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THE FACTORIAL GROWTH OF TOPOLOGICAL RECURSION

GAETAN BOROT, BERTRAND EYNARD, AND ALESSANDRO GIACCHETTO

ABSTRACT. We show that the n-point, genus-g correlation functions of topological recursion on
any regular spectral curve with simple ramifications grow at most like (2g —2 4+ n)!'as g — oo,
which is the expected growth rate. This provides, in particular, an upper bound for many curve
counting problems in large genus and serves as a preliminary step for a resurgence analysis.
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1. INTRODUCTION

1.1. Incipit

The enumerative theory of Riemann surfaces spans a rich landscape of disciplines, includ-
ing algebraic geometry, combinatorics, and theoretical physics. Problems such as computing
volumes of moduli spaces of curves and intersection numbers, enumerating covers or triangu-
lations of Riemann surfaces, and computing correlation functions in 2D quantum gravity and
topological string theory, among others, share many interrelations and common structures.
In particular, their complexity escalates rapidly with the genus. In quantum field theory, the
growth is typically factorial in the number of loops, whereas in string theory, the contribu-
tion of worldsheets of genus g is expected to be of order (2g)!. In the same complexity class,
one finds the problem of computing topological expansions of correlation functions in ran-
dom matrix theory, various supersymmetric gauge theories, and the semiclassical expansion
of solutions to Lax-integrable PDEs.

In mathematics, the computation of Weil-Petersson volumes of the moduli space of hyper-
bolic surfaces of genus g provides a model situation. In the early 2000s, Grushevsky and
Schumacher-Trapani [Gru01; ST01] established a (2g)! upper bound for the large genus Weil-
Petersson volumes. Subsequent advancements by Mirzakhani and Zograf [Zog; MZ15] im-
proved the large genus bound to an asymptotic equivalent, up to a (still conjectural) overall
constant. The Mirzakhani-Zograf asymptotics have gained significant attention due to their
profound implications in random hyperbolic geometry, where some quantities are only ac-
cessible in the large genus limit. Examples include the average value of the systole function
[MP19] and the (still conjectural) typical near-optimal spectral gap [Wri20]. Similar asymptotic
features have been obtained beyond Weil-Petersson volumes, e.g. for Masur—Veech volumes
and Siegel-Veech constants [Agg20; CMSZ20], intersection numbers of \-classes on the mod-
uli space of curves [Agg?21; DGZZ21; EGGGL].

In fact, all these problems are governed by the topological recursion formalism, originating
in the work of Chekhov, Eynard, and Orantin. This formalism provides a recursion on 2g —
2 + n, which is equivalent to a set of Virasoro constraints for the quantities of interest. The
initial data and coefficients of the recursion are determined by the spectral curve. The Virasoro
constraints for the Airy spectral curve were the starting point for the large genus asymptotics
of \P-class intersection numbers derived by Aggarwal [Agg21]. It is natural to ask how the
large genus asymptotics of the topological recursion associated with a general spectral curve
can be determined by a uniform method.

A possible way to approach the problem is through resurgence theory. Resurgence addresses
the large genus asymptotic problem by analysing the singularities of the Borel transform of
the all-genera generating series. The emerging picture is that all the necessary information
concerning these singularities can be deciphered from the geometry of the spectral curve, fol-
lowing the strategy of [EGGGL]. Yet, a prerequisite for the resurgence analysis is determining
the factorial growth rate (also called the Gevrey index) of the genus g coefficient, or at least
establishing an upper bound for it. This allows for the appropriate definition of the Borel
transform and establishes its analyticity in a small disc around the origin in the Borel plane.
While topological recursion is generally expected to exhibit a factorial growth of (2g)!, only a
sub-optimal (5g)! bound has been established so far [Eyn]. The present work justifies the (2g)!
expectation and provides stronger upper bounds that are uniform in g and n.
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1.2. Main results

Consider a spectral curve 8§ = (Z,x,y, wo2), where X is a smooth complex curve, x has finitely
many simple ramification points a € a at which dy is holomorphic, and wyp is a symmetric
meromorphic bi-differential having a double pole on the diagonal and no residue. The out-
put of topological recursion on 8 is a collection of meromorphic symmetric multidifferentials
(Wgmn)(gn) on L™, called correlators, having poles at ramification points and a collection of
numbers (wg ) g>2, called free energies. All definitions will be reviewed in Subsection 2.1.

Main theorem. Let Z be local coordinate in an open set U of £\ a. For any compact K C U, there exist
constants T,B,C > 0 depending on the spectral curve, the local coordinate, and the compact set, such
that the correlators obey an uniform upper bound for any g > 0 and n > 0 such that 29 —2 +n > 0O:

won(zi,...,2n) (83g —3+2n)!
Vzi,...,zn €K LI 1.1
oo in ‘dzm) T dZn(zn) B9 Cn gin! (L1
If we fix n > 0, there exist constants Sy, A > 0 such that
Wgnlzi,...,zn) N2g—2+n)
: <Sh—F—— 1.2
e | <o R (-2

Likewise, for the free energies, there exist constants Sy, Ay depending only on the spectral curve, such
that for any g > 2
I'2g—2)

(1.3)
2g—2
AOg

|wg,0| < S

This result appears in the text as Corollary 5.5 and Theorem 5.6. In applications of topological
recursion to enumerative problems, the quantities of interest can be extracted by computing
generalised periods of the correlators, i.e. (I; ® --- ® I)[wg n] for specific linear forms I; on the
space of meromorphic differentials on L with poles at the ramification points. Under weak
assumptions on these linear forms, the generalised periods satisfy similar bounds (cf. Theo-
rem 5.4). A remarkable consequence is that the generating series in h

2g—2
Zh29_2+“(1 ® - @I [wgnl or Z w@“[w ] (1.4)
1 n gmn Tl' gm .
>0 >0 '
I gx>0

are Gevrey-1. In particular the wave function, obtained when I is the integration along a path
in Z \ a, is Gevrey-1 (Theorem 5.7).

The values we obtain for the exponential growth rate of the upper bounds (the constants
A,B,C) can be computed from the geometry of the spectral curve, but they are not optimal.
As an illustration, a non-exhaustive list of applications is presented in Table 1, and we describe
the corresponding upper bounds with explicit exponential growth rates in Section 6.

1.3. Proof strategy

Our starting point is the expansion of the topological recursion correlators on a natural basis
of meromorphic differential 1-forms:

Wgn (er ceey ZTL) = Z Fg;(al,kl),...,(an,kn) H ‘t—v(ai'ki) (Zi) . (15)

Kk =0 i=1
ai,..,an€a
K14+ +kn<3g—3+n
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Spectral curve Enumerative problem

1-class intersection numbers,

xlz) =7, ylz) =—2/2 metric ribbon graphs

x(z) =22, y(z) = —sin(2nz)/4n Weil-Petersson volumes
W2 =242, ylz) =—z ‘Euler characFerl.stlc of Mg n,
integral metric ribbon graphs
_ 2 _
x(z) =z% ylz) =—-z/2 Masur—Veech volumes
woa(z1,22) = ((zl—lzz)z + Sinz(ﬂ(ﬂ;lizm) dllzdzz of quadratic differentials

x(z) =a+vy(z+z71),

Maps
y(z) = Y it uz ™

. 1 (2) = log(2) stationary Gromov-Witten
= » Ylz) =1og invariants of P!

TABLE 1. Examples of spectral curves with underlying Riemann surface (open
subsets of) £ = C and bi-differential wg3(z1,22) = %,
stated. On the right, the geometric interpretation of the associated amplitudes

or generalised periods.

unless otherwise

The scalars Fy;(q, x,),.,(ankn) Called amplitudes, satisfy a recursion that takes the form of an
Airy structure and corresponds to Virasoro constraints. The amplitudes can be explicitly com-
puted from the germs of x,y, wp> near the ramification points (Section 2). In order to bound
such amplitudes, we rely on exponential bounds on the expansion coefficients of x,y, wo.
This “boundedness” property is identified in Definition 2.11; it is automatically satisfied by
spectral curves, but is an additional assumption if one works with local spectral curves (i.e. £
is only a formal neighbourhood of a). It holds, for instance, for local spectral curves associated

with semi-simple points of Frobenius manifolds.

A central role in our analysis is played by the Painlevé I spectral curve, whose associated
amplitudes have a simple exponential dependence on the indices. For an arbitrary spectral
curve or a bounded local spectral curve, the general amplitudes are bounded from above by
exponentials, thus implying an upper bound by the Painlevé I amplitudes (Section 3).

By the well-known relation between topological recursion and intersection theory on Mg,n/ the
Painlevé I amplitudes can be expressed in terms of \-class intersections (Section 4). For the lat-
ter, we employed a uniform upper bound provided by Aggarwal which implies a %-
type bound for the Painlevé I amplitudes. For fixed n, this can be recast as a I'(2g —2 + n)
bound. The proof can be adapted to obtain the same type of bounds for geometric series of
the form 3, , - ykittkn Fgl;kl,...,kn' The evaluation of correlators in local coordinates or
the computation of generalised periods can be bounded from above by analogous geometric

series. This yields the final results of Section 5.

1.4. Comments

A similar proof strategy can be implemented to obtain a lower bound. More precisely, for
spectral curves producing non-negative amplitudes, we can provide a lower bound using the
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Airy or Painlevé I amplitudes (cf. Subsection 3.2). This gives (2g)! lower bounds, but with
much less uniformity and an exponential growth rate that does not match the upper bound.

