[ln,V] terms

which is evaluated thanks to (4.5). We also replace the term cc̃Q[ln, ln] by its evaluation from Lemma 4.6,
but refrain from doing so for the c2 and the c̃2 terms. Finally, writing the logarithm in the arguments of
the theta function as a primitive, we get an expression in terms of the Abel map (a similar manipulation
was carried out in the proof of Lemma 4.4), and Lemma 4.5 tells us 1

2iπ

¸
S Vdu = τ(ε∗) + u(∞−) which we

need to multiply by βp
2 in the last argument of the theta function. Together with Lemma 4.5 this implies

the claimed formula.

The ratio of partition functions appearing in (4.9) will only be needed through the following combination.

Lemma 4.8. For fixed p ∈ Z, we have as K→∞
ZVK+pZ

V
K−p

(ZVK)
2 ∼ e2p2E[µeq]+iπβp2ε∗·τ(ε∗) ϑ−Kε∗,0

(
veq −

β
2 pτ(ε

∗)
∣∣β

2 τ
)
ϑ−Kε∗,0

(
veq +

β
2 pτ(ε

∗)
∣∣β

2 τ
)

ϑ−Kε∗,0
(
veq
∣∣β

2 τ
)2 .

Proof. Using Theorem 4.1 we find:

ZVK+p

ZVK
∼ e(2Kp+p2)E[µeq]+pS[µeq]+

β
2 p(lnK+1) ϑ−(K+p)ε∗,0

(
veq
∣∣β

2 τ
)

ϑ−Kε∗,0
(
veq
∣∣β

2 τ
) .

Multiplying this expression and the same with p→ −p yields:

ZVK+pZ
V
K−p

(ZVK)
2 ∼ e2p2E[µeq]

ϑ−(K+p)ε∗,0
(
veq
∣∣β

2 τ
)
ϑ−(K−p)ε∗,0

(
veq
∣∣β

2 τ
)

ϑ2
−Kε∗,0

(
veq
∣∣β

2 τ
) . (4.10)

We would like to rewrite all theta functions with a characteristic −Kε∗ instead of −(K ± p)ε∗. For this, we
come back to the definitions in Section 3.1 and find:

ϑ−(K+p)ε∗,0
(
v
∣∣β

2 τ
)
= eiπβ2 p

2ε∗·τ(ε∗)−2iπpε∗·v ϑ−Kε∗,0
(
v− pβ2 τ(ε

∗)
∣∣β

2 τ
)
, (4.11)

which holds for any v ∈ Cg. We multiply the outcome with the same factor for p→ −p, we obtain:

ϑ−(K+p)ε∗,0
(
v
∣∣β

2 τ
)
ϑ−(K−p)ε∗,0

(
v
∣∣β

2 τ
)
= eiπβp2ε∗·τ(ε∗)ϑ−Kε∗,0

(
v− β

2 pτ(ε
∗)
∣∣β

2 τ
)
ϑ−Kε∗,0

(
v+ β

2 pτ(ε
∗)
∣∣β

2 τ
)
.

Inserting in (4.10) yields the claim.

5 Derivation of the theta identities

We shall now state and prove the main theorems. For each case β ∈ {1, 2, 4} we give both a proof based on
the analysis in the previous sections, and a second, direct proof based on geometric arguments. We recall
the definition of the meromorphic 1-form η on C̃ that appeared in (4.7)

η(z) =
E(∞+,∞−)

E(z,∞+)E(z,∞−)
.
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Throughout this section, the Abel map will always be based at∞+, and u(∞−) is computed using a path
from∞+ to∞− which do not cross any of the representatives (Ah,Bh)

g
h=1 obtained by analytic continua-

tion from the ones in Section 3.3.1, see the discussion above Lemma 3.14.

5.1 The β = 2 formula

Theorem 5.1. Consider a hyperelliptic curve Ĉ, and let z, z ′,w,w ′ ∈ C̃, and µ,ν ∈ Rg. Then, we have:

(X(w) − X(z ′))(X(z) − X(w ′))
E(z,w)E(z ′,w ′)
E(w, z ′)E(z,w ′)

ϑµ,ν
(
u(z) − u(z ′) + u(w) − u(w ′)

∣∣τ)
E(z, z ′)E(w,w ′)

ϑµ,ν(0
∣∣τ)

− (X(z) − X(w))(X(z ′) − X(w ′))
ϑµ,ν(u(z) − u(z

′)
∣∣τ)

E(z, z ′)
ϑµ,ν

(
u(w) − u(w ′)

∣∣τ)
E(w,w ′)

= E(z,w)E(z ′,w ′)

 ∏
p∈{z,z′,w,w′}

η(p)

 ϑµ,ν
(
u(z) + u(w) − u(∞−)

∣∣τ)ϑµ,ν
(
− u(z ′) − u(w ′) + u(∞−)

∣∣τ).
(5.1)

Notice that each of the three terms is actually a 1
2 -form on the universal cover C̃ in each of the variable

z, z ′,w,w ′. Even if µ = 0, it does not descend to the curve itself. As the proof will show, the formula holds
equally well for arbitrary µ,ν complex, in particular, if we shift all arguments of the theta functions by the
same arbitrary but common ν ∈ Cg.

Proof. Consider first the case where the Weierstraß points of Ĉ are real. By Proposition 3.11, we can find
a β-ensemble whose spectral curve has Ĉ as underlying Riemann surface and for which the results of
Section 4 apply (by construction the potential is off-critical). We then express the identity of Theorem 2.6
for m1 = m2 = 1, for x = X(z), x ′ = X(z ′), x̃ = X(w) and x̃ ′ = X(w ′) pairwise distinct points in C \ A, that
determine unique points z, z ′,w,w ′ ∈ C+. Taking into account the definition of K in (4.9), we get:〈

det(x−Λ)det(x̃−Λ)
det(x ′ −Λ)det(x̃ ′ −Λ)

〉V
N

= (x− x ′)(x̃− x̃ ′)
N

N+ 1
ZVN−1Z

V
N+1

(ZVN)
2 K

N
N−1V

N−1

(
1 1
x x̃

)
K

N
N+1V

N+1

(
−1 −1
x̃′ x′

)
+KVN

(
1 −1
x x′

)
KVN
(

1 −1
x̃ x̃′

)
.

