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We present two new quantum-integrable models with long-range spin interactions. First, a partially
isotropic (xxz-type) spin chain that unifies the Inozemtsev and partially isotropic Haldane–Shastry
chains. Its short-range limit is a variant of the twisted Heisenberg xxz chain. Second, a quan-
tum many-body system that generalises the elliptic Ruijsenaars model by including spins with
interactions mediated by dynamical R-matrices. It unifies the elliptic Calogero–Sutherland and
trigonometric Ruijsenaars–Macdonald models with spins, and gives our spin chain by ‘freezing’.

I. INTRODUCTION

Long-range spin interactions are inherent in atomic,
molecular and optical physics, and may be relevant in
quantum computers. Their influence on physical proper-
ties can be studied analytically in (quantum) integrable
models, but such models are rare. In this Letter we
present new long-range models — a (quantum) spin chain
and a quantum many-body system (qmbs) — that are
integrable in that they have a hierarchy of commuting
hamiltonians (‘abelian symmetries’).

The nearest-neighbour Heisenberg chain [11, 22] has im-
plications ranging from mathematics to e.g. KCuF3 in
the lab [33]. It has three levels (Fig. 11): isotropic (fully
SU (2) symmetric), partially isotropic (U (1), i.e. spin-z,
symmetric) and anisotropic. Until recently, the study of
integrable long-range spin chains focused on the isotropic
level (Fig. 11). A famous example is the Haldane–Shastry
(HS) chain [44, 55], which exhibits rich mathematics [66] and
serves as a lattice toy model for the fractional quantum
Hall effect [77, 88] and Wess–Zumino–Witten CFT [99–1212].
Another example is the Inozemtsev chain [1313], an ex-
actly solvable interpolation between Heisenberg and HS
[1414, 1515], enabling the analytical study of spin interactions
with increasing range. It famously played a guest role
in AdS/CFT integrability [1616], where long-range interac-
tions appear beyond first order in perturbation theory.
The Inozemtsev chain is believed to be integrable, with a
conjecture for its abelian symmetries [1717], but no under-
lying algebraic structure is known. Controlled symmetry
breaking may reveal such structure.

The HS chain has a partially isotropic extension with
more complex interactions [1818, 1919] precisely so that its
key properties persist [66, 1818, 2020]: the deformed HS (DHS)
chain [1818–2020]. Does such a generalisation exist for the
Inozemtsev chain? (See Fig. 11.) Recently, Matushko–
Zotov (MZ) introduced a (completely) anisotropic spin
chain with abelian symmetries [2121]. It resembles the DHS
chain, but features Baxter’s eight-vertex R-matrix, and
does not fit in Fig. 11. We remedy this using Felder’s
dynamical R-matrix to obtain a partially isotropic spin
chain with abelian symmetries that unifies the Inozemt-
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Figure 1. Landscape of integrable long-range spin chains, in-
cluding the Heisenberg and Haldane–Shastry chains and their
partially isotropic extensions. We find the spot marked ‘X’.

sev and DHS chains as in Fig. 11. The short-range limit
is a twisted variant of the Heisenberg xxz chain that ap-
pears to be new and is related to the affine Temperley–
Lieb algebra in the spirit of [2222].

Integrability for long-range spin chains hinges on con-
nections to qmbs. This is best understood for HS:
(i) its explicit wave functions come from eigenfunc-
tions of a spinless trigonometric Calogero–Sutherland
(CS) model [66, 77]; (ii) its abelian symmetries stem
from a trigonometric CS model with spins via ‘freez-
ing’ [66, 2323, 2424]. The latter also underpins the enhanced
(Yangian) spin symmetry (or ‘nonabelian symmetries’)
of HS [66, 2525]. This generalises to the partially isotropic
level, with CS replaced by its ‘relativistic’ version, the
trigonometric Ruijsenaars–Macdonald model [66, 1818, 2020].
For the Inozemtsev chain only (i) is understood, via the
elliptic CS model [1414, 1515]. The MZ chain originates as
in (ii) [2121] from an elliptic Ruijsenaars model with spins
based on Baxter’s eight-vertex R-matrix [2626]. Similarly,
our chain arises by freezing an elliptic dynamical spin-
Ruijsenaars model. Despite its supporting role in this
Letter, this new qmbs is clearly of independent inter-
est. We will return to it, and the commutativity of its
hamiltonians, soon.