Regarding the optimality of our upper bounds, we have not attempted (and it seems rather
difficult with our method) to derive upper bounds with a completely optimal exponential
growth rate (the constants A in Section 5). Power-law factors like g* have been ignored, some-
times at the cost of increasing the exponential growth rate and the constant prefactor. Besides,
when there are several ramification points, the bounds we use are rather crude and the method
may be improved by analysing directly the sum over stable graphs that expresses Fg.«; .., «, in
terms of amplitudes of spectral curves with a single ramification point. Accordingly, the con-
stant prefactor we obtain (the constant S in Section 5) has little significance. Nonetheless, the
value of the constant A provides a lower bound for the absolute value of the closest singularity
to the origin in the Borel plane of the corresponding n-point function.

It is worth mentioning that, if exact asymptotics and matching uniform upper bounds were
known for the Painlevé I amplitudes, this would slightly improve our Propositions 4.5 and 4.6
and thus the upper bounds for general spectral curves. At present, only the exact asymptotics
of the Painlevé I free energies are known, thanks to the work of Kapaev [Kap04]. We show in
Subsection 4.4 that the upper bound we obtained is not far from the exact asymptotics. In pass-
ing, we note that Kapaev’s formula yields exact large genus asymptotics for the intersection
numbers (ngf3> g (Proposition 4.7), which is not covered by Aggarwal’s result [Agg21].

To conclude, our method could be adapted to treat irregular spectral curves if one had a suffi-
ciently good uniform upper bound for the intersection numbers

J Ogn Wil ---PKn (1.6)
Mg/n

where Q4 , is Norbury’s class [Nor23; CGG]. This would be the analogue for the © class of
the uniform bound (4.20) proved in [Agg?21, Proposition 1.2]. However, new techniques would
be needed to handle spectral curves with non-simple ramifications, such as intersections with
Witten r-spin. Indeed, in this case, we do not know how to upper bound the associated ampli-
tudes (corresponding to W-constraints rather than Virasoro constraints) by those of reference
spectral curves, as the latter do not have constant sign. Note that the exact asymptotics of
O-class or Witten r-spin class intersections with -classes found in [EGGGL] would not be
sufficient in either case, since we require uniform upper bounds instead.
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2. TOPOLOGICAL RECURSION: CORRELATORS AND AMPLITUDES

2.1. Spectral curves and topological recursion

Definition 2.1 ([EOO07]). For us, a spectral curve is a quadruple 8§ = (X, x,y, wo2) consisting of

e a smooth complex curve Z;

e two (possibly multi-valued and ill-defined at isolated points) functions x and y such
that dx and dy are meromorphic;

e a symmetric bidifferential wg> on £ x £, whose only singularity is a double pole on the
diagonal with biresidue 1.

We denote by a the set of zeroes of dx, which we assume to be finite. We also assume that all
zeroes are simple. A particularly nice class of spectral curves is that of reqular spectral curves,
for which y is holomorphic at every a € a and dy(a) # 0.

The assumptions on the functions x and y cover for instance the case they have logarithmic
singularities. We do not consider the case of log-vital singularities treated in [ABDKS]. We
also do not consider the case of irregular spectral curves [DN18], nor ramification points of
higher order [BHLMR14; BE13].

Given a regular spectral curve, the topological recursion produces a sequence of meromorphic
symmetric multidifferentials wy » on L™, indexed by (g,n) € Z>0 x Z~ and called correlators.

Definition 2.2. We set wg; = ydx, while wy is part of the datum of a spectral curve, and the
remaining correlators are defined by induction on 2g — 2 +n > 0 via the formula

Wgn(zi,...,zZn) = Z E{_e(s1 Kal(z1,2) <w91,n+1(z, 0alz),22,...,2n)
aca”
no (0,1)

+ Z Wg, 14171 (2 27 )Wg, 1417,/ (0a(2), 21,) >, (2.1)

g1+92=9g
Jiu]2={2,...n}

The K, are called recursion kernels, they are locally defined in a neighbourhood U, of a € a as
% J-(Z)'a(z) (U(),Z(Z], )
(y(z) —y(oa(z)))dx(z)’

where 04: Ug — U, is the Galois involution near the simple ramification point a € U, i.e.
the non-trivial holomorphic map such that x o o4 = x.

Kal(z1,2) = (2.2)

It can be shown that wg is symmetric in its n variables with vanishing residues, and for
2g —2+mn > 0it has poles only at the ramification points of order at most 6g — 4 + 2n. In other
words:

Gn
Wgn € H0<Z“, Kz ((6g — 4+ 2n)a) x“) ) 2.3)
where Ky is the canonical divisor and a is interpreted as the ramification divisor of the mero-

morphic function x. Besides, the correlators have no residues at the ramification points.

It is also possible to define correlators for n = 0, which are usually denoted as Fg = wg 0.

Definition 2.3. We define a collection of scalars (Fg)g>2, called free energies, by the formula

1 z
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We will not consider Fy and Fq here.

The free energies are examples of generalised periods. In applications of topological recursion
to enumerative geometry, the enumerative information is often stored in generalised periods.
These are obtained by application of a multilinear form

RN

L ® - ®Ih € (H(Z, Kg(xa))*) (2.5)
to the correlators wg .. Besides free energies, which correspond to the linear form
z
Fw— Z Res (J y dx) w(z), (2.6)
zZ=a a

aca

other prominent examples of generalised periods include monomials in the following linear
operators.

e The expansion coefficients near a point p € X \ a. These are obtained by applying the
linear form

w(z)
Lpy): wr— Bzeg X<(2) ° (2.7)
Here X is a local coordinate centred at p such that
X~drdX dp #1
dx = ax 7 ,  where dj:=—ord,dxand cp :=Res dx. (2.8)
Cp X dp =1 P
e The evaluation in a local coordinate Z around a pointp € X \ q, i.e.
w(z) w(z)
ev :w— Res = , 29
(2p) 58 720 —-z0p) 4z, 23)
e A generalisation of both I, i) and the evaluation ev z ) is
I(zpx): W Res w(z) (2.10)

z=p (Z(z) = Z(p))*’

where Z is a local coordinate around a point p € X\ a. It extracts the (k—1)-th coefficient
of expansion in the local coordinate Z.
e The integration along a path vy in £ \ a between two points:

J:w+—>J w. (2.11)
Y Y
The linear operator I, i) appears naturally in various applications, such as Hurwitz theory.
The integration along a path is used to define the wave function.

Definition 2.4. Given a base point zy € £\ a and x > —1, we introduce the (possibly multival-
ued) meromorphic functions of z € X:

z
fzy,—1(2) = J ydx,

20

fz,0(2) = lj J <wo,2(W1,wz) _ _dx(wa)dx(ws) ) ’

2 wi=z9 Jwyr=zg (X(Wl)_X(WZ))Z

1 (% z
fzo,x(z) = Z EJ J Wgmn, fOI'X>0.

cJzg Z0

g=0, n>0 . ,
2g—2+m=x n times

(2.12)
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In the formula for f,, 4, a suitable regularisation of | ZO y dx should be used if one chooses z
to be a non-integrable singularity of ydx. The wave function is the formal series of exponential
type in h defined as

P, (z; 1) = exp ( Z hX fZO,X(z)> . (2.13)

x=—1

Equivalently, since the correlators for 2g — 2 + n > 0 have no residues, the expressions in
(2.12) can be considered as meromorphic functions of points zy, z in the universal cover of X.
If 11 (£) = {id } (for instance, if £ = P!) the functions f2yx for x = 1 are actually meromorphic
functions of zg,z € L. If m(X) # {0}, they are multivalued and in fact (2.13) is not the ‘right’
function to look at. If X is a Riemann surface of positive genus, a better-behaved quantity is the
‘non-perturbative wave function” [EM11; BE12; EGMO24]. Discussing it is beyond the scope
of this article.

2.2. Quantum Airy structures

The approach to topological recursion proposed by Kontsevich and Soibelman [KS18] (see also
[ABCO24]) starts from a collection of at most quadratic differential operators (L) xe2 forming
a Lie subalgebra of the Weyl algebra, and constructs a unique formal power series in h that is
annihilated simultaneously by all these differential operators.

Definition 2.5. Let V be a (possibly infinite-dimensional) vector space over C. Fix a basis
(ea)xe of Vand let (x*) 4o be the dual basis. Define the Weyl algebra as

Wr (V) = CIh] (x*,d0) went) / ([0, xP] = 15B) . (2.14)

A quantum Airy structure on V is a collection (L) xe2 of elements of Wi, (V) of the form

1 1
Lo =hda— 3 <§A“,u,vxuxv +BY, XMy + E(:t;fvauay> —hDq (2.15)
pnved

that forms a Lie subalgebra of Wy (V), that is

Lo Lpl=h ) fhaLy. (2.16)
pel

for some scalars f;‘clﬁ. In this definition, we can always assume that Ay, = Ay, and

C E{Y = CZ"B. Moreover, if V is infinite-dimensional, the coefficients have to satisfy some
vanishing properties for the next result to make sense and be valid. For all the applications
we have in mind, it suffices to require that the set 2 comes with a surjection with finite fibres
N: — Z>pand d € Z3( such that

N(ex) + N(B)+ N(y) >d = Axpy =0,
N(a) +N(B)=N(y)>d =  Bl,=0,
' (2.17)
N(a) =N(B)—N(y)>d =  CB¥=0,
N(x) >d = Dy =0.