(5.2)

Let us first consider the asymptotics of left-hand side as N → ∞. We have veq = 0 since β = 2. Coming
back to Theorem 4.2 and using Lemma 4.6 for the Q-terms involving two different variables:〈

det(x−Λ)det(x̃−Λ)
det(x ′ −Λ)det(x̃ ′ −Λ)

〉V
N

∼ e
NL

[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+H

[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+ 1

2

∑
ξ∈{x,x̃,x′ ,x̃′} Q[ln(ξ−•),ln(ξ−•)]

×
E(z,w)E(z ′,w ′)E(z,∞+)E(z

′,∞+)E(w,∞+)E(w
′,∞+)

(
dζ∞+

(∞+)
)2

E(z, z ′)E(z,w ′)E(w, z ′)E(w,w ′)
(x− x ′)(x− x̃ ′)(x̃− x ′)(x̃− x̃ ′)

(x− x̃)(x ′ − x̃ ′)

×
ϑ−Nε∗,0

(
u(z) − u(z ′) + u(w) − u(w ′)

∣∣τ)
ϑ−Nε∗,0

(
0
∣∣τ) .

(5.3)

For the asymptotics of the first term of the right-hand side of (5.2), we use the β = 2 specialisation of
Lemma 4.8 with p = 1 for the ratio of partition functions, and Lemma 4.7 for the K-factors with K = N,
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M = N∓ 1 and (c, c̃) = (±1,±1), that is p = ∓1. The outcome is

(x− x ′)(x̃− x̃ ′)
N

N+ 1
ZVN−1Z

V
N+1

(ZVN)
2 K

N
N−1V

N−1

(
1 1
x x̃

)
K

N
N+1V

N+1

(
−1 −1
x̃′ x′

)
∼ e2E[µeq]+2L[V]+Q[V ,V]−2iπε∗·(u(z)+u(z′)+u(w)+u(w′))

× eNL

[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+H

[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+ 1

2

∑
ξ∈{x,x′ ,x̃,x̃′} Q[ln(ξ−•),ln(ξ−•)]

× E(z,w)E(z
′,w ′)(x− x ′)(x̃− x̃ ′)

(x− x̃)(x ′ − x̃ ′)

∏
p∈{z,z′,w,w′}

η(p)E(p,∞+)
√

dζ∞+
(∞+)

×
ϑ−(N−1)ε∗,0

(
u(z) + u(w) − u(∞−) − τ(ε

∗)
∣∣τ)ϑ−(N+1)ε∗,0

(
− u(z ′) − u(w ′) + u(∞−) + τ(ε

∗)
∣∣τ)

ϑ2
−Nε∗,0

(
0
∣∣τ) .

(5.4)

In the last line we can restore a characteristic −Nε∗ in the theta functions thanks to (4.11), which we have
to use respectively with v = u(z) + u(w) − u(∞−) − τ(ε

∗) and v = −u(z ′) − u(w ′) + u(∞−) + τ(ε
∗). The

outcome is

ϑ−(N−1)ε∗,0
(
u(z) + u(w) − u(∞−) − τ(ε

∗)
∣∣τ)ϑ−(N+1)ε∗,0

(
− u(z ′) − u(w ′) + u(∞−) + τ(ε

∗)
∣∣τ)

= e2iπε∗·τ(ε∗)+2iπε∗·(u(z)+u(z′)+u(w)+u(w′)−2u(∞−)−2τ(ε∗))

× ϑ−Nε∗,0
(
u(z) + u(w) − u(∞−)

∣∣τ)ϑ−Nε∗,0
(
− u(z ′) − u(w ′) + u(∞−)

∣∣τ).
Inserting this in (5.4) gives an exponential prefactor

e2E[µeq]+2L[V]+Q[V ,V]+4iπε∗·(τ(ε∗)+u(∞−))

which would be equal to 1 if we had Proposition 4.3. We will establish Proposition 4.3 as a byproduct in
Section 5.4; for the moment, we proceed assuming it holds. We get:

(x− x ′)(x̃− x̃ ′)
N

N+ 1
ZVN−1Z

V
N+1

(ZVN)
2 K

N
N−1V

N−1

(
1 1
x x̃

)
K

N
N+1V

N+1

(
−1 −1
x̃′ x′

)
∼ e

NL

[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+H

[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+ 1

2

∑
ξ∈{x,x′ ,x̃,x̃′} Q[ln(ξ−•),ln(ξ−•)]

× E(z,w)E(z
′,w ′)(x− x ′)(x̃− x̃ ′)

(x− x̃)(x ′ − x̃ ′)

∏
p∈{z,z′,w,w′}

η(p)E(p,∞+)
√

dζ∞+
(∞+)

×
ϑ−Nε∗,0

(
u(z) + u(w) − u(∞−)

∣∣τ)ϑ−Nε∗,0
(
− u(z ′) − u(w ′) + u(∞+)

∣∣τ)
ϑ2
−Nε∗

(
0
∣∣τ) .

(5.5)

The asymptotics of the second term is simpler as we just need to use the p = 0 case of Lemma 4.7. The
outcome is:

KVN
(

1 −1
x x′

)
KVN
(

1 −1
x̃ x̃′

)
∼ e

NL

[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+H

[
ln
(

(x−•)(x̃−•)
(x′−•)(x̃′−•)

)]
+ 1

2

∑
ξ∈{x,x′ ,x̃,x̃′} Q[ln(ξ−•),ln(ξ−•)]

× (x− x ′)(x̃− x̃ ′)

E(z, z ′)E(w,w ′)

∏
p∈{z,z′,w,w′}

E(p,∞+)
√

dζ∞+
(∞+)

×
ϑ−Nε∗,0

(
u(z) − u(z ′)

∣∣τ)ϑ−Nε∗,0
(
u(w) − u(w ′)

∣∣τ)
ϑ2
−Nε∗,0

(
0
∣∣τ) .