This Letter represents major progress for the isotropic
Inozemtsev chain too. First, we put it in the framework
of freezing as in (ii) at last. Second, we give strong ev-
idence, if not a proof, that it does indeed have abelian
symmetries. Third, our work hints at an underlying al-
gebraic structure via the appearance of R-matrices.
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Without further ado we present our models. We take
spin 1/2 for simplicity, but everything extends to multi-
component versions with r particle ‘species’ (‘colours’).11

II. THE SPIN CHAIN

A. Chiral hamiltonians

Consider N spin-1/2 sites equally spaced on a circle. The
deformed Inozemtsev chain has two ‘chiral’ hamiltonians
of the pairwise form (cf. [1919, 2020])

Hl =
N∑

i<j

V (i − j) Sl
[i,j] , Hr =

N∑
i<j

V (i − j) Sr
[i,j] . (1)

Let θ(x) be the odd Jacobi theta function with quasiperi-
ods iπ/κ and N , normalised by θ′(0) = 1; see the Supple-
mental Material. Here κ > 0 sets the interaction range.
Define the ‘prepotential’ ρ(x) = θ′(x)/θ(x) and fix an
anisotropy parameter η. As anticipated in [1515], the po-
tential in (11) is an (even, N -periodic) ‘point splitting’ of
the Weierstrass ℘ pair potential of Inozemtsev

V (x) = −ρ(x + η) − ρ(x − η)
θ(2η) . (2)

It is essentially 1/sn(x + η) sn(x + η), see again the Sup-
plemental Material.

It remains to give the S[i,j]. The isotropic long-range
spin exchange Eij = 1 − Pij = (1 − σ⃗i · σ⃗j)/2 admits two
‘chiral’ decompositions into nearest-neighbour steps:

Eij = Pj−1,j · · · Pi+1,i+2 Ei,i+1 Pi+1,i+2 · · · Pj−1,j

= Pi,i+1 · · · Pj−2,j−1 Ej−1,j Pj−2,j−1 · · · Pi,i+1 .
(3)

The structure on the right-hand sides persist to the par-
tially isotropic level. Define the combinations

f(x, a) = θ(η + a) θ(x)
θ(a) θ(x + η) , g(x, a) = θ(x + a) θ(η)

θ(a) θ(x + η) , (4)

and the dynamical R-matrix [2929]

Ř(x, a) =

1 0 0 0
0 g(x, η a) f(x, η a) 0
0 f(x, −η a) g(x, −η a) 0
0 0 0 1

 =
x′′

x′′

x′

x′

a , (5)

where x = x′ − x′′, and a is a ‘dynamical’ parameter. In
diagrams, ‘inhomogeneity’ parameters x′, x′′, . . . follow
the lines, but (labels of) spaces do not. The role of the
permutations P in (33) is taken over by

Pi,i+1(x) = Ři,i+1
(
x, a − (σz

1 + · · · + σz
i−1)

)
, (6a)

1 Simply replace (55) by the dynamical glr R-matrix [2727], see [2828].

with a shifted by the spin-z to the left of the R-matrix.
On the usual spin (or computational) basis this means
Pi,i+1(x) |s1, . . . , sN ⟩ = |s1, . . . , si−1⟩