As stressed above, the main feature of quantum Airy structures is the existence of a unique
partition function annihilated by the operators (Ly)xes-
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Theorem 2.6 ([KS18]). There exists a unique formal series in h of exponential type of the form

h9—1
Z(x;h) =exp Z o Z Fgiogq, o X5 xm (2.18)
g=0,n>0 ’ K1 eey B €A
2g—24+n>0

such that the scalars Fg.q, .., o, called amplitudes, are symmetric under the permutation of the indices
x1,...,0n and

Vaed  Lo-Z(xh)=0. (2.19)

Moreover, the amplitudes are uniquely determined by the following recursion on 29 —2 +n > 0:

n
— E E I g
Fg}(xlwvfxn - Bocl,ocmFg;u,cxz,...,cxm,...,ocn

m=2 pneA
2.20
1 Y ( :
+ 2 Z chl Fo—tuv,emom + Z Fointi Fava |/
w,ved g1+9g2=g

LiuTp={o,..,0n}

together with the initial conditions Fo,« = Fo,a.p = 0, Fo,py = Awp,y, and P, = Dy. In the
infinite-dimensional setting of Definition 2.5, one can show that for each (g, n) there exists dgn such
that

N(otr) + -+ Nlotn) > dgn = Fg;oq,mon = 0. (2.21)

In other words, for a fixed (g, n) there are only finitely many non-vanishing amplitudes.

Consider now a regular spectral curve 8. Following [ABCO24] (see also [KS18]) we describe
a quantum Airy structure whose amplitudes give the decomposition coefficients of the topo-
logical recursion correlators on a suitable basis of differentials. The characterisation of these
decomposition coefficients by Theorem 2.6 is then equivalent to Virasoro constraints.

Let 2 := a x Z3p. Choose local coordinates (, on a neighbourhood U, C X of a such that
lala)=0 and  x(z)=x(a) + {a(2)?. (2.22)

We consider the meromorphic differentials (£*) xeg on I defined for « = (a, i) by

£(00(2) o Res <JW e _)> _@FDE 4. (2.23)

w=a \Ja (Ca(w))H+277¢

Define also in a small enough neighbourhood U, of a the meromorphic functions and the
inverse of a 1-form

e(a)(z) = w 0a(z) = 2 . (2.24)
(2t + D! (y(2) —yloa(2)))dx(z)
We extend e (4 i)(z) to zero on Uy, for b # a. We can then define the tensors
Axpy = E{:eg Oa(z) ex(z) deg(z)dey(z),
Blp == Res 0a(z) ea(z) dep(2) £7(2),
CEY = Res 0a(z) ealz) €% (2) 7 (2), @2)
Do =010 (9(;0) P (a,0),(a0) T eg'”) + 51,19(220) ,
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for « = (a,i). In the definition of D, the coefficients are given by the expansion of 6, and
Wop,2 as

o) 1
0a(z) zga (Z 9((1,‘m) Ca(z)z 2) di.(2) ’

m=0
wop(z1,22) &~ Sy, 5 + non-even holomorphic (2.26)
233; (Cal(z’l) — Cay(22))

+ Z d)(al,ml),(az,mz) Ca, (z1 )2m1 Cay (22)2m2> d(:al (z1) dCaz (z2).
my,mp >0

The symbol ~ means an all-order equality of the series expansion in the specified regime. In

the last formula, ‘non-even holomorphic” refer to terms with non-negative powers of (q,(z1)

or (q,(2z2), at least one of them being odd. One can check that with the natural projection

N: 2 — Z>o and choosing d = 2, the vanishing conditions (2.17) are met.

Proposition 2.7 ([ABCO24]). The tensors (A,B, C, D) defined by Equation (2.25) form a quantum
Airy structure on the vector space with basis (ex)xec9. Besides, the topological recursion correlators

satisfy

n
Wgn (er ceey Zn) = Z Fg;cxl,...,cxn H E(xi (Zi) ’ (227)
0] ,eeey X €L i=1

and the sum is finite: Fg.o, . o, vANishes if kg + -+ +kn > dgn =39 — 3 + 1, with o; = (ai, ki).

The quantum Airy structure (2.25) has an explicit presentation in terms of the expansion coef-
ficients (2.26). Indeed, the expansion of the differentials £%!)(z) around an arbitrary ramifica-
tion point z = b is given by (cf. [Eyn14, Equation (4.8)])

w A4+ . .
glai)(y) R (6‘1'1’# +(2i—1)! Z ®(ai),(b,j)Cb (2)¥ 4 odd holomorphm) dip(z),

i=20
(2.28)
with the convention that (—1)!! = 1. Moreover, by direct computation, one finds the following
expression for the quantum Airy structure, expressed in terms of the multi-index Kronecker
delta: 84,,.,«, equals 1if ; = --- = oy and 0 otherwise.

Proposition 2.8. The quantum Airy structure defined by Equation (2.25) is given in terms of the
expansion coefficients of (0« ) and (Go,p)«,p by the following formulae:

Ay =0ab,e04ik00(a0)/
(2k + 1)t
BZC,B =da,b,c O(ak—i—j+1) i 1)@ — 1) + 04,6 04,5,00(q,0) P(a,0),(c, k) (2k — D!,

(2j + 1)11(2k + 1)!!

(2 + 112k — 1)1
Qi+ DN

+8a Z B(a,m) P(a,m),(cx)

m,m’>0
m+m’=j—i+1

+6a,c Z 9((1,m) d)(a,m’),(b,j)

m,m’>0
m+m’=k—i+1

+81,00(a,0) P(a,0),(b,5) P(a0),(ck) (2] — D2k =11,

(2j — 12k + 1)!!
Qi+ DN
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O(a0
Dy =510 <(T)

O(a) 0(a,0)
b(a,0),(a0) T ; >+51,1 22 ,

where o« = (a,1), B = (b,j), v = (¢, k). By convention 04 ) = 0 for m < 0 and empty sums are
equal to zero.

Although not mentioned in [ABCO24], Proposition 2.7 can also be extended to describe the
topological recursion free energies. More precisely, they are naturally computed in terms of
the expansion coefficients of wg; =y dx, namely

RO CAC P o
0a(z) 2 dx(z) 2Sa (1221 t(q,1)Ca(z) )dCa(Z)« (2.30)

Note that for each a € a and i > 1, the coefficient t(, ;) is a Laurent polynomial in 0, o) and
a polynomial in (8(q))j>1. Conversely, for each a € a and i > 0, the coefficient 0 ) is a
Laurent polynomial in t(41) and a polynomial in (t(q;))j>2- So, the coefficients 6, and t
encode the same information. Inserting (2.27) and (2.30) into the definition (2.4) of the free
energies and using the behaviour of the differentials (2.28), we arrive to the following formula.

Lemma 2.9. For any g > 2, we have

1 .
Fo =553 Z (2t =1 ta1) Fgya,) - (2.31)
(ai)e

By convention, we have set t(q o) = 0.

2.3. Local spectral curves and Frobenius manifolds

Local spectral curves are defined like spectral curves, except that X is taken to be a finite disjoint
union of formal disks £, = SpecC[(q] for a € a centred at the zeros of dx. The data of a
local spectral curve is therefore fully determined by the expansion (2.26) considered as formal
series. All the definitions and properties in Subsections 2.1 and 2.2 continue to make sense in
the weaker setting of local spectral curves (except that the generalised periods have a limited
interest). The quantum Airy structure amplitudes then only depend on the expansion coef-
ficients ty (or 04) and ¢, g, while the topological recursion correlators also depend (via the
differentials £*) on the non-even holomorphic” part of the expansion of wg,. Spectral curves
determine local spectral curves by keeping only the germ at a of x, y and wq, but local spectral
curves do not necessarily come from spectral curves as the formal series may have zero radius
of convergence.

Local spectral curves naturally appear in relation to the ancestor potential of semi-simple
Frobenius manifolds, which is computed by topological recursion on a local spectral curve
[DOSS14]. This correspondence will be recalled in Subsection 4.1 after we introduce the neces-
sary background concerning the moduli space of curves. For the moment, we simply review
the construction of the local spectral curve from the Frobenius manifold. This relies on the
construction of a basis of flat sections for Dubrovin’s extended connection, and we refer to
[Dub96, Lecture 3] for details.

Consider a Frobenius manifold X, with (complex, non-degenerate, flat) metric n, Levi-Civita
connection V, product x on tangent spaces, Euler vector field E, and unit vector field 1. Let us
define sections U, V of End(TX) by

u(y)=ExY, V(Y) = (idrx ®1)(VE®Y). (2.32)
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Let X = X x P! and 7: X — X the natural projection. We identify sections X, Y of m*TX with
vector fields X(z), Y(z) on X that depend on z € P!, so that both VxY and 9,Y make sense.
Then, we have a flat meromorphic connection V on 7t*TX defined by

VUxira.Y = (VxY +2X % Y) 4+ (9, — W(Y) —z7V(Y)) , (2.33)

where f is a function on X and X, Y are sections of 7*TX. This connection has a regular singu-
larity at z = 0 and an irregular singularity at z = co, and we are interested in local bases of flat
sections.

Definition 2.10. A Frobenius manifold is semi-simple at a point p if the tangent space (T, X, %[, )
is a semi-simple algebra.

By the results of [Dub96], near a semi-simple point p there exist local coordinates (14 )qcq With
a:={1,...,dim X}, called canonical, such that 0,,, * 9y, = 84,50v, for any a,b € qa, the unit
isT =) qcaOus,and E = ) o uq0y,. Then U acts diagonally with eigenvalues (uq)aca-
Focusing only on the P!-component of the connection V, there exists a unique formal basis
Y(z) = R(1/z)e*Y of solutions of

0, ¥(z) = U(¥(2)) +z 'V (¥(2)) (2.34)
such that
R(A) € idt,x + A-End(T, X)[A] and R(=MRY(A) = idr,x - (2.35)
We further set T (A) == A(id — R~1(A))1.
Following [DOS514] we proceed with the construction of a local spectral curve. We first set

t(a,1) = VN(0u,, Oy,) for the norm of 9, and let 9,, = tf(lll)aua define the orthonormal
canonical vector fields. We take
= | | SpecC[Cal, xX(Ca) =Pa+ &, (2.36)
aca

and set as usual 2 = a x Z3(. We specify the coefficients t, and ¢ g for o, € A from the
decompositions

idr,x —R7'(A) @ R (p) . . : :
T = ) 2D = DU (a) (65N v © W,
(ai),(bj)e (2.37)
TRA) =AT=— Y (21—t dy,,
(a,i)ed
wherent =) . 0%2 is the co-pairing.