(5.6)

We also observe that (5.3), (5.5) and (5.6) all have the same exponential factor involving L,H and Q, the
same factor ∏

p∈{z,z′,w,w′}

E(p,∞+)
√

dζ∞+
(∞+),
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and the same squared ϑ in the denominator — except for (5.3) where the latter is not squared. After we
cancel those and multiply further by

(x− x̃)(x ′ − x̃ ′)

(x− x ′)(x̃− x̃ ′)
,

the identity (5.2) as N→∞ then becomes:

E(z,w)E(z ′,w ′) (x− x̃ ′)(x̃− x ′)
E(z, z ′)E(z,w ′)E(w, z ′)E(w,w ′)

ϑ−Nε∗,0
(
u(z) − u(z ′) + u(w) − u(w ′)

∣∣τ)ϑ−Nε∗,0
(
0
∣∣τ)

= E(z,w)E(z ′,w ′)η(z)η(z ′)η(w)η(w ′)ϑ−Nε∗,0
(
u(z) + u(w) − u(∞−)

∣∣τ)ϑ−Nε∗,0
(
− u(z ′) − u(w ′) + u(∞−)

∣∣τ)
+

(x− x̃)(x ′ − x̃ ′)

E(z, z ′)E(w,w ′)
ϑ−Nε∗,0

(
u(z) − u(z ′)

∣∣τ)ϑ−Nε∗,0
(
u(w) − u(w ′)

∣∣τ)+ o(1).
(5.7)

Let µ ∈ Rg. Let us assume temporarily that ε∗1 , . . . , ε∗g are Q-linearly independent. Then, by Kronecker’s
theorem, one can find an increasing sequence (N(n))n>1 such that

lim
n→∞

(
N(n)ε∗ + b−N(n)ε∗c

)
= −µ,

where the integer part is applied to each component of the vector. Using N = N(n) in (5.7) and letting
n→∞ we get the same identity without the o(1) and with characteristic µ, 0 for all theta functions, which
is (5.1) with ν = 0 and pairwise distinct points z, z ′,w,w ′ ∈ C+.

If ε∗1 , . . . , ε∗g are not Q-linearly independent, thanks to Corollary 3.13 we can take a sequence of β-ensembles
whose spectral curve admits as underlying Riemann surface a hyperelliptic curve Ĉ(n) with real Weierstraß
points converging to those of Ĉ, and whose filling fractions are Q-linearly independent. By the previous
argument, we know (5.1) with arbitrary µ ∈ Rg and ν = 0 and z, z ′,w,w ′ ∈ C(n)

+ pairwise distinct. Since
all the members of this identity are continuous in the real Weierstraß points a0 < b0 < · · · < ag < bg while
the values X(z),X(z ′),X(w),X(w ′) ∈ C are fixed away from them, taking n → ∞ yields the formula also
holds for Ĉ, ν = 0 and pairwise distinct points z, z ′,w,w ′ ∈ C+. Let us call (?) this formula. From there,
we can derive the desired identity in full generality by using repeatedly analytic continuation, as follows.

Firstly, all terms in (?) are holomorphic functions of µ ∈ Cg, and the identity holds for real µ. Therefore, it
must hold as well for complex µ. In particular, we can replace µ with µ + τ−1(ν) for arbitrary µ,ν ∈ Rg,
and rewrite all theta functions as

ϑµ+τ(ν),0(z|τ) = e
iπτ−1(ν)·ν+2iπτ−1(ν)·zϑµ,ν(z|τ)

The resulting phase is common to the three terms of the identity, therefore (?) is valid for arbitrary µ,ν ∈ Cg,
and a fortiori for arbitrary real µ,ν.

Secondly, fix R > 0 large enough, and let ∆̃2g+2(R) be the subset of points in our parameter space of marked
hyperelliptic curves ∆̃2g+2 such that the X-image of the Weierstraß points have moduli 6 R. Having fixed
and pairwise distinct values x, x ′, x̃, x̃ ′ ∈ C such that max

(
|x|, |x ′|, |x̃|, |x̃ ′|

)
> 2R determines a unique quadru-

ple of analytic sections z, z ′,w,w ′ : ∆̃2g+2(R)→ Ĉ such that x = X(z), x ′ = X(z ′), x̃ = X(w) and x̃ ′ = X(w ′).
These sections represent points in the (moving with parameters) hyperelliptic curve. Due to Lemma 3.14
and the discussion preceding it, all terms in (?) are holomorphic functions on ∆̃2g+2(R), but since we know
that (?) holds in the connected component of the base point in the real locus of ∆̃2g+2(R), it must also hold
over the whole ∆̃2g+2(R) with max

(
|x|, |x ′|, |x̃|, |x̃ ′|

)
> 2R. Now rather fixing a marked hyperelliptic curve

corresponding to a point in ∆̃2g+2(R), the identity (?) is valid for points z, z ′,w,w ′ in a neighborhood of∞+, but since it can be seen as an identity involving only meromorphic functions of z, z ′,w,w ′ ∈ C̃, it
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must hold for arbitrary quadruple of points in C̃. Eventually as R is arbitrary in the argument we get (5.1)
over the whole parameter space ∆̃2g+2 and quadruples of points in the universal cover of the associated
hyperelliptic curve.

This formula implies Fay identity, as we now show.

Proposition 5.2. Formula (5.1) implies Fay identity (1.1) for hyperelliptic curves.

Proof. The key remark is that z and w play almost symmetric roles in (5.1). We write the two equations
obtained when exchanging z and w, specialised to µ = 0 and ν ∈ Cg arbitrary but rather transferred to the
argument of the theta functions, so that everything is expressed in terms of θ = ϑ0,0:

(X(w) − X(z ′))(X(z) − X(w ′))
E(z,w)E(z ′,w ′)
E(w, z ′)E(z,w ′)

θ
(
ν+ u(z) − u(z ′) + u(w) − u(w ′)

∣∣τ)
E(z, z ′)E(w,w ′)

θ
(
ν
∣∣τ)

− (X(z) − X(w))(X(z ′) − X(w ′))
θ(ν+ u(z) − u(z ′)

∣∣τ)
E(z, z ′)

θ
(
ν+ u(w) − u(w ′)

∣∣τ)
E(w,w ′)

= E(z,w)E(z ′,w ′)η(z)η(z ′)η(w)η(w ′)θ
(
ν+ u(z) + u(w) − u(∞−)

∣∣τ)θ(ν− u(z ′) − u(w ′) + u(∞−)
∣∣τ)

= (X(z) − X(z ′))(X(w) − X(w ′))
E(z,w)E(z ′,w ′)
E(z, z ′)E(w,w ′)

θ
(
ν+ u(z) − u(z ′) + u(w) − u(w ′)

∣∣τ)
E(w, z ′)E(z,w ′)

θ
(
ν
∣∣τ)

− (X(z) − X(w))(X(z ′) − X(w ′))
θ
(
ν+ u(w) − u(z ′)

∣∣τ)
E(w, z ′)

θ
(
ν+ u(z) − u(w ′)

∣∣τ)
E(z,w ′)

.

