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We upgrade the results of Borot–Bouchard–Chidambaram–Creutzig [BBCC24] to
show that the Gaiotto vector in N = 2 pure supersymmetric gauge theory admits an
analytic continuation with respect to the energy scale (which can therefore be taken
to be finite, instead of infinitesimal), and is computed by topological recursion on
the (ramified) UV or Gaiotto spectral curve. This has a number of interesting conse-
quences for the Gaiotto vector: relations to intersection theory on Mg,n in at least two
different ways, Hurwitz numbers, quantum curves, and (almost complete) descrip-
tion of the correlators as analytic functions of  h (instead of formal series). The same
method is used to establish analogous results for the more general Whittaker vector
constructed in the recent work of Chidambaram–Dołęga–Osuga [CDO24].
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1. MOTIVATION AND OVERVIEW

Schiffman–Vasserot [SV13] and Maulik–Okounkov [MO19] proved that the equivariant coho-
mology (suitably interpreted) of the moduli space of rank r torsion free sheaves on P2 framed
at infinity (a.k.a. the moduli space of instantons) is a Verma module for the principal W(glr)-
algebra. We consider the Whittaker vector in the W(glr)-algebra module VΛ (where we adjoin
a formal variable Λ to the Verma module) satisfying

∀(i,k) ∈ [r]×Z>0 Wi
k |G〉 = δi,rδk,1Λ

r |G〉 . (1.1)

The equivariant parameters (ε1, ε2) for the action of the torus (C∗)2 on P2 specify the level of
W(glr), and

ε1 = −ε2 =  h
1
2

corresponds to the self-dual level. The equivariant parameters Q = (Q1, . . . ,Qr) for the action of
the Cartan of glr specify the highest weight (Q/ε1 −Weyl vector). The moduli space of sheaves
with second Chern class d carries a fundamental class |1d〉 in equivariant cohomology, and it is
encoded precisely in the Whittaker vector characterised by (1.1)

|G〉 =
∑
d>0

Λrd |1d〉 .

In particular, the Whittaker vector exists in VΛ and is unique. These results provide a math-
ematical ground for the celebrated Alday–Gaiotto–Tachikawa conjecture [AGT10], and |G〉 is
sometimes called the Gaiotto vector. The Poincaré pairing in cohomology matches the Kac–
Shapovalov form on the Verma module, and the squared-norm reconstructs the (instanton part
of the) Nekrasov partition function

ZNek = 〈G |G〉 =
∑
d>0

Λ2rd〈1d |1d〉 ,

which counts instantons in N = 2 pure supersymmetric gauge theory on S4 with gauge group
Ur. The SUr theory can be retrieved from the Ur theory by specialising to

∑r
a=1Qa = 0.

We prefer to work with Ur. In particular, we work with the W(glr)-algebra whose generators
include one of conformal weight i = 1 in (1.1) and we do not impose that the sum of the Qa
vanishes.

In gauge theory the parameter Λ is interpreted as an energy scale. The Gaiotto vector |G〉 and
the Nekrasov partition function are thus proved to exist at least if Λ is considered as a formal
parameter near 0. Based on the well-known free field presentation of W(glr), the Whittaker
constraints (1.1) were realised as Airy structures in [BBCC24], permitting the reconstruction of
the all-order  h = (−ε1ε2) → 0 expansion of the Gaiotto vector via a topological recursion. In
the self-dual case, this is a variant of the Chekhov–Eynard–Orantin topological recursion on the
unramified spectral curve defined by

r∏
a=1

(
y−

Qa

x

)
= 0,

see Section 2.

The purpose of this article is to extend these results in the self-dual case to understand the an-
alytic properties of the Gaiotto vector in the parameter Λ. In particular we want to be able to
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set Λ to a finite non-zero value. We show in Theorem 2.2 (proved in Section 3) that the coeffi-
cients in the  h-expansion of the Gaiotto vector are the all-order series expansion of meromorphic
multi-differentials on the algebraic curve

SΛ :

r∏
a=1

(
y−

Qa

x

)
+

(−Λ)r

xr+1 = 0. (1.2)

which depends analytically on Λ ∈ C∗. Moreover, we show that these multi-differentials
are computed by the Chekhov–Eynard–Orantin topological recursion on the ramified spectral
curve defined by SΛ. This curve SΛ is usually known in the literature as the UV curve or
the Gaiotto curve. A word of warning: in the gauge theory literature and in [BBCC24] , our
Coulomb branch parameters Q1, · · · ,Qr are usually denoted a1, . . . , ar.

A technical novelty is that we show directly that the W-constraints at finite Λ, although they do
not form an Airy structure, can still be solved by topological recursion after analytic continuation.
While the Whittaker constraints for formal Λ led to topological recursion on an unramified
spectral curve S0, at small enough non-zero Λ they become W-constraints around x = ∞ on
a ramified spectral curve SΛ which imply (r − 1) copies of Virasoro constraints (one copy at
each ramification point). The latter form an Airy structure and its solution is precisely given
by topological recursion on SΛ. As the family SΛ depends analytically on Λ, we can then take
Λ to be any value in C∗. We comment more precisely on the role of analytic continuation in
Section 2.4.1.

The method of our proof could be adapted without difficulty for the other gauge groups treated
in [BBCC24]. The non self-dual case, more precisely for α = ε1 + ε2 finite and generic while
 h = −ε1ε2 is kept formal, should also be governed by topological recursion where the spectral
curve (1.2) is replaced by the D-module on P1 generated by(

(ε1 + ε2)∂x −
Q1 − (ε1 + ε2)

x

)
· · ·
(
(ε1 + ε2)∂x −

Qr − (ε1 + ε2)

x

)
+

(−Λ)r

xr+1 . (1.3)

This was established for formal Λ in [BBCC24], which involves the D-module (1.3) where Λ
is set to 0. The study of finite Λ for the non self-dual case is technically more demanding as
we have to deal with solutions of finite-order ODEs instead of meromorphic functions on an
algebraic curve: this will be addressed in a separate work.

This technical novelty is interesting beyond gauge theory: it allows understanding how (sim-
pler) constraints at the ramification points can arise from (more complicated) constraints at∞
in various problems of enumerative geometry. Recently, Chidambaram, Dołęga and Osuga con-
structed another Whittaker vector for W(glr) defined for formal Λ (we call it the CDO vector)
that encodes b-Hurwitz numbers, which are counts of so-called generalised branched covers of
the 2-sphere [CD22]. Generalised branched covers allow for non-orientable coverings, and the
count of orientable branched covers, i.e. classical Hurwitz theory, corresponds to b = 0 and to
the self-dual level for W(glr). In this case, Theorem 2.3 shows the existence of analytic contin-
uation to Λ ∈ C∗ and the computation of these Hurwitz numbers by the topological recursion
on the spectral curve

r∏
a=1

(
Pa

x
+ y

)
+Λr

r−1∏
a=1

(
Qa

x
− y

)
= 0.
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This result was announced as [CDO24, Theorem 5.1] and we prove it in Section 4. It was used
in [CDO24] to give an alternative proof of the recent celebrated result of [BDBKS20] that topo-
logical recursion computes rationally weighted classical Hurwitz numbers.

For both the Gaiotto and the CDO vector, the added value of having established topological
recursion on ramified spectral curves is that we can benefit from a rich and well-developed
theory to derive several remarkable consequences. This is discussed in Section 5. First, it al-
lows us to give several representations of these vectors in terms of intersection numbers on
Mg,n (Section 5.1), and establish relations to Hurwitz theory (Section 5.2 with Corollary 5.3 and
Corollary 5.4). In particular, for r = 2 the Gaiotto vector is very explicitly expressed in terms of
intersection indices of triple Hodge classes, or of the deformed Theta class, see Proposition 5.1.
These relations can be considered as a multifold interpretation of 4d supersymmetric gauge the-
ory in terms of curve counting; as we comment in Section 5.2.3, it is different in nature from the
2d Yang–Mills/Hurwitz theory correspondence studied by Gross and Taylor [GT93b, GT93a]
and more recently Novak [Nov24]. Second, we derive in Proposition 5.11 and Proposition 5.12
the quantum curves associated to those Whittaker vectors, and we discuss in detail the con-
struction of a basis of analytic solutions. The only step which we do not complete is the analytic
description of the connection coefficients, see Remark 5.20. Third, we obtain determinantal
formulae for the correlation functions in Proposition 5.17, with kernels given in terms of the
previously discussed bases of functions in Proposition 5.19. Fourth, this analysis and the rela-
tion to gauge theory leads us in Section 5.5 to formulate conjectures for the topological recursion
free energies of the Gaiotto and CDO spectral curves.

NOTATIONS

For any positive integer i, we use the notation [i] := {1, 2, . . . , i}. The symbol t stands for a
disjoint union. The algebra of formal Laurent series in a variable, say  h, is denoted C(( h)).
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2. BACKGROUND AND MAIN RESULTS

2.1. W-algebras and formal Whittaker vectors

2.1.1. HEISENBERG ALGEBRA AND W(glr)-ALGEBRA

Let r > 2. We work over the field of Laurent series in the parameter  h. Let us consider r copies
of the Heisenberg algebra, generated by (Jak)

a∈[r]
k∈Z with relations

[Jak , Jbl ] =  hkδa,bδk+l,0.

We introduce the 1-form valued fields

J
(
a
x

)
=
∑
k∈Z

Jakdx
xk+1 .

The W(glr)-algebra at self-dual level is a vertex operator algebra freely and strongly generated
by fields Wi(x) with i ∈ [r] of conformal weight i. The Virasoro field is W2(x). By convention
these fields are forms of degree i:

Wi(x) =
∑
k∈Z

Wi
k(dx)

i

xk+i
.

The generating fields Wi(x) can be realised in terms of the Heisenberg fields as elementary
symmetric polynomials

Wi(x) =
∑

16a1<···<ai6r

i∏
j=1

J
(
aj
x

)
,

or equivalently
r∏
a=1

(
u+ J

(
a
x

))
=

r∑
i=0

ur−iWi(x), (2.1)

with convention W0(x) = 1.

2.1.2. GAIOTTO VECTOR FOR Λ = O( h1/2)

We consider the Verma module for the Heisenberg and for the W(glr)-algebra

V = C(Q)[T ]
[[
(Ja−k)

a∈[r]
k∈Z>0

]]
(( h

1
2 )) ,

where we let Ja0 act by the scalar Qa for each a ∈ [r]. This is a graded vector space with
deg(Jak) = deg( h

1
2 ) = 1. We denote V>0 (resp. V>0) the subspace generated by monomials of

non-negative (resp. positive) degrees. We first consider vectors in V>0 of the form

|GT 〉 = exp

 ∑
(g,n)∈ 1

2Z>0×Z>0
2g−2+n>0

 hg−1

n!

∑
a1,...,an∈[r]
k1,...,kn∈Z>0

Fg,n
[ a1 ··· an
k1 ··· kn

] n∏
j=1

J
aj
−kj

kj

 ∈ 1 + V>0, (2.2)

satisfying the Whittaker condition

∀(i,k) ∈ [r]×Z>0 Wi
k |GT 〉 = δi,rδk,1 h

r
2 T |GT 〉 . (2.3)

Notice that we have set the energy scale to be Λ =  h
1
2 T here.
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2.1.3. CORRELATORS AND UNRAMIFIED TOPOLOGICAL RECURSION

We consider the curve C =
⊔r
a=1 C

a where Ca = P1, equipped with the forgetful maps x : C →
P1 (which forgets the label a) and c : C → [r] (which only remembers the label a). We view
points z ∈ C as pairs

( c(z)
x(z)

)
. We denote the point

(
a∞ ) in C by ∞a. As the fibres of x play a

special role, we introduce the notation

f(z) = x−1(x(z)), f ′(z) = f(z) \ {z}.

If z1, . . . , zn is a n-tuple of points in C and J ⊆ [n], we denote zJ = (zj)j∈J.

The coefficients of |GT 〉 can be repackaged in terms of a collection of generating series, indexed
by (g,n) ∈ Z>0 ×Z>0 called correlators. They are defined as

wg,n(z1, . . . , zn) =
∑

k1,...,kn∈Z>0

Fg,n
[
c(z1) ··· c(zn)
k1 ··· kn

] n∏
j=1

dx(zj)
x(zj)kj+1

+ δg,0δn,1Qc(z1)
dx(z1)

x(z1)
+ δg,0δn,2δc(z1),c(z2)

dx(z1)dx(z2)

(x(z1) − x(z2))2 .

(2.4)

We will also need the expressions

Ŵg,i;n(z[i]; v[n]) =
no w0,1∑

L`i
N`L[n]

g:L→ 1
2Z>0

δg,i+
∑
L(gL−1)

∏
L∈L

wgL,#L+#NL(zL, vNL). (2.5)

The notation L ` [i] means that L is a set of pairwise disjoint non-empty subsets of [i] whose
union is [i]. The notation N `L [n] means a map associating to each L ∈ L a (possibly empty)
subset NL ⊆ [n], such that the (NL)L∈L are pairwise disjoint and their union is [n]. The logic
behind these expressions becomes clear by writing them for low values of i:

Ŵg,1;n(z; v[n]) = wg,1+n(z, v[n]),

Ŵg,2;n(z1, z2; v[n]) = wg−1,2+n(z1, z2, v[n]) +
no w0,1∑
g1+g2=g
J1tJ2=[n]

wg1,1+#J1(z1, vJ1)wg2,1+#J2(z2, vJ2).

The exclusion of w0,1 factors from the sum in (2.5) has the effect that Ŵg,i;n only involves wh,m

with 2h− 2 +m < 2g− 2 + (1 + n).

Theorem 2.1. [BBCC24, Theorem 5.10] Assume thatQ1, . . . ,Qr ∈ C are pairwise distinct and T ∈ C.
There exists a unique |GT 〉 of the form (2.2) satisfying the Whittaker constraints (2.3). The coefficients
Fg,n

[ a1 ··· an
k1 ··· kn

]
vanish if (k1 + · · · + kn)r > 2g. In particular, for any (g,n) ∈ 1

2Z>0 × Z>0 the
correlatorswg,n defined in (2.4) are meromorphic n-differentials on C. Besides, they are computed by the
unramified topological recursion for 2g− 2 + n > 0

wg,n(z1, . . . , zn) =
r∑
a=1

Res
z=∞a

∑
{z}⊆Z⊆f(z)

−
∫z∞a w0,2(·, z1)∏

z′∈f(z)\Z
(
w0,1(z ′) −w0,1(z)

) Ŵg,#Z;n−1(Z; z2, . . . , zn),

+ δg, r2 δn,1
T∏

b 6=c(z)(Qb −Qc(z1))

dx(z1)

x(z1)2 ,
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where the factors in the denominator of the first line should be understood as

w0,1(z
′) −w0,1(z) = (Qc(z′) −Qc(z))

dx(z)
x(z)

,

since x(z) = x(z ′) for z ′ ∈ f(z).

This formula is indeed a recursion on 2g− 2 + n > 0.

2.1.4. GAIOTTO VECTOR FOR FORMAL Λ

As the energy scale in (2.3) has been set to Λr =  h
r
2 T , and  h is a formal parameter near 0, we

are treating |GT 〉 as a formal expansion as Λ → 0. In this article, we would like to understand
the analytic properties of the Gaiotto vector as a function of the energy scale Λ. The first step
is to consider Λ directly as a formal parameter independently of  h. From the homogeneity
of the Whittaker constraints (2.3) it can be inferred [BBCC24, Lemma 4.5] that the coefficients
Fg,n

[ a1 ··· an
k1 ··· kn

]
are proportional to Tk1+···+kn . As they vanish for (k1 + · · · + kn)r > 2g, we can

define
Φg,n

[ a1 ··· an
k1 ··· kn

]
= Λr(k1+···+kn) Fg+(k1+···+kn) r2 ,n

[ a1 ··· an
k1 ··· kn

]∣∣
T=1. (2.6)

As the only possible source of half-integer powers of  h in |GT 〉 was the prefactor  h
r
2 of T in

equation (2.3), the Φg,n vanish for non-integer g. With these coefficients we can introduce the
vector

|ΓΛ〉 = exp

 ∑
(g,n)∈Z>0×Z>0

 hg−1

n!

∑
a1,...,an∈[r]
k1,...,kn∈Z>0

Φg,n
[ a1 ··· an
k1 ··· kn

] n∏
j=1

J
aj
−kj

kj

 (2.7)

belonging to the Verma module

VΛ = C(Q)
[[
(Ja−k)

a∈[r]
k∈Z>0

]]
[[Λr]](( h)). (2.8)

Note that we do not require |ΓΛ〉 to live in the non-negative degree part of VΛ. This vector
satisfies the Whittaker condition

∀(i,k) ∈ [r]×Z>0 Wi
k |ΓΛ〉 = δi,rδk,1Λ

r |ΓΛ〉 . (2.9)

Two important differences with the vector |GT 〉 from equation (2.2) are however that

• (g,n) = (0, 1) and (0, 2) do contribute to the sum, i.e., we have non-zeroΦ0,1 and Φ0,2;

• Φg,n
[ a1 ··· an
k1 ··· kn

]
can be non-zero for infinitely many indices k1, . . . ,kn ∈ Z>0.

The second condition forces us to treat Λ as a formal parameter. Despite these differences, we
can still use equation (2.4) to introduce the correlators

φg,n(z1, . . . , zn) =
∑

k1,...,kn∈Z>0

Φg,n
[
c(z1) ··· c(zn)
k1 ··· kn

] n∏
j=1

dx(zj)
x(zj)kj+1

+ δg,0δn,1Qc(z1)
dx(z1)

x(z1)
+ δg,0δn,2δc(z1),c(z2)

dx(z1)dx(z2)

(x(z1) − x(z2))2 .

(2.10)

They are now defined as germs of meromorphic n-differentials in the n-th product of the formal
neighbourhood of L :=

⊔r
a=1{∞a} ⊂ C. More precisely, the φg,n for 2g − 2 + n > 0 are germs

of holomorphic n-differentials, φ0,1 is the germ of a meromorphic differential having a simple
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pole with residueQa at∞a, and φ0,2 is the germ of a meromorphic bi-differential with a double
pole on the diagonal.

2.2. Main results at finite Λ

Our main result is that the correlators (2.10) upgrade to meromorphic multi-differentials on a
ramified, genus 0 spectral curve, which is known in physics as the UV curve or Gaiotto curve.
Moreover, these multi-differentials depend analytically on Λ ∈ C∗, and are computed by the
usual Chekhov–Eynard–Orantin topological recursion.

2.2.1. RAMIFIED TOPOLOGICAL RECURSION

We give a lightning introduction to the topological recursion in the form considered by Chekhov,
Eynard and Orantin — for more details, see [EO09]. In the rest of the text, topological recursion
without further precision will always mean this version, and it should be distinguished from
the unramified topological recursion of Section 2.1.3.

The initial data is called a spectral curve, consisting of a quadruple (S, x,ω0,1,ω0,2), where S is a
Riemann surface, x is a meromorphic function on S that defines a branched covering x : S→ P1,
ω0,1 is a meromorphic differential on S andω0,2 is a fundamental bi-differential, i.e. a symmetric
meromorphic bi-differential on S2 with a double pole having bi-residue 1 on the diagonal, and
no other poles. We further assume that the branched covering x : S → P1 only has simple
ramification points, which we denote by Ram(S). Near any ramification point ρ, we have the
local involution which exchanges the two sheets, and we denote this by σρ.