2.4. Boundedness conditions

In order to prove the (2g)! factorial growth of topological recursion amplitudes, we need to
assume a boundedness property on the associated expansion coefficients 0, and ¢4 . As we
will see shortly, boundedness is automatically satisfied by regular spectral curves. However, it
is a non-trivial requirement in the local setting. Nonetheless, we will prove that local spectral
curves associated with Frobenius manifolds satisfy this condition.

Definition 2.11. We say that a (local or not) spectral curve is bounded if there exist positive real
constants M, Mg, Mg, pt, p such that, for any (a, 1), (b,j) € 2A:
M¢ Mo Mg

tan| < 570 Banl<mr Pl < o5 (2.38)
o p p
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Here M, is allowed to be zero.

The second and third inequalities (involving p) will be our starting assumptions to derive
upper bounds on the topological recursion amplitudes. The first inequality (involving p¢) will
only play a role in the derivation of upper bounds for the topological recursion free energies,
as one can expect from Lemma 2.9.

Remark 2.12. There is no order relation between py and p, but the existence of pr > 0 for which the
first inequality holds is equivalent to the existence of p > 0 for which the second inequality holds.

In the remaining part of this section we show that the two main classes of examples of spec-
tral curves considered in this paper, namely regular spectral curves and local spectral curves
associated with Frobenius manifolds, are both bounded.

Lemma 2.13. Regular spectral curves are bounded.

Proof. Let Rq > 0 be the maximum value for which there exists an open neighbourhood Ug, C
L of a with local coordinate (, that maps biholomorphically to the open disc

D(Ra) ={CeC | [(]<Rq}. (2.39)

If dy — o}, dy has a pole in Ug_, we set Ry, to be the distance between a and the closest
such pole (measured in D(R,) with the coordinate (,), otherwise we take Ry~ = Rq. By
construction, (dy — 05 dy)/dl, is a holomorphic 1-form in Ug, , and Cauchy’s inequality in
the corresponding disc D(Rg,—) shows that we can make [t )| satisfy the bound (2.38) for
any choice of p¢ < R%l,—‘ Likewise, if dy — 0%, dy has a zero in Ug_ \ {a}, we set Rq, - to be the
distance between a and the closest such zero, otherwise we set R, + = Ry, and we infer that
we can make |04 ;)| satisfy the bound (2.38) for any choice of p < R%l, . To get the third desired
inequality, we remark that

woa(z1,22) 1 (2.40)

d(:al (Zl)dCaz(ZZ) (Cal(zl) - Ca2(22))2

is a holomorphic function of (z,z5) € URal X URa2. So we can make the corresponding bounds

in (2.38) hold for any choice of positive p < min(R?

ayr R%lz). Therefore, we always have all
bounds in (2.38) for any choice of positive

Pt < I({lelral R%l,_ and p < r({lenc} R%l,+ . (2.41)

O

Lemma 2.14. The local spectral curve associated with a semi-simple point of a Frobenius manifold is
regular and bounded. This property remains true if we replace T (A) with some T(A) € A2.T,X[A]
obeying

max [n(dv,, T (0))| < M*H1k!? (2.42)

aca

forall k > 0 for some M > 0.

Proof. Regularity is clear. For boundedness, the basic idea is that differential equation with
Poincaré rank 1 have at most factorially divergent coefficients [P0i86], and this implies the
well-known fact that Dubrovin’s superpotential are defined in discs of positive radii [Dub96].
Here we propose an uneducated proof.
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Inserting ¥(z) = R(1/ z)e'% with z = A1, we find a differential equation for the R-matrix:
R’(A) = A72[R(A), U] — A~1VR(A). Inserting the expansion R(A) = id + Zk>1 RiAK we get the
recursion

aduRk+1 = —kRk - VRk . (243)

At a semi-simple point U is simple, hence ady is invertible. From (2.43) we deduce the ex-
istence of M > 0 (depending on the point on the Frobenius manifold) such that |[Rix11lleec <
(k+1)M|[R|lo for any k > 0. Letting [Ry]q,b :==n(0v,, Rk (dy,)), this shows |[Rk]a,b‘ < MKkl
We will continue our analysis with a bound of the form

M
|mumws;3§k! (2.44)

R
for some constants Mg, pr > 0. The advantage of doing so is that, when the R-matrix is
explicitly known and an optimal bound of the form (2.44) can be found, we will be able to
track the constants appearing in Definition 2.11.

Let us define &>(a,i),(b,j) = (21 = DM(2j — D' (q,1),(v,j), With the convention that it is zero for
i < 0orj < 0. From the definition of the coefficients ¢ 4 1),(p ;) in (2.37) and taking into account
R™I(A) = RY{(—A), we have

$lai1)b) + Prai) (1) =dabdijo— (—1) Z[Ri]c,a[Rj]c,b ~ (2.45)

cea

Call P(q1),(v,5) the right-hand side of the above equation. Using (2.44), we get the bound
IPlai), (o)) < 8j +lalpg ) M it (2.46)

On the other hand, we can consider (2.45) as a recursion in j with initial data ¢ «,(b0)- Its
solution is given as
~ 3 ~ j
i) i) = DD (it w0 + Z P(qitk+1),(bj—k) - (2.47)
k=0

Specialising (2.37) to p = 0 we also get access to the initial data J)(a,i),(b,o) = (-D'Riz1lb,a-
Combining the bounds for R and P we obtain
. (i541) L
|¢(a,i),(b,j){ < MR pR vl (1+J+1)' <1+|Cl| MRZ (i+j+1)> . (248)
k=0 \ j—k

We bound the second sum by

itj—1

j
1 Bi>1 8525 1
3 <1+ 22+ 220 506100 )

- L (2.49)
= (7 2 2 = (T

The last sum is bounded by % Fori+j+3 > Oitis bounded by % Therefore

3 _ MR(1+}—é|aIMR)(i+j+1)!'

| a,0),(0,5)] < e (2.50)
Pr
We now come back to ¢(q,1),(b,)- Consider the inequality
c s c s i+j
(i+j+ 1)t D L)
(21 —1)"E2j —1)! i!j!(zi‘) (211) (211) (211)
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The function x — 4% (2;‘) for x > 0 is decreasing, hence 4~ (2;‘) < 1 for any x > 0. The
function x — 47%/mt(x + 1/2) (2;‘) is also decreasing and tends to 1 as x — oo, hence is lower
bounded by 1 for any x > 0. Therefore
i+5+ 1)
2i—1D"E2j—1n!

<2m(i+j+1)V i+ 1/2)G 4+ 1/2) < m(i+j+1)% < me2e2e(HH1+1-2 (2 52)

for any € > 0. Therefore |d)(a,i),(b,j)| <My p;i*j where we can take

me?¢ Mg(1+ 13 lal Mg)

—2e
= , My = . 2.53
Py =€ “°pRr * = (ee)? or (2.53)
Furthermore, the choice Tgr(A) = A(id — R™1(A))1 and the definition of the coefficients ty yield
(20— Dltt(q) = (1) Y Ri 1lea. (2.54)
cea
. . [a|M M

Then, fori > 1, we find [t(q1)| < iéi—)pRR < e with

Pt = 4R, M = V/tla| Mg o5 - (2.55)

A similar argument yields the inequality [t(q 1)) < Mpy " ! for some My, py > 0. The same
inequality holds if we replace Tg(A) with any T(A) € O(A?) satisfying (2.42). By Remark 2.12 we
deduce the existence of Mg, pg > 0 such that [0 ) | < Mg pe_i_l. Then the desired inequalities
follow, after choosing p = min{ pg, pr }- O

3. COMPARING AIRY STRUCTURES AND AMPLITUDES

3.1. Upper bounds

Consider the 1-parameter family of spectral curves 8P(u) on £ = P!, called the Painlevé I
spectral curve, given by

dZ1dZ2
(z1 —22)%
It is the spectral curve of the (3,2)-minimal model, which occurs in the study of pure 2D grav-
ity (see for instance [CED18]). Moreover, its free energies are known to compute the formal
asymptotics of the solution of Painlevé I (PI for short) equation, see [BBE15; IS16]. This para-

2

x(z) = z- —2u, y(z) = 22 —3uz, wop2(z1,22) = (3.1)

graph aims at showing that the amplitudes for any bounded spectral curve are dominated by
the PI amplitudes (Corollary 3.3).

To this end, we start by computing the quantum Airy structure associated with 8PI(u). Since
the spectral curve has only one ramification point at a = 0, we omit its dependence from the
associated quantum Airy structure. In other words, we identify A = {0} x Z>o with Z>y.
Applying the formulae of Subsection 2.2, we find the following expressions.

Lemma 3.1. The quantum Airy structure ("'A, 1B, IC,PID)(u) associated with SP' () is given by

& s
PIA () = 21()3111)0 ,
FIB, ) = 5 a0 (2k + D!
. 2(3u)< T2 2+ URj — 1 (3.2)
PLCIK(y) = Dirkotezzo (24 D2k + DY .

L T @R T i

1 6. 6.

PI 0 i1

D- LL = — .
i 2 <8(3u)2 24(3u)>
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All the coefficients are weakly decreasing functions of u € R~o.

The main interest of these formulae is to allow a direct comparison with the quantum Airy
structure of arbitrary spectral curves.