(5.8)

Subtracting the first member from the third member of the equalities, grouping the terms together and
dividing by (X(z) − X(w))(X(z ′) − X(w ′)) yields the identity

0 =
E(z,w)E(z ′,w ′)

E(w, z ′)E(z,w ′)E(z, z ′)E(w,w ′)
θ
(
ν+ u(z) − u(z ′) + u(w) − u(w ′)

∣∣τ)θ(ν∣∣τ)
−
θ
(
ν+ u(w) − u(z ′)

∣∣τ)θ(ν+ u(z) − u(w ′)
∣∣τ)

E(w, z ′)E(z,w ′)
+
θ
(
ν+ u(z) − u(z ′)

∣∣τ)θ(ν+ u(w) − u(w ′)
∣∣τ)

E(z, z ′)E(w,w ′)
,

which is exactly Fay identity (1.1) after we replace the prime form with its expression (3.2) and take
(z1, z2, z3, z4) = (z,w, z ′,w ′).

Finally, we provide a direct proof of (5.1) based on complex analysis. This proof is based on a classical
theorem of Riemann which we recall for the convenience of the reader.

Theorem 5.3 ([Mum07, Theorem 3.1]). There is a vector k ∈ Cg such that for all ν ′ ∈ Cg, the function z 7→
θ
(
ν ′ + u(z)

∣∣τ) of z ∈ C̃ either vanishes identically or has g zeroes w1, . . . ,wg in a fundamental domain, satisfying

g∑
h=1

u(wh) = −ν+ k mod L

k is called vector of Riemann constants.

Direct geometric proof of Theorem 5.1. It suffices to prove the identity for µ = 0, since we still have ν ∈ Cg

arbitrary which allow reconstructing arbitrary characteristics. Let ν ′ ∈ Cg. Riemann’s theorem 5.3 implies
that seen as a function of z ∈ C̃, the theta function z 7→ θ

(
ν ′+u(z)

∣∣τ) is either identically zero of has g zeroes
in a fundamental domain. Let Dν′ be its zero divisor. We apply this to ν ′ = ν+u(w) −u(z ′) −u(w ′) with
ν, z ′,w,w ′ generic such that it is not in the theta divisor. A classical consequence of Riemann’s theorem
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[FK92, Theorem VI.3.3.] is that meromorphic functions on Cwith pole divisor at most Dν′ are constant. For
convenience, write

c1 =
(X(w) − X(z ′))(X(z) − X(w ′))E(z,w)E(z ′,w ′)

E(w, z ′)E(z,w ′)E(z, z ′)E(w,w ′)

c2 = −
(X(z) − X(w))(X(z ′) − X(w ′))

E(z, z ′)E(w,w ′)
c3 = E(z,w)E(z ′,w ′)η(z)η(z ′)η(w)η(w ′)

and consider

Ψ(z) =
c2

c1

θ(ν+ u(z) − u(z ′)
∣∣τ)θ(ν+ u(w) − u(w ′)

∣∣τ)
θ
(
ν+ u(z) − u(z ′) + u(w) − u(w ′)

∣∣τ)θ(ν∣∣τ)
+

c3

c1

θ
(
ν+ u(z) + u(w) − u(∞−)

∣∣τ)θ(ν− u(z ′) − u(w ′) + u(∞−)
∣∣τ)

θ
(
ν+ u(z) − u(z ′) + u(w) − u(w ′)

∣∣τ)θ(ν∣∣τ) .

This is a meromorphic function of z ∈ Ĉ. We have seen that the theta function in the denominator has
g zeroes – which are thus poles of Ψ. We now consider the poles of the other factors: the zeroes of c1

and the poles of c2 and c3. The coefficient c1 has a simple zero at z = (w ′), where  is the hyperelliptic
involution, and at z = w. The coefficients c2 and c3 have simple poles at z = z ′. Accordingly, both ratios
c2
c1

and c3
c1

have a simple pole only at z = (w ′). A careful computation of the residues taking into account
u((w ′)) = u(∞−)−u(w

′) shows that Ψ does not have a pole when z = (w ′). Notice that there are no pole
at ∞± as poles coming from linear terms are cancelled by other linear terms or the form η. We conclude
that the divisor of poles of Ψ is at most Dν′ . Thus, it is a constant function of z. A similar argument with
the other variables would show that it is a constant function of z, z ′,w,w ′. By sending the points z ′,w,w ′

to z one after the other, and we arrive to Ψ = 1.

5.2 The β = 1 formula

Theorem 5.4. Consider a marked hyperelliptic curve Ĉ and let z1, z ′1, z2, z ′2 ∈ C̃ and µ,ν ∈ Rg. Writing xi = X(zi)
and x ′i = X(z

′
i), we have(
E(z1, z2)E(z

′
1, z ′2)

E(z1, z ′1)E(z1, z ′2)E(z2, z ′1)E(z2, z ′2)

)2

ϑµ,ν
(
u(z1) − u(z

′
1) + u(z2) − u(z

′
2)
∣∣τ

2

)
ϑµ,ν

(
0
∣∣τ

2

)
=

(x1 − x2)(x
′
1 − x

′
2)

(x1 − x ′1)(x2 − x ′2)

ϑµ,ν
(
u(z1) − u(z

′
2)
∣∣τ

2

)
E(z1, z ′2)2

ϑµ,ν
(
u(z2) − u(z

′
1)
∣∣τ

2

)
E(z ′1, z2)2

−
(x1 − x2)(x

′
1 − x

′
2)

(x1 − x ′2)(x2 − x ′1)

ϑµ,ν
(
u(z1) − u(z

′
1)
∣∣τ

2

)
E(z1, z ′1)2

ϑµ,ν(u(z2) − u(z
′
2)
∣∣τ

2

)
E(z ′2, z2)2

+

(
E(z1, z2)E(z

′
1, z ′2)η(z1)η(z

′
1)η(z2)η(z

′
2)
)2

(x1 − x ′1)(x1 − x ′2)(x2 − x ′1)(x2 − x ′2)
ϑµ,ν

(
u(z1) + u(z2) − u(∞−)

∣∣τ
2

)
ϑµ,ν

(
− u(z ′1) − u(z

′
2) + u(∞−)

∣∣τ
2

)
,

(5.9)

Proof. The strategy is similar to the proof for β = 2 in Theorem 5.1. In particular, we first prove an asymp-
totic identity for hyperelliptic curves arising from β = 1 ensembles, use approximations to get arbitrary
characteristic µ, 0, and then analytic continuation to get the identity for marked hyperelliptic curves with
arbitrary complex Weierstraß points and characteristics µ,ν ∈ Rg.