Given a spectral curve (S, x,ω0,1,ω0,2) the topological recursion constructs n-differentials on S
calledωg,1+n for any 2g− 2 + (1 + n) > 0 by the following formula

ωg,1+n(ζ0, . . . , ζn) =
∑

ρ∈Ram(S)

Res
ζ=ρ

1
2

∫ζ
σρ(ζ)

ω0,2(·, ζ0)

ω0,1(ζ) −ω0,1(σρ(ζ))

(
ωg−1,2+n(ζ,σρ(ζ), ζ[n])

+

no ω0,1∑
g1+g2=g
J1tJ2=[n]

ωg1,1+#J1(ζ, ζJ1)ωg2,1+#J2(σρ(ζ), ζJ2)

)
. (2.11)

By construction, in each variable ζi, theωg,n only have poles at the ramification points.

The spectral curves considered in this article will always have genus 0, i.e. S ' P1 with ζ a
global coordinate. Then, there is a unique fundamental bi-differential, namely

ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2 . (2.12)

The latter is invariant under changes of global coordinates on P1, i.e. action of PSL2(C) by
Möbius transformations. In this context, the data of two functions x(ζ),y(ζ) fully specifies a
spectral curve, by takingω0,1(ξ) = y(ζ)dx(ζ) andω0,2 equal to (2.12).
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2.2.2. GAIOTTO VECTOR AND TOPOLOGICAL RECURSION

Consider the analytic family1 of curves π : S→ C∗Λ defined by the vanishing locus in P1
x×P1

y×
C∗Λ of

r∏
a=1

(
y−

Qa

x

)
+

(−Λ)r

xr+1 = 0. (2.13)

Here Λ is the parameter of the base of the family. The fibre SΛ over a fixed Λ ∈ C∗ is a smooth
genus 0 curve, which can be uniformised by ζ ∈ P1:

x(ζ) = −
Λr∏r

a=1(Qa − ζ)

y(ζ) =
ζ

x(ζ)
= −

ζ

Λr
∏r
a=1(Qa − ζ)

We will refer to the fibre SΛ as the Gaiotto curve. The map x : SΛ → P1 defines a branched
cover of degree r. Since Q1, . . . ,Qr are pairwise distinct, x has (r− 1) simple branch points and
x = ∞ is not a branch point. The formal neighbourhood L ⊂ C mentioned in Section 2.1.4 is
canonically identified with the formal neighbourhood of x−1(∞) ⊂ SΛ by considering 1/x(ζ) as
a local coordinate near the latter.

Let Kπ be the sheaf of holomorphic differentials relative to π : S → C∗. Its local sections are
locally defined holomorphic differentials on SΛ varying analytically in Λ ∈ C∗. If D ⊂ S is a
divisor transverse to the fibres, then Kπ(D) is the sheaf of meromorphic differentials relative
to π with poles on D. Concretely, its global sections are meromorphic differentials on SΛ with
the location and maximal order of poles specified by D. For instance, ydx defines an element
of H0(Kπ(x

−1(∞)),S): it is indeed a meromorphic differential on SΛ with simple poles at the r
poles of x (with residues −Q1, . . . ,−Qr) and varying analytically with Λ. If we want to allow
poles on D of arbitrary order, we use

Kπ(∗D) = lim
d→∞Kπ(dD).

We are particularly interested in this sheaf when D is ramification divisor.

Ram(S) =
⊔
Λ∈C∗

Ram(SΛ).

Let πn : S[n] → C∗ be the fibre product of n copies of S over the base of the family, i.e.,

S[n] =
{
(s1, . . . , sn) ∈ Sn

∣∣ π(s1) = · · · = π(sn)
}

,

with πn being the obvious projection to the common value Λ = π(s1) = · · · = π(sn). We define
∆ ⊂ S[2] to be the diagonal. If prm : S[n] → S is the projection on them-th factor and F is a sheaf
on S, we use the notation F�n := pr∗1(F)⊗ · · ·pr∗n(F) for its n-variable version.

Our central result is the following.

Theorem 2.2. Assume that Q1, . . . ,Qr ∈ C are pairwise distinct. For any (g,n) ∈ Z>0 × Z>0, there
existsωg,n which is an element of

• H0
(
Kπ(x

−1(∞),S
)

if (g,n) = (0, 1);

1We considerQ1, . . . ,Qr ∈ C to be fixed pairwise distinct, but we could equally well formulate the results by letting
them vary, using instead of S the larger family Ŝ→ {(Λ, Q) ∈ C∗ × Cr |

∏
b6=a(Qb −Qa) 6= 0

}
.
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• H0
(
K�2
π (2∆),S[2]

)
if (g,n) = (0, 2);

• H0
(
Kπ(∗Ram(S))�n,S[n]

)
if 2g− 2 + n > 0;

such that φg,n in (2.10) is the all-order series expansion ofωg,n as Λ→ 0 and z1, . . . , zn → x−1(∞) ∼=
L using 1/x(ζj) as local coordinate. Besides, for any fixed Λ ∈ C∗ we have

ω0,1(ζ) = y(ζ)dx(ζ), ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2 ,

and for 2g− 2 + n > 0, theωg,n are constructed by topological recursion (2.11) on the Gaiotto spectral
curve (2.13).

The proof is given in Section 3. The strategy is to start from the Whittaker constraints (2.9) for
the Gaiotto vector |ΓΛ〉 that we translate into certain constraints on the φg,n. We then show by
induction on 2g−2+n > −1 that these constraints have a unique solution, and thusφg,n can be
upgraded to a meromorphic n-differential on the Gaiotto curve SΛ, and we locate all possible
poles. Then, we show that the Whittaker constraints after analytic continuation away from∞
imply the linear and quadratic loop equations of [BEO15, BS17]. As SΛ has genus 0, the loop
equations have a unique solution given by the topological recursion (2.11).

The Whittaker constraints (2.9) where Λr = O( h) or Λ is a formal parameter yields (shifted)
Airy structures to which the Kontsevich–Soibelman theorem can be applied to establish ex-
istence and uniqueness of the solution and its reconstruction by topological recursion [KS18,
ABCO24, BBC+24]. In contrast, the formalism of Airy structures cannot be applied to under-
stand whether this solution can be upgraded to an analytic function of Λ. In other words, if we
consider the constraints (2.9) with Λ ∈ C∗, the solution cannot be constructed using Airy struc-
tures. The proof of Theorem 2.2 shows how the analytic behaviour in such degree 0 terms can
be understood, and this involves analytic continuation of the correlators away from the formal
neighbourhood where they were initially defined (see Section 2.4.1 for more details).

2.3. Generalisation: the CDO vector

The method we develop to prove Theorem 2.2 is flexible enough to be applicable to other shifted
Airy structures (i.e., ones with degree 0 terms). As a demonstration of this principle, in Section 4
we obtain an analogue of Theorem 2.2 for the Whittaker vector constructed in [CDO24] by
Chidambaram, Dołęga and Osuga that encodes b-Hurwitz numbers.

We restrict to the b = 0 case, which corresponds to the self-dual level for the W-algebra. Con-
sider two sets of parameters P = {P1, . . . ,Pr} and Q = {Q1, . . . ,Qr−1}, and a certain representa-
tion ṼΛ = C((P, Q,Λr))

[[
(Ja−k)

a∈[r]
k∈Z>0

]]
(( h)) of W(glr), that will be defined using the assignment

(4.1). Then, for any pairwise disjointQ1, . . . ,Qr−1 ∈ C, [CDO24] constructed a Whittaker vector
|ΓCDO
Λ 〉 ∈ ṼΛ of the form

|ΓCDO
Λ 〉 = exp

 ∑
(g,n)∈Z>0×Z>0

 hg−1

n!

∑
a1,...,an∈[r]
k1,...,kn∈Z>0

Φg,n
[ a1 ··· an
k1 ··· kn

] n∏
j=1

J
aj
−kj

kj

 ,

and satisfying the constraints

∀(i,k) ∈ [r]×Z>0 W̃i
k |Γ

CDO
Λ 〉 = (−1)iei(P1, · · · ,Pr)δk,0 |Γ

CDO
Λ 〉 ,

10



where W̃i
k denote the modes of W(glr) in the representation ṼΛ.

To state our result we first describe the spectral curve. Consider the analytic family of curves
π : S→ C∗Λ cut out in P1

x × P1
y × C∗Λ by

r∏
a=1

(
Pa

x
+ y

)
+

1
Λr

r−1∏
a=1

(
Qa

x
− y

)
= 0.

The fibre over a fixed Λ ∈ C∗ is a smooth genus 0 curve, which can be uniformised by ζ ∈ P1:
x(ζ) = −Λr

∏r
a=1(Pa + ζ)∏r−1
a=1(Qa − ζ)

,

y(ζ) =
ζ

x(ζ)
= −

ζ

Λr

∏r−1
a=1(Qa − ζ)∏r
a=1(Pa + ζ)

.

(2.14)

Theorem 2.3. Assume that P1, . . . ,Pr,Q1, . . . ,Qr−1 are generic (more precisely, that they belong to the
set introduced in Definition 4.2). For any (g,n) ∈ Z>0 ×Z>0, there existsωg,n which is an element of

• H0
(
Kπ(x

−1(∞), S
)

if (g,n) = (0, 1);

• H0
(
K�2
π (2∆), S[2]

)
if (g,n) = (0, 2);

• H0
(
Kπ(∗Ram(S))�n, S[n]

)
if 2g− 2 + n > 0;

such that φg,n (defined in (4.3) from |ΓCDO〉 analogously to (2.10)) is the all-order series expansion of
ωg,n as Λ→ 0 and z1, . . . , zn → x−1(∞) ∼= L using 1/x(ζj) as local coordinate. Besides, for any fixed
Λ ∈ C∗ we have

ω0,1(ζ) = y(ζ)dx(ζ), ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2 ,

and for 2g−2+n > 0, theωg,n are constructed by the topological recursion (2.11) on the CDO spectral
curve (2.14).

2.4. Comments

There are several ways to look at this result in a broader context, which make the technique of
the proof of potential interest beyond the example of the Gaiotto or CDO vectors.

2.4.1. ROLE OF ANALYTIC CONTINUATION

It may be useful to insist on the role of analytic continuation, to explain in which sense the
topological recursion statements of this article are non-trivial and interesting.

On the one hand, partition functions of shifted Airy structures (i.e., with degree 0 terms), like
Whittaker vectors, are of the form (2.7). From such partition functions, one can define a system
of correlators as in (2.10), that are meromorphic multi-differentials on a (local) curve which is a
finite collection of formal discs. We may ask whether these correlators are the germs of mero-
morphic multi-differentials defined on a (global) connected curve containing those formal discs.
If this is the case, the next question is to determine the location of the poles and the behaviour at
these poles. This is hopefully a step towards the reconstruction of the multi-differentials on the
global curve, from which the original partition function can be retrieved by series expansion
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on the formal discs. Quite often, reconstruction is possible by the Chekhov–Eynard–Orantin
topological recursion (or some variants of it) on a ramified spectral curve, and for this we can
rely on the theory of abstract loop equations [BS17]. These are the steps we follow to prove
Theorem 2.2 and Theorem 2.3.

On the other hand, correlators generated by the topological recursion (ωg,n)g,n are systems
of meromorphic multi-differentials on the spectral curve (S, x,y,ω0,2), that have poles at the
divisor of ramification points Ram of x. If we choose a finite set of points R ⊂ S and local
coordinates η near these points, one can associate a partition function ZR,η of the form (2.7)
that faithfully encode the germ of ωg,n near R using the chosen local coordinates. If we choose
R = Ram, the ωg,n are characterised by the property that ZRam,η is the partition function of an
Airy structure [KS18, ABCO24, BBC+24] (for any choice of local coordinate). For instance, if all
the ramification points are simple, the topological recursion is quadratic (see (2.11)) and ZRam,η

is the solution of several copies — one for each ramification point — of Virasoro constraints.
As a shortcut, we say that topological recursion solves Virasoro constraints at the ramification
points.

An interesting feature is that, if the spectral curve is connected, the uniqueness of analytic con-
tinuations implies that Z{p},η near some point p ∈ S fully determines ωg,n and thus the ZR,η

for any other choices of (R,η). It is often the case that the enumerative information in ωg,n is
stored away from ramification points, e.g. in ZR,η where R is a subset of the poles of x. A natural
question is then to find constraints directly on ZR,η that are implied by topological recursion for
the ωg,n. If such constraints exist, we say that they live at R. Quite often, they are again W-
constraints, but possibly for a different W-algebra or a different representation of it. This means
that ZR,η generates a W-algebra module, which we can consider as being “obtained by analytic
continuation” from the W-algebra module generated by ZRam,η.

It is quite interesting to find the constraints at R where the enumerative information is stored,
precisely because they bear directly on the enumerative information. Yet, deriving them from
topological recursion can turn out to be a non-trivial task: there is no fully general theory to
do so and it strongly depends on the global geometry of the spectral curve. The procedure
of globalisation described in [BBC+23] for algebraic singularities goes in this direction, and
[BBC+23, Section 1.4] describes some of the new W-algebras and modules that can be obtained
by analytic continuation. Another example is the case of Virasoro constraints for the Gromov–
Witten theory of P1 found in [Giv01, OP06]. [BN19] showed how these Virasoro constraints for
Gromov–Witten theory P1 living at∞ arise from topological recursion on a spectral curve with
logarithmic singularities, and thus satisfy a different set of Virasoro constraints at the ramifica-
tion points.

In this language, Theorem 2.2 (resp. Theorem 2.3) shows that the W(glr)-constraints at ∞ for
the Gaiotto (resp. CDO) vector imply (r − 1) copies of Virasoro constraints at the ramification
points, and the solution of the latter is known to be given by the topological recursion. The
converse process of deriving back the W(glr)-constraints at ∞ from the topological recursion
is a priori not easy — in particular, the limit Λ → 0 would not be covered by the results of
[BBC+23]. But, it can be done by following the proof of Section 3 (resp. Section 4) backwards.
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2.4.2. COMPARISON TO OTHER MODELS

Our strategy of analytic continuation exhibits similarities and differences with strategies previ-
ously employed in the study of matrix models and Hurwitz theory.

In the 1-hermitian matrix model, the starting point (replacing the Whittaker constraints) is the
Dyson–Schwinger equations (Virasoro constraints at∞). From there, analytic continuation on
the spectral curve and then abstract loop equations from which topological recursion follows,
has been established in [ACM92, Eyn04, BEO15, BS17]: this is how topological recursion was
invented. But this case is easier to analyse as these Schwinger–Dyson equations are only qua-
dratic (instead of degree r). There exist matrix models satisfying W(glr)-constraints for r > 2,
but we are not aware of topological recursion being derived (directly) for them when r > 4.

In classical Hurwitz theory, several authors took the route of first proving analytic continua-
tion on the spectral curve starting from the cut-and-join equation (constraints living at∞, not
necessarily quadratic), from which they deduced the abstract loop equations and concluded
that topological recursion holds. This strategy was employed in [EMS11, BHSLM14, BKL+21,
DBKPS23, DK18, BDK+23]. However, cut-and-join equations are a priori quite different from
W-constraints and do not give (shifted) Airy structures per se. The relation between cut-and-
join equations and W-constraints has been better understood in the recent work of [CDO24],
and provides a different proof of topological recursion for weighted Hurwitz numbers, which
is in line with the philosophy of this paper.

3. THE GAIOTTO VECTOR: PROOF OF THEOREM 2.2

In this section we show that the correlators φg,n, defined in (2.10) from the Gaiotto vector |ΓΛ〉
at self-dual level κ = 1, can be analytically continued to meromorphic differential forms ωg,n

on the Gaiotto curve SΛ and furthermore the latter satisfy the Chekhov–Eynard–Orantin topo-
logical recursion.

3.1. W-constraints

Recall that we have introduced the correlators φg,n from the genus expansion of the Whittaker
vector |ΓΛ〉 in (2.10). These correlatorsφg,n are germs of meromorphic n-differentials in the n-th
product of the formal neighbourhood of L :=

⊔r
a=1{∞a} ⊂ C, where C is the unramified curve

of degree r defined in Section 2.1.3.

The strategy of the proof consists in using the W-constraints (2.9) to fix the correlators φg,n

uniquely. In addition, the W-constraints will give a formula for the correlators φg,n implying
that they analytically continue to meromorphic differentials on the Gaiotto curve SΛ. Finally, by
showing that these analytic continuations satisfy the abstract loop equations, we use the results
of [BEO15] to prove that they coincide with the topological recursion correlatorsωg,n.

In order to understand the implication of the W-constraints (2.9) for the correlators φg,n we
need to introduce some operators and notation. First, let us define the operator adg,n following
[BBCC24, Section 5.1.2] which transforms formal series into differentials on the curve C.
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Definition 3.1. Consider a formal series f ∈ C
[[
(Ja−k)

a∈[r]
k∈Z>0

]]
(( h)). We define

adg,n(f) = [ hg]
∑

a1,...,an∈[r]
k1,...,kn∈Z>0

(
k1

∂

∂Ja1
−k1

· · · kn
∂

∂Jan−kn
f

)
J
aj
−kj

=0

δc(w1),a1 dw1

wk1+1
1

· · ·
δc(wn),andwn

wkn+1
n

.

The operator adg,n picks the terms of order  hg that are homogeneous of degree n in the vari-
ables Jaj−kj , and replaces these variables by the corresponding 1-forms δc(wj),aj

kjdwj

w
kj+1
j

onC. Then,

we define the following combinations of the correlators.

Definition 3.2. For any g,n, i ∈ Z>0, assuming that zj = ( ajx ) for j ∈ [i], define

Ωg,i;n(z[i];w[n]) := adg,n

|ΓΛ〉−1
( i∏
j=1

J
(
aj
x

))
|ΓΛ〉

 . (3.1)

Given the form (2.7) of the vector |ΓΛ〉 in the completed polynomial algebra in the negative Js,
it admits an inverse.

The differentials Ωg,i;n(z[i];w[n]) are (n+ i)-differentials on the (n+ i)-th product of the formal
neighbourhood of L in C. The purpose of defining them is to extract finite combinations of the
correlators from the W-algebra action on the Whittaker vector |ΓΛ〉.

Lemma 3.3. We have the following explicit expression for theΩg,i;n in terms of the correlators φg,n,

Ωg,i;n(z[i];w[n]) =
∑
L`[i]

tL∈LNL=[n]
i+
∑
L(gL−1)=g

∏
L∈L

φgL,#L+#NL(zL,wNL). (3.2)

Proof. We omit the proof as the statement is a slight variant of [BBCC24, Lemma 5.4] to include
the unstable φ0,1,φ0,2 terms which are present in the Whittaker vector |ΓΛ〉. See also [BBC+24,
Section 2] and [BKS23, Section 4]. �

The formula (3.2) shows that Ωg,i;n contains precisely i summands that involve the correlator
φg,1+n. It will be useful in the following to consider the expression (3.2) where we remove these
terms. More precisely, we define Ω̂g,i;n as

Ω̂g,i;n(z[i];w[n]) :=
∑
L`[i]

tL∈LNL=[n]
i+
∑
L(gL−1)=g

∏
L∈L

φgL,#L+#NL(zL,wNL) −
i∑
j=1

φg,1+n(zj,w[n])
∏
l 6=j

φ0,1(zl),

(3.3)
so that it does not involve any correlators φg,1+n. The W-constraints (2.9) on |ΓΛ〉 are equivalent
to the following restrictions on theΩg,i;n.

Lemma 3.4. TheΩg,i;n satisfy the following condition for any i ∈ [r]:∑
Z⊆f(z)

#Z=i

Ωg,i;n(Z;w[n]) = δg,0δi,rδn,0
(Λdx)r

xr+1 +O

(
(dx)i

xi

)
, (3.4)
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where x = x(z) and we recall that f(z) = x−1 (x(z)) is the full fibre over the point x(z). By O
( (dx)i

xi

)
we mean a quantity containing only terms of the form xk(dx)i for k > −i; the O-notation is therefore
understood as if the variable x were approaching 0.