Lemma 3.2. Let (A, B, C, D) be the quantum Airy structure associated with a bounded spectral curve
8. Then for any o = (a,1), = (b,j), vy = (¢, k) € A:

Q Al] k( )
Q - PIBX (w),
Q-FICH (),
Q : PIDi(u) s
where we can take Q = 2Mg max { (1 + pM,)?, 1+ 4pMg } and u = 374/3p,

N

B, bl
|7
Ded

//\

(3.3)

/N //\

Proof. The tensors (A, B, C, D) were computed in Proposition 2.8. For the A-case, we have

M
|Ac8y| =8ab,c 815100000 < 0ijk0 Te =2Mo - ALk (2). (3.4)
Similarly for the B-case, for which we have
Mg 2k + 1! MeMy,
BY | <8abedkijiizo o (2 1)1 — DN +8a,b 83,0 W(Zk— nu (35)

< 2Mp (14 pMg) - "BE;(5).
The C-case is slightly more involved:

Mo (2§ + 12k + 1)
B, o 0 )
|C“y| < 6a,b,c 6]+k—1+2>0 pj+k*i+3 (21 + 1)”
MeMg  (2j + 1)I(2k — 1)1t
+8ap8i-irizo ) oA (24 4+ D)

m,m’>0
m+m’=j—i+1
MgM 2j — D2k + 1! (3.6)
45 5 s Z 0/Vip ( ) )( + )
a,c Ok—i+1>0 L pmm/ 15Kk (214 D!
mam/=k—i+1
MoM3

+ 810 W(2) — N2k — 1),

The sum of the first and last lines is bounded by (2Mg +2p?*Mg M%b) . PIC{'k (%), while the sum
of the second and third lines is bounded by

MeMy (2j +DM2k+D)!, . . .
6j+kfi+220 pj+k—i+2 (21 + 1)” ((] —1+ 2) + (k —1+ 2)) . (37)

Ifj+k—i+2>0wehave (j—i+2)+(k—i+2) <2(+k—1i+2) <2.30+k-14+2)/3 Tt
follows that (3.7) is bounded by

2MeMg (2§ + D)2k 4+ 1)

o Plik(a—4/3
Oj+k—i+20 (3-1/3 )i Tk—i72 Qi <4pMgMy, - CyT (37 7p). (3.8)

Since u PICi’k(u) are decreasing functions of u, we obtain |C B Y| 2Mg (1 + pM¢)2
PIC]i'k(3*4/ 3p). Finally, for the D-case we find

IDu| < 2Mg (1 +4Mgp) - "'Di(§). (3.9)
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We conclude by choosing Q = 2Mg max {(1 + pM¢)2, 1+4pMy, }, u=23%3p, and using the
fact that the coefficients of ’'A, P1B, PID are weakly decreasing functions of u. O

Corollary 3.3 (Upper bound by PI amplitudes). Consider a bounded spectral curve. The corre-
sponding amplitudes T, ... o, Satisfy for 2g —2+n > 0and o; = (ay, ki) € A

Faior oo | <1aPIT3FMQAI72FMELL 1 (). (3.10)

with constants Q,w > 0 from Lemma 3.2.

Proof of Corollary 3.3. We proceed by induction on 2g — 2 4+ n. For the base cases, Lemma 3.2
yields

‘FO;cx,B,V‘ = ‘Acx,ﬁ,y| < Q'PIAi,j,k(u)/ ‘Fl,‘oc| = ‘Dcx| < Q'PIDi(u) < |a|'Q'PIDi(u) . (311)

For the general case, we start from the recursion equation (2.20):

Foorn € 3 3 (Bl [Fommmn i

m=2 pneA
1
+ 2 Z |C§'1V <‘F9—1;u,v,ocz.-~,ocn‘ + Z |F91;H,A1| ’ |F92}V,Az‘>
nvedA g1+92=9
A1UA={g,..., 0 }
n
PI 3g—3+n—1 2g—2+n—1  gPI -
<D 2 QB )l Q Forikamtn (W
m=2 pneA
u—(a i)
+ - Z Q PIcl] |a|3973+n72 . Q2972+n71
wvedA
p=(ai)
v=(b,j)
PI PI PI
X <Fg—1;i,j,k2...,kn (u) + Z Fouik, (W Fgik, (u))
g1+92=9g

K]UKzz{kz,...,kn}
_ |a|3g—3+n QZQ —2+n Fg ik (u).
(3.12)

The first inequality is simply the triangular inequality, the second inequality is a combination
of Lemma 3.2 and the induction hypothesis, the last equality is the recursive definition of the
PI amplitudes Fgl;kl,‘.‘,kn (u). O

3.2. Lower bounds
In this section we provide a lower bound for the amplitudes of spectral curves satisfying a
positivity condition.
Definition 3.4. A regular spectral curve 8 is positive if the expansion coefficients (2.26) are non-
negative, i.e. for any «, 3 € 2A:
0, =0 and Gop =0. (3.13)
It is strongly positive if there exists furthermore some M_, p_ > 0 such that for any (a,1) € 2

M_
O(ai) > g (3.14)
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Note that being regular then imposes 040y > 0 for any a € a.

In the positive case the amplitudes playing a fundamental role are those associated with the
Airy spectral curve 841 on £ = P! given by

5 z dz1dz;

x(z) =z, y(z) = —3 wo2(z1,22) = m (3.15)

Again, since there is only one ramification point, we omit its dependence from the associated
quantum Airy structure. A simple application of the formulae from Subsection 2.2 yields the
following expressions.

Lemma 3.5. The quantum Airy structure (A1A, MB,AC, MD) associated with 8 is given by

Ai
Aijx =0ij%0,

AIBK. = 8 (2k + 1)1t
AR e O TINEE DT DT

Aigik _ . (2j + D2k + 1! (3.16)
i = Oijtk+2 it 10 ,

Denote by Fg;ikl,...,kn the amplitudes associated with 841; it is not hard to see that they vanish
unless k; + - - + kn, = 3g — 3 + n. The above lemma yields a lower bound on the amplitudes
associated with any positive spectral curve.

Proposition 3.6 (Lower bound by Airy amplitudes). Consider a positive regular spectral curve.
The corresponding amplitudes Fg,«, . «, satisfy for2g —2+n > 0and o = (ai, ki) € A

2g—2+4n A
Fg;cxl,...,cxn = 6(11,...,(1n Q_g F

g/'ikl/“vkn. 4 (3.17)

where we can take Q- =min{ 040y |a € a}

Proof. In view of the recursion (2.20), the amplitudes Fg; .., «, are weakly increasing functions
of the coefficients of the quantum Airy structure (A, B, C, D), in the range where the latter are
non-negative. The positivity assumption on the spectral curve 8 implies that the coefficients
(2.29) of (A, B, C, D) are non-negative, and in fact, each term in (2.29) is non-negative. There-
fore, the amplitudes Fg.q, .. «, Of 8 are lower bounded by the amplitudes obtained by using
the recursion (2.20) with initial data on the right-hand side of the following inequalities:

Ay = Q- 5a,b,c51,j,k,0/

(2k + 1!
’y . .
Bap 2 Q- dab.editiktt iy 1y — 1)1
, 3.18)
. o (2k+ DN+ (
C“V > Q, 6a,b,c61,]+k+2 (21_1_ 1)” i’

D@@%,

with @ = (a,i),f = (b,j),y = (¢, k) and Q_ = min{04) | a € a}. These initial data form
a quantum Airy structure, namely q times the one associated with the disjoint union of |
spectral curves SA1 The amplitudes of the latter are 8, ,a,, - Q2_9—2+n . Fg;ikl,...,kn‘ The thesis
then follows by induction on 2g — 2 + n. O

In the strongly positive case, we can use a better lower bound by the PI amplitudes.
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Proposition 3.7 (Lower bound by PI amplitudes). Consider a strongly positive reqular spectral
curve. The corresponding amplitudes Vg.q, .. o, satisfy for 2g —2+mn > 0and oy = (ai, ki) € A

2g—2+ PI
Fg;ocl,...,cxn P 6(11,...,(1n Q_g " Fg;kl,-u,kn (u_), (3.19)

where we can take Q_— =2M_andu_ = p_/3.

Proof. As before, positivity implies that the coefficients of the quantum Airy structure are in-
creasing functions of the coefficients (0) and (¢p«,g). Thus, Fg.«,,.,«, is lower bounded by
the amplitudes of the spectral curve where the coefficients (¢« g ) are set to zero. This implies
that all terms that do not obey a; = --- = a,, can be ignored. For the PI spectral curve (3.1),
we have the coefficients 0;(u) = W Hence, the strong positivity assumption implies
O(qi) = Q- - 0i(u_) with Q— = 2M_ and u_ = p_/3. This implies the comparison (3.19)
again by monotonicity of amplitudes with respect to non-negative coefficients of quantum
Airy structures. u

Remark 3.8. The lower bound by Airy or Painlevé I are in general non-optimal. When there is more
than one ramification point, an annoying feature of these lower bounds is that they are trivial unless
a; = --- = an. It would be interesting to find non-trivial lower bounds without this feature.

4. INTERSECTION THEORY

4.1. From topological recursion to intersection theory

The amplitudes of a (local) regular spectral curve can always be expressed in terms of intersec-
tion indices of tautological classes on ﬁg,n, see [Eyn14; DOSS14; DNOPS18]. We shall make
use of this theory in the more restrictive case of spectral curves 8§ = (X, x,y, wg2) such that dx
and wop extend respectively as meromorphic 1-form and fundamental bidifferential on a com-
pact Riemann surface £ containing £ (y need not extend to ). In this case, the tautological
class involved is a cohomological field theory obtained by Givental-Teleman reconstruction
from a topological field theory, an R-matrix, and a translation. We refer to [Pan19] for defini-
tions and notations regarding cohomological field theories.