The starting point is the exact identity of Theorem 2.7 in the simplest non-trivial case, i.e. m = 2 (pfaffian
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of size 4). Taking x1, x ′1, x2, x ′2 ∈ C \A pairwise distinct, this gives〈
det(x1 −Λ)det(x2 −Λ)

det
(
x ′1 −Λ

)
det(x ′2 −Λ)

〉V
2N

=
2N(2N− 1)

(2N+ 2)(2N+ 1)
(x1 − x

′
1)(x2 − x

′
2)(x1 − x

′
2)(x2 − x

′
1)
ZV2N−2Z

V
2N+2

(ZV2N)
2 K

2N
2N−2V

2N−2

(
1 1
x1 x2

)
K

2N
2N+2V

2N+2

(−1 −1
x′1 x

′
2

)
−

(x1 − x
′
2)(x2 − x

′
1)

(x1 − x2)(x ′1 − x
′
2)
KV2N

( 1 −1
x1 x

′
1

)
KV2N

( 1 −1
x2 x

′
2

)
+

(x1 − x
′
1)(x2 − x

′
2)

(x1 − x2)(x ′1 − x
′
2)
KV2N

( 1 −1
x1 x

′
2

)
KV2N

( 1 −1
x2 x

′
1

)
.

(5.10)

As the computation is similar to β = 2 we only streamline it. Let z1, z ′1, z2, z ′2 ∈ C+ be such that xi = X(zi)

and x ′i = X(z ′i). The asymptotic equivalent of the left-hand side of (5.10) as N → ∞ is obtained from
Theorem 4.2:

e
(2NL+H)

[
ln
(

(x1−•)(x2−•)
(x′1−•)(x

′
2−•)

)]
+ 1

2

∑
ξ∈{x1,x′1 ,x2,x′2}

Q[ln(ξ−•),ln(ξ−•)]

×
( ∏
p∈{z1,z′1 ,z2,z′2}

E(p,∞+)
√

dζ∞+
(∞+)

)2

×
(

E(z1, z2)E(z
′
1, z ′2)

E(z1, z ′1)E(z1, z ′2)E(z2, z ′1)E(z2, z ′2)
(x1 − x

′
1)(x1 − x

′
2)(x2 − x

′
1)(x2 − x

′
2)

(x1 − x2)(x ′1 − x
′
2)

)2

×
ϑ−2Nε∗,0

(
veq + u(z1) − u(z

′
1) + u(z2) − u(z

′
2)
∣∣τ

2

)
ϑ−2Nε∗,0

(
veq
∣∣τ

2

) .

(5.11)

We have used Lemma 4.6 to evaluate the Q[ln(ξ− •), ln(ξ ′ − •)] terms that appear with ξ 6= ξ ′. In the
right-hand side of (5.10), we use the asymptotics of the 2-point kernel from Lemma 4.7 with K = 2N and
p = ∓2.

Consider the asymptotics of the first term in the right-hand side of (5.10). It contains a product of theta
functions with characteristic −(2N± 2)ε∗, which we can replace by two theta functions with same charac-
teristic −2Nε∗ using (5.11) up to an extra exponential factor. The latter combines with the asymptotics of
the ratio of partition functions of shifted size from Lemma 4.8 to reproduce a factor

e8E[µeq]+4L[V]+Q[V ,V]+8iπε∗·(τ(ε∗)+u(∞−))

which is equal to 1 due to Proposition 4.3, and to kill the factor of e−4iπε∗·(u(z1)+u(z2)+u(z
′
1)+u(z

′
2)) coming

from the use of (4.5). The other factors are the first line of (5.11) multiplied by(
E(z1, z2)E(z

′
1, z ′2)

(x1 − x2)(x ′1 − x
′
2)

∏
p∈{z1,z′1 ,z2,z′2}

η(p)E(p,∞+)
√

dζ∞+
(∞+)

)2

× ϑ−2Nε∗,0
(
veq − τ(ε

∗)
∣∣τ

2

)
ϑ−2Nε∗,0

(
veq + τ(ε

∗)
∣∣τ

2

)
× ϑ−2Nε∗,0

(
veq + u(z1) + u(z2) − u(∞−)

∣∣τ
2

)
ϑ−2Nε∗,0

(
veq − u(z

′
1) − u(z

′
2) + u(∞−)

∣∣τ
2

)
,

where the last line was already explained.

The asymptotics of the second and third terms in the right-hand side of (5.10) are more straightforward to
get. They both contain the first line and the third line of (5.11), and the other asymptotic factors are

−
(x1 − x

′
2)(x2 − x

′
1)

(x1 − x2)(x ′1 − x
′
2)

(
(x1 − x

′
1)(x2 − x

′
2)

E(z1, z ′1)E(z2, z ′2)

∏
p∈{z1,z′1 ,z2,z′2}

E(p,∞+)
√

dζ∞+
(∞+)

)2

× ϑ−2Nε∗,0
(
veq + u(z1) − u(z

′
1)
∣∣τ

2

)
ϑ−2Nε∗,0

(
veq + u(z2) − u(z

′
2)
∣∣τ

2

)
30



for the second term (including its sign), and

(x1 − x
′
1)(x2 − x

′
2)

(x1 − x2)(x ′1 − x
′
2)

(
(x1 − x

′
2)(x2 − x

′
1)

E(z1, z ′2)E(z2, z ′1)

∏
p∈{z1,z′1 ,z2,z′2}

E(p,∞+)
√

dζ∞+
(∞+)

)2

× ϑ−2Nε∗,0
(
veq + u(z1) − u(z

′
2)
∣∣τ

2

)
ϑ−2Nε∗,0

(
veq + u(z2) − u(z

′
1)
∣∣τ

2

)
.