Proof. The W-constraints (2.9) that the Whittaker vector |ΓΛ〉 satisfy can be written in the follow-
ing compact form using the expression (2.1) for the generators Wi(x) as elementary symmetric
polynomials in the Heisenberg 1-forms J. For any i ∈ [r], we have

|ΓΛ〉−1

 ∑
16a1<···<ai6r

i∏
j=1

J ( ajx )

 |ΓΛ〉 = δi,r
(Λdx)r

xr+1 +O

(
(dx)i

xi

)
. (3.5)

Applying the operator adg,n to the above equation, and using the definition of Ωg,i;n from
Definition 3.2 proves the lemma. �

3.2. The spectral curve

Let us treat the unstable correlatorsφ0,1 andφ0,2 first in order to obtain the spectral curve. Recall
the family of curves over Λ ∈ C∗ that we have considered previously in (2.13):

r∏
a=1

(
y−

Qa

x

)
+

(−Λ)r

xr+1 = 0. (3.6)

IfQ1, . . . ,Qr are pairwise distinct, the fibre SΛ known as the Gaiotto curve is a smooth curve of
genus zero which admits the following explicit parametrisation with coordinate ζ ∈ P1.

x(ζ) = −
Λr∏r

a=1(Qa − ζ)
, y(ζ) = −

ζ

Λr

r∏
a=1

(Qa − ζ) . (3.7)

Recall that to complete the description of the spectral curve, we define

ω0,1(ζ) = y(ζ)dx(ζ), ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2 . (3.8)

We denote the ramification points of the branched covering x : SΛ → P1 by RamΛ ⊂ SΛ.
These ramification points are all simple as long as Q1, . . . ,Qr are pairwise distinct. For each
ramification point ρ ∈ RamΛ, we denote the associated deck transformation (of degree two) by
σρ.

With this setup, we show that the unstable correlator φ0,1 can be analytically continued to the
meromorphic differentialω0,1 on the Gaiotto curve SΛ.

Lemma 3.5. Assume that Q1, . . . ,Qr are pairwise distinct. The all-order series expansion of the mero-
morphic form ω0,1(ζ) on SΛ when ζ is near x−1(∞) ∼= L with 1/x(ζ) as a local coordinate, and then
all-order series expansion as Λ→ 0, is given by φ0,1(ζ). Explicitly, we have

ω0,1(ζ) ≈ φ0,1
( c(ζ)
x(ζ)

)
,

where ≈ is our notation to indicate an identity of all-order expansions.
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Proof. If g = 0 and n = 0, for any i ∈ [r], Lemma 3.4 gives the following relation∑
16a1<···<ai6r

i∏
j=1

φ0,1
(
aj
x

)
= δi,r

(Λdx)r

xr+1 +O

(
(dx)i

xi

)
, (3.9)

where we have used the explicit expression for Ω0,i;0 from Lemma 3.3 and we recall that the
O(· · · ) here means terms of the form (dx)ixk for k > −i. As φ0,1

(
a
x

)
= Qadx

x
+ · · · is a formal

power series in 1/x, we can determine the right-hand side of (3.9) explicitly. Indeed, the coeffi-
cient of the term of order (dx)i

xi
is precisely the elementary symmetric polynomial ei(Q1, . . . ,Qr)

and there are no terms of lower order. Thus, (3.9) becomes∑
16a1<···<ai6r

i∏
j=1

φ0,1
(
aj
x

)
= δi,r

(Λdx)r

xr+1 + ei(Q1, . . . ,Qr)
(dx)i

xi
,

which can be put into generating series form as
r∏
a=1

(
u+ φ0,1

(
a
x

))
=

(Λdx)r

xr+1 +

r∏
a=1

(
u+

Qadx
x

)
. (3.10)

By substituting u = −φ0,1
(
b
x

)
for any b ∈ [r], we obtain the following equation

0 =
(−Λdx)r

xr+1 +

r∏
a=1

(
u ′ −

Qadx
x

)
,

whose r independent solutions are given by u ′ = φ0,1
(
b
x

)
for any b ∈ [r]. As the above equation

gives a formula for the φ0,1 in terms of x(z), we see that it analytically continues to a meromor-
phic differential on the curve SΛ. To show that the analytic continuation of φ0,1 matches ω0,1,
note that (3.6) provides a set of r independent solutions as well — indeed, take u ′ = ω0,1(ζ),
whereω0,1 is considered as an expansion in 1/x(ζ) with ζ near x−1(∞) ∼= L. These two different
sets of r solutions must coincide, and by analysing the leading coefficient in the expansion of
ω0,1, we get the claim. �

Let us turn now to the statement for (g,n) = (0, 2). It will turn out to be useful to define the
following projection operators.

Definition 3.6. For i ∈ Z, define the projection operator

p>−i : C
[[
x(z)±1]] (dx(z))i → C

[[
x(z)±1]] (dx(z))i ,∑

n∈Z

x(z)n(dx(z))i 7→
∑
n>−i

x(z)n(dx(z))i.

It acts on a formal power series in x(z)±1 and keeps only the terms of order x(z)−i and higher.
Analogously, we define the projection operator p6−i which keeps only the terms of order x(z)−i

and lower.

Lemma 3.7. Assume thatQ1, . . . ,Qr are pairwise distinct. The series expansion ofω0,2(ζ1, ζ2) as ζ1, ζ2

is near x−1(∞) ∼= L with 1/x(ζ1), 1/x(ζ2) as a local coordinate is given by φ0,2(ζ1, ζ2):

ω0,2(ζ1, ζ2) ≈ φ0,2
( c(ζ1) c(ζ1)
x(ζ1) x(ζ2)

)
,

whereω0,2(ζ1, ζ2) is considered as an expansion in 1/x(ζi) near ζi = Qai .
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Proof. Lemma 3.4 when (g,n) = (0, 1), in combination with the explicit formula for Ω0,i;2

proved in Lemma 3.3, imposes the following restriction on the correlator φ0,2 for any i ∈ [r]:∑
Z⊆f(z)

#Z=i
z′∈Z

φ0,2(z
′,w)

∏
z′′⊆Z\{z′}

φ0,1(z
′′) = O

(
(dx(z))i

x(z)i

)
. (3.11)

We consider the left-hand side of the above equation as a formal series in x(z ′) = x(z), where
we first expand in x(w) near ∞, and then in x(z) near ∞. In other words, we expand in the
region |x(z)| < |x(w)|. Our goal is to determine the right-hand side of (3.11) explicitly. Applying
the projection operator p>−i to the left-hand side of (3.11) yields

p>−i


∑

{z′}⊆Z⊆f(z)
#Z=i

c(z′)=c(w)

dx(z ′)dx(w)
(x(z ′) − x(w))2

∏
z′′∈Z\{z′}

φ0,1(z
′′)

 , (3.12)

which follows from the simple observations

p>−(i−2)

 ∏
z′′∈Z\{z}

φ0,1(z
′′)

 = 0,

p>−1 (φ0,2(z
′,w)) = p>−1

(
δc(z′),c(w)

dx(z ′)dx(w)
(x(z ′) − x(w))2

)
.

(3.13)

Thus, all the other terms disappear upon applying the projection p>−i. For any subset Z ⊆ f(z),
we denote c(Z) = {c(z) | z ∈ Z}. Then, given a non-empty subset Z ⊆ f(z) and an element
z ′ ∈ Z, we decompose ∏

z′′⊆Z\{z′}

φ0,1(z
′′)

dx(z ′′)
=
∑

j>#Z−1

c
c(Z),c(z′)
j x(z)−j.

The coefficients cc(Z),c(z′)
j only depend on the set c(Z) and the element c(z ′), and not directly on

Z or z ′. Using this notation, we rewrite the right-hand side of (3.12) as follows:

p>−i

(dx(z))i dw

 ∑
Z⊆f(z)

#Z=i

∑
z′∈Z

c(z′)=c(w)

∑
j>i−1

c
c(Z),c(z′)
j

(
x(z)−j − x(w)−j

x(z) − x(w)
+

x(w)−j

x(z) − x(w)

)
 .

(3.14)
Recall that we always expand in the region |x(z)| < |x(w)|, and hence the last term remains
unchanged after applying the projection p>−i with i > 1. Let us compute the result of applying
the projection to the first term. We have

p>−i

∑
j>i−1

c
c(Z),c(z′)
j

x(z)−j − x(w)−j

x(z) − x(w)

 = p>−i

∑
j>i−1

c
c(Z),c(z′)
j

x(w)j
1

x(z)j
x(w)j − x(z)j

x(z) − x(w)


=

∑
j>i−1

c
c(Z),c(z′)
j

x(w)j

 1
x(z)i

x(w)i − x(z)i

x(z) − x(w)
,
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where in order to get the last line, we simply remove all the terms of order strictly lower than
x(z)−i. Applying this simplification to (3.14) gives the following simplified expression for the
right-hand side of (3.11)

(dx(z))i dw

 ∑
{w}⊆W⊆f(w)

#W=i

 ∏
w′′∈W\{w}

φ0,1(w
′′)

dx(w ′′)

 x(w)i

x(z)i(x(z) − x(w))

 , (3.15)

where we have replaced the sum over Z ⊆ f(z) by a sum over subsets W ⊆ f(w), as the coeffi-
cients cj do not directly depend on the Z as previously noted. Thus, we have fully determined
the right-hand side of (3.11), and equation (3.11) takes the following equivalent form:

∑
Z⊆f(z)

#Z=i
z′∈Z

φ0,2(z
′,w)

dx(z ′)

∏
z′′∈Z\{z′}

φ0,1(z
′′)

dx(z ′′)

= dx(w)

 ∑
{w}⊆W⊆f(w)

#W=i

 ∏
w′′∈W\{w}

φ0,1(w
′′)

dx(w ′′)

 x(w)i

x(z)i(x(z) − x(w))

 .

Finally, just as in Lemma 3.5, we consider the generating series by applying
∑r
i=1 u

r−i to the
above equation and specialise the equation to u = −

φ0,1(z)
dx(z) , which gives

φ0,2(z,w)
dx(z)

∏
z′′∈f′(z)

(
φ0,1(z

′′) − φ0,1(z)

dx(z)

)

= dw

 x(w)

x(z)r(x(z) − x(w))

∏
w′′∈f′(w)

(
x(w)φ0,1(w

′′)

dx(w ′′)
−
x(z)φ0,1(z)

dx(z)

) .

(3.16)

This equation gives an expression for φ0,2(z,w) entirely in terms of φ0,1 and x. As Lemma 3.5
states that φ0,1 analytically continues to the meromorphic differential ω0,1 on the Gaiotto curve
SΛ, and x analytically continues to the function x(ζ) on SΛ by definition, we conclude that
φ0,2(z,w) analytically continues to a meromorphic bi-differential on SΛ, say φ̃0,2(ζ1, ζ2).

There are two ways to show that φ̃0,2 coincides with the bi-differential ω0,2(ζ1, ζ2) = dζ1dζ2
(ζ1−ζ2)2 .

The first way is to check that the pole structure match, i.e., the only pole is a double pole on the
diagonal with bi-residue 1. Here we prefer a second way, which is a direct computation. Using
x(ζ)y(ζ) = ζwe can rewrite

φ̃0,2(ζ1, ζ2)

=
∏

ζ′1∈f′(ζ1)

1
y(ζ ′1) − y(ζ1)

· dζ2

 dx(ζ1)x(ζ2)

x(ζ1)r(x(ζ1) − x(ζ2))

∏
ζ′2∈f′(ζ2)

(x(ζ ′2)y(ζ
′
2) − x(ζ1)y(ζ1))


=

∏
ζ′1∈f′(ζ1)

1
ζ ′1 − ζ1

· dζ2

 dx(ζ1)x(ζ2)

x(ζ1)(x(ζ1) − x(ζ2))

∏
ζ′2∈f′(ζ2)

(ζ ′2 − ζ1)

 ,
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where the notation f ′(ζ) now means x ◦ x−1(ζ) \ {ζ} and x is the meromorphic function on SΛ
from (3.6). Setting D(ζ) =

∏r
a=1(Qa − ζ) we have x(ζ) = −Λr/D(ζ), and thus

x(ζ1) − x(ζ2) =
Λr(D(ζ2) −D(ζ1))

D(ζ1)D(ζ2)
= −

Λr

D(ζ1)D(ζ2)

∏
ζ′2∈f(ζ2)

(ζ ′2 − ζ1)

dx(ζ1) = dζ1 lim
ζ2→ζ1

x(ζ1) − x(ζ2)

ζ1 − ζ2
=
Λrdζ1

D(ζ1)2

∏
ζ′1∈f′(ζ1)

(ζ ′1 − ζ1).

Then:

φ̃0,2(ζ1, ζ2) =
Λrdζ1

D(ζ1)2dx(ζ1)
dζ2

(
dx(ζ1)D(ζ1)

D(ζ2)

−D(ζ1)D(ζ2)

Λr(ζ2 − ζ1)

)
=

dζ1dζ2

(ζ1 − ζ2)2 . �

This completes the proof of Theorem 2.2 for the unstable correlators.

3.3. Stable correlators and topological recursion

Finally, we turn to the stable correlators φg,n where 2g − 2 + n > 0. We proceed in two steps.
First, we show that the correlators φg,n analytically continue to meromorphic differentials on
the Gaiotto curve SΛ with poles only at ramification points. Second, we show that these ana-
lytically continued correlators satisfy the linear and quadratic abstract loop equations. Then, as
the system of correlators ωg,n constructed by the topological recursion is the unique solution
to the abstract loop equations [BEO15, BS17], we conclude that the analytic continuation of the
stable φg,n coincide withωg,n.

Proposition 3.8. Assume thatQ1, . . . ,Qr are pairwise distinct. If 2g− 2 +n > 0, then the correlators
φg,n which are n-differentials on a formal neighbourhood of L ∼= x−1(∞) in C admit an analytic contin-
uation as meromorphic n-differentials on the Gaiotto curve SΛ. Moreover, these analytic continuations,
denoted φ̃g,n, only have poles at the ramification points of the spectral curve.

Proof. Let us start by extracting the terms containing φg,1+n from the Ωg,i;n using the Ω̂g,i;n

defined in equation (3.3). For any 2g− 2 + (1 + n) > 0, and i ∈ [r], we have for a fixed z∑
Z⊆f(z)

#Z=i

Ωg,i;n(Z;w[n]) =
∑

{z}⊆Z⊆f(z)
#Z=i

φg,1+n(z,w[n])
∏

z′∈Z\{z}

φ0,1(z
′) +

∑
Z⊆f(z)

#Z=i

Ω̂g,i;n(Z;w[n]).

The first sum on the right-hand side involving theφg,1+n vanishes upon applying the projection
p>−i. This means that the constraints of Lemma 3.4 can be written explicitly as

∑
{z}⊆Z⊆f(z)

#Z=i

φg,1+n(z,w[n])
∏

z′∈Z\{z}

φ0,1(z
′) = −p6−i−1

 ∑
Z⊆f(z)

#Z=i

Ω̂g,i;n(Z;w[n])

 . (3.17)
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The usual trick of applying
∑r
i=1 u

r−i to the above equation to get the generating series, and
then specialising to u = −φ0,1(z) gives the following equation

φg,1+n(z,w[n])

=
−1∏

z′∈f′(z) (φ0,1(z ′) − φ0,1(z))

r∑
i=1

(−φ0,1(z))
r−i

p6−i−1

 ∑
Z⊆f(z)

#Z=i

Ω̂g,i;n(Z;w[n])

 .
(3.18)

We can rewrite the projection appearing on the right-hand side as

p6−i−1

 ∑
Z⊆f(z)

#Z=i

Ω̂g,i;n(Z;w[n])

 = (dx(z))i
∮
γ

dx(v)
x(z) − x(v)

(
x(v)

x(z)

)i ∑
V⊆f(v)

#V=i

Ω̂g,i;n(V ;w[n])

(dx(v))i
,

where we choose the contour γ in the x(v)-plane to be centred at x(v) = ∞ such that |x(v)| <
|x(z)|, i.e., the point x(z) lies inside the contour γ. Also recall our standing assumption on
Ω̂g,i;n(V ;w[n]) that |x(v)| < |x(wj)| for any j ∈ [n], which implies that x(wj) are inside this
contour γ. From this rewriting as a contour integral, we see from (3.18) that φg,1+n can be
expressed in terms of x and φg′,1+n′ with 2g ′ − 2 + (1 + n ′) < 2g− 2 + (1 + n). We know from
Lemma 3.5 and Lemma 3.7 that the unstable correlators φ0,1,φ0,2 analytically continue to the
meromorphic differentials ω0,1,ω0,2 respectively. Thus, by induction on (2g − 2 + n), we see
that φg,1+n(z,w[n]) analytically continues to a meromorphic n-differential on the curve SΛ. Let
us denote these analytically continued differentials by φ̃g,1+n(ζ0, ζ[n]),

φ̃g,1+n(ζ0, ζ[n])

:=
y(ζ0)

rdx(ζ0)∏
ζ′0∈f′(ζ0)

(
y(ζ0) − y(ζ ′0)

) r∑
i=1

∮
γ

dx(ζ)
x(ζ0) − x(ζ)

(
−x(ζ)

ζ0

)i ∑
Z⊆f(ζ)

#Z=i

Ω̂g,i;n(Z; ζ[n])
(dx(ζ))i

, (3.19)

where we have used the fact that x(ζ)y(ζ) = ζ. In this formula Ω̂g,i;n is a combination of the
φ̃g′,1+n′ with 2g ′ − 2 + (1 + n ′) < 2g − 2 + (1 + n), and the contour γ is now a contour in
the x(ζ)-plane centred at x(ζ) = ∞ such that |x(ζ)| < |x(ζ0)|. To understand the poles of the
φ̃g,1+n, we flip the contour to evaluate the residues outside γ. By the induction hypothesis, the
only possible poles in the integrand of (3.19) in the variable ζ that are outside the contour γ are
at the ramification points RamΛ. The other possible poles are at x(ζ) = x(ζj) for j ∈ 0 ∪ [n],
all of which lie inside the contour γ. Thus, by evaluating the contour integral, we see that the
differential φ̃g,1+n only has poles at ramification points in the variables ζ0 and ζ[n]. �

Let us now show that the analytically continued correlators φ̃g,n on the spectral curve SΛ satisfy
the abstract loop equations, as considered in [BS17, BEO15].

Proposition 3.9. For any g,n > 0, and any ramification point ρ ∈ RamΛ of the spectral curve SΛ,
the analytically continued correlators φ̃g,1+n satisfy the linear and quadratic loop equations, i.e., the two
expressions

φ̃g,1+n(ζ0, ζ[n]) + φ̃g,1+n(σρ(ζ0), ζ[n]),

φ̃g−1,2+n(ζ0,σρ(ζ0), ζ[n]) +
∑

g1+g2=g
J1tJ2=[n]

φ̃g1,1+#J1(ζ0, ζJ1)φ̃g2,1+#J2 (σρ(ζ0), ζJ2) ,
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are holomorphic as ζ0 approaches RamΛ.

Proof. The i = 1 case of the constraints onΩg,i;n obtained in (3.17) gives

∑
z′∈f(z)

φg,1+n(z
′,w[n]) = 0 .

Passing to the analytic continuation, we can write for each ramification point ρ:

φ̃g,1+n(ζ0, ζ[n]) + φ̃g,1+n(σρ(ζ0), ζ[n]) = −

 ∑
ζ′0∈f′(ζ0)\{σρ(ζ0)}

φ̃g,1+n(ζ
′
0, ζ[n])

 .

As the φ̃g,n only have poles at the ramification points, the right-hand side clearly has no poles
at ζ = ρ, and this proves the linear loop equation.