To make the statement precise, recall the centred local coordinate (4 on U, such that (q(a) =0
and x(z) = x(a) + (q(2z)?, and the coefficient tia1) = —Zd%% (a). Consider the auxiliary (mul-
tivalued) functions ¢¢: L — C and the associated (single-valued) meromorphic differentials
£(a1) defined as

a — B wO,Z(W") Z(a,i) — . d h a
0% (z) = L dlaw) 'w_a , £ (z)=d 2dx(z) e%(z) | . (4.1)
Define a unital, semi-simple topological field theory on the vector space V := @ ., C.eq by

setting

6(11,... an (4'2)

n(ea/eb) = 6a,b/ 1:= Z t(a,l)ea/ Wg,n(eal K& ean) = ﬁ
(t(a,;1))%9

aca
as the pairing, the unit and the topological field theory respectively. Define the R-matrix R &
idy + A.End(V)[A] and the translation T € A2.V[A] by the formulae

RIMG =~ %J e Tm ey,
Yo (4.3)

1 x(z)—x(a)
TA)® = t(a,l))\ + m J e 2 wo1(z).
Ya
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Here v, is the formal steepest descent path for x(z) emanating from the ramification point c;
locally it can be taken along the real axis in the (.-plane. Moreover, the equations are intended
as equalities between formal power series in A, where on the right-hand side we take an as-
ymptotic expansion as A — 0 along the positive real axis. Through the Givental action, we can
then define a cohomological field theory

Qgn =RTwgn € HV" (Mg ) @ (V)" (4.4)

from the data (w, R, T) via a sum over stable graphs. In general this cohomological field theory
has no unit. The link with the topological recursion correlators will be given through the
intersection indices

n

Qg,n(ea1 ® - Qeq,) l_Ill)ll<l . (4.5)

i=1

Mgn

(T, (€ay) -+ Tkn(ean)>§ - J

Theorem 4.1 ([Eynl14; DOSS14; DNOPS18]). Let § = (Z,x,y, wop) be a reqular spectral curve
such that dx and wop extend to a compact Riemann surface respectively as meromorphic form and
fundamental bidifferential. The correlators are given by

n

Q TT2(auk:
wg,n(zlr"'rzn) = Z <Tk1(ea1) "'Tkn(ean)>g Ha(aukl)(zi)_ (4.6)
K1, kn =0 i=1
ai,..,an€a
kit +kn<3g—3+n
Remark 4.2. The basis (£%) o defined in (4.1) is in general different from the basis (£*) nco defined
in (2.23). The assumptions of Theorem 4.1 guarantee the existence of a change of basis relating (£*) «

~

to (£%) «, and one could also perform this change of basis at the level of the quantum Airy structure.

The simplest example is the computation of the cohomological field theory associated with
the Airy spectral curve. In this case the associated 1-dimensional cohomological field theory
(whose underlying vector space is generated by 1 = ey) is the Poincaré dual of the fundamental
class of Mg,n- Besides, the differential forms &* and z"‘ coincide. Thus, the intersection indices
(4.5) (evaluated on 19™) are simply intersections of {-classes and coincide with the amplitudes
of the corresponding quantum Airy structure:

Fj;‘;ikl,,.,,kn = J ll)]fl e = (Tiey -+ Tkn>g . 4.7)
gmn
This is a well-known restatement of Witten’s conjecture /Kontsevich’s theorem [Wit91; DVV91;
Kon92].

In [DOSS14], a version of Theorem 4.1 directly concerning Frobenius manifolds was consid-
ered. We recall from Subsection 2.3 that series R(A), Tr (A) can be associated with semi-simple
point of a Frobenius manifold M. The tangent space of M at this point is a Frobenius algebra
and we take wgy ,, to be the corresponding topological field theory. We can then form the unital
cohomological field theory via the Givental action

Qgn = RTrwgn . (4.8)

Then the ancestor potential of the Frobenius manifold is a generating series for the intersection
indices defined by (4.5) with eq = 0,,, where (9, )acq is the basis of normalised canonical
vector fields. If we replace Tr()) in (4.8) with an arbitrary series T(A) € O(A?) we still obtain a
cohomological field theory albeit it may not have a unit anymore. In any case, the construction
of the local spectral curve in Subsection 2.3 is tailored to express the following.
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Theorem 4.3 ([DOSS14]). The topological recursion correlators of the local spectral curve associated
with a semi-simple point of a Frobenius manifold satisfy

W (21, ... 2n) = 3 (T (0v,) Ty v, Ve [TE@ ) (z0).  (49)

K10 kn 20 i=1
ai,...,an€a
ki+-+kn<3g—3+n

4.2. The Painlevé I case

A less trivial example of application of Theorem 4.1 is that of the PI spectral curve 8P (u)
introduced in (3.1). The expression of the correlators of 8PI(u) in terms of intersection numbers
was already analysed thoroughly in [CED18]. We revisit it here for completeness. Since the
vector space underlying the topological field theory is 1-dimensional (again, generated by 1 =
), we can write without confusion Qg = Qg (1 ®1). We also omit the ramification-point
subscript from the differential forms: = g04)

Recall the definition of the multi-index k-class: for p = (uy,..., tm) a m-tuple of non-negative
integers

where pim: Mg nim — Mgn is the morphism forgetting the last m marked points and stabil-
ising.

Lemma 4.4. The cohomological field theory and the differential forms (£1);>o associated with SP(u)
are given by

3g—3+n

y e, Big) = BLEDR, 4.11)

m! 22142

1

Qg,n = (6u)2972+n

m=0
Besides, the amplitudes of the corresponding quantum Airy structure are given by

3g—3+n—|k|
FPI (T, T, T, Vg

_ —(5g—5+2n—[k|)
okt en (W) = 292 (3g — 3+ m — )1 @12

for [kl =ki + -+ + kn <39 — 3+ n (including the n = 0 case), and zero otherwise.

Proof. The local coordinate ( is actually the global coordinate z. The topological field theory
is determined by the single constant t; = 6u, so it reads wgn = (6u)~(29-2+M)  Moreover, a
simple computation shows that ¢(z) = —1/z, so &lis given by (4.11) and equal to 33

The R-matrix is the identity while the translation is simply a multiple of A2

1 2
RN =— J e ndz=1,
) 221 IR
1 P \ , (4.13)
T(A) = 6uA + J e 2x 2z(z° — 3uz)dz = 6A~.
() V27N IR ( )

As a consequence, the cohomological field theory (for 2g —2 +n > 0 and n > 0) is given by

3g—3+n
1 g Kqim

1 2 2 —
Qgn=Y_ Epm,*(wg,nm.611)n+1...611)n+m) = Gups T > T (41

m>0 m=0
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We arrive to

n
PI ki
Foiky, i (W) = J Qgn [T
n i=1

3g—3+mn

1 —m n A m
N W Z um! J Hw}q Hwiﬂ' :
j=

m=0 Mgnim j—1

9,

(4.15)

The second equality follows from the projection formula. Since the complex dimension of

Mg nim is 3g — 3 +n + m while each -class has complex cohomological degree 1, the only
term contributing to the sumis m =3g—3 +n — k.

As for the free energies, that is n = 0, one can directly compute them from Definition 2.3 (or

equivalently from Lemma 2.9 with t; = 6u and t, = —2):
3g—3 3g—3
1 3 (miy” ), —Bg—=3)(5," )
Pl _ Pl _ Pl _ g 9.,—(59-5)
Fy = 292 (6uFg(u) —6Fg5(u)) = g1 #9139 3) u , (4.16)
where we inserted (4.12) to get the last line. The claim then follows from the dilaton equation:
(m597°), = (59 —5) (1,9 77),. O

4.3. Upper bound on Painlevé I amplitudes

We now establish an upper bound on the Pl amplitudes by exploiting their intersection-theoretic
expression and the known results on the asymptotic behaviour of \-class intersections.

Proposition 4.5. There exists S(u), P(u) > 0 such that for any 29 —24+n > 0and kq,...,kn = 0
we have

mn
2u\? _ 3g—3+n)!
P @k + 1)1 < St) (E) plupe e BOZ3ERE g
i=1 ’

One can take P(u) to be the function
2 ; 2
S < =,
Pu) = {5u2 . (4.18)

5 . 2
w fu=s.

As the proof will show, for [k| bounded independently of g and n one can get a better up-
per bound. Proposition 4.5 is interesting for large |k|, and a variant of its proof will give the
following useful bound.

Proposition 4.6. Foranyv >0,2g—2+n > 0,and ky,...,kn > 0, we have

n u uy\ 3g—3+n .
Z vkl Fgl;kl,.‘.,kn(u) H(2ki +1DI' < ¥ <2_u>9 (P(V)> Bg—3+2n)t )

27 V2 g'n!
K1, K 20 i=1
(4.19)

Proof of Proposition 4.5. Aggarwal established a uniform upper bound for intersection indices
of P-classes, see [Agg21, Proposition 1.2]:

n

(Ta, -+ Tan)g | J2di + 1 <

i=1

n—1
mwg—3+ny+nu<3> | @20)

249 g! 2
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We use it in (4.12) to get

n <Tk Ty ng—3+n—\k\> n
Pl . — 1 n g . —(5g—5+2n—|k|) .
N | (e e g e L § (CL Sl
i=1 im1
L 157BermM) (a(6g —6+2n — k) + D1 (3NN
© 6297241 (3g — 3+ 1 — [K|)! 249 g! 2
_ 3 (HW9  cpy k(W)
~ 8u (40u2)Pon g! ’
(4.21)
where we have set 4D 41— 2k
cbx(w) = (10u)k AP F 1= 20N (4.22)

(D —k)!
The main reason behind the rewriting of the above bound as in the last line of (4.21) is to have a
bound as a function of (g, Dg ) rather than (g, n). This will make a further analysis easier. We
now look for the maximum of the expression cp x (1), seen as a function of k € {0,1,...,D }.
To this end, consider the ratio

Cle(u) — 10u D—-k
CD,k—1 (u) 4D +1—2k !

which is a decreasing function of k in the real segment [0, D — 1] with maximum at rp o(u) =
10uﬁ < gu. We consider two separate cases.