We then divide all terms by the first and second line of (5.11) (common factor to all terms) and by(
(x1 − x

′
1)(x1 − x

′
2)(x2 − x

′
1)(x2 − x

′
2)

(x1 − x2)(x ′1 − x
′
2)

)2

to arrive to (5.9) with µ = −2Nε∗, ν = 0 and an extra veq added to the arguments of all theta functions.
Then, we repeat the end of the proof of Theorem 5.1 to get exactly and in full generality the claimed (5.1).

Theorem 5.4 can be reformulated as an identity for theta functions with matrix of periods τ instead of τ2 .

Lemma 5.5. There is an equivalence between (5.9) for any µ,ν ∈ Rg, and the formula

0 = c1 ϑα2 ,0
(
u(z1) − u(z

′
1) + u(z2) − u(z

′
2)
∣∣τ)+ c2 ϑα2 ,0

(
u(z1) + u(z

′
1) − u(z2) − u(z

′
2)
∣∣τ)

+ c3 ϑα2 ,0
(
u(z1) − u(z

′
1) − u(z2) + u(z

′
2)
∣∣τ)+ c4 ϑα2 ,0

(
u(z1) + u(z

′
1) + u(z2) + u(z

′
2) − 2u(∞−)

∣∣τ) ,
(5.12)

for any α ∈ Zg/2Zg, where

c1 = −

(
E(z1, z2)E(z

′
1, z ′2)

E(z1, z ′1)E(z1, z ′2)E(z2, z ′1)E(z2, z ′2)

)2

,

c2 =
(x1 − x2)(x

′
1 − x

′
2)

(x1 − x ′1)(x2 − x ′2)

1(
E(z1, z ′2)E(z

′
1, z2)

)2 ,

c3 = −
(x1 − x2)(x

′
1 − x

′
2)

(x1 − x ′2)(x2 − x ′1)

1(
E(z1, z ′1)E(z

′
2, z2)

)2 ,

c4 =

(
E(z1, z2)E(z

′
1, z ′2)η(z1)η(z

′
1)η(z2)η(z

′
2)
)2

(x1 − x ′1)(x1 − x ′2)(x2 − x ′1)(x2 − x ′2)
.

Proof. The trick is to use Riemann’s binary addition theorem — see e.g. [Mum07, Equation 6.6]. It states
that for any µ,ν,µ ′,ν ′ ∈ Rg and z1, z2 ∈ Cg

ϑµ,ν
(
z1 + z2

∣∣τ
2

)
ϑµ′,ν′

(
z1 − z2

∣∣τ
2

)
=

∑
α∈Zg/2Zg

ϑµ+µ′+α
2 ,ν+ν′

(
2z1
∣∣τ)ϑµ−µ′+α

2 ,ν−ν′
(
2z2
∣∣τ). (5.13)

We apply the transformation (5.13) with µ ′ = µ and ν = ν ′ to each term in (5.9), writing it in the equivalent
form ∑

α∈Zg/2Zg
ϑµ+α2 ,ν

(
u(z1) − u(z

′
1) + u(z2) − u(z

′
2)
∣∣τ)( 4∑

i=1

ci ϑα2 ,0
(
wi(z1, z ′1, z2, z ′2)

∣∣τ)) (5.14)

where the wi are exactly the four arguments of the theta functions appearing in (5.12). In this form, the
converse implication is clear. The direct implication follows from the observation that ν is arbitrary, and
the family of functions Tα(ν) = ϑα2 ,0

(
u(z1) − u(z

′
1) + u(z2) − u(z

′
2)
∣∣τ) indexed by α ∈ Zg/2Zg are linearly

independent, forcing the sum inside the bracket to vanish for each individual α.

This is an identity involving only Riemann theta functions, for which we can offer a direct geometric proof,
in a slightly more general form.
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Theorem 5.6. Equation 5.12 holds for any marked hyperelliptic curve for any characteristic µ,ν ∈ Rg (instead of
just half-integer characteristics).

Direct geometric proof of Theorem 5.4. The strategy is similar of the direct proof of Theorem 5.1. We start
without lack of generality to set µ = 0 and for ν ∈ Cg arbitrary, consider

Ψ(z1) =
c2

c1

θ
(
ν+ u(z1) + u(z

′
1) − u(z2) − u(z

′
2)
∣∣τ)

θ
(
ν+ u(z1) − u(z ′1) + u(z2) − u(z ′2)

∣∣τ)
+

c3

c1

θ
(
ν+ u(z1) − u(z

′
1) − u(z2) + u(z

′
2)
∣∣τ)

θ
(
ν+ u(z1) − u(z ′1) + u(z2) − u(z ′2)

∣∣τ)
+

c4

c1

θ
(
ν+ u(z1) + u(z

′
1) + u(z2) + u(z

′
2) − 2u(∞−)

∣∣τ)
θ
(
ν+ u(z1) − u(z ′1) + u(z2) − u(z ′2)

∣∣τ) .

This is a meromorphic function of z1 ∈ Ĉ. We first analyse the poles that may come from the ratios of
coefficients. The ratio c2

c1
has simple poles at z1 = z2 and z1 = (z ′1), where  is the hyperelliptic involution.

The ratio c3
c1

has simple poles only at z1 = (z ′2) and z1 = z2. The ratio c4
c1

has simple poles only at z1 = (z ′2)

and z1 = (z ′2). However, careful computation of the residues show that Ψ has none of these poles. Thus,
the only poles of Ψ are the zeros of z1 7→ θ

(
ν + u(z1) − u(z

′
1) + u(z2) − u(z

′
2)
∣∣τ). As in the direct proof of

Theorem 5.1, Riemann’s Theorem implies that if we choose the points z ′1, z2, z ′2 and the vector ν generically,
there are no nonconstant meromorphic function whose poles are the zeroes of this theta function. We
deduce that Ψ(z1) does not depend on z1. A similar argument shows that Ψ(z1) is independent of all points
points z1, z ′1, z2, z ′2. Sending z ′1, z2, z ′2 successively to z1 we find that the constant is 1.

5.3 The β = 4 formula

The case β = 4 has the same structure as the β = 1 case of Theorem 5.4, except that the argument of the
theta functions are doubled while we use the matrix 2τ. This similarity is already manifest in the exact
formulae of Theorems 2.7 and 2.8.