Let us turn to the quadratic loop equation now. Consider the analytic continuation of the state-
ment of Lemma 3.4 for i = 2:

1
2

∑
ζ′0 ,ζ′′0 ∈f(ζ0)
ζ′0 6=ζ′′0

φ̃g−1,2+n(ζ
′
0, ζ ′′0 , ζ[n]) +

1
2

∑
ζ′0 ,ζ′′0 ∈f(ζ0)
ζ′0 6=ζ′′0

∑
g1+g2=g
J1tJ2=[n]

φ̃g1,1+#J1(ζ
′
0, ζJ1)φ̃g2,1+#J2(ζ

′′
0 , ζJ2)

= δg,0δr,2δn,0
Λr(dx(ζ0))

2

x(ζ0)3 +O

(
(dx(ζ0))

2

x(ζ0)2

)
.

(3.20)

The factor of 2 is due to the fact that we sum over ordered pairs ζ ′0, ζ ′′0 instead of pairs {ζ ′0, ζ ′′0 }.
We claim that the right-hand side is regular at any ramification point ρ ∈ RamΛ, as there are
no terms of order (dx(ζ))2

x(ζ)k
for any k > 4 . Indeed, the series expansion at x(ζ) = ∞ of a pole at

any ramification point (note that x =∞ is not a branch point), would create holomorphic terms
of the form (dx(ζ))2

x(ζ)k
for arbitrarily large k � 0. Now, we consider the terms of interest for the

quadratic loop equations appearing in the left-hand side of equation (3.20). The first sum can
be split into

φ̃g−1,2+n(ζ0,σρ(ζ0), ζ[n]) +
1
2

∑
ζ′0 ,ζ′′0 ∈f′(ζ0)\{σρ(ζ0)}

ζ′0 6=ζ′′0

φ̃g−1,2+n(ζ
′
0, ζ ′′0 , ζ[n])

+
∑

ζ′0∈f′(ζ0)\{σρ(ζ0)}

(
φ̃g−1,2+n(ζ0, ζ ′0, ζ[n]) + φ̃g−1,2+n(σρ(ζ0), ζ ′0, ζ[n])

)
,

where the second line regular at the ramification point ρ as the φ̃g−1,2+n only have poles at the
ramification points, and the third line is regular at ρ thanks to the linear loop equation. The
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second sum in (3.20) now, which can be rewritten similarly:∑
g1+g2=g
J1tJ2=[n]

(
φ̃g1,1+#J1(ζ0, ζJ1)φ̃g2,1+#J2(σρ(ζ0), ζJ2)

+
1
2

∑
ζ′0 ,ζ′′0 ∈f′(ζ0)\{σρ(ζ0)}

ζ′0 6=ζ′′0

φ̃g1,1+#J1(ζ
′
0, ζJ1)φ̃g2,1+#J2(ζ

′′
0 , ζJ2)

+
∑

ζ′0∈f′(ζ0)\{σρ(ζ0)}

φg1,1+#J1(ζ
′
0, ζJ1)

(
φ̃g2,1+#J2(ζ0, ζJ2) + φ̃g2,1+#J2(σρ(ζ0), ζJ2)

) .

Again, the second line is clearly regular at ρ, while the third line is regular thanks to the linear
loop equation. Putting this together proves the quadratic loop equation. �

Proof of Theorem 2.2. We are now in position to finish the proof. For the unstable correlators,
i.e., (g,n) = (0, 1) and (g,n) = (0, 2), we have already proved the theorem in Lemma 3.5 and
Lemma 3.7 respectively. As for the stable correlators φg,1+n with 2g − 2 + (1 + n) > 0, we
proved in Proposition 3.8 that they admit analytic continuations φ̃g,1+n with poles only at the
ramification points. In Proposition 3.9 we showed that the correlators φ̃g,1+n satisfy the abstract
loop equations. Besides, the linear loop equation implies that for any ramification point ρ

Res
ζ=ρ

φ̃g,1+n(ζ, ζ[n]) = 0 (3.21)

for reasons of parity with respect to σρ. Since SΛ ' P1, we then have by Cauchy residue formula

φ̃g,1+n(ζ0, ζ[n]) =
∑

ρ∈RamΛ

Res
ζ=ρ

dζ0

(
1

ζ0 − ζ
−

1
ζ0 − ρ

)
φ̃g,1+n(ζ, ζ[n])

=
∑

ρ∈RamΛ

Res
ζ=ρ

(∫ζ
ρ

ω0,2(·, ζ0)

)
φ̃g,1+n(ζ, ζ[n]).

(3.22)

where the term 1
ζ0−ρ

does not contribute to the residue due to (3.21). According to [BEO15],
meromorphic differentials with poles only at the ramification points that satisfy the abstract
loop equations and the normalisation property (3.22) are uniquely reconstructed by the topolog-
ical recursion. Thus, the differentials φ̃g,1+n coincide with the topological recursion correlators
ωg,1+n. �

4. THE CDO VECTOR: PROOF OF THEOREM 2.3

In this section, we study a different set W-constraints that are relevant for Hurwitz theory. These
constraints can be viewed as a generalisation of the ones characterising the Gaiotto vector that
we studied previously in Section 3, and we will prove that the associated partition function can
be computed via the topological recursion on a ramified spectral curve. The Gaiotto curve can
be recovered as a limiting case.
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4.1. The Airy structure

We describe the Airy structure with degree zero terms constructed and studied in [CDO24] by
Chidambaram, Dołęga and Osuga, based on the modes of the W-algebra W(glr). While the Airy
structure exists at arbitrary level κ — and this is crucial for the study of b-Hurwitz numbers in
[CDO24] — we restrict here to the case of self-dual level κ = 1.

Consider two tuples of parameters P = (P1, · · · ,Pr) and Q = (Q1, . . . ,Qr−1) and introduce the
automorphism of the Heisenberg VOA which sends the modes Jak to J̃ak with

J̃ak =



Jak k > 0;

Jak + (−Λ)−rδa,rδk,−1 k < 0;

Qa k = 0 and a ∈ [r− 1];

−
(
|P|+ |Q|

)
k = 0 and a = r.

(4.1)

where we denote |P| = e1(P) =
∑r
a=1 Pa and likewise for |Q|. We consider a variant of the

Verma module (2.8) where we allow Λ to be inverted

ṼΛ = C((P, Q,Λr))
[[
(Ja−k)

a∈[r]
k∈Z>0

]]
(( h)).

We let the Heisenberg algebra act on ṼΛ with the modified modes (4.1), and this restricts to a
representation of the W(glr)-algebra by the modes

W̃i
k =

∑
16a1<···<ai6r

∑
k1,...,ki∈Z
k1+···+ki=k

J̃a1
k1
· · · J̃aiki .

From this representation, after shifting the modes W̃i
0 to W̃i

0 + (−1)i+1ei(P), the authors of
[CDO24] construct a shifted Airy structure. More precisely, applying the fundamental theorem
of Airy structures, they obtain the following result.

Theorem 4.1. Assume that Q1, . . . ,Qr−1 are pairwise distinct. There exists a unique |ΓCDO
Λ 〉 ∈ ṼΛ of

the form

|ΓCDO
Λ 〉 = exp

 ∑
(g,n)∈Z>0×Z>0

 hg−1

n!

∑
a1,...,an∈[r]
k1,...,kn∈Z>0

Φg,n
[ a1 ··· an
k1 ··· kn

] n∏
j=1

J
aj
−kj

kj

 , (4.2)

satisfying the constraints

∀(i,k) ∈ [r]×Z>0 W̃i
k |Γ

CDO
Λ 〉 = (−1)iei(P)δk,0 |Γ

CDO
Λ 〉 .

Moreover, the coefficients Φg,n
[ a1 ··· an
k1 ··· kn

]
belong to the ring C(Q)[P][[Λr]]. In particular, the Φg,n are

formal power series in Λr (not just Laurent series).

Proof. This is [CDO24, Theorem 3.10 and Corollary 3.12] specialised to Li = (−1)iei(P). �

A few remarks are in order. The vector |ΓCDO
Λ 〉 is not the highest weight vector in the repre-

sentation Ṽ, but rather a Whittaker vector. These Whittaker constraints bear on the action of
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all non-negative modes of the W-algebra, while (2.9) involved only the positive modes. The
(i,k) = (1, 0) constraint is trivially satisfied since

W̃i
0 =

r∑
a=1

J̃a0 = −

r∑
a=1

Pa = −e1(P),

but the other ones are non-trivial and determine |ΓCDO
Λ 〉. Besides, |ΓCDO

Λ 〉 has unstable terms as
well, i.e., non-zero terms Φ0,1 and Φ0,2. Then, we can construct correlators

φg,n(z1, . . . , zn) =
∑

k1,...,kn∈Z>0

Φg,n
[
c(z1) ··· c(zn)
k1 ··· kn

] n∏
j=1

dx(zj)
x(zj)kj+1

+ δg,0δn,1

(
J̃0

c(z1) dx(z1)

x(z1)
+ (−Λ)−rdx(z1)

)
+ δg,0δn,2δc(z1),c(z2)

dx(z1)dx(z2)

(x(z1) − x(z2))2 .

(4.3)

As in (2.10), they are germs of meromorphic n-differentials in the n-th product of the formal
neighbourhood of L ∼= x−1(∞) =

⊔r
a=1{∞a} in C, where C is the same unramified curve of

degree r that appears in Section 2.1.3 in the context of the Gaiotto vector. More precisely, the
φg,n for 2g − 2 + n > 0 are germs of holomorphic n-differentials, φ0,1(z) is the germ of a
meromorphic differential having a simple pole with residue given by the scalar J̃a0 at z = ∞a,
and φ0,2 is the germ of a meromorphic bi-differential with a double pole on the diagonal.

4.2. The spectral curve

As in the case of the Gaiotto vector |ΓΛ〉, we can prove that the correlators φg,n defined in
(4.3) from |ΓCDO

Λ 〉 analytically continue to meromorphic multi-differentials on a certain family of
spectral curves and that the latter are computed by topological recursion on this spectral curve.
We first describe the relevant family of spectral curves.

Assuming that the Q1, . . . ,Qr−1 are pairwise disjoint, we look at the locus S ⊂ P1
x × P1

y × C∗Λ
cut out by the equation

r∏
a=1

(
Pa

x
+ y

)
+Λr

r−1∏
a=1

(
Qa

x
− y

)
= 0. (4.4)

The map S→ C∗Λ defines an analytic family of algebraic curves. In particular, the fibre SΛ over
any fixed Λ ∈ C∗ is a smooth genus 0 curve admitting the following uniformisation by ζ ∈ P1

x(ζ) = −Λr
∏r
a=1(Pa + ζ)∏r−1
a=1(Qa − ζ)

,

y(ζ) =
ζ

x(ζ)
= −

ζ

Λr

∏r−1
a=1(Qa − ζ)∏r
a=1(Pa + ζ)

.

(4.5)

Definition 4.2. Let R be the set of tuples (P1, . . . ,Pr,Q1, . . . ,Qr−1) ⊂ C2r−1 such that

• Q1, . . . ,Qr−1 are pairwise distinct;

• Qa 6= Pb for any a ∈ [r− 1] and b ∈ [r];

• The branched covering defined by x : SΛ → P1 has only simple ramification points.
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If (P, Q) ∈ R, then x always has degree r on SΛ and x = ∞ is not a branch point. We complete
the description of the spectral curve by defining as usualω0,1 andω0,2 on a fibre SΛ as

ω0,1(ζ) = y(ζ)dx(ζ), ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2 .

Then, we have the following lemma, which shows that the correlator φ0,1 analytically continues
to the meromorphic differentialω0,1 on the curve SΛ.

Lemma 4.3. Assume (P, Q) ∈ R. The all-order series expansion of the meromorphic 1-form ω0,1(ζ) on
SΛ as ζ is near x−1(∞) ∼= L, with 1/x(ζ) used as local coordinate, and then the all-order series expansion
as Λ→ 0, is given by φ0,1. In other words:

ω0,1(ζ) ≈ φ0,1
( c(ζ)
x(ζ)

)
.

Proof. As the proof closely follows the proof of Lemma 3.5 for the Gaiotto curve, we will be
brief. By extracting the (0, 1)-terms from the constraints of Theorem 4.1 we get the following
expression:

r∏
a=1

(
u+

φ0,1
(
a
x

)
dx

)
=

r∑
i=0

ur−i
(
(−1)i

ei(P)
xi

+O

(
1
xi−1

))
.

The terms of order O
( 1
xi−1

)
can only come from the first two terms appearing in the definition

(4.3) of φ0,1, i.e., the terms of order x0dx and x−1dx. This gives

r∏
a=1

(
u+

φ0,1
(
a
x

)
dx

)
=

r∑
i=0

ur−i
(
(−1)i

ei(P)
xi

+ (−1)r
ei−1(Q)

Λrxi−1

)
.

If we substitute u = −
φ0,1

(
a
x

)
dx for any a ∈ [r], we get the following algebraic equation for φ0,1

r∑
i=0

(
φ0,1

(
a
x

))r−i(
(−1)r

ei(P)
xi

+ (−1)i
ei−1(Q)

Λrxi−1

)
(dx)i = 0, (4.6)

Doing the sum over iwe get

(−1)r
r∏
b=1

(
φ0,1

(
a
x

)
+ Pb

dx
x

)
−Λr

r−1∏
b=1

(
φ0,1

(
a
x

)
−Qb

dx
x

)
= 0,

which matches the equation for ω0,1 from the definition of the family (4.4). Thus, ω0,1 is the
analytic continuation of φ0,1 to SΛ. �

Let us turn to the other unstable case where (g,n) = (0, 2).

Lemma 4.4. Assume (P, Q) ∈ R. The all-order series expansion of the bi-differential ω0,2(ζ1, ζ2) on
SΛ as ζ1, ζ2 is near x−1(∞) ∼= L, with 1/x(ζi) used as local coordinate, and then the all-order series
expansion as Λ→ 0, is given by φ0,2. In other words:

ω0,2(ζ1, ζ2) ≈ φ0,2
( c(ζ1) c(ζ2)
x(ζ1) x(ζ2)

)
.
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Proof. The proof closely follows the proof for the Gaiotto curve in Lemma 3.7. In the first half of
the proof of Lemma 3.7 we showed that the φ0,2 admits an analytic continuation by finding an
explicit formula for the φ0,2 in terms of the φ0,1 and x(z). An analogue of this explicit formula
(3.16) holds in this case as well, although the proof needs to be slightly modified. As the ana-

logue of the constraints (3.11) has O
(

(dx(z))i

x(z)i−1

)
on the right-hand side (instead of O

(
(dx(z))i

x(z)i

)
),

we need to take the projection p>−(i−1) in (3.12). The rest of the proof goes through with minor
changes, and we get the analytic continuation φ̃0,2, defined as

φ̃0,2(ζ1, ζ2) =
∏

ζ′1∈f′(ζ1)

1
ζ ′1 − ζ1

· dζ2

 dx(ζ1)

(x(ζ1) − x(ζ2))

∏
ζ′2∈f′(ζ2)

(ζ ′2 − ζ1)

 . (4.7)

Finally, let us evaluate φ̃0,2 explicitly. Using the notation D(ζ) =
∏r−1
a=1(Qa − ζ) and N(ζ) =∏r

a=1(Pa+ζ), we have x(ζ) = −ΛrN(ζ)/D(ζ). From the fact thatN(ζ) is a polynomial of degree
rwith leading term ζr andD is a polynomial of degree r− 1 with leading term (−1)r−1ζr−1, we
find

x(ζ1) − x(ζ2) =
Λr
(N(ζ2)
D(ζ2)

D(ζ1) −N(ζ1)
)

D(ζ1)
=

−(−Λ)r

D(ζ1)

∏
ζ′2∈f(ζ2)

(ζ ′2 − ζ1),

dx(ζ1) = dζ1 lim
ζ2→ζ1

x(ζ1) − x(ζ2)

ζ1 − ζ2
= dζ1

(−Λ)r

D(ζ1)

∏
ζ′1∈f′(ζ1)

(ζ ′1 − ζ1).

Thus, we can evaluate (4.7) as

φ̃0,2(ζ1, ζ2) =
(−Λ)rdζ1

D(ζ1)dx(ζ1)
dζ2

(
dx(ζ1)

D(ζ1)

−(−Λ)r(ζ2 − ζ1)

)
=

dζ1dζ2

(ζ1 − ζ2)2 . �

4.3. Stable correlators and topological recursion

Proof of Theorem 2.3. In view of Lemma 4.3 and Lemma 4.4, it remains to show that the stable
correlators φg,n of (4.3) admit an analytic continuation on the CDO spectral curve (4.4), which
has poles only at the ramification points and satisfies the abstract loop equations. This is done
exactly as in the proof Proposition 3.8 for the analytic continuation, and Proposition 3.9 for the
location of the poles and the abstract loop equations: the proofs indeed only used the general
structure of the Whittaker constraints and is not affected by the form of the spectral curve. �

Remark 4.5. Note that the CDO spectral curve (4.5) appearing in this section is a generalisation
of the Gaiotto curve (3.7). Indeed, we can take the limit P1, . . . ,Pr → ∞ and Λ → 0 such that
Λr · P1 · · ·Pr → (Λ ′)r in the CDO curve to recover the Gaiotto curve at energy scale Λ ′. In fact,
this limit falls into the class of allowed limits based on the results of [BBC+23]. This means that
the limit of the correlatorsωg,n constructed by topological recursion on the curve (4.5) matches
the correlatorsωg,n constructed by topological recursion on the Gaiotto curve (3.7). However, it
is not clear how to take the above limit of the W(glr)-module defined by (4.1) and the Whittaker
conditions in Theorem 4.1 characterizing |ΓCDO

Λ 〉 directly, in order to get the Whittaker conditions
(2.9) defining the Gaiotto vector.
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5. CONSEQUENCES

Starting from Theorem 2.2 and Theorem 2.3, we can exploit the theory of the topological re-
cursion on ramified spectral curves to derive either properties and new interpretations of the
correlators, or even, directly of the Whittaker vectors under consideration. Here we focus on:
two expressions in terms of intersection numbers on Mg,n, a relation to weighted Hurwitz num-
bers, quantum curves, and a discussion on free energies.

5.1. Relation to intersection theory on Mg,n

5.1.1. INTERSECTION THEORY AND TOPOLOGICAL RECURSION

The correlators (ωg,n)g,n produced by the topological recursion on a spectral curve specified
as (S, x,ω0,1,ω0,2) can be quite generally expressed in terms of intersection theory on Mg,n

[Eyn14, DOSS14, BKS23]. For our purposes, it is sufficient to summarise the theory for spectral
curves for which dx is meromorphic on a compact Riemann surface and only has simple zeros
at which dy has neither a zero nor a pole2. The master formula reads

ωg,n(z1, . . . , zn) =
∑

ρ1,...,ρn∈Ram
λ1,...,λn∈Ram
m1,...,mn>0

(∫
Mg,n

Ωg,n;ρ1,...,ρn

n∏
i=1

ψmii Rρi,λi(ψi)

)
n∏
i=1

dΞλi,mi(zi). (5.1)

It involves two ingredients constructed from the spectral curve: a basis of meromorphic 1-
forms dΞλ,m on which we decompose the correlators, and a collection of tautological classes
Ωg,n;ρ1,...,ρn ∈ H•(Mg,n) that we call the TR class (the Rρ,λ factor will be defined along with
them). In this setting, the TR class is known to form a semi-simple (perhaps without unit)
cohomological field theory as it can be constructed by a certain Givental action on the trivial
cohomological field theory.

A. The basis of differentials

Let us fix a choice of square root ηλ(z) =
√

2(x(z) − x(λ)), giving a local coordinate near λ ∈
Ram. The meromorphic 1-forms are defined by induction onm ∈ Z>0. We set

dΞλ,0(z) = Res
z′=λ

ω0,2(z, z ′)
ηλ(z)

, dΞλ,m+1 = −d
(
Ξλ,m

dx

)
. (5.2)

The primary differential dΞλ,0 has a double pole at λ only, the descendent differential dΞλ,k has
a pole of order (2k+ 2) at λ and poles at λ ′ ∈ Ram \ {λ} of order at most 2k.