⊗ Ř
(
x, a −

∑i−1
k=1 sk

)
|si, si+1⟩

⊗ |si+1, . . . , sN ⟩ , (6b)

so e.g. P23(x) = |↑⟩⟨↑|⊗Ř(x, a−1) + |↓⟩⟨↓|⊗Ř(x, a+1).
These obey the (braid-like) Yang–Baxter equation

Pi,i+1(x − y) Pi+1,i+2(x) Pi,i+1(y)
= Pi+1,i+2(y) Pi,i+1(x) Pi+1,i+2(x − y) ,

(7)

commutativity [Pi,i+1(x), Pj,j+1(y)] = 0 for |i − j| > 1,
and unitarity (inversion) relation

Pi,i+1(−x) Pi,i+1(x) = 1 . (8)
Recall that the local hamiltonian for Heisenberg chains is
∂ log Ř = Ř−1Ř′. Likewise we need (again x = x′ − x′′)

E(x, a) = 1
θ(η)V (x) Ř(−x, a) ∂xŘ(x, a) =

x′

x′

x′′

x′′

a , (9)

normalised so that V, E have suitable limits, see Sec. II BII B.
The nearest-neighbour exchange in (33) is replaced by

Ei,i+1(x) = 1
θ(η)V (x) Pi,i+1(−x) P ′

i,i+1(x) . (10)

Its dependence on x (and, of course, a) is new compared
to the Inozemtsev and DHS chains; but cf. [2121]. An ex-
plicit expression is given in the Supplemental Material.

To put everything together we give each site an ‘inho-
mogeneity’ parameter x⋆

k = k, i.e. its (equispaced) posi-
tion on the chain. Then the ‘left’ spin interactions from
(11) have the same structure as in [1919]:

Sl
[i,j] = Pj−1,j(1) · · · Pi+1,i+2(j − i − 1) Ei,i+1(i − j)

× Pi+1,i+2(i − j + 1) · · · Pj−1,j(−1) , (11)
cf. the first line in (33). For example,

Sl
[1,2] = E12(−1) , Sl

[2,3] = E23(−1) ,

Sl
[1,3] = P23(1) E12(−2) P23(−1) ,

Sl
[1,4] = P34(1) P23(2) E12(−3) P23(−2) P34(−1) .

(12)

Its ‘right’ counterpart looks like in [2020]:
Sr

[i,j] = Pi,i+1(1) · · · Pj−2,j−1(j − i − 1) Ej−1,j(i − j)
× Pj−2,j−1(i − j + 1) · · · Pi,i+1(−1) . (13)

as illustrated by
Sr

[1,4] = P12(1) P23(2) E34(−3) P23(−2) P12(−1) . (14)

Diagrammatically, (1111) and (1313) respectively equal

N

N

···

···

j

j

···

···

i

i

···

···

1

1

··· ···a and

1

1

···

···

i

i

···

···

j

j

···

···

N

N

······a . (15)



3

B. Properties and limits

Our chain has four free parameters: the length N ≥ 2,
κ > 0 to tune the interaction range, the anisotropy η,
and the dynamical parameter a. 22 The spectrum is real
when η is imaginary (i.e. |∆| > 1 in terms of the usual
parameter of Heisenberg xxz), cf. [1919], and a is real.

a. Defining properties. Our spin chain unifies the
Inozemtsev and DHS chains and is integrable.

In the isotropic limit η → 0 we get the Inozemt-
sev chain in the form of [1414, 1515]. Indeed, (22) becomes
−ρ′(x) = ℘(x)+cst, and, since P (x) → P and E(x) → E
if a → −i∞, both (1111) and (1313) yield (33) up to a sim-
ilarity transformation that can be removed by sending
a → −i∞. When η ̸= 0 the spin symmetry breaks down
to U(1) ⊂ SU(2) generated by Sz =

∑
j σz

j /2.
In the long-range limit κ → 0 we recover the DHS

chain, again up to a conjugation that becomes trivial
as a → −i ∞. Indeed, (22) gives the long-range potential
( π

N )2/ sin[π( x
N +γ)] sin[π( x

N −γ)] of [1919] with η = Nγ. As
a → −i∞, (99) reduces to the Temperley–Lieb generator

e =


0 0 0 0
0 e−πiγ −eπiγ 0
0 −e−πiγ eπiγ 0
0 0 0 0

 , (16)

and P (x) → 1 − sin(π x
N ) e/ sin[π( x

N + γ)] to Jimbo’s R-
matrix of quantum sl2. This gives the DHS chain.