Theorem 5.7. Consider a marked hyperelliptic curve Ĉ, and let z1, z ′1, z2, z ′2 ∈ C̃ and µ,ν ∈ Cg. Writing xi = X(zi)
and x ′i = X(z

′
i), we have have:(
E(z1, z2)E(z

′
1, z ′2)

E(z1, z ′1)E(z1, z ′2)E(z2, z ′1)E(z2, z ′2)

)2

ϑµ,ν
(
2(u(z1) − u(z

′
1) + u(z2) − u(z

′
2))
∣∣2τ)ϑµ,ν

(
0
∣∣2τ)

−
(x1 − x2)(x

′
1 − x

′
2)

(x1 − x ′1)(x2 − x ′2)

ϑµ,ν
(
2(u(z1) − u(z

′
2))
∣∣2τ)

E(z1, z ′2)2

ϑµ,ν
(
2(u(z2) − u(z

′
1))
∣∣2τ)

E(z ′1, z2)2

+
(x1 − x2)(x

′
1 − x

′
2)

(x1 − x ′2)(x2 − x ′1)

ϑµ,ν
(
2(u(z1) − u(z

′
1))
∣∣2τ)

E(z1, z ′1)2

ϑµ,ν(2(u(z2) − u(z
′
2))
∣∣2τ)

E(z ′2, z2)2

=

(
E(z1, z2)E(z

′
1, z ′2)η(z1)η(z2)η(z

′
1)η(z

′
2)
)2

(x1 − x ′1)(x1 − x ′2)(x2 − x ′1)(x2 − x ′2)
ϑµ,ν

(
2(u(z1) + u(z2) − u(∞−))

∣∣2τ)ϑµ,ν
(
2(−u(z ′1) − u(z

′
2) + u(∞−))

∣∣2τ),
(5.15)

Proof. The starting point is the simplest non-trivial identity of Theorem 2.8, namely m = 2 (Pfaffian of size
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4), which gives〈
det(x1 −Λ)

2 det(x2 −Λ)

det
(
x ′1 −Λ

)2 det(x ′2 −Λ)
2

〉V
N

=
N

N+ 1
(x1 − x

′
1)(x2 − x

′
2)(x1 − x

′
2)(x2 − x

′
1)
ZVN+1Z

V
N−1

(ZVN)
2 K

N
N−1V

N−1

(
2 2
x1 x2

)
K

N
N+1V

N+1

(−2 −2
x′1 x

′
2

)
−

(x1 − x
′
2)(x2 − x

′
1)

(x1 − x2)(x ′1 − x
′
2)
KVN
( 2 −2
x1 x

′
1

)
KVN
( 2 −2
x2 x

′
2

)
+

(x1 − x
′
1)(x2 − x

′
2)

(x1 − x2)(x ′1 − x
′
2)
KVN
( 2 −2
x1 x

′
2

)
KVN
( 2 −2
x2 x

′
1

)
.

We omit the details of the asymptotic analysis based on Lemmata 4.7 and 4.8: it is very similar to the β = 1
case. Instead of using them for K = 2N, p = ±2 and c, c̃ ∈ {−1, 1}, now we rather use them with K = N and
p = ±1 and c, c̃ ∈ {−2, 2}.

Lemma 5.8. Theorem 5.7 is equivalent to Theorem 5.4.

Proof. We apply Theorem 5.4 to the hyperelliptic curve with matrix of periods τ ′ = −τ−1. Then, (5.9) is an
identity involving theta functions with matrix τ

′

2 = −τ
−1

2 . On the other hand, the modular transformation
of the theta function is (see [Mum07, Equation 5.1]), for any z,µ,ν ∈ Rg

ϑν,−µ
(
z
∣∣− τ−1

2

)
= Dτ · e2iπz·τ−1(z)ϑµ,ν

(
2z
∣∣2τ).

for some constant Dτ ∈ C∗. Applying this to each term in Theorem 5.7, all terms get the same prefactor
and we are left with Theorem 5.7. The operation is reversible.

5.4 Formula for the multi-cut equilibrium energy (Proof of Proposition 4.3)

In the proof of Theorem 5.1, if we did not use Proposition 4.3 to simplify the exponential in (5.4), the rest of
the arguments would prove the identity (5.1) with a prefactor

e2E[µeq]+2L[V]+Q[V ,V]+4iπε∗·(τ(ε∗)+u(∞−)) (5.16)

in the right-hand side, valid for any hyperelliptic curve with real Weierstraß points and the equilibrium
measure µeq of the associated (unconstrained) β = 2 ensemble. Taking all points z, z ′,w,w ′ to∞+ in this
modified identity implies that this extra factor (5.16) must be equal to 1. The argument of the exponential
is manifestly real, except perhaps or the last term. As the curve is hyperelliptic, a basis of the space of
holomorphic forms is given by dπk = xkdx

s
for k ∈ [g]. Recall that s takes imaginary values on the segments

[ah,bh] for each h ∈ [0,g], and real values between the segments. This implies that the matrix Qk,h =¸
Ah

dπk has purely imaginary entries. Since (duh)
g
h=1 is the basis dual to A-cycle integration, we have

duh =

g∑
k=1

Q−1
h,kdπk, with Q−1 purely imaginary.

Integrating this on the B-cycles which only run between segments (Section 3.3.1) yields a purely imaginary
matrix of periods τ. A path from ∞+ to ∞− that does not cross any of the A- and B-cycles described in
Section 3.3.1 is for instance the path travelling along the real axis in Ĉ+ from −∞ to a0, then along the real
axis in Ĉ− from a0 to −∞−. In this range s is real-valued, so u(∞−) is also purely imaginary. All in all,
(5.16) only involves the real exponential, and we conclude that

2E[µeq] + 2L[V] + Q[V ,V] + 4iπε∗ · (τ(ε∗) + u(∞−)) = 0.
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This argument was for β = 2, but we retrieve Proposition 4.3 in full generality since it is simply the β = 2
identity multiplied by β

2 and taking into account the prefactor 2
β

in the definition of Q, while µeq and L

are independent of β. So, it was justified (without loop in the logic) to proceed with Proposition 4.3 in the
proofs of Section 5. In fact, the same argument would establish Proposition 4.3 as a byproduct of the proof
of the β = 1 Theorem 5.4 or of the β = 4 Theorem 5.7 instead of Theorem 5.1.