B. The TR class

2We also assume that the ramification points taken into account in (2.11) occur at finite values of x. One can reduce
to this case by using a twist (x,y) 7→ (x−1,−yx2), see paragraph D.
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The tautological classes are constructed from formal Laplace transforms using the spectral curve
data. Recalling thatω0,1 = ydx, we introduce for ρ, λ ∈ Ram

Tρ(u) =
1√

2πu

∫
γρ

e(x(ρ)−x(z))u
−1

dy(z),

Rρ,λ(u) =
1√

2πu−1

∫
γρ

e(x(ρ)−x(z))u
−1

dΞλ,0(z),
(5.3)

where γρ are steepest descent paths for Re(x/u). We are only interested in the definition of
Tρ(u) and Rρ,λ(u) as formal power series in u: this is only sensitive to the germ of γρ around ρ,
and for this we can do as if u > 0 and take x(z)−x(ρ) ∈ R>0 along γρ (for Rρ,ρ we slightly push
this contour off the pole at ρ). The orientation is chosen consistently with the choice of square
root so that we have

∀k ∈ Z>0
1√
2πu

∫
γρ

e(x(ρ)−x(z))u
−1
(ηρ(z))

2kdηρ(z) = −(2k− 1)!!uk, (5.4)

with the convention (−1)!! = 1. The assumptions on the spectral curves are known to imply
that

Tρ(0) 6= 0 and
∑
λ∈Ram

Rρ1,λ(u)Rρ2,λ(−u) = δρ1,ρ2 . (5.5)

Then, it makes sense to introduce the formal power series∑
m>0

tρ,mu
m = − ln Tρ(u),

Bρ1,ρ2(u1,u2) =
δρ1,ρ2 −

∑
λ∈Ram Rρ1,λ(u1)Rρ2,λ(u2)

u1 + u2
.

(5.6)

The tautological class appearing in (5.1) is then obtained in two steps. First, one constructs from
Tρ(u) a cohomology class indexed by a single ρ ∈ Ram

Υg,n;ρ = exp

∑
m>0

tρ,mκm

 ∈ H•(Mg,n).

Since κ0 = (2g− 2 + n) ∈ H0(Mg,n), the determination of the logarithm is irrelevant in (5.6).

For the second step, we recall that for each stable graph G of genus gwith n labelled leaves, we
have an inclusion of boundary stratum

G :
∏

vertex v

Mg(v),n(v) ↪→Mg,n.

For each half-edge h incident at a vertex v, we have a corresponding ψh ∈ H2(Mg(v),n(v)).
We consider the set Stabg,n(ρ1, . . . , ρn) of stable graphs of genus g, whose half-edges h are
decorated by ρ(h) ∈ Ram such that all half-edges incident to the same vertex v have the same
decoration (denoted ρ(v)), and with n labelled leaves carrying the decorations ρ1, . . . , ρn.

Ωg,n;ρ1,...,ρn =
∑

G∈Stabg,n

1
#Aut(G)

(G)∗

 ∏
vertex v

Υg(v),n(v);ρ(v)

∏
edge {h,h′}

Bρ(h),ρ(h′)(ψh,ψh′)

 .

(5.7)
This definition makes sense for any power series Tρ(u) and Rρ1,ρ2(u) with indices ρ in a given
set and satisfying the admissibility condition (5.5), even if they do not come from the Laplace
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transform of a spectral curve data. In fact, this formula can be viewed as a special case of the
Givental action on CohFTs [Giv01].

C. Expansion coefficients

From the master formula (5.1), we can easily extract the coefficients of the series expansion
of the ωg,n near any point: it suffices to know the series expansion for the basis of 1-forms.
Following [BKS23, Section 7.5.5], we discuss the case of expansion near a pole of order dp (or
zero of order −dp) of dx, using a local coordinate X centred near p such that

dx =


cp

dX
X

if dp = 1;

dX
Xdp

if dp 6= 1.

(5.8)

The only task is in fact to compute the series expansion of the primary differentials as z→ p

dΞλ,0(z) ≈ d

∑
k>1

Sλ,0
[
p
k

]Xk
k

 .

Then, by construction of the descendent differentials in (5.2), we have the following expansion
[BKS23, Lemma 7.31]:

dΞλ,m(z) ≈ d

∑
k>1

Sλ,m
[
p
k

]Xk
k

 .

If dp = 1, we have a simple expression

Sλ,m
[
p
k

]
= (−k/cp)

m · Sλ,0
(
p
k

)
. (5.9)

while if dp 6= 1, we have

Sλ,m
[
p
k

]
= k(k− (dp − 1)) · · · (k− (m− 1)(dp − 1)) · Sλ,0

[ p
k−m(dp−1)

]
, (5.10)

with the convention that Sλ,m
[
p
k

]
= 0 for k 6 0.

D. Twisted TR class

The topological recursion (2.11) only depends on the data of x through the ramification points
and the local involution. As a result, we can find transformations of the spectral curve that have
no effect on the (ωg,n)g,n computed by the topological recursion: we call them twists. Given a
spectral curve (S, x,ω0,1,ω0,2) with ω0,1 = ydx, examples of twists are (x̃, ỹ) = (f(x),y/f ′(x)),
where f(x) is such that f ′(x) is a rational function that does not vanish at branch points of x
— observe that ω0,1 = ydx = ỹdx̃. Since they affect x and therefore T(u) and R(u), twists
can radically affect the basis of differentials and the TR class, and this leads to many different
intersection-theoretic representations of the same correlators.

The twist (x̃, ỹ) = (ln x, xy) has the interesting property that it converts poles of dx into simple
poles of dx̃ = dx

x
. Then, we are in the simplest case to express the expansion coefficients ofωg,n

near poles of x in terms of intersection indices. Indeed, consider a spectral curve (S, x,ω0,1,ω0,2)

such that x is meromorphic on a compact Riemann surface, and denote op the order of a pole
p of x. The local coordinate realising (5.8) near this pole is X = (−opx)

−1/op . Let (ωg,n)g,n

be the correlators computed by topological recursion. Then, let Ť(u),Ř(u) the formal series,
Ω̌g,n;ρ1,...,ρn the TR class, and Šλ,0 the expansion coefficients of the primary differentials for the
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spectral curve (S, ln x,ω0,1,ω0,2). With help of (5.9), we get the following expansion for the
correlators as zi approaches a pole pi of x:

ωg,n(z1, . . . , zn)

≈ d1 · · ·dn


∑

ρ1,...,ρn∈Ram
λ1,...,λn∈Ram
k1,...,kn>1

(∫
Mg,n

Ω̌g,n;ρ1,...,ρn

n∏
i=1

Řρi,λi(ψi)

1 − o−1
pi kiψi

)
n∏
i=1

Šλi,0
[ pi
ki

]Xkii
ki

 .
(5.11)

5.1.2. PROPERTIES AND REMARKABLE TR CLASSES

In this section we consider situations where R and T have no indices, i.e., ones corresponding to
spectral curves with a single ramification point or to CohFTs of rank 1 . We mention properties
of the construction of Section 5.1.1 and examples of TR classes that have a geometric meaning
and that will be used to study Gaiotto vectors in Section 5.1.3.

A. Multiplicativity

Here we consider situations without indices. Consider formal power series T(u) and R(u) such
that

T(0) 6= 0 and R(u)R(−u) = 1. (5.12)

Then, we can write

T(u) = exp

−
∑
m>0

tmu
m

 R(u) = exp
(
r(u)

)
,

where r(u) is an odd formal power series. The combinatorics of self-intersections of boundary
strata in Mg,n imply that the TR class (5.7) can be written

Ωg,n ·
n∏
i=1

R(ψi) = exp

∑
m>0

tmκm +

n∑
i=1

r(ψi) −
1
2

∑
∆

(∆)∗
r(ψ ′) + r(ψ ′′)
ψ ′ +ψ ′′

 , (5.13)

where the sum ranges over boundary divisors of Mg,n, ∆ is the natural inclusion map and
ψ ′,ψ ′′ are the ψ-classes on the two sides of the node — see e.g. [ABC+23, Lemma 3.10].

This leads to an interesting multiplicativity property of TR classes. Imagine that we have formal
power series T (i)(u),R(i)(u) for i = 1, 2 satisfying (5.12), and we have constructed the corre-
sponding TR classesΩ(i)

g,n. Then, the TR class associated to the products T(u) = T (1)(u) · T (2)(u)

and R(u) = R(1)(u) · R(2)(u) is the product TR class

Ωg,n = Ω(1)
g,n ·Ω(2)

g,n ∈ H•(Mg,n).

B. The deformed Θ class

The Theta class Θg,n, introduced by Norbury in [Nor23] based on the work of Chiodo [Chi08],
is constructed using the Euler class of a vector bundle on the moduli space of twisted 2-spin

curves M
(2)
g,n. We do not dwell on the details of the construction here, but we note the following

key properties:
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• Θg,n ∈ H2(2g−2+n)(Mg,n) for any 2g− 2 + n > 0;

• The family (Θg,n)g,n forms a non-semisimple CohFT without a flat unit.

These properties, and an explanation of what they mean, can be found in [Nor23, CGFG22].
A specific deformation of the Theta class Θg,n[ε], depending on a parameter ε2 ∈ C was con-
structed and studied in [CGFG22]. The deformed Theta class satisfies the following properties:

• Θg,n[ε = 0] = Θg,n.

• Θg,n[ε] ∈ H•(Mg,n) is a polynomial of degree 2g− 2+n in ε2, and the coefficient of ε2m

belongs to H2(2g−2+n−m)(Mg,n).

• The family (Θg,n[ε])g,n forms a semisimple CohFT without a flat unit, for any ε 6= 0.

If we introduce

exp

−
∑
m>1

smu
m

 =
∑
m>0

(−1)m(2m+ 1)!!um,

an explicit formula for the deformed Theta class, found in [CGFG22, Corollary 3.25] is

Θg,n[ε] = (−ε2)2g−2+n exp

(∑
m>0

sm(−ε2)−mκm

)
∈ H•(Mg,n).

This formula has the required properties, in particular it is polynomial in ε for each g,n due to
certain tautological relations between κ classes, anticipated in [KN24]. In other words, Θεg,n is
the TR class associated with

T(u) =
∑
m>0

(2m+ 1)!!
(−ε2)m+1 u

m and R(u) = 1. (5.14)

C. The Hodge class

The Hodge class Λ[ε] =
∑g
i=0 ε

iλi is the Chern polynomial of the Hodge bundle of holomor-
phic 1-forms (we use bold symbols to avoid confusion with the letter Λ used for the energy
scale). It has the property that Λ[ε]Λ[−ε] = 1 ∈ H0(Mg,n). Mumford [Mum83] expressed it as

Λ[ε] = exp

∑
m>1

Bm+1ε
m

m(m+ 1)

(
κm −

n∑
i=1

ψmi +
∑
∆

1
2
(∆)∗

(ψ ′)2m+1 + (ψ ′′)2m+1

ψ ′ +ψ ′′

) , (5.15)

where (Bm)m>1 are the Bernoulli numbers defined by the power series expansion

t

et − 1
=
∑
m>0

Bk

k!
tk.

Only oddm appear in (5.15) as Bk = 0 for odd k > 3. Recalling the Stirling expansion as u→ 0

Γ(u−1) ≈
√

2π e(u
−1−1/2) ln(u−1)−u−1

Γreg(u
−1) with Γreg(u

−1) = exp

∑
m>1

Bm+1u
m

m(m+ 1)

 .
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and comparing with (5.13), we see that the Hodge class can be realised from the TR class as
follows.

T(u) = R(u) =
1

Γreg(ε−1u−1)

TR class
=⇒ Ωg,n ·

n∏
i=1

R(ψi) = Λ[ε].

This was first observed in [Eyn14].

5.1.3. GAIOTTO VECTOR FOR r = 2

If the spectral curve has a single ramification point, the intersection-theoretic representation are
simpler as all indices ρ, λ can be dropped (we keep them in dΞ and S but drop them from the
other notations). This happens for the r = 2 Gaiotto curve3, and we now focus on this case.

Proposition 5.1. For rank r = 2, the coefficients of the Gaiotto vector (2.7) satisfy for any (g,n) ∈
Z>0 ×Z>0 and a1, . . . ,an ∈ {1, 2} and k1, . . . ,kn ∈ Z>0

Φg,n
[ a1 ··· an
k1 ··· kn

]
= 22g−2+n(Q1 −Q2)

2−2g−n−2(k1+···+kn)Λr(k1+···+kn)(−1)a1+···+an

×

 ∑
m1,...,mn>0

∫
Mg,n

Θg,n[1]
n∏
i=1

(−1)mi(2ki + 2mi)!
2mi (ki +mi)!(ki − 1)!

ψmii


= 23g−3+n(Q1 −Q2)

2−2g−n−2(k1+···+kn)Λr(k1+···+kn)(−1)a1+···+an

×
∫
Mg,n

exp

∑
m>1

(−1)m+1

m 2m
κm

Λ[−1]2Λ
[ 1

2

] n∏
i=1

ki
(2ki
ki

)
1 − kiψi

.

(5.16)

Proof. Recall the Gaiotto curve for r = 2:

x(ζ) = −
Λr

(Q1 − ζ)(Q2 − ζ)
, y(ζ) =

ζ

x(ζ)
, ω0,2(ζ1, ζ2) =

dζ1dζ2

(ζ1 − ζ2)2 .

The unique ramification point that is relevant in the topological recursion Theorem 2.2 is located
at ρ = 1

2 (Q1 +Q2).

We first apply the twist (x̃, ỹ) = (x−1,−x2y). The advantage in doing so is that the Laplace
transforms defining R and T reduce to Gaussian integrals with respect to ζ. The associated
primary differential is

dΞ̃ρ,0(ζ) = Res
ζ′=ρ

dζdζ ′

(ζ− ζ ′)2

1√
x̃ ′′(ρ) (ζ ′ − ρ) + o(ζ ′ − ρ)

=

√
−Λr/2 dζ
(ζ− ρ)2 . (5.17)

3The Gaiotto curve has also a ramification point at ζ = ∞, but it does not appear in the topological recursion of
Theorem 2.2 and can be ignored.
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The function x̃ has a simple zero at ζ = Qa (that is, d̃Qa = 0), so the local coordinate of (5.8) is
X̃ = x̃ = x−1. The expansion coefficient of the primary differentials using this coordinate are

S̃ρ,0
[
Qa
k

]
= Res
ζ=Qa

√
−Λr/2 dζ
(ζ− ρ)2 (x̃(ζ))−k

= −
√
−Λr/2 Res

ζ=Qa

kx̃ ′(ζ)

ζ− ρ
(x̃(ζ))−(k+1)

=
√
−2Λr Res

ζ=Qa

k (−Λr)k dζ
((ζ−Q1)(ζ−Q2))k+1

= (−1)a−1

√
−2Λr

Q1 −Q2

(
Λr

(Q1 −Q2)2

)k
(2k)!

k!(k− 1)!
,

From (5.10) we deduce

S̃ρ,m
[
Qa
k

]
=

(k+m− 1)!
(k− 1)!

· S̃ρ,0
[
Qa
k+m

]
= (−1)a−1 ·

√
−2Λr

Q1 −Q2

(
Λr

(Q1 −Q2)2

)k+m
(2k+ 2m)!

(k+m)!(k− 1)!
.

Now we turn to the associated formal series T̃(u) and R̃(u). We compute

T̃(u) =
1√
2πu

∫
γρ

e(x
−1(ρ)−x−1(ζ))u−1

dỹ

=
1

u
√

2πu

∫
γρ

exp
(
(ζ− ρ)2

Λru

)
ỹdx̃

=
1

u
√

2πu

∫
γρ

exp
(
(ζ− ρ)2

Λru

)
2ζ(ρ− ζ)dζ

(Q1 − ζ)(Q2 − ζ)

= −
1

u
√

2πu

∫
γρ

exp
(
(ζ− ρ)2

Λru

)∑
m>0

(
2

Q1 −Q2

)2m+2

(ζ− ρ)2(m+1)dζ

=
√
−Λr/2

∑
m>0

(
−2Λr

(Q1 −Q2)2

)m+1

(2m+ 1)!!um,

where we used (5.4). After integration by parts, R̃(u) is a exactly Gaussian integral, and since we
know that R̃(u) = 1+O(u), we must have R̃(u) = 1 (this can be checked by direct computation).
Comparing with (5.14), the associated TR class is

Ω̃g,n = (−Λr/2)1−g−n/2 ·Θg,n
[
Q1−Q2√

2Λr

]
.

Putting all ingredients in (5.1) and comparing its series expansion as ζi → Qai in the coordinate
x−1 with the definition of the correlators from the Gaiotto vector in (2.10), we arrive to

Φg,n
[ a1 ··· an
k1 ··· kn

]
=

∑
m1,...,mn>0

n∏
i=1

(
(−1)ai−1

√
−2Λr

Q1 −Q2

(
Λr

(Q1 −Q2)2

)ki+mi (2ki + 2mi)!
(ki +mi)!(ki − 1)!

)

×
(
− Λr

2

)1−g−n/2
∫
Mg,n

Θg,n
[
Q1−Q2√

2Λr

] n∏
i=1

ψmii .

The coefficient of ε2m in the deformed Theta class Θg,n[ε] has cohomological degree 2(2g− 2 +

n −m), hence must be completed by a total of
∑n
i=1mi = g − 1 +m classes ψ in order to give

33



a non-zero contribution. Therefore, the total power of Λr is (k1 + · · · + kn), and the power of
(Q1 −Q2) is 2 − 2g− n− 2(k1 + · · ·+ kn). Collecting the powers of (−1) and 2 as well, we can
replace the argument of the deformed Theta class by ε = 1 to arrive at (5.16).

The second representation comes from the TR class after logarithmic twist. Let x̌(ζ) = ln x(ζ)
and y̌(ζ) = x(ζ)y(ζ) = ζ. As ζ→ ρwe have

x̌(ζ) = − ln x̃(ζ) = − ln
(
x̃(ρ) +

1
2
x̃ ′′(ρ)(ζ− ρ)2 + o(ζ− ρ)2

)
= − ln x̃(ρ) −

x̃ ′′(ρ)

2x̃(ρ)
(ζ− ρ)2 + o(ζ− ρ)2,

This implies that primary differential after the logarithmic twist is a simple rescaling of (5.17):

dΞ̌ρ,0(ζ) =
√
−x̃(ρ)dΞ̃ρ,0(ζ) =

Q1 −Q2

2
√

2
dζ

(ζ− ρ)2 .

As we are looking at simple poles of x, we are in the case ďQa = 1 and čQa = −1 in (5.8). This
leads to

Šρ,m
[
Qa
k

]
=
√

−x̃(ρ) km S̃ρ,0
[
Qa
k

]
= km

(−1)a−1
√

2

(
Λr

(Q1 −Q2)2

)k
(2k)!

k!(k− 1)!
. (5.18)

To get the TR class, we compute

Ť(u) =
1√
2πu

∫
γρ

(
−4(ζ−Q1)(ζ−Q2)

(Q1 −Q2)2

)u−1

dζ

= −
(Q1 −Q2)4u

−1

√
2πu

∫
γρ

ζ̃u
−1
(1 − ζ̃)u

−1
dζ̃

= −
(Q1 −Q2)4u

−1

√
2πu

(
Γ(u−1 + 1)

)2

Γ(2u−1 + 2)
= −

Q1 −Q2

2
√

2
1

1 + u/2

(
Γreg(u

−1)
)2

Γreg(2u−1)
,

In the line before the last, we use the integral representation of the beta function.4 Finally, using
integration by parts and x′(ζ)

x(ζ) = −2(ζ−Q1)
(ζ−Q1)(ζ−Q2)

, we compute

Ř(u) =
Q1 −Q2

2
√

2
1√

2πu−1

∫
γρ

(
x(ρ)

x(ζ)

)u−1
dζ

(ζ− ρ)2

=
Q1 −Q2√

2
1√
2πu

∫
γρ

(
x(ρ)

x(ζ)

)u−1
dζ

(ζ−Q1)(ζ−Q2)

=
Q1 −Q2√

2

(
−4

(Q1 −Q2)2

)u−1
1√
2πu

∫
γρ

(
(ζ−Q1)(ζ−Q2)

)u−1−1dζ

=
4u

−1

2
√
πu

(
Γ(u−1)

)2

Γ(2u−1)
=

(
Γreg(u

−1)
)2

Γreg(2u−1)
.