D k(U = (4.23)

o Ifu < %, then mp 1 (u) < 1. We deduce that k — cp k(1) is a decreasing sequence of,

therefore A |
D+ 1)!!

o) < epplw) = FPX I <167 . (4.24)

The last inequality follow from the fact that % is a decreasing function of D > 0,

hence it is bounded by its value at D = 0.
o Ifu > %, then k — 1p x(u) equals one at k = D - % — ﬁ = D - A — ¢, where

A=A(u) = % €(0,1)and € = e(u) == ﬁ e (0, %). We deduce that

Da—e (2D(2 =A) +1 4 2€)!!

(DA-=A)+e)! 7
where the right-hand side is intended after extension to the reals via the I'-function.
Similarly as before, this can be bounded by

cpk(w) < s(u) - p(w)® - D! (4.26)

cp,k(u) < cp,pa—e(u) = (10u) (4.25)

for some irrelevant s(u) > 0 independent of D and

Aw) (4= 2A(w)* A (10u)?
(1—Au)-rMw)  5u—1°

Vue (2,+00)  p(u) = (10u) (4.27)

Note that p(%) = 16. Therefore, we can define p(u) = 16 for u < %, making the inequality
(4.26) valid for any u > 0 for an appropriate choice of s(u) > 0. Together with (4.21), it implies

the desired bound with P(u) := Z(EEZ) and S(u) = %s(u). O

Proof of Proposition 4.6. Considering again (4.21), the proof of Proposition 4.5 can be easily
adapted to give the bound

n 3g—3+n

- 2u\9 /P(&)\39 (3g —3+n)!

v E ]k + D < S() (E) ( 2 ) QT (4.28)
i=1
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where the exponential growth rate appears through % P(y) = 401uZ p(5). Moreover, we know

that the coefficients FPI oo (u) vanish for [k|] > Dy n for cohomology degree reasons, and
(Dl%“+“) tuples (K1, ..., kn) € Z>g such that [k| < Dgn. Hence
gmn

n 3g—3+n
2u) Y [P(¥)\77 (3g — 3+ 2n)!
—k
Z | |F9 K H (2ki + D! < S(S) (27> ( v; ) g!'n! )

(4.29)
O

there are

4.4. Large genus asymptotic of Painlevé I free energies

We conclude this section with a comment on the free energies. The precise asymptotics of the
free energies of PI has been established by Kapaev in [Kap04] using Riemann-Hilbert methods:

1 2972 P2g—2
oL (L) % (4.30)
V30g \ 243 (27)3/2u59-5

as g — oo. More precisely, Kapaev computes the asymptotics of the formal (also known as
0-parameter) solution of the PI equation:
5y 10
R202U = 6U2 + 5, Ulsih) = Y Ugh? <_6) . (4.31)
g0
It was then shown in [IS16] (see [IMS18] for the analogous result for all Painlevé equations)
that the coefficients Uy, determined from the initial condition Uy = —1, are related to the free
energies as
9 (59 —3)(5g —5)u®9—> "7

The asymptotic equivalence (4.30) is remarkably accurate, see Figure 1, and gives access to the
large genus asymptotics of (T39*3>

(4.32)

g
Proposition 4.7. As g — oo:

(13973 i<i>zg 2r(5 —5) (4.33)
2 79 4n\10V5 I '

Proof. This follows from the specialisation of (4.12) to n = 0, in conjunction with Kapaev’s
asymptotic (4.30) and Stirling’s formula. O

It is worth noticing that these are intersections of -classes in Mg 343, hence fall in the regime
n = O(g) which is not covered by [Agg21].

We also remark that Kapaev’s asymptotic is not sufficient to obtain (uniform) upper bounds for
the amplitudes FI;I;kl,.‘.,kn in the shape of Proposition 4.5 for n > 0, and we do not know if the
Riemann-Hilbert method can be pushed further to provide them. In comparison, the starting
point of the proof of Proposition 4.5 was the uniform upper bound [Agg?21, Proposition 1.2]
for \P-class intersections, which would give here

3g—4 2g—2
39-3 (12g—11)! /3 723 B
(2" g S T593000 1 \2 37r 2 625 F59 =5 (434

This is weaker than the more precise asymptotics from Proposition 4.7, namely the exponential
growth rate of the upper bound is larger by a factor of about 1.5 (see again Figure 1):

01342 ~ —> 72[ ~ 0.1995. (4.35)

10[
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FIGURE 1. A log-linear plot of the Painlevé I free energies FI;I (foru = 1) in blue,
and Aggarwal’s bound (4.21) in red, and Kapaev’s asymptotic (4.30) in green.

One could expect that having precise and uniform asymptotics of FI;I/'kI/m/kn (u) could lead to
an improvement of the upper bound of Proposition 4.5.

5. PROOF OF THE MAIN THEOREMS

5.1. Amplitudes

We start with a uniform upper bound on the amplitudes for n > 0. The free energies will be
discussed shortly.

Theorem 5.1. Consider a bounded spectral curve. The corresponding amplitudes Fg.«, .. «, satisfy for
2g—24+n>0,n>0,and o; = (ai, ki) €A

n
2u\? L., 3g-3+n (3g — 3+ n)!
| F— H(2ki F 1)1 < S(w) (E) Q224" (jal P(w)) S, 6
where Q comes from Corollary 3.3 and P(u) from Proposition 4.5. In particular, if n is fixed, there exist
constants Sy (u), A(u) > 0 such that uniformly in «q, ..., oxn

MN2g—2+mn)

W . (5.2)

n
Fgioa,an| | J(2ki + D! < Sn(u)

i=1

3/2

One can take A(u) ™! = Q/u/2 (|a| P(u))

Proof. The first claim is a direct consequence of the comparison with the PI amplitudes (Corol-
lary 3.3) and the upper bound for the latter (Proposition 4.5). For fixed n, we use the Stirling
inequalities to find

_ |
(3g—3+n)! - Mn<3\f3
g 2

for some constant M, > 0, and rewrite 3g—3+n = %(29—2—1—*(1)—% and g = %(29—2+n)+1—%
to get the second claim. O

2g—2+n
) r2g—2+n) (5.3)
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5.2. Generalised periods

In the previous subsection, we provided an upper bound for the amplitudes associated with a
(bounded local) spectral curve. However, interesting enumerative information are often stored
in generalised periods of the correlators (rather than in the amplitudes). In this section we
derive similar upper bounds bearing on generalised periods on spectral curves. To this end,
we will need again a boundedness assumption on the generalised period under consideration.
Throughout this section, we will only consider spectral curves and not their local version.

Definition 5.2. We say that a linear form I on H’(Z, Kz (xa)) is bounded if there exists N, v; > 0

such that for any (a,1) € 2

21+ 1!
Vi

[TE Y] <Ny (5.4)

Lemma 5.3. The following linear forms on HO(Z, Ks (a)) are bounded:

Frw— ) qcaRes—q ([7ydx)w(z);
w) foreachp € L\ aand k € Z>g — see (2.7);
ev(zp) foreachp € £\ a— see (2.9);
Lizpx) foreachp € £\ a—see (2.10);
i y Jory a loop or a path between two points in ¥\ a.

In the third and fourth cases, the constants in Definition 5.2 can be chosen uniformly for p in any
compact in the domain of definition of the local coordinate Z. In the fifth case, the constants can be
chosen uniformly for loops or paths remaining in a compact subset of the universal cover of £ \ a.

Proof. We only discuss the first two cases, as the others are obtained similarly. For the linear
form ¥, we have

Fielet) = 3 Res ([ yae) elot(z) = Res (| v ) 10z = 2= Drvey 659

using the series expansion of ydx from (2.30) and that of £(%!) from (2.28). As Lemma 2.13
guarantees that regular spectral curves are bounded, we deduce that J is bounded with con-
stant vq = py.

As for the linear form I(;, ), recall the definition of the local coordinate X;, near p in (2.8). We
have

(a, " wo,2(z, W)
I(]D,k)[<E ] (2i+ 1)t ZReg v{,{e% Xk( ) a(W)2it2°

We can then move the contours in z and in w, but avoiding intersections due to the double
pole of wy,, along the diagonal. Hence, we get the desired bound for some choice of Ny, >0
and VI = Mmingeq Vp,q- Recalling the notations from the proof of Lemma 2.13, if p ¢ Ug, we

(5.6)

can take any v o < R% | (for instance vp o = p), and if p € Ug, we should rather take vy, o <
|Ca(p)? and choose the contour in z so that its {4-projection remains in D(Rq) \ D(vp,a)- O

Theorem 5.4. Consider a regular spectral curve and let 1y, . .., I be bounded linear forms on the space
HO(Z, Kx (*a)). Then, for any 2g — 2 +n > 0, we have

el H||N ) (20)° g aen (WPEDY* T B9 =3 2
1 (Ugn \ a Vi 27 V‘% g'n' 7
(5.7)
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where vy = min; vy,. In particular, for fixed n, there exist S, 1, A1 > 0 depending only on n and the
constants in the boundedness assumptions, such that

L ® - ®Inlwgnl| < Snilu) % (5.8)
I
One can take any fixed A = Q/v3 /u/2 (la| P(u/vl))3/2.
Proof. We have
Lo eh)lwgnl= Y  Fga.an ﬁ L [E]. (5.9)
o0 €2 i1

Coming back to the comparison between the amplitudes with the PI amplitudes (Corollary 3.3)
and using Proposition 4.6, we get

L@ @ Inlwgnl|

< Z ‘Fg;(allkl) (an/kn)

(ag k), (an,kn)€EA i=1
ki+-+kn<3g—3+n

N1 (2ki +1
T Dl D

Vi

n ‘k‘ (5.10)
< H |al NI-I |a|39—3+n Q29—2+n Z Fg ek (u)
i=1 K1k >0
3g—3+n
H|a|NI v [2u ngiﬂn lal P(57) (3g —3+2n)!
vi \27 V4 g!'n! '
Specialising to n fixed follows again from the Stirling-type inequality
3g —3+2n)! 3v/3)\ 2972

(99'% < Mn<7\/_> r2g—2+mn). (5.11)
O

Corollary 5.5. Consider a regular spectral curve and let Z1, ..., Zy be local coordinates in some open
of Z\ a. Take p; in a compact subset in the domain of definition of the local coordinate Z;. There exists
Sn,z, Az > 0 depending only on these compacts and the constants in the boundedness property such
that for any2g —24+n >0

wg,n(zlr .. '/Zn)
dZ](Z]) s dZn(z

N2g—2+n)
A22972+n

<Snz (5.12)

n) Zi=Pi
5.3. Free energies and wave function

We conclude this section with an analysis of the free energies and the stable coefficients of the
wave function.