A Variation of the entropy with respect to filling fractions (Proof of
Proposition 4.4)

Consider the equilibrium measure µeq,ε of a β-ensemble with fixed filling fractions ε such that M(x) =

t2g+2
∏g
h=1(x− zh) with zh ∈ (bh−1,ah) in the notations of Section 2.3. The density of µeq,ε is

ρ(x) =
t2g+2

2π

g∏
h=1

|x− zh|

g∏
h=0

√
|x− ah||x− bh| · 1S(x).

We need to compute for each h ∈ [g]

veq,h =
(β

2
− 1
)ˆ

S

∂εh
(
ρ(x) ln ρ(x)

)
=
(β

2
− 1
)ˆ

S

(
∂εhρ(x)

)
ln ρ(x)dx. (A.1)

For the last equality we used that
´
S ρ(x)dx = 1 has vanishing εh-derivative. The density ρ can be expressed

as a jump ofW1 to rewrite

veq,h =
(β

2
− 1
)ˆ

S

∂εh
W1(x− i0) −W1(x+ i0)

2iπ
ln ρ(x)dx

=
(β

2
− 1
)( g∑

k=1

Υh(zk) +
1
2

g∑
h=0

(
Υh(ah) + Υh(bh)

)) (A.2)

in terms of the integrals

∀ξ ∈ R Υh(ξ) :=

ˆ
S

∂εh

(W1(x− i0) −W1(x+ i0)
2iπ

)
ln |x− ξ|dx. (A.3)

It is well-known (see e.g. [BG13a, Appendix A]) that

∀z ∈ Ĉ+ ∂εhW1(X(z))dX(z) = 2iπduh(z).

For x ∈ C \ S or in S± i0, we define z(x) to be the unique point in Ĉ+ such that X(z(x)) = x. Then:

Υh(ξ) =

ˆ
S

(
duh(z(x− i0)) − duh(z(x+ i0))

)
ln |x− ξ| = 2

ˆ
S

duh(z(x− i0)) ln |x− ξ|.

This is a differentiable function of ξ. For ξ /∈ S, we can compute

∂ξΥh(ξ) =

ˆ
S

(
duh(z(x− i0) − duh(z(x+ i0))

) 1
ξ− x

=

˛
S

duh(z)
ξ− X(z)

= 2iπ
duh
dX

(z(ξ)).

For ξ ∈ S̊, we rather have

∂ξΥh(ξ) = 2
 
S

duh(z(x− i0))
ξ− x

= −
duh
dX

(z(ξ+ i0)) −
duh
dX

(z(ξ− i0)) = 0.
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We will integrate this starting along the real line starting from ξ = −∞+ i0 and using the continuity of Υh
on the real axis shifted by +i0. From the definition (A.3) we can see that limξ→∞ Υh(ξ) = 0. Therefore

Υh(ξ)

2iπ
=

{
uh(z(ξ)) +

∑k−1
l=0

(
uh(al) − uh(bl)

)
if ξ ∈ (bk−1,ak)

uh(ak) +
∑k−1
l=0

(
uh(ak) − uh(bk)

)
if ξ ∈ [ak,bk]

(A.4)

with the conventions b−1 = −∞ and ag+1 = +∞. Note that we could start integrating along the real line
coming from +∞, but we would get an equivalent expression because

g∑
k=0

u(ak) =

g∑
k=0

u(bk). (A.5)

The primitive u of du in (C \ S) is multivalued, because this domain is not simply-connected. Yet, for the
previous computation, it suffices to define it by integration based at∞+ in the simply-connected domain
H \ S, and it is extended to S and hence H by continuity. Inserting the formula (A.4) in (A.2) we arrive to

veq,h = 2iπ
(
β

2
− 1
)[ g∑

k=1

(
u(zk) + u(a0) − u(b0) + · · ·+ u(ak−1) − u(bk−1)

)
+

g∑
k=0

u(ak) + u(bk)

2

]
. (A.6)

We now compute u(ak) and u(bk) as defined above. Denote (e1, . . . ,eg) the canonical basis of Cg. Due to
the description of the representatives of the A- and B-cycles in Section 3.3.1 and the fact that the hyperel-
liptic involution changes the sign of du, we have

u(b0) − u(a0) = −
1
2

˛
A0

du =
1
2

g∑
l=1

el, (A.7)

and for any k ∈ [g]

u(bk) − u(ak) = −
1
2

˛
Ak

du = −
1
2
ek,

u(ak) − u(bk−1) =
1
2

˛
Bk−Bk−1

du =
1
2
(
τ(ek) − τ(ek−1)

)
,

(A.8)

with the conventions B0 = 0 and e0 = 0. Since a0 is the only Weierstraß point that does not belong to the
A- and B-cycles specified in Section 3.3.1, u(∞−) can be obtained by integrating du in the first sheet −∞
on the real line to a0, and then to a0 from −∞ on the real line in the second sheet. Therefore

u(a0) =
1
2
u(∞−).

From (A.7)-(A.8) we deduce

u(b0) =
1
2

(
u(∞−) +

g∑
l=1

el

)
,

and for k ∈ [g]

u(ak) =
1
2

(
u(∞−) +

g∑
l=k

el +

k∑
l=1

τ(el)
)

,

u(bk) =
1
2

(
u(∞−) +

g∑
l=k+1

el +

k∑
l=1

τ(el)
)

.
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Therefore

g∑
k=0

u(ak) =

g∑
k=0

u(bk) =
1
2

[
(g+ 1)u(∞−) +

g∑
k=1

( g∑
l=k

el +

k∑
l=1

τ(el)

)]

=
1
2

(
(g+ 1)u(∞−) +

g∑
l=1

(
lel + (g+ 1 − l)τ(el)

))
.

We can return to the computation of veq. By definition in (4.1) it is real, so we can replace u by Imu in (A.6).
Since u(bl) − u(al) is real for any l ∈ [0,g], we get

veq = 2π
(

1 −
β

2

)[ g∑
k=1

(
Imu(zk) +

g+ 1 − k

2
Imτ(ek)

)
+
g+ 1

2
Imu(∞−)

]
.

Since we already know that τ and u(∞−) are purely imaginary, we can drop imaginary part and divide by
i instead, and this is the final formuia.
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