4The orientation of the contour should be chosen such that Ř(u) = 1 +O(u) in the next computation.
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Except for the extra factor (1 + u/2)−1 in Ť(u), we recognise products of the R and T series that
appeared for the Hodge class. Using the multiplicativity properties of TR classes, we get

Ω̌g,n

n∏
i=1

Ř(ψi) =

(
−
Q1 −Q2

2
√

2

)2−2g−n

exp

∑
m>1

(−1)m+1

m 2m
κm

Λ[−1]2Λ
[ 1

2

]
.

Putting this together with (5.18) in the master formula yields the second claim. �

5.2. Relation to Hurwitz theory

5.2.1. HURWITZ THEORY AND TOPOLOGICAL RECURSION

Let us briefly review the formalism of weighted Hurwitz numbers, referring to [GPH17] for the
details. Consider a formal power series of the form

G(ζ) =
∑
m>0

Gmζ
m, G0 6= 0.

Weighted single Hurwitz numbers HG;g(µ1, . . . ,µn) of genus g > 0 with µ1, . . . ,µn ∈ Z>0 are
weighted sums over ramified coverings of P1 by a smooth genus g curve of degree d =

∑n
i=1 µi

with prescribed ramification profile {µ1, . . . ,µn} over ∞ ∈ P1. The weight depends on the
profile of the other ramification points in a way specified by G.

To define them, we start by defining the disconnected weighted single Hurwitz numbers via
the following calculation in the center of the group algebra of Sd

H•G;χ(µ1, . . . ,µn) =
1
d!

[βχ+n−d.id]Cµ
d−1∏
i=1

G(βJi)

where Ji =
∑
j<i(j i) are the Jucys–Murphy elements, Cµ the indicator of the conjugacy class

of a permutation with cycles of lengths µ1, . . . ,µn, and [βb.id] extracts the coefficient of γb.id
from the expression to its right. The interpretation as enumeration of branched covers of P1

of Euler characteristic χ is well-known. The (connected) weighted single Hurwitz numbers
HG;g(µ1, . . . ,µn) are then defined by inclusion-exclusion from the disconnected ones. Classical
choices of weights are

• G(ζ) = exp(ζ): simple Hurwitz numbers with simple ramification away from∞;

• G(ζ) = 1
1−ζ : strictly monotone Hurwitz numbers;

• G(ζ) = (1+ ζ): weakly monotone Hurwitz numbers, closely related to dessins d’enfants
or bipartite maps.

Weighted Hurwitz numbers are governed by topological recursion: this has been proved in
[ACEH20] for polynomial G and in [BDBKS20] in largest possible generality, including rational-
exponential G. For rational G, an alternative proof that relates the cut-and-join equation for
rationally weighted Hurwitz numbers with W-constraints also appeared recently in [CDO24].
The precise statement is the following.
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Theorem 5.2 ([ACEH20, BDBKS20]). Assume that G is an exponential times a rational function, and
let (ω̂g,n)g,n be the correlators constructed by running topological recursion on the spectral curve P1

parametrised as

x̂(ζ) =
ζ

γG(ζ)
, ŷ(ζ) =

ζ

x̂(ζ)
, (5.19)

and equipped with ω̂0,1 = ŷdx̂ and ω̂0,2(ζ1, ζ2) = dζ1dζ2
(ζ1−ζ2)2 , assuming that x̂ has simple ramification

points. Then, we have for any g,n the all-order series expansion as ζi → 0 in the variable xi = x(ζi):

ω̂g,n(ζ1, . . . , ζn) −
δg,0δn,2dx̂1dx̂2

(x̂1 − x̂2)2

≈
∑

µ1,...,µn∈Z>0

# Aut(µ) · γµ1+···+µn ·HG;g(µ1, . . . ,µn)
n∏
i=1

d(x̂(zi)µi) ,

The factor #Aut(µ) =
∏
i>1 i

mimi! with mi = #{j | µj = i} is necessary for the comparison
with the normalisation of HG;g in [GPH17]. The assumption that the spectral curve has simple
ramification points can be waived using the limit arguments of [BBC+23].

5.2.2. APPLICATION TO |ΓΛ〉 AND |ΓCDO
Λ 〉

Combining Theorem 5.2 and our main results Theorem 2.2 and Theorem 2.3, we can give a
Hurwitz theory interpretation to a part of the two Whittaker vectors, after specialisation to the
parameter Q1 = 0. Let us start with the Gaiotto vector |ΓΛ〉, whose expansion coefficients were
denoted Φg,n in (2.7). We have the following corollary of Theorem 2.2 — its assumption at
Q1 = 0 imposes that the other Qs are non-zero and pairwise distinct.

Corollary 5.3. Consider the Gaiotto vector |ΓΛ〉, and substituteQ1 = 0. Then, for any pairwise distinct
Q2, . . . ,Qr ∈ C∗, any (g,n) ∈ Z>0 ×Z>0 and µ ∈ Zn>0, we have

Φg,n
[

1 ··· 1
µ1 ··· µn

]
= µ1 · · ·µn · # Aut(µ) ·Λr(µ1+···+µn) ·HG;g(µ1, . . . ,µn),

with the weight generating series

G(ζ) =
1∏r

a=2(Qa − ζ)
.

Corollary 5.4. Consider the Whittaker vector |ΓCDO
Λ 〉 with r > 2 and substitute Q1 = 0. Then, for any

(P1, . . . ,Pr, 0,Q2, . . . ,Qr−1) in the set R of Definition 4.2, and (g,n) ∈ Z>0 × Z>0 and µ ∈ Zn>0, we
have

Φg,n
[

1 ··· 1
µ1 ··· µn

]
= µ1 · · ·µn · #Aut(µ) ·Λr(µ1+···+µn) ·HG;g(µ1, . . . ,µn),

with the weight generating series

G(ζ) =

∏r
a=1(Pa + ζ)∏r−1
a=2(Qa − ζ)

.

Proof. For Corollary 5.3, consider the correlators φg,n defined in (2.10) using the coefficients
Φg,n of |ΓΛ〉. Theorem 2.2 states that these correlators can be analytically continued to the curve
defined by

x(ζ) = −
Λr∏r

a=1(Qa − ζ)
, y(ζ) =

ζ

x(ζ)
= −

ζ

Λr

r∏
a=1

(Qa − ζ), ζ ∈ P1.
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and their analytic continuations coincide with the correlators (ωg,n)g,n of the topological recur-
sion on this curve, considered as a spectral curve with ω0,1 = ydx and ω0,2(ζ1, ζ2) = dζ1dζ2

(ζ1−ζ2)2 .
SettingQ1 = 0 and define x̂ = x−1 and ŷ = x2y recovers the curve (5.19) associated to weighted
Hurwitz numbers with G(ζ) = 1∏r

a=2(Qa−ζ)
and γ = Λr. Let ω̂g,n be the topological recursion

correlators on this curve.

Since ydx = −ŷdx̂ and the ramification points of x are those of x̂, the recursive definition (2.11)
impliesωg,n = (−1)2g−2+nω̂g,n = (−1)nωg,n. Then, for any g,n and µ1, . . . ,µn > 0 we have

Φg,n
[

1 ··· 1
µ1 ··· µn

]
=

Thm. 2.2
(−1)n Res

ζ1=0
· · · Res

ζn=0
ωg,n(ζ1, . . . , ζn)

n∏
i=1

x(ζi)
µi

= Res
ζ1=0
· · · Res

ζn=0
ω̂g,n(ζ1, . . . , ζn)

n∏
i=1

x̂(ζi)
−µi

=
Thm. 5.2

µ1 · · ·µn · #Aut(µ) ·Λr(µ1+···+µn) ·HG;g(µ1, . . . ,µn).

The proof of Corollary 5.4 is similar and omitted. �

Remark 5.5. The presence of the prefactor µ1 · · ·µn is due to the choice of normalisation in the
definition of the coefficients of the Whittaker vectors, see e.g. (2.7). The choice of settingQ1 = 0
in the above Corollary 5.3 and Corollary 5.4 is arbitrary. Indeed, if one were to set one of the
otherQa to 0 instead, the only difference in the corollaries would be that the Hurwitz numbers
would appear asΦg,n

[
a ··· a
µ1 ··· µn

]
instead of Φg,n

[
1 ··· 1
µ1 ··· µn

]
.

5.2.3. COMMENTS ON GAUGE/HURWITZ CORRESPONDENCES

In this section, we comment on the relation between gauge theory and Hurwitz theory that have
appeared previously in the physics literature [GT93b, GT93a]. Gross and Taylor consider the
largeN expansion of two-dimensional UN Yang–Mills theory on a target Riemann surface, and
interpret the expansion coefficients as certain Hurwitz numbers counting branched coverings
of the target Riemann surface. A precise mathematical statement of the former is proved in the
recent paper [Nov24]. On the other hand, the large N limit of two-dimensional UN Yang–Mills
theory on S2 can be interpreted as the instanton partition function for four-dimensional N = 2
supersymmetric gauge theories [MMO05]. Putting these two facts together gives a Hurwitz-
theoretic interpretation of the Nekrasov instanton partition function.

The connection between gauge theory and Hurwitz theory that we proved in the previous sec-
tion Section 5.2.2 is different from the aforementioned one derived from two-dimensional Yang–
Mills theory. Indeed, Corollary 5.3 shows that the expansion coefficients of the Gaiotto vector
themselves coincide with certain rationally-weighted Hurwitz numbers, as opposed to the in-
stanton partition function (which is the squared-norm of the Gaiotto vector). In the specific case
of two-dimensional Yang–Mills theory on S2, which corresponds to our case of interest, the as-
sociated Hurwitz numbers are (simple) double Hurwitz numbers, see [Nov24, Theorem 4.4]. It
may be possible to recover this result from our Corollary 5.3, but we do not present here a way
to derive Corollary 5.3 from the observations of Gross and Taylor.
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5.3. Quantum curves

5.3.1. BACKGROUND AND DEFINITIONS

The Gaiotto and the CDO curves belong to the class of spectral curves for which Bouchard and
Eynard have constructed associated quantum curve in [BE17], so we can directly apply their
results. We first review the context.

A. Wave functions and quantum curves

Given the correlators (ωg,n)g,n constructed by topological recursion on a genus zero spectral
curve, say S, uniformised by the coordinate ζ ∈ P1, we can define the associated wave function
(sign +) and the dual wave function (sign −)

ψ±β := exp

 ∑
g∈Z>0
n∈Z>0

(−1)n h2g−2+n

n!

∫ζ
β

· · ·
∫ζ
β

(
ωg,n(ζ1, · · · , ζn) − δg,0δn,2

dx(ζ1)dx(ζ2)

(x(ζ1) − x(ζ2))2

) ,

(5.20)
It depends on the choice of a base point β ∈ S, which is typically chosen in x−1(∞). The integral∫ζ
βω0,1 may need to be regularised (see Definition 5.6). The dual wave function is obtained from

the wave function by replacing  h with − h.

A quantisation of the spectral curve whose underlying defining polynomial is P(x,y) = 0 is a
differential operator P̂( h, x,  h d

dx ) which is polynomial in  h, and whose symbol — obtained by
replacing  h d

dx by y and then setting  h to 0 — is the polynomial P(x,y). There is no unique way
to upgrade P(x,y) to a quantum curve as there are always issues of ordering — in particular
xy − yx = 0 gets quantised to x h d

dx −  h d
dxx 6= 0. The main theorem of [BE17] is that, as long as

the curve is of genus 0 and satisfies a key admissibility condition (which is valid for the Gaiotto
and CDO curves), there exists a differential operator which is a quantisation of the original
spectral curve and whose solution — considered as a formal expansion as  h→ 0 — is the wave
function ψ±β . Such a quantisation is usually called a quantum curve, and [BE17] provides an
explicit algorithm to compute it.

B. Wave functions for Whittaker vectors

Recall that the Gaiotto vector takes the form

|ΓΛ〉 = exp

 ∑
(g,n)∈Z>0×Z>0

 hg−1

n!

∑
a1,...,an∈[r]
k1,...,kn∈Z>0

Φg,n
[ a1 ··· an
k1 ··· kn

] n∏
i=1

J
aj
−kj

kj

 .

Consider as well the correlators ωg,n of the associated spectral curve, related to the Gaiotto
vectors by (2.10). If we introduce the algebra homomorphism called principal specialisation

ev±a :
Jb−k 7−→ ∓ hδa,bkx

−k

 h 7−→  h2 , (5.21)

we then have as ζ→ Qa for each a ∈ [r]

ψ±a (ζ) := ψ
±
Qa

(ζ)≈ ev±a (|ΓΛ〉) . (5.22)
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The same holds for the CDO vector, provided we take the convention Qr = ∞ in (5.22) for the
remaining pole of x.

C. The (0, 1) and (0, 2) terms

The (0, 1) and (0, 2) terms in the wave functions (5.20) must be carefully examined due to the
singularities in the integrand. We explain the regularisation for (0, 1), that should be part of the
definition (5.20) for (5.22) to hold, and show that the (0, 2) term is well-defined. This will also
be useful to evaluate the asymptotics of the wave functions as ζ approaches the r poles of x
(Corollary 5.9 and 5.10).

In the Gaiotto case, we have x−1(∞) = {Q1, . . . ,Qr} andω0,1 = ydx has a simple pole at ζ = Qa,
with residue −Qa. For the CDO case, we have x−1(∞) = {Q1, . . . ,Qr−1,∞} and ω0,1 has a
simple pole at ζ = Qa with residue −Qa for a ∈ [r− 1]. At ζ =∞we rather have a double pole
with behaviour

ω0,1(ζ) =

(
(−Λ)−r −

|P|+ |Q|

x(ζ)
+O

(
x(ζ)−2))dx(ζ).

Therefore, we take the following definition of the regularised integrals.

Definition 5.6. For the (0, 1) term in the wave function (5.20) for the Gaiotto curve, we take∫ζ
Qa

ω0,1 := Qa ln(x(ζ)) +
∫ζ
Qa

(
ω0,1 −

Qadx
x

)
, (5.23)

and in the CDO case ∫ζ
∞ω0,1 := (−Λ)−rx(ζ) − (|P|+ |Q|) ln x(ζ)

+

∫ζ
∞
(
ω0,1 −

(
(−Λ)−r −

|P|+ |Q|

x

)
dx
)

.

Since ωg,n for 2g − 2 + n > 0 only has poles at ramification points, those multiple integrals
in (5.20) are well-defined. The double integral of ω0,2 is also well-defined and explicitly com-
putable.

Lemma 5.7. We have∫ζ
Qa

∫ζ
Qa

(
ω0,2(ζ

′, ζ ′′) −
dx(ζ ′)dx(ζ ′′)

(x(ζ ′) − x(ζ ′′))2

)
= ln

(
Aa

x ′(ζ)(ζ−Qa)2

)
.

with

Aa = −
Λr∏

b 6=a(Qb −Qa)
or Aa = −Λr

∏r
b=1(Pb +Qa)∏
b6=a(Qb −Qa)

. (5.24)

And, in the CDO case:∫ζ
∞
∫ζ
∞
(
ω0,2(ζ

′, ζ ′′) −
dx(ζ ′)dx(ζ ′′)

(x(ζ ′) − x(ζ ′′))2

)
= ln

(
(−Λ)r

x ′(ζ)

)
.
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Proof. Sinceω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1−ζ2)2 = dζ1 dζ2 ln(ζ1 − ζ2), we have∫ζ1

ζ2

∫ζ3

ζ4

(
ω0,2(ζ

′, ζ ′′) −
dx(ζ ′)dx(ζ ′′)

(x(ζ ′) − x(ζ ′′))2

)
= ln

(
ζ1 − ζ3

x(ζ1) − x(ζ3)

ζ2 − ζ4

x(ζ2) − x(ζ4)

x(ζ1) − x(ζ4)

ζ1 − ζ4

x(ζ2) − x(ζ3)

ζ2 − ζ3

)
.

Taking ζ1 = ζ3 = ζ and ζ2 = ζ4 = β yields∫ζ
β

∫ζ
β

(
ω0,2(ζ

′, ζ ′′) −
dx(ζ ′)dx(ζ ′′)

(x(ζ ′) − x(ζ ′′))2

)
= ln

(
1

x ′(β)x ′(ζ)

(x(ζ) − x(β))2

(ζ− β)2

)
.

As β→ Qa we have x(β) ∼ −Aa
β−Qa

for some Aa ∈ C∗ given in (5.24), and thus∫ζ
Qa

∫ζ
Qa

(
ω0,2(ζ

′, ζ ′′) −
dx(ζ ′)dx(ζ ′′)

(x(ζ ′) − x(ζ ′′))2

)
= ln

(
Aa

x ′(ζ)(ζ−Qa)2

)
.

In the CDO case, as β→∞we have x(β) ∼ (−Λ)rβ and this leads to the second claim. �

D. Asymptotics of wave functions near poles of x

Definition 5.8. The stable part of the wave function is

ψ̃±a (ζ) = exp

 ∑
(g,n)∈Z>0×Z>0

2g−2+n>0

(± h)2g−2+n

n!

∫ζ
Qa

· · ·
∫ζ
Qa

ωg,n


In other words, it is (5.20) where we omit the (0, 1) and the (0, 2) terms. The properties of
the ωg,n for 2g − 2 + n > 0 imply that the expression inside is a formal power series in  h

of meromorphic functions of ζ, with poles only at the ramification points. By construction,
ψ̃±a (Qa) = 1 for any a ∈ [r].

Corollary 5.9. For the Gaiotto wave functions, for any a,b ∈ [r] we have

ψ+
a (ζ) ∼

ζ→Qb
Ba,b · ψ̃+

a (Qb) · (x(ζ))
 h−1Qb−δb6=a ,

where

Ba,b − δa,b = ±δa6=b · i(Λr)
 h−1(Qa−Qb)+1 · e h−1r(Qa−Qb) · (Qa −Qb)

2 h−1(Qb−Qa)−2

×
∏
c6=a,b

(Qc −Qa)
 h−1(Qc−Qa)−

1
2 (Qc −Qb)

 h−1(Qb−Qc)−
1
2

Corollary 5.10. In the CDO case, for any a,b ∈ [r− 1] we have

ψ+
a (ζ) ∼

ζ→Qb
Ba,b x

 h−1Qb−δb6=a ,
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where

Ba,b − δa,b = ±δa6=b · ie
 h−1(Qb−Qa) · (Λr) h−1(Qa−Qb)+1 · (Qa −Qb)

2 h−1(Qb−Qa)−2

×
∏
c6=a,b

(Qc −Qa)
 h−1(Qc−Qa)−

1
2 (Qc −Qb)

 h−1(Qb−Qc)−
1
2

×
r∏
c=1

(Qb + Pc)
− h−1(Qb+Pc)+1(Qa + Pc)

 h−1(Qa+Pc) × ψ̃+
a (Qb)

For a ∈ [r− 1] and b = r, we have

ψ+
a (ζ) ∼

ζ→∞Ba,r e
 h−1(−Λ)−rx x−

 h−1(|P|+|Q|)−1,

where

Ba,r = ±i(−Λr) h
−1(Qa+|P|+|Q|)+1e−

 h−1Qa

×
∏
c6=a

(Qa −Qc)
 h−1(Qc−Qa)−

1
2

r∏
c=1

(Pc +Qa)
 h−1(Pc+Qa)+

1
2 · ψ̃+

a (∞).