Finally, the chiral hamiltonians (11) commute,

[Hl, Hr] = 0 . (17)

They belong to a hierarchy of commuting operators
whose expressions parallel those in [2020, 2121], see [2828].

b. Further properties. Our chain shares some fea-
tures with the DHS chain. In particular, (1111) and (1313)
involve multispin interactions that affect all interme-
diate spins, whence the notation ‘[i, j]’. In addition,
η ̸= 0 breaks periodicity, but our chain has some sort
of quasiperiodic (twisted) boundary conditions. Indeed,
the commuting family (1717) contains the modified (left)
translation operator (cf. [1919])

G =

1

1

2

2

···

···

N

N

a = K−1
N PN−1,N (1 − N) · · · P12(−1) ,

(18)

with KN = kN

(
a−(σz

1 +· · ·+σz
N−1)

)
for k(a) = eκηaσz =

diag(eκηa , e−κηa) a diagonal twist. The quasiperiodicity

Sl
[1,N ] = G Sl

[1,2] G−1 , Sr
[1,N ] = G−1Sr

[N−1,N ] G , (19)

2 The potential (22) has poles at 2η = Nk + iπ l/κ for k, l ∈ Z, and
the functions (44) further require avoiding η a = N k + iπ l/κ.

underlines the chirality of the hamiltonians (11). Upon
normalisation, (1818) provides a notion of momentum, as
well as all N eigenvectors at Sz = N/2 − 1 (cf. §1.2.6 in
[2020]), i.e. the magnons of our chain.

c. New limits Our chain has various new limits, in-
cluding an a-dependent extension of the Inozemtsev chain
that is not quite isotropic [2828]. When N → ∞ we for-
mally get a hyperbolic counterpart of the DHS model,
with N ⇝ iπ/κ and sum in (11) over all i < j in {1, 2, . . .}.
Numerics suggests that its matrix entries converge.

We focus on the short-range limit. Set η = −iπ γ̄/κ
and renormalise (11) by nH(κ) ∼ e2κ/κ2 as in [1313, 1515].
For κ → ∞ we get a chain of the nearest-neighbour form

Hxxz =
N−1∑
i=1

Sh
[i,i+1] + Sh

[1,N ] . (20)

Here Sh
[i,i+1] = ei,i+1

(
a − (σz

1 + · · · + σz
i−1)

)
is defined as

in (66) in terms of a dynamical generalisation of (1616):

eh(a) =


0 0 0 0
0 sin[πγ̄(a−1)]

sin[πγ̄a] − sin[πγ̄(a+1)]
sin[πγ̄a] 0

0 − sin[πγ̄(a−1)]
sin[πγ̄a]

sin[πγ̄(a+1)]
sin[πγ̄a] 0

0 0 0 0

 . (21)

The last term in (2020) admits two forms coming from (1919),

Sh
[1,N ] = Gh Sh

[1,2] Gh −1 = Gh −1Sh
[N−1,N ] Gh , (22)

now in terms of the limit of (1818),

Gh = Kh
N P h

N,N−1 · · · P h
12 . (23)

Here the twist involves kh(a) = eiπγ̄ aσz , and P h
i,i+1 is

again defined as in (66) via the trigonometric dynamical
R-matrix without spectral parameter

Řh(a) = 1 − e−iπγ̄ eh(a) . (24)

The short-range limit (2020) thus is a dynamical variant
of the Heisenberg xxz chain. It is no longer chiral, but
remains quasiperiodic, because the twist in the boundary
term prevents removing a. In the isotropic limit γ̄ → 0
we obtain, once more up to a conjugation that vanishes
as a → −i ∞, the usual periodic Heisenberg xxx chain.
This completes our description of the limits in Fig. 11.