Theorem 5.6. Consider a (bounded local) reqular spectral curve. Then, the free energies satisfy

r2g—2)

vg 2 2/ |Fg| < SO A%g_z (513)

for some constants Sy, Ag > 0 depending only on the constants in the boundedness assumption. One

can take Aal =Q/p} Vu/2 (Ial P(u/pt))s/z.
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Proof. For regular spectral curves, this is a simple consequence of Theorem 5.4 due to the
boundedness of linear form F in Lemma 5.3. For bounded local spectral curves, we can just
redo the proof starting from the expression of the free energies in terms of the coefficients (ty),
Lemma 2.9, in combination with the geometric bound on the coefficients t, in the bounded-
ness assumption and the comparison with PI amplitudes. We have

1 . M
|1Eg|<297_2 > iD= (Fgan)]
(ai)eA Pt

(5.14)
M |a|3972 Qngl ) .
< t(zg_z) - > @i+ F ().
(a,i)eA

The result is then implied by the Stirling-type inequality

o 2g—2
(?)ng Mo <3\/_> I'2g—2) (5.15)
and by Proposition 4.6. O

To conclude, we provide an upper bound for the stable coefficients of the wave function (see
Definition 2.4).

Theorem 5.7. Consider a reqular spectral curve and take a path remaining in a given compact subset
of the universal cover of L \ a between two points zy and z. There exists Sy,, Ay, > 0 depending only
on this compact and the constants in the boundedness property such that

r
vx =1, ‘fZO,X(z)‘ < Sy % . (5.16)
¥
One can take Ax_pl = Q/v?v2u (|al P(u/v))s/z.
Proof. Recall the definition
1 z z
frx(2) = D o L = J Wyn - (5.17)
g>0, n>0 0 %0
2g—2+m=x

By Lemma 5.3, the generalised period [ ZO is bounded. Consider the associated constants N
and v, which can be taken to be uniform for paths remaining in a given compact subset of the
universal cover of I\ a between two points zp and z. By Theorem 5.4, we have an upper bound
for the individual terms:

|20, (2)] < s5) ) (la| N)™ (2_11>9Q29_2+n <w>39—3+n (393 +2n)

n! 27 V2 g'n!

(JalN)™ /2u\9 [lalP(%)\297> ™
” QXF(X) Z — (E) ( > > 339 342

(5.18)
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for some constants S, Ay, T > 0. One can take Ay, as in the statement of the theorem. To
conclude, the sum over (g, n) can be bounded by

g=>0, n>0 nz=0
2g—2+n=x
This would simply adjust the overall constant. O

6. EXAMPLES OF APPLICATIONS

.. . dz,d
Unless explicitly stated, in all subsequent examples we take X = C and wo(z1,27) = ﬁ
Weil-Petersson volumes. Consider the spectral curve x(z) = z? and y(z) = —w. There

is a single ramification point at z = 0, so we omit the dependence on « € a. In this case, the
associated amplitudes compute the Weil-Petersson intersection numbers [Mir07; EO]:

n
2 k: 2
Foxi,kn = J e 1_[11’111 = (&7 STy Tkn>g . (6.1)
mn i=1

9,

The constants in the boundedness condition can be taken to be Mg = %, Mg =0,and p = %.
Thus,

n
(e ki - o) [ [k + 11 < S

i=1
for some S > 0and A~! = 1728-31/3.573/2 ~ 222.910. The same inequality holds for n = 0, as
we can take py = 1. It is worth comparing our estimate with the one obtained by Grushevski
[Gru01] using ad hoc methods for Weil-Petersson volumes and valid for k; = --- = kn =0
only. The latter is slightly worst, with an exponential factor of Aarlu =768 - e 1/6 ~ 692.058.
It is also worth comparing it with the optimal one obtained by Mirzakhani-Zograf [MZ15]
(again, only valid for k; = --- = k,, = 0) that is Aﬁlz = 47% ~ 39.478. Thus, our exponential

growth rate is off by a factor of roughly 5.646.

N2g—2+mn)

A29—2+n (62)

Euler characteristic and lattice points of My . Consider the Gaussian Unitary Ensemble
(GUE) spectral curve x(z) = z + z 'and y(z) = —z. It has two ramification points at z = +1.
There are three interesting generalised periods [Nor13; Eyn16]:

e x(Mg) = Fg is the Euler characteristic of the moduli space of genus g curves;

e Ngnlly,...,ln) = (®?:1 (7,;11(2,00,@.1)) [wgn] is the number of metric ribbon graphs of
genus g with n boundaries of lengths Ly, ..., L, > 0, i.e. the number of lattice points in
the combinatorial model of the moduli space of curves;

o Cynlly,....0h) =(=1D" ( Qi I(l/xloo,gi)) [wg,n] is the number of maps of genus g with
n boundaries of lengths {4, ..., {,;, > 0 and no internal face.

The R-matrix in this case was computed in [ACNP15]. The constants in the boundedness
condition can be takentobe Mg =2, My, = %, and p = p; = 4; the constant in the boundedness
property for I, o, ¢) and I (1 /x «,¢) can be taken to be v = 4. Thus:

I'2g —2)
A29—2

N2g—2+mn)
A29—2+n ’
(6.3)

|Xg| <S and max {Ng,n(elr---;en)/eg,n“l/---/en)} < S
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for some S, Sy > 0and A1 = % .31/3 ~ 12.314. It is worth mentioning that the Euler
characteristic of the moduli space of curves is explicitly computed by the celebrated Harer—
Zagier formula [HZ86]:

29(2g—-2)"

g I'(2g —2)

; W . (6.4)

Xg = |Xg| ~

Note the optimal exponential growth rate A, = % ~ 0.159. Thus, our exponential growth

rate is off by a factor of roughly 77.372.

Masur-Veech volumes. Consider the local spectral curve given by x(z) = z2,y(z) = —z/2, and
wo2(z1,22) = %((217122)2 + Sin2(ﬁ("z21_zz)) )ledlz. It has a single ramification point at z = 0, so

we omit the dependence on « € a. The amplitudes Fg,,.. o compute the Masur-Veech volumes
of the principal stratum of the moduli space of quadratic differentials [And+23]:
_ 4g —4 +n)!
Vol — 249 24n ( F.. . .
o (Qg,n) (69 —7 + 2n)! g,0,...,0 (6.5)

The constants in the boundedness condition can be taken to be Mg = #, Mg = g‘—zz, and

p= %. Thus:

S
S A29—2+n
for A = %ﬂtz) .372/3.571/2 ~ 93.208. We can compare the bound with the large genus
asymptotic formula proved by Aggarwal in [Agg21]:

Vol(Qgn) (6.6)

A3
VOI(Qg/n) ~ W .

In other words, our exponential factor is off by a factor of more roughly 228.313.

(6.7)

Maps. Consider the spectral curve x(z) = « + y(z + z 1) and y(z) = Z]‘i:l uz~ k. It is
a deformation of the GUE spectral curve, which appears in the enumeration of maps with
internal faces with Boltzmann weights. The parameters uy are algebraic functions of these
Boltzmann weights [Eyn16]. The weighted number of maps genus g with n boundaries of
length ¢y, ..., ¢, > 0is obtained as

n
Tomn (- ) = (1™ ) Lt /x00,00) [Wg ] (6.8)
i=1

Assume that the parameters are such that % has no zeroes when [x(z)| < o« + 2y (this
implies in particular off-criticality). Then, recycling the boundedness estimates for the GUE

spectral curve, we can take for constants in the boundedness property Mg = 2[y[*m where

m = maxj,_ ,and My, = 4hl/—|2’ p = py = 4[y|>. For the boundedness property of

Z*Zil
y(z)—y(z™)
the generalised period I(1/y c0¢) We can take v = 41y|72. Thus,
N2g—2+mn)

A29—2+n (69)

|Tg,n(€l/ sy en)| < Sn,(’,
for some Sy > 0 and A~! specified from the above constants via the formula below (5.8).

Stationary Gromov-Witten invariants of P'. Consider the spectral curve x(z) = z +z ! and
y(z) = log(z). It has two ramification points at z = +1. The generalised periods 11 /x o k1)
compute the stationary Gromov-Witten invariants of the Riemann sphere [NS14; DOSS14]:

=1

(i () T (@G0 = <® %) (Wl 6.10)
i=1 t )
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The degree d is determined by [k| = 2g — 2 + 2d. As in the GUE case, the constants in the
boundedness condition can be taken to be Mg =2, My, = %, and p = py = 4; the constant in
the boundedness property for I (1 /5 « k-+1) can be taken to be v = 4. Thus:

pl N2g—2+n)
<Tk1(w)"'Tkn(w)>g,d < SkAZQ——ZJF"I (6.11)
for some Sy > 0and A~ = # .31/3 ~ 12314
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