For a = r and b ∈ [r− 1], we have

ψ+
r (ζ) ∼

ζ→Qb
Br,b x

 h−1Qb−1,

where

Br,b = ±ie h−1(|P|+|Q|+Qb) ((−Λ)r)−
 h−1(|P|+|Q|+Qb)+1·

×
∏
c6=b

(Qb −Qc)
 h−1(Qb−Qc)−

1
2 ·

r∏
c=1

(Qb + Pc)
− h−1(Qb+Pc)+

1
2 · ψ̃+

r (Qb).

For a = b = r, we have

ψ+
r (ζ) ∼

ζ→∞ Br,re
 h−1(−Λ)−rx x−

 h−1(|P|+|Q|).

with Br,r = 1.

Proof. Both corollaries follow immediately from Definition 5.6 and Lemma 5.7. �

5.3.2. APPLICATION TO GAIOTTO AND CDO VECTORS

The Gaiotto and CDO spectral curves are of genus 0 and all the poles of x are simple. Therefore,
we can apply [BE17, Lemma 5.14] to obtain the quantum curves. It turns out that these are
generalised hypergeometric differential equations. We denote D =  hx∂x and introduce the
Pochhammer symbol

[x]k = x(x+ 1) · · · (x+ k− 1) =
Γ(x+ k)

Γ(x)

We also note that

x(x− 1) · · · (x− k+ 1) = (−1)k[−x]k
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Proposition 5.11. The Gaiotto wave functions satisfy the differential equations, for any a ∈ [r](
r∏
c=1

(Qc +  hδc,a −D) +
Λr

x

)
xψ+

a = 0. (5.25)

For b ∈ [r], this function has the explicit series representation as ζ→ Qb

ψ+
a ≈


x

 h−1Qa

1 +
∑
k>1

(−Λr)k

k! ( hrx)k
1∏

c6=a
[
Qc−Qa

 h

]
k

 if b = a

Ba,b x
 h−1Qb−1

1 +
∑
k>1

(−Λr)k

k! ( hrx)k
1[

Qa−Qb
 h + 2

]
k

1∏
c6=a,b

[
Qc−Qb

 h + 1
]
k

 if b 6= a

(5.26)
with the constants Ba,b appearing in Corollary 5.9.

The series in brackets in (5.26) define entire functions of x−1, namely the following generalised
hypergeometric functions:

r−1F0

[ ∅(
 h−1(Qc−Qa)

)
c6=a

](
−  h−rΛrx−1) for b = a,

r−1F0

[ ∅(
 h−1(Qb−Qa)+1+δc,b

)
c6=a

](
−  h−rΛrx−1) for b 6= a.

Therefore, the right-hand sides of (5.26) — indexed by b ∈ [r] — provide a basis of analytic
solutions of (5.25) in the domain C \ γ for any fixed choice of path γ between 0 and ∞. The
presence of the branch cut γ is solely due to the power of x in prefactor.

Proposition 5.12. The CDO wave functions satisfy the differential equations for any a ∈ [r− 1](
r−1∏
c=1

(Qc +  hδc,a −D) · x+Λr
r∏
c=1

(Pc +D)

)
ψ+
a = 0 . (5.27)

We have the explicit series representation as ζ→ Qb for any b ∈ [r− 1], or as ζ→∞:

ψ+
a ≈



x
 h−1Qa

1 +
∑
k>1

(− h(−Λ)r)k

k!xk

∏r
c=1

[
− Pc+Qa

 h

]
k∏

c6=a
[
Qc−Qa

 h

]
k

 if b = a,

Ba,b x
 h−1Qb−1

1 +
∑
k>1

(− h(−Λ)r)k

k!xk

∏r
c=1

[
− Pc+Qb

 h + 1
]
k∏

c6=b
[
Qc−Qb

 h + 1 + δc,a
]
k

 if b 6= a,

Ba,r e
 h−1(−Λ)−rxx−

 h−1(|P|+|Q|)−1

1 +
∑
k>1

ck,a

(
 h(−Λ)r

x

)k ifb = r,

(5.28)
with

ck,a =
∑

k1,...,kr−1>0
k1+···+kr−1=k

∏r−1
c=1

[
Pc+2+Qc

 h + δa,c
]
kc

[
k1 + · · ·+ kc−1 +

∑c
d=1

(
Pd+1+Qd

 h + δd,a
)]
kc

k1! · · ·kr−1!
,

(5.29)
where we take Pr+1 := P1 by convention.
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For a = r, we rather have the differential equation:(
r−1∏
c=1

(Qc −D) · x+Λr
r∏
c=1

(Pc +D)

)
ψ+
r = 0. (5.30)

We have the following explicit series representation as ζ→ x−1(∞):

ψ+
r ≈


Br,bx

 h−1Qb−1

1 +
∑
k>1

(− h(−Λ)r)k

k!xk

∏r
c=1

[
− Pc+Qb

 h + 1
]
k∏

c6=b
[
Qc−Qb

 h + 1
]
k

 , if ζ→ Qb,

e
 h−1(−Λ)−rxx−

 h−1(|P|+|Q|)

1 +
∑
k>1

ck,r

(
 h(−Λ)r

x

)k if ζ→∞ ,

(5.31)

with

ck,r =
∑

k1,...,kr−1>0
k1+···+kr−1=k

∏r−1
c=1

[
Pc+2+Qc

 h

]
kc

[
k1 + · · ·+ kc−1 +

∑c
d=1

Pd+1+Qd
 h

]
kc

k1! · · ·kr−1!
,

where we take Pr+1 := P1 by convention in the above formula.

In contrast with the Gaiotto case, now the series in brackets in the first two lines of (5.28) and the
first line of (5.31) have zero radius of convergence, and they correspond to generalised hyper-
geometrics rFr−2. In principle, a Borel resummation would be necessary to construct analytic
solutions. This is related to the fact thatω0,1 has a double pole at a simple pole of x, and thus the
differential equations have an irregular singularity at ∞. However, the quantum curve (5.27)
for a ∈ [r− 1] admits an explicit basis of solutions, indexed by b ∈ [r]

x−
 h−1Pb

(r−1)F(r−1)

[ (
1−δc,a− h−1(Pb+Qc)

)r−1

c=1(
1− h−1(Pb−Pc+δc>b)

)r−1

c=1

] (
 h−1(−Λ)−rx

)
. (5.32)

The differential equation (5.30) admits an explicit basis of solutions, indexed by b ∈ [r]

x−
 h−1Pd

(r−1)F(r−1)

[ (
1− h−1(Pb+Qc)

)r−1

c=1(
1− h−1(Pb−Pc+δc>b)

)r−1

c=1

] (
 h−1(−Λ)−rx

)
.

To summarise, we obtain a basis of analytic solutions for the differential equations (5.27) and
(5.27) in C \ γ for a fixed choice of a branch cut γ between 0 and∞. As before, the branch cut
γ is only due to the power of x in the prefactor. We discuss the relation between this analytic
basis and the formal basis obtained from wave functions in Section 5.3.3.

r + 1

r

r + 1

r

Gaiotto CDO

FIGURE 1. Newton polygons of the Gaiotto and CDO curves.
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Proof of Proposition 5.11. The equation for the Gaiotto curve reads

P(x,y) =
r∑
i=0

yr−ipi(x) = 0 with pi(x) = (−1)r−ixr−i+1ei(Q) + δi,rΛ
r.

For a ∈ {0} ∪ [r], we need to calculate the αi defined in [BE17, Section 2.2], which is the height
of the leftmost point in the Newton polygon (see Figure 1). For the Gaiotto curve, this is αi =
(1 + 1/r)i and thus bαic = i+ δi,r for any i ∈ {0} ∪ [r]. Then, [BE17, Lemma 5.14] yields(

pr(x) +

r∑
i=1

Di−1x−ipr−i(x)D−

r−1∑
i=1

Cr−i(Qa)D
i−1 hx

)
ψ+
Qa

= 0, (5.33)

with the constants:

Cr−i(Qa) = lim
ζ→Qa

x−i

(
r−i∑
`=1

pr−i−`(x)y
`

)
=

r−i∑
`=1

(−1)`+iQ`aer−i−`(Q), (5.34)

recalling that xy = ζ. Introducing Q[a] = (Qb)b6=a and writing

ek(Q) = Qaek−1(Q[a]) + ek(Q[a]) with e−1 = 0,

we recognise in (5.34) a telescopic sum:

Cr−i(Qa) = (−1)i−1
r−i∑
`=1

(
(−Qa)

`+1er−1−i−`(Q[a]) − (−Qa)
`er−i−`(Q[a])

)
= (−1)i−1Qaer−1−i(Q[a]).

We insert this in (5.33). Then, writing xD = Dx−  hx in the first sum, we obtain(
Λr +

r∑
i=0

(−1)ier−i(Q)Dix−

r∑
i=1

(−1)iDi−1(er−i(Q) −Qaer−1−i(Q[a])
)
 hx

)
ψ+
a = 0,

Therefore: (
Λr

x
+

r∑
i=0

(−1)ier−i(Q)Di −  h

r∑
i=1

(−1)iDi−1er−i(Q[a])

)
xψ+

a = 0.

which can be re-summed asΛr
x

+

r∏
b=1

(Qb −D) +  h

r∏
b=1
b6=a

(Qb −D)

 xψ+
a = 0. (5.35)

From Definition 5.6, Lemma 5.7 and (5.22), the wave function has an expansion as ζ → Qa in
the local coordinate x−1, of the form

ψ+
a ≈ x

 h−1Qa

∑
k>0

ckx
−k

 c0 = 1

with ck a formal Laurent series in  h. Inserting this in the differential equation (5.35) we get for
any k ∈ Z>0

Λrck +

 r∏
b=1

(Qb −Qa +  hk) +  h
∏
b6=a

(Qb −Qa +  hk)

 ck+1 = 0.
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In other words

ck+1 =
−Λrck

 h(k+ 1)
∏
b6=a(Qb −Qa +  hk)

.

With the initial condition c0 = 1, we get

ck =
(−Λr)k

k!  hr
1∏

b 6=a
∏k−1
`=0 (Qb −Qa −  h`)

=
Λrk

k!  hkr
1∏

b6=a
[
Qb−Qa

 h

]
k

.

Near ζ → Qb for b 6= a, the wave function rather has an expansion in the local coordinate x−1

of the form

ψ+
a ≈ Ba,bx

 h−1Qb−1

∑
k>0

ckx
−k

 c0 = 1

Inserting this expansion in the differential equation (5.35) leads again to a recursion for ck which
can be solved explicitly and gives the announced result. �

Proof of Proposition 5.12. As the proof is similar to the Gaiotto case, we will be brief. The equa-
tion for the CDO curve reads

P(x,y) =
r∑
i=0

yr−ipi(x) = 0 with pi(x) = (−1)r−ixr+1−iei−1(Q) + xr−iΛrei(P).

We first observe that αi = i for i ∈ {0} ∪ [r], hence Di =  hx∂x := D. For a ∈ [r − 1] we compute
the constants

Cr−i(Qa) = lim
ζ→Qa

(
r−1−i∑
`=0

pr−1−i−`(x)y
r−i−`x−(i+1)

)

=

r−1−i∑
`=1

(−1)r−`Qr−i−`a e`−1(Q)

=

r−i−2∑
`=0

(−1)r−1−`Qr−i−1−`
a

(
e`(Q[a]) +Qae`−1(Q[a])

)
= (−1)i−1Qaer−i−2(Q[a]).

(5.36)

Then, the differential equation for the wave function is [BE17, Lemma 5.14]

(
pr(x) +

r∑
i=1

Di−1x−ipr−i(x)D−

r−1∑
i=1

Di−1Cr−i(Qa) hx

)
ψ+
a = 0. (5.37)
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Writing  hx = Dx− xD, the last sum combines with the second sum, and easy algebraic manip-
ulations lead to the differential equations (5.27). For a = r, we rather need the constants

Cr−i(∞) = lim
ζ→∞

r−1−i∑
`=0

p`(x)y
r−i−`x−(i+1)

= lim
ζ→∞

r−1−i∑
`=0

ζr−i−`
(
(−1)r−`e`−1(Q) +Λrx−1e`(P)

)
= lim
ζ→∞

∑r−1−i
`=0

(
(−1)r−`e`−1(Q)

∏r
a=1(ζ+ Pa) − e`(P)

∏r−1
a=1(Qa − ζ)

)∏r
a=1(Pa + ζ)

= lim
ζ→∞

1∏r
a=1(ζ+ Pa)

 ∑
06j6r

06`6r−i−2

−
∑

06j6r−i−1
06`6r−1

 ej(P)e`(Q)ζ2r−1−i−j−`

= (−1)i−1er−i−1(Q).

Inserting this into (5.37) and using the previous tricks yields the differential equation (5.30).

It is then straightforward to compute the basis of series solutions for those corresponding the
expansions as ζ→ Qa with a 6= r. As for the expansion of ψ+

a when ζ→∞, we first notice that
a solution to the differential equation (5.27) is given by the function

x−
 h−1P1

(r−1)F(r−1)

[ (
1−δ`,a− h−1(P1+Qb)

)r−1

b=1(
1− h−1(P1−Pb+1)

)r−1

b=1

] (
 h−1(−Λ)−rx

)
Indeed, conjugating (5.27) by x− h−1P1 yields precisely the differential equation satisfied by the
generalized hypergeometric series above which is an analytic function in x. Then, the asymp-
totic expansion of (r−1)F(r−1) as x → ∞ is computed in [VW14, Theorem 4.1], and plugging in
the exponentially growing term in the asymptotic expansion yields the result. The calculation
for the expansion ofψ+

r as ζ→∞ is analogous – the relevant analytic solution of the differential
equation is

x−
 h−1P1

(r−1)F(r−1)

[ (
1− h−1(P1+Qc)

)r−1

c=1(
1− h−1(P1−Pc+1)

)r−1

c=1

] (
 h−1(−Λ)−rx

)
.

�

5.3.3. RELATING THE FORMAL AND ANALYTIC BASES OF CDO DIFFERENTIAL EQUA-
TIONS

Fix a ∈ [r]. For the a-th CDO differential equation of Proposition 5.12 we have encountered two
bases of solutions. We focus on the case a ∈ [r− 1], as the a = r case is similar.

The first one is a formal WKB solution given by the wave function ψ+
a (ζ): it is a formal series

of exponential type in the formal parameter  h whose coefficients are meromorphic functions
of ζ on the CDO curve, and we obtain locally in the x-plane r solutions by choosing ζ among
the r preimages of x in the CDO curve. In particular, doing so in a neighborhood of x = ∞
gives (r − 1) solutions that are up to a (explicit) power of x and (not explicit) constants Ba,b in
prefactor generalised hypergeometric series rFr−2 in the variable 1/x, while the last one is more
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complicated. These r series have zero radius of convergence. Up to a change of normalisation
indicated in (5.39) below, we denote (ψa,b(x))

r
b=1 this basis, given for b ∈ [r− 1] by

ψa,b(x) = (−1)δb6=a
∏
c6=b Γ

(
Qb−Qc

 h + δb,a − δc,a
)∏r

c=1 Γ
(
Qb+Pc

 h + δb,a
) (

x
 h(−Λ)r

) h−1Qb−1

× rFr−2

[ (
−
Qb+Pc

 h +1−δb,a

)r
c=1(

Qc−Qb
 h +1+δc,a−δb,a

)
c6=b

] (
− h(−Λ)rx−1) (5.38)

and for b = r by

ψa,r(x) = e
 h−1(−Λ)−rx

(
x

 h(−Λ)r

)− h−1(|P|+|Q|)−1 ∞∑
k=0

ck,a

(
 h(−Λ)r

x

)k
with the constants ck,a introduced in (5.29). The new normalisation was chosen so that, for
ζ→ Qb

ψ+
a (ζ) ≈


Ba,b ·

∏r
c=1 Γ

(
Qb+Pc

 h + δb,a
)∏

c6=b Γ
(
Qb−Qc

 h + δb,a − δc,a
) ( h−1(−Λ)−r

)1− h−1Qb ·ψa,b(x) if b ∈ [r− 1]

Ba,r
(
 h−1(−Λ)−r

) h−1(|P|+|Q|)+1 ·ψa,r(x) if b = r
(5.39)

The second one is a basis of analytic solutions (χa,b(x))
r
b=1, which is an entire function of x

multiplied by a power of x that creates a branch cut from 0 to∞. The entire functions in question
are generalised hypergeometric functions (r−1)F(r−1). Here  h can take any value in C∗. We
choose to normalise this basis as

χa,b(x) =

∏r−1
c=1 Γ

(
1 − Pb+Qc

 h − δc,a
)r−1
c=1∏

c6=b Γ
(
1 − Pb−Pc

 h

) (
x

 h(−Λ)r

)− h−1Pb

× (r−1)F(r−1)

[ (
1−δc,a− h−1(Pb+Qc)

)r−1

c=1(
1− h−1(Pb−Pc+δc>b)

)r−1

c=1

](
x

 h(−Λ)r

)

The all-order asymptotic expansion of this basis as x → ∞ must be a linear combination of
the formal basis (ψa,b(x))

r
b=1. With the asymptotic expansion of the hypergeometric functions

(r−1)F(r−1)(z) as z→∞ found in [DLM, Chapter 16.11], we find as x→∞
χa,b(x) ≈ ψa,r(x) +

r−1∑
d=1

π e−iπ h−1(Pb+Qd)

sin
(
π(Pb+Qd)

 h

) ψa,d(x), (5.40)

where we have used the reflection formula Γ(z)Γ(1 − z) = π
sin(πz) . Upon inversion of this linear

system, we obtain analytic functions (instead of formal series) that are asymptotic to the formal
series specified by the wave functions.

Proposition 5.13. As x→∞, we have for b ∈ [r− 1]

ψa,b(x) ≈
1
π

r∑
d=1

e−2iπ h−1Qb ·
∏r−1
c=1 sin

(
π(Pd+Qc)

 h

)
·
∏r
c=1 sin

(
π(Pc+Qb)

 h

)
sin
(
π(Pd+Qb)

 h

)
·
∏
c6=b sin

(
π(Qb−Qc)

 h

)∏
c6=d sin

(
π(Pc−Pd)

 h

) · χa,d(x),
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and for b = r:

ψa,r(x) ≈
r∑
d=1

e−iπ h−1(|P|+|Q|) ·
∏r−1
c=1 sin

(
π(Pd+Qc

 h

)
∏
c6=d sin

(
π(Pd−Pc)

 h

) · χa,d(x).

Proof. Let us introduce pc = eiπ h−1Pc and qc = eiπ h−1Qc . The linear system (5.40) takes the
form

χa,b(x) ≈
r∑
d=1

Mb,dψa,d(x),

with the matrix

Mb,d =


2iπ

p2
b − q

2
d

if d ∈ [r− 1],

1 if d = r.

If we introduce an auxiliary variable qr and the Cauchy matrix of size r

M̃b,d =
1

p2
b − q

−2
d

,

we observe that

M = lim
qr→0

M̃ ·K where K = diag(2iπ, . . . , 2iπ,−q−2
r ).

Using the well-known formula for the inverse of Cauchy matrices, we get

(M̃ ·K)−1
d,b = K−1

d,d · (p
2
b − q

−2
d )

r∏
c=1
c6=b

p2
b − q

−2
c

q−2
c − q−2

d

r∏
c=1
c6=b

−q−2
b + p2

c

p2
b − p

2
c

.