C. Discussion

Our spin chain arises from ‘freezing’, see Sec. IIIIII. In fact,
this produces a modular family of integrable spin chains,
one for each classical equilibrium position of the scalar
elliptic Ruijsenaars model. Only two amongst them have
a real spectrum for a suitable parameter range, of which
only the chain given here has a short-range limit. Con-
cretely, this amounts to thinking of θ(x) as a periodis-
ation of sinh(κx)/κ (rather than a sine, cf. the Supple-
mental Material). At the isotropic level this corresponds
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to shifting ℘(x) to −ρ′(x) by a constant that regularises
the short-range limit κ → ∞ [1313, 1414], simplifies the dis-
persion relation and Bethe-ansatz equations, and allows
the latter to be recast in rational form [1515]. Note that,
nevertheless, θ(x) → N sin(πx/N)/π for κ → 0.

The spin chains in Fig. 11 each have two ‘types’. In
positions (cf. the potential), the HS chain is trigono-
metric (and rational as N → ∞), Inozemtsev is elliptic
(hyperbolic as N → ∞), and Heisenberg is of ‘contact’
type; cf. Sec. 2.2 in [1515]. In spins, the isotropic chains
are rational (related to the Yangian), and the Heisen-
berg xxz and DHS chains are trigonometric (associated
to quantum affine algebras). What about our chain?
On the one hand, it has an elliptic R-matrix (55). On
the other hand it belongs at the partially isotropic level
(cf. Fig. 11). We argue that it is spin-trigonometric. The
hidden trigonometric side of our chain will become more
clear in Sec. III CIII C. We suspect that it might also manifest
itself in the spectrum, with energies and Bethe equations
that are trigonometric in suitable rapidities.

The long-range spin interactions (1111)–(1515) are fine-
tuned generalisations of the isotropic case (33), in con-
trast with the simple and ‘robust’ form of the traditional
Heisenberg chains. The need for fine tuning is more clear
for the DHS chain, which is a good generalisation of the
HS chain, maintaining (deforming, rather than break-
ing) the integrability (‘abelian symmetries’), enhanced
spin symmetry (‘nonabelian symmetries’), and remark-
ably simple and explicit spectrum. Generalising the DHS
chain, our model must have complicated spin interactions
too. They ensure that our chain keeps its abelian sym-
metries and, we expect, exact solvability for any κ.

Let us examine one fine-tuned ingredient in more de-
tail: the choice of R-matrix. For the DHS chain, the
enhanced spin symmetry requires [66, 2525] its R-matrix
to be related (by ‘Baxterisation’) to the Hecke algebra
and, for spin 1/2, the Temperley–Lieb algebra.33 This
leads to some asymmetry (P Ř P ̸= Ř): in the termi-
nology of [3030], the R-matrix should be in the homoge-
neous, rather than principal, grading. At the partially
isotropic level, an elliptic potential asks for an elliptic
R-matrix, cf. (99). There are two standard choices. The
first choice is Baxter’s eight-vertex R-matrix, which was
used in [2626], is symmetric, and generalises the symmet-
ric (principal) trigonometric R-matrix. Whilst at the
trigonometric limit the two gradings are related by a
conjugation by a (spectral-parameter dependent) matrix,
there does not seem to be a conjugation of the eight-
vertex R-matrix that limits to the homogeneous trigono-
metric R-matrix.44 The other choice is the elliptic dynam-
ical R-matrix (55), which does limit to the homogeneous

3 This is also the algebraic reason why the HS and DHS chains can
be extended to higher rank, but not to higher spin.

4 This is supported by the fact that the principal grading operator
is essential in the construction of the universal elliptic R-matrix
of vertex type [3131]. We thank H. Konno for pointing this out.

