Übungen zur Analysis für Informatiker

Humboldt-Universität zu Berlin, Sommersemester 2017
PD Dr.habil. Olaf Müller
Exercise Sheet 2, due to 24th of April 2017, 12:00

Exercise 1: Minimum and maximum

Prove that a finite ordered set (X, \geq) admits a minimum resp. a maximum, i.e., an element $x \in X$ such that $x \geq y$ resp. $y \geq x$ for all $y \in X$. Find a counterexample for the same statement without the condition of finiteness where X is

- a countable ordered field,
- a bounded set in an ordered field.

Exercise 2: Infimum property $=$ Supremum property

Let us say that a an ordered field has the infimum property iff for every nonempty subset A of K, the set of lower bounds of K is either empty or contains a greatest element. Show that an ordered field has the infimum property if and only if it has the supremum property.

Exercise 3: Subsequences

Show that every sequence contains a monotonous subsequence. Find an example of a sequence containing a monotonously increasing subsequence and a monotonosly decreasing subsequence. Prove the following: If, for a sequence $x: \mathbb{N} \rightarrow \mathbb{Q}$, the sequence x_{e} of even members defined by $x_{e}(n):=x(2 n) \forall n \in \mathbb{N}$ converges to a limit l_{e}, and if the sequence of odd members x_{o} defined by $x_{o}(n):=x(2 n+1) \forall n \in \mathbb{N}$ converges to a limit l_{o} and if $l_{e}=l_{o}$ then the sequence x itself converges to $l_{e}=l_{o}$.

Exercise 4: Convergence and boundedness

Find examples of sequences in \mathbb{Q} that are

- bounded, but not Cauchy;
- Cauchy, but not convergent.