Taking the limit qr → 0 yields

M−1
d,b =



p2
b − q

−2
d

2iπ
∏r−1
c=1
c6=d

p2
b − q

−2
c

−q−2
d + q−2

c

∏r
c=1
c6=b

−q−2
d + p2

c

p2
b − p

2
c

if d ∈ [r− 1]

∏r−1
c=1(p

2
b − q

−2
c )∏r

c=1
c6=b

(p2
b − p

2
c)

if d = r

This rational expression can be simplified back to trigonometric functions and leads to the
claimed formulae. �

5.3.4. LAX FORM

In this section, we write down the quantum curves obtained for the Gaiotto and CDO curves
in Proposition 5.11 and Proposition 5.12 in Lax form, i.e., as first-order matrix-valued linear
ordinary differential equations. For this purpose, consider the column vector

Ψ+
a =

(
ψ+,1
a (ζ),ψ+,2

a (ζ), . . . ,ψ+,r
a (ζ)

)T
,

where ψ+,r
a (ζ) = ψ+

a (ζ) is the wave function obtained from topological recursion as defined
in (5.22). The other functions ψ+,1

a (ζ), . . . ,ψ+,r−1
a (ζ), are defined in terms of the ωg,n following

[BE17, Section 5.2], but we do not recall the precise form here — it can be deduced from the
proof of Proposition 5.14 — as we will not use it. From the following Lax form of the quantum
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curve, one can easily write ψ+,j
a (ζ) for j 6= r in terms of the ψ+

a (ζ) and its derivatives. Recall the
notation Q[a] for the tuple (Qb)b 6=a.

Applying the results of [BE17], we obtain the following Lax forms.

Proposition 5.14. In the Gaiotto case, for any a ∈ [r] we have

DΨ+
a =



e1(Q[a]) 1 0 · · · 0

−e2(Q[a]) 0
. . .

...
...

... 1 0

(−1)rer−1(Q[a]) 0 · · · 0 −Λr

(−1)rx−1 0 · · · 0 Qa


Ψ+
a . (5.41)

In the CDO case, for a ∈ [r− 1] we have

DΨ+
a =



(−Λ)−re0(Q[a])x− e1(P) 1 0 · · · (−1)r−1Qae0
(
Q[a]

)
x

−(−Λ)−re1(Q[a])x− e2(P) 0
. . .

...
...

... 1 Qaer−3
(
Q[a]

)
x

(−1)r−2(−Λ)−rer−1(Q[a])x− er−1(P) 0 · · · 0 −xer−1(Q) −Λrer(P)

Λ−r 0 · · · 0 0


Ψ+
a ,

(5.42)
while for a = r we have

DΨ+
r =



−e1(P) 1 0 · · · (−1)r−1 (e1(Q) + e1(P)) x

−e2(P) 0
. . .

...
...

... 1 (−1)r−1
(
er−2(P) + (−1)r−1er−2(Q)

)
x

−er−1(P) 0 · · · 0
(
(−1)r−1er−1(P) − er−1(Q)

)
x−Λrer(P)

Λ−r 0 · · · 0 (−Λ)−rx


Ψ+
r . (5.43)

Proof. We start the Lax form of the quantum curve obtained by Bouchard and Eynard in [BE17,
Theorem 5.11] for the Gaiotto curve with the choice of base point β = Qa:

D



ϕ1

ϕ2

...

ϕr−1

ϕr


=



e1(Q) 1 0 · · · − h xC1(Qa)
xer(Q)+Λr

−e2(Q) 0
. . .

...
...

... 1 0

(−1)rer−1(Q) 0 · · · 0 1 −  h xCr−1(Qa)
xer(Q)+Λr

(−1)r+1xer(Q)+Λr

x
0 · · · 0  h xer(Q)

xer(Q)+Λr




ϕ1

ϕ2
...

ϕr−1

ϕr

 ,

where ϕr := −(xer(Q) + Λr)ψ+
a (ζ). The remaining ϕi for i ∈ [r − 1] are defined in [BE17,

Section 5.2] — where they are denoted as ψm(x;D) with the divisor D = [ζ] − [Qa]. Also recall
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the constants Ci(Qa) for i ∈ [r− 1] calculated in (5.34). By defining

Ψ+
a :=



C1(Qa)x
xer(Q)+Λr

...
Cr−1(Qa)x
xer(Q)+Λr

− 1
xer(Q)+Λr

Idr−1

0




ϕ1

...

ϕr−1

ϕr

 ,

the differential equation for Ψ+
a takes the claimed Lax form, after some simplifications arising

from the form of the Ci(Qa).

In the CDO case, with base point β = Qa and a ∈ [r− 1], we get

D



ϕ1

ϕ2

...

ϕr−1

ϕr


=



− p1(x)
xr−1Λr

1 0 · · · − hxC1(Qa)
pr(x)

− p2(x)
xr−2Λr

0
. . .

...
...

... 1 0

−pr−1(x)
xΛr

0 · · · 0 1 −  hxCr−1(Qa)
pr(x)

−pr(x)
Λr

0 · · · 0  hxer−1(Q)
pr(x)





ϕ1

ϕ2

...

ϕr−1

ϕr


,

where ϕr := −pr(x)ψ
+
a (ζ). Again, the remaining ϕi for i ∈ [r− 1] are defined in [BE17, Section

5.2]. Also recall the Ci(Qa) for i ∈ [r− 1] calculated in (5.36) and that

∀i ∈ {0} t [r] pi(x) = (−1)r−ixr+1−iei−1(Q) + xr−iΛrei(P).

With the definition

Ψ+
a :=



xC1(Qa)
pr(x)

...
xCr−1(Qa)
pr(x)

− 1
pr(x)

Idr−1

0




ϕ1

...

ϕr−1

ϕr

 ,

we obtain the claimed Lax form. We omit the details in the case with base point β = ∞, which
is similar. �

5.4. Determinantal formulae
The partition function of topological recursion on genus 0 spectral curves, like it is the case for
Gaiotto and CDO spectral curves, satisfies KP integrability. More precisely, we have

Proposition 5.15. The Gaiotto and the CDO vectors are  h-KP tau functions, separately for each a ∈ [r]

in the series of times (Ja−k)k∈Z>0 .

Proof. For the Gaiotto or CDO spectral curve, x(ζ) is a rational function and x(ζ)y(ζ) = ζ. The
series expansions of

(
ωg,n : (g,n) ∈ Z>0 × Z>0

)
for these spectral curves at ζ = Qa in the

variable x(ζ) is encoded in |ΓΛ〉 seen as a generating series in the formal variables (Ja−k)k∈Z>0 .
 h-KP integrability is then covered by [ABDB+23] — see also [Zho15]. �
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This has several remarkable consequences which we now explain.

5.4.1. BISPINOR IN TERMS OF WAVE FUNCTIONS

Definition 5.16. We define the bispinor

K(ζ1, ζ2) =

√
dζ1dζ2

ζ1 − ζ2
exp

 h−1
∫ζ1

ζ2

ω0,1 +
∑

(g,n)∈Z>0×Z>0

 h2g−2+n

n!

∫ζ1

ζ2

· · ·
∫ζ1

ζ2

ωg,n

 .

Proposition 5.17. For the Gaiotto or the CDO spectral curve, we have

K(ζ1, ζ2) = −

∑r
a=1ψ

+
a (ζ1)ψ

−
a (ζ2)

√
dx(ζ1)dx(ζ2)

x(ζ1) − x(ζ2)
.

Proof. According to [BE12, Conjecture 7.4], the partition function of topological recursion for
compact spectral curves with x and y meromorphic satisfies Hirota bilinear difference equa-
tions. Since  h-KP integrability is known to be equivalent to Hirota bilinear difference equations,
Proposition 5.15 justifies that the conjecture holds for the Gaiotto and CDO spectral curves
(since these curves have genus 0, all Theta corrections in [BE12] can be ignored). Therefore,
we can use [BE12, Theorem 8.3], which shows that the bispinor can be expressed as a bilinear
expression in the wave function and the dual wave function5

K(ζ1, ζ2) = −

∑r
a=1ψ

+
a (ζ1)Aa,bψ

−
a (ζ2)

√
dx(ζ1)dx(ζ2)

x(ζ1) − x(ζ2)
,

where
A−1
a,b =

∑
ζ∈x−1(x0)

ψ+
a (ζ)ψ

−
b (ζ) (5.44)

is a matrix which is independent of x0 ∈ P1. Recall that ψ−
a is simply ψ+

a with  h replaced
by − h. We compute the matrix A by evaluating the right-hand side of (5.44) as x0 → ∞ us-
ing Corollaries 5.9 and 5.10. For b 6= a or for b = a but ζ not approaching Qa, we have
ψ+
a (z)ψ

−
b (z) = O(1/x0) as x0 → ∞. Therefore A is a diagonal matrix and the only term sur-

viving for a = b is the one corresponding to ζ → Qa: it involves the product of constants
Ca,a · Ca,a| h 7→− h which is always 1. Thus: A = Id. �

Definition 5.18. The correlators are defined at least as formal series in  h as

ωn(ζ1, . . . , ζn) =
∑
g>0

 h2g−2+nωg,n(ζ1, . . . , ζn).

The disconnected correlators are then defined as formal Laurent series in  h

ω•n(ζ1, . . . , ζn) =
∑

L`[n]

∏
L∈L

ω|L|(ζL).

Proposition 5.19. For the Gaiotto or the CDO spectral curve, we have for n > 2

ωn(ζ1, . . . , ζn) = (−1)n+1
∑

σ=n-cycle

n∏
i=1

K(ζi, ζσ(i))

5There is a missing minus sign in [BE12, Theorem 8.3] — compare to [BE12, Proposition 3.5] where the sign appears
correctly.
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in terms of the bispinor of Proposition 5.17. For n = 1, the bispinor is singular on the diagonal so this
formula would not make sense, but a regularisation of it holds

ω1(ζ) =  h−1ω0,1(ζ) +

(
lim
ζ′→ζ

ψ(ζ ′, ζ)e− h−1
∫ζ′
ζ ω0,1√

dx(ζ)dx(ζ ′)
−

1
x(ζ) − x(ζ ′)

)
dx(ζ).

For the disconnected correlators, this leads to the determinantal formulae

ω•n(ζ1, . . . , ζn) = : det
16i,j6n

K(ζi, ζj) : ,

where the colons indicate that all factors K(ζi, ζi) appearing in the determinant should be re-
placed byω1(ζi).

Proof. For n = 1 this is e.g. [BE12, Lemma 8.1]. For n > 2 this is [BE12, Theorem 8.1] condition-
ally to [BE12, Conjecture 7.4], but the conjecture holds in our case as explained in the proof of
Proposition 5.17. Alternatively: the determinantal formulae are known by [ABDB+23, Section
3.1 and 3.2] to be equivalent to the  h-KP integrability stated in Proposition 5.15. �

Remark 5.20. In the Gaiotto case, Propositions 5.17 and 5.19 together with the comment after
Proposition 5.11 would offer a complete description of the correlators ωn as analytic functions
of  h, if the constants Ba,b of Corollary 5.10 could be explicitly computed. In the CDO case, one
should rather use Proposition 5.13 for the analytic description, but again, the constants Ba,b

of Corollary 5.10 would have to be computed. These constants are expressed in terms of the
connection coefficients ψ̃+

a (Qb) and have to do with the way the wave function computed by
topological recursion is normalised. As of writing, we do not know how to obtain a description
of the connection coefficients as analytic functions of  h or how to compute them, but we will
relate them to the topological recursion free energies in Proposition 5.21.

5.5. Free energies

5.5.1. IN TOPOLOGICAL RECURSION

A. Definition. Given a spectral curve (S, x,y,ω0,2), besides the correlators, the topological re-
cursion also has a natural definition of free energies Fg = ωg,0 [EO09]:

∀g ∈ Z>2 Fg =
1

2 − 2g

∑
ρ∈Ram

Res
ζ=ρ

[(
1
2

∫ζ
σρ(ζ)

ω0,1

)
ωg,1(ζ)

]
. (5.45)

The free energies F0 and F1 are defined differently, see [EO09].

B. Deformations. The free energies satisfy a functional equation that relate them to the connec-
tion matrix ψ̃+

a (Qb) that appeared in Definition 5.8 and Corollary 5.9 or 5.10.

Proposition 5.21. Let Fg = Fg(Q) be the topological free energies of the Gaiotto or the CDO spectral
curve, seen as functions of the charges Q = (Q1, . . . ,Qr). Denote e1, . . . , er the canonical basis of Cr.
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For any a 6= b,

ψ̃+
a (Qb) = ψ̃

−
b (Qa) = exp

∑
g>2

 h2g−2(Fg(Q +  h(eb − ea)) − Fg(Q)
) .

Proof. We use the properties of the topological recursion under deformations of spectral curves.
For a ∈ [r], we introduce the operator

∇af =
d

dQa
f
∣∣∣
x fixed

,

which acts on functions or n-differentials on the Gaiotto (or CDO) curve. In contrast, we will
use ∂Qa to denote the partial derivative at fixed ζ. Sinceω0,1(ζ) = ζd ln x(ζ) in both the Gaiotto
or the CDO case, we compute

Ωa(ζ) := ∇Qaω0,1(ζ) = −(∂Qa ln x)dz =
dz

Qa − z
=

∫∞
Qa

ω0,2(z, ·),

where we recall that ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1−ζ2)2 . By [EO07, Theorem 5.1], we have for any (g,m) ∈
Z2
>0

∇Qaωg,m(ζ1, . . . , ζm) =

∫∞
Qa

ωg,m+1(·, ζ1, . . . , ζm), (5.46)

where for (g,m) = (0, 0) one should use in the right-hand side the regularised integral of ω0,1

from Definition 5.6. The x-projection of the integration path from ζ ′ = Qa to ζ ′ = ∞ is a loop
based at x = ∞. Therefore, deforming Qa does not act on the integration contour and we can
iterate (5.46) to obtain for anym ∈ Z>0

∇nQaωg,m(ζ1, . . . , ζm) =

∫∞
Qa

· · ·
∫∞
Qa

ωg,m+n(·, ζ1, . . . , ζm).

The same formulae hold for ∇Qb − ∇Qa if we rather use the integration from Qb to Qa. We
apply this to Fg = ωg,m=0 for g > 2. These are analytic functions of Q1, . . . ,Qr in the domain
where they are pairwise distinct, and by Taylor expansion we find

Fg
(
Q +  h(eb − ea)

)
= Fg(Q) +

∞∑
n=1

 hn

n!

∫Qa
Qb

· · ·
∫Qa
Qb

ωg,n.

Multiplying by  h2g−2 and summing over g > 2 gives the claim after comparison with Defini-
tion 5.8. �

In view of Propositions 5.17-5.19 and 5.21 it would be interesting to find the Stokes matrices,
the connection coefficients ψ̃+

a (Qb) and perform the resurgence analysis for the solutions of the
differential equations of Propositions 5.11-5.12. In particular, this would give analytic solutions
that can be used for non-perturbative (with respect to  h) computations of the wave functions,
the bispinor, the correlators and the free energies. Conversely, if we had closed formulae for the
free energies, we could obtain information about the connection coefficients ψ̃+

a (Qb).
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5.5.2. IN GAUGE THEORY

The instanton (or non-perturbative) part of the Nekrasov partition function is obtained from
the Gaiotto vector by computed the square-norm:

ZNek = 〈ΓΛ|ΓΛ〉

The full partition function of the underlying N = 2 supersymmetric gauge theory also has a
perturbative part:

ZNek = exp

∑
g>0

 h2g−2F
pert
g

 · ZNek

The expression for the perturbative part can be found in [NO06, Equation 3.5 and 3.8] — see also
[NY03], but beware of the opposite global sign compared to [NO06]. To compare our notations
and the notations between the different references: our r is also r in [NY03] butN in [NO06], our
 h is their  h2 (the transformation was already met in (5.21)), our (Q1, . . . ,Qr) is their (a1, . . . ,ar),
and comparing the UV limit of the Gaiotto curve (2.13) with their Seiberg–Witten curve, our Λr

is their (−1)N+1ΛN. With our notations, the expressions in [NO06] yield

F
pert
0 =

∑
16a<b6r

(Qa −Qb)
2
[

3
2
+

1
2

ln
(
−

Λr

(Qa −Qb)2

)]
,

F
pert
1 = −

∑
16a<b6r

1
12

ln
(
−

Λr

(Qa −Qb)2

)
,

F
pert
g = −

∑
16a<b6r

2B2g(Qa −Qb)
2−2g

2g(2g− 2)
.

(5.47)

Although the Whittaker vectors have been normalised in (2.7) to have no constant terms, a more
natural normalisation from the topological recursion perspective would be

|Γ̃Λ〉 = exp

∑
g>0

 hg−1Fg

 |ΓΛ〉 ,

where Fg are the free energies of the spectral curve. This would give

〈Γ̃Λ|Γ̃Λ〉 = exp

∑
g>0

 hg−12Fg

ZNek.

We expect that this agrees with the partition function of the supersymmetric gauge theory —
up to the change  h 7→  h2 already met in (5.21). In other words, we expect

∀g ∈ Z>0 F
pert
g = 2Fg. (5.48)

5.5.3. COMPARISONS AND CONJECTURES

The Gaiotto and CDO curves for r = 2 already appeared in disguise in [IKT19], where their
topological recursion free energies are computed. In the Gaiotto case, the results match the
expectation from (5.47)-(5.48).
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Proposition 5.22. For the r = 2 Gaiotto curve (3.7), we have

F0 =
3
4
(Q1 −Q2)

2 +
(Q1 −Q2)

2

4
ln
(

Λ2

(Q1 −Q2)2

)
,

F1 = −
1

24
ln
(

Λ2

(Q1 −Q2)2

)
,

and for g > 2

Fg = −
B2g(Q1 −Q2)

2−2g

2g(2g− 2)
.

Proposition 5.23. For the r = 2 CDO curve (4.5), we have

F0 =
3
4
(
(P1 − P2)

2 − (Q1 − P1)
2 − (Q1 − P2)

2)+ 1
4

[
(P1 − P2)

2 ln
(

Λ2

(P1 − P2)2

)
−(Q1 − P1)

2 ln
(

Λ2

(Q1 − P1)2

)
− (Q1 − P2)

2 ln
(

Λ2

(Q1 − P2)2

)]
F1 =

1
24

ln
(

Λ2(P1 − P2)
2

(Q1 − P1)2(Q1 − P2)2

)
,

and for g > 2:

Fg =
B2g

2g(2g− 2)
(
(Q1 + P1)

2−2g + (Q1 + P2)
2−2g − (P1 − P2)

2−2g) .

Proof. Up to a change of variables, the Gaiotto curve coincides with the Bessel curve with the
parameter λ0 = Q1−Q2

2 , cf. [IKT19, Table 1.2 and Section 2.3.5]6. Taking into account the extra
minus sign in the definition of the Fg in (5.45) and the Λ in the Gaiotto curve gives the result.
Likewise, up to a change of variables, the CDO curve is identified with the Kummer curve with
λ0 = P1−P2

2 and λ∞ = Q1 − P1+P2
2 , for which the free energy appears in [IKT19, Table 1.1 and

Table 1.2]. �

For r > 2, closed formulae for the topological free energy for the Gaiotto or the CDO curves are
not available. Based on the expectation (5.47)-(5.48) for the Gaiotto curve, we are led to propose
the following conjecture.

Conjecture 5.24. For the Gaiotto curve, we have

F0 =
∑

16a<b6r

3
4
(Qa −Qb)

2 +
1
4
(Qa −Qb)

2 ln
(

Λr

(Qa −Qb)2

)
,

F1 = −
∑

16a<b6r

1
24

ln
(

Λr

(Qa −Qb)2

)
,

and for g > 2:

Fg = −
B2g

2g(2g− 2)

∑
16a<b6r−1

(Qa −Qb)
2−2g.

6Note that the Bessel curve is defined as y2 =
x+4λ2

0
4x2 in [IKT19, Section 2.3.5], but there is a typo in [IKT19, Table

1.1] where the curve appears as y2 =
x+λ2

0
4x2 .
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