R-matrix, and (unlike the eight-vertex R-matrix) com-
mutes with Sz. This is why our model fits in Fig. 11,
while the (fully) anisotropic MZ chain [2626] belongs to a
separate landscape of integrable spin chains [2626, 2828].

Algebraic structures show up in the short-range limit
too. As for the DHS chain, the (dynamical) opera-
tors ei = Sh

[i,i+1] obey the Temperley–Lieb relations
e2

i = 2 cos(πγ̄) ei and ei ei±1 ei = ei. The boundary term
(2222) is a ‘braid translation’ [3232], and e0 = Sh

[1,N ] obeys
the periodic Temperley–Lieb relations, i.e. the preceding
extended to subscripts modulo N . The normalised trans-
lation u ∝ Gh enhances this to the affine Temperley–Lieb
algebra, u ei u−1 = ei−1 mod N and eN−1 = u2 e1 · · · eN−1.
More specifically, (2020) looks like an unrestricted version
of the rsos model [3333], and forms an Sz-symmetric al-
ternative to the Temperley–Lieb representation from the
conclusion of [2222]; our ei are minimal dynamical versions
of the pair interaction in Eq. (35) in [2222].

More broadly, our chain presents important progress
for the development of a general theory of long-range in-
tegrability. It implies the existence of commuting hamil-
tonians for the Inozemtsev chain, although extracting ex-
plicit higher hamiltonians requires work, cf. Remark ii in
§1.3.4 of [2020]. Moreover, with explicit R-matrices, our
work is a step towards an algebraic approach to the In-
ozemtsev chain. We believe that this will even offer valu-
able new insights for the Heisenberg xxx chain.

III. THE QUANTUM MANY-BODY SYSTEM

A. Hamiltonians

Now consider N spin- 1
2 particles with coordinates xj

moving on a circle. Let Γj = exp(i κ
π β ∂xj

) be the shift
xi 7→ xi − β δij , where β is a new (‘reduced coupling’)
parameter. Set xij = xi − xj . Our qmbs is given by
a family of matrix-valued difference operators based on
(66), with structure like in [2020, 2626, 3434]. The first one is

D̃1 =
N∑

i=1
Ai(x) ×

xN

xN

···

···

xi

β

xi

···

···

x1

x1

···
a

β = Γi

xi

=
N∑

j=1
Ai(x) Pi−1,i(xi,i−1) · · · P12(xi,1)
× Γi P12(x1,i) · · · Pi−1,j(xi−1,i)

=
N∑

i=1
Ai(x) Pi−1,i(xi,i−1) · · · P12(xi,1)
× P12(x1,i + β) · · · Pi−1,i(xi−1,i + β) Γi ,

(25)

where Ai(x) =
∏N

k(̸=i) θ(xik + η)/θ(xik). The higher dif-
ference operators will be given in [2828]. Here we only
need the total shift operator D̃N = Γ1 · · · ΓN and an
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‘antichiral’ version of (2525):

D̃−1 =
N∑

i=1
A−i(x) ×

x1

x1

···

···

xi

−β

xi

···

···

xN

xN

···a

=
N∑

i=1
A−i(x) Pi,i+1(xi+1,i) · · · PN−1,N (xN,i)
× Γ−1

i PN−1,N (xi,N ) · · · Pi,i+1(xi,i+1) ,

(26)

where A−i(x) =
∏N

k(̸=i) θ(xik − η)/θ(xik). These opera-
tors define a version of the elliptic Ruijsenaars model [3535]
with spins that is integrable in the sense that the differ-
ence operators all commute. In particular,

[D̃1, D̃−1] = 0 , [D̃±1, D̃N ] = 0 . (27)

The second equality is clear as D̃±1 only depends on dif-
ferences xij . The first equality can be checked explicitly
for low N . The proof will be published elsewhere.

B. Properties and limits

Our qmbs has the four free parameters of our spin chain
plus the reduced coupling β. It admits various limits.

In the trigonometric limit κ → 0, again with
a → −i ∞, we readily obtain the trigonometric spin-
Ruijsenaars–Macdonald model [2020, 3434] underlying the
DHS chain [66, 1818, 2020]. In the isotropic limit η → 0
plus a → −i ∞ one recovers the elliptic spin-Calogero–
Sutherland model [3636, 3737]. Like our spin chain, our
qmbs admits an intermediate a-dependent generalisation
of this CS model [2828].

Freezing amounts to the (semi)classical limit β → 0,
i.e. to an expansion in β of the difference operators evalu-
ated at classical equilibria, see [66, 2323, 2424] and [2121] for the
elliptic case. Denote linearisation in β by δ = π

κ ∂β |β=0.
Due to (2727), δD̃±1 and the total momentum operator
−δD̃N =

∑
j(−i ∂xj

) still commute at the equispaced
classical equilibrium positions x⋆

k = k [2121, 2828]. In partic-
ular, our spin-chain hamiltonians (11) are

Hl,r = 1
θ(η)

[
1

A⋆
δD̃±1 ∓ δD̃N

]
xk=x⋆

k

, (28)

where A⋆ = A±i(x⋆) = θ(η)|N=1/[N θ(η)]. Hence the
commutativity (1717) for our spin chain follows from (2727).

A new feature compared to the trigonometric case is
that there is a whole modular family of classical equilibria
associated to the quasiperiods N, iπ/κ. These equilibria
are related by extending the action of SL(2,Z) on ellip-
tic functions to our setting, and can be identified at the
qmbs level by suitable reparametrisations of the param-
eters and x. Upon freezing, however, each equilibrium
yields a different integrable spin chain.

C. Discussion

Like long-range spin chains, qmbss have two ‘types’. One
is again in positions (cf. the potential energy). The other
is in momenta (kinetic enery): rational here corresponds
to differential operators, and trigonometric to difference
operators (exponentiated differentials). Our qmbs is el-
liptic in positions and trigonometric in momenta.

The operators (2525)–(2626) only differ from MZ [2626] in the
choice of R-matrix. Since the dynamical R-matrix (55) is
related to Baxter’s eight-vertex R-matrix via the face-
vertex transformation [3838]

Ř8v(xij) S(xi, xj , a) = S(xj , xi, a) Ř(xij , a) , (29)

one might expect the two qmbs to be equivalent. How-
ever, the transformation S in (2929) depends on coordi-
nates xk, and does not commute with the shift opera-
tors Γk. Thus our difference operators are not face-vertex
transforms of those of MZ, and define another qmbs.
This difference persists to all limiting spin chains.

It seems difficult to adapt the proof of integrability
from [2626], which heavily relies on the simple periodicity
properties of Ř8v in order to simplify expressions and
set up a proof by induction. Unfortunately, the dynami-
cal R-matrix does not have such simple properties. Our
proof for the commutativity (2727) is independent, and, in
view of its technical nature, will appear elsewhere.
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IV. SUPPLEMENTAL MATERIAL

A. Elliptic functions

Here we summarise the definitions of the elliptic functions that we need. See [1515] (where the functions θ and ρ defined
below were decorated with a subscript ‘2’) and [2828] for more details and some references.

We use the (odd) Jacobi theta function with nome p = e−Nκ,

θ(x) = sinh(κ x)
κ

∞∏
n=1

sinh[κ (N n + x)] sinh[κ (N n − x)]
sinh2(Nκ n)

= sinh(κ x)
κ

+ O(p2) . (30)

It is the unique odd entire function with double quasiperiodicity θ(x + iπ/κ) = −θ(x), θ(x + N) = −eκ(N+2x) θ(x)
and normalisation θ′(0) = 1. In terms of the Weierstraß sigma function with quasiperiods N and iπ/κ it reads

θ(x) = eiκ η2 x2/2π σ(x) , η2 = 2 ζ(iπ/2κ) . (31)

The prepotential is the logarithmic derivative

ρ(x) = θ′(x)
θ(x) = ζ(x) + i κ η2

π
x = κ coth(κ x) + O(p2) , (32)

with ζ(x) = σ′(x)/σ(x) the Weierstraß zeta function. It is odd and obeys ρ(x+iπ/κ) = ρ(x), ρ(x+N) = ρ(x)−2πi/N .
Finally, the potential is defined as the symmetric difference quotient

V (x) = −ρ(x + η) − ρ(x − η)
θ(2η) = b

sn[c (x + η), k] sn[c (x − η), k] + d , k =
√

℘(iπ/2κ) − ℘[(N + iπ/κ)/2]√
℘(N/2) − ℘[(N + iπ/κ)/2]

, (33)

where the equality with Jacobi’s elliptic sine sn(x, k) with elliptic modulus k involves constants b, d and c =√
℘(N/2) − ℘(iπ/2κ). The potential is even and doubly periodic, V (x + iπ/κ) = V (x + N) = V (x). The sign

in (3333) is chosen such that V (x) → −ρ′(x) = ℘(x) − iκη2/π becomes the Weierstraß elliptic function as η → 0.

B. Nearest-neighbour exchange

The deformed long-range spin interactions contain the logarithmic derivative of the dynamical R-matrix, which de-
termines the nearest-neighbour exchange E(x, a) via (99). Explicitly we have

Ř(−x, a) Ř′(x, a) = θ(η) V (x) E(x, a) =

0 0 0 0
0 α(x, η a) β(x, η a) 0
0 β(x, −η a) α(x, −η a) 0
0 0 0 0

 , (34)

where the coefficients are related to the functions f, g defined in (44) through

α(x, a) = g(x, a) g(−x, a)
(
ρ(x + a) − ρ(x)

)
−

(
ρ(x + η) − ρ(x)

)
,

β(x, a) = f(x, a) g(−x, a)
(
ρ(x) − ρ(x − a)

)
.

(35)

Here we simplified β using the addition formula for θ(x).

C. Limits

Most of the limits in Sec. II BII B and Sec. III BIII B can be evaluated using the limits given in [1515]. For the dynamical
R-matrix (55) note that the functions (44) can be expressed via the Kronecker elliptic function (denoted by χ2 in [1515])

ϕ(x, y) = ϕ(y, x) = θ(x + y)
θ(x) θ(y) , f(x, a) = ϕ(η, a)

ϕ(η, x) , g(x, a) = ϕ(a, x)
ϕ(η, x) . (36)
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The short-range limit of the potential can be found using the convergent sum

ρ(x + η) − ρ(x − η) = 4 κ sinh(2κη)
∑
n∈Z

1
cosh(2κη) − cosh[2κ(N n + x)] . (37)

For a convergent but non-zero limit as κ → ∞ we must also send η → 0 with κη fixed so that cosh(2κη) becomes
constant. Thus we set η = −iπ γ̄/κ and rescale (3737) by a prefactor behaving as nη(κ) ∼ e2κ/(κ sinh 2η) to obtain

n−iπγ̄/κ(κ)
(
ρ(x − iπγ̄/κ) − ρ(x + iπγ̄/κ)

)
→ δx,1 + δx,N−1 , κ → ∞ , x ∈ {1, . . . , N − 1} . (38)

A choice that fits with all other limits is nη(κ) = sinh2(κ)/[κ2 θ(2η)]. This is why we choose denominator θ(2η) in
the potential (3333) rather than the 2η from [1515]; when η → 0 the two behave the same